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Proliferation of NEW DB(-like) Implementations
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Proliferation of NEW DB(-like) Implementations

Quick sample:
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In contrast to. ..
. before Y~2000 it was pretty much divided between
the big four (ORALE, IBM/DB2, Sybase, and MS Server)
and (later, with the advent of the WEB) Postgress, MySQL, etc.
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Why so many? And why Main-Memory?
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Why so many? And why Main-Memory?
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Copuright 2 1996 United Feature Syndicate, Inc.
Fedistribution in whole ar in part prohibited

New Circumstances
© cheap and abundant hardware (Extra CPUs and Main Memory)
® changes in applications/workloads (often fitin main memory!)
® cost (we won'’t focus on this though)
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Topics of Interest

© What are the main differences between managing memory
resident data v.s. data in external storage?

® impact on query/update processing
how many instructions does it take to answer simple queries?

* what happens to ACID (and can we afford durability at all)?

® What is the impact on programming interface to MMDBs?
¢ declarative (SQL-like) vs. procedural (C++-like)
® query optimization?

® What is the impact of multi-core/CPU hardware
® data partitioning and query compilation/allocation

® communication/synchronization between parallel operations
dependency on architecture (Multicore, NUMA, Shared-nothing)?
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Topics of Interest

© What are the main differences between managing memory
resident data v.s. data in external storage?

® impact on query/update processing
how many instructions does it take to answer simple queries?

* what happens to ACID (and can we afford durability at all)?

® What is the impact on programming interface to MMDBs?
¢ declarative (SQL-like) vs. procedural (C++-like)
® query optimization?

® What is the impact of multi-core/CPU hardware
® data partitioning and query compilation/allocation

® communication/synchronization between parallel operations
dependency on architecture (Multicore, NUMA, Shared-nothing)?

@ UDTs (user-defined topics)

David Toman (University of Waterloo) CS848 Spring 2022 4/23



Outline&Organization

¢ QOrganization:
= Lectures (4-5),
= Presentations of papers (reading list), and
= Projects

¢ First meeting: Wed May 4, 2022 at 10:30 in DC 2568

® Prerequisites:

= Intro to Databases (CS348-like), and
= standard programming skills
(although this is not necessarily an implementation class)

e Class web site: cs.uwaterloo.ca/ " david/cs848/
reading list, schedule of classes/presentations, policies, etc.

David Toman (University of Waterloo) CS848 Spring 2022 5/23



Organization (ii)

Week 1: Organization,
Issues in classical DB implementations, and
What can be done about it?
Week 2: Introduction to DB implementation,
Classical Approaches vs. Query compilation (examples);
Discussion/assignment of presentations/projects.
Weeks 3-5: More on Query Compilation:
Multi-level Store (a.k.a. Disks),
Sorted Data and better algorithms,
How does this really work?
What to do about Updates? (and perhaps more)

Weeks 7-12: In-class Paper/Project Discussion&Consultation
Week 13: Summary and Wrap-up
= see the course website for details
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Assessment

© class participation (20%)

@ in class presentation of a topic/paper from the reading list
(optional, up to 30%)

©® project (50-80%)

NB: I'll discuss assignments/presentations/projects later in class. . .
= but look at the reading list on the web site
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DATABASE IMPLEMENTATION

(STANDARD APPROACHES AND TECHNIQUES)
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Requirements (user point of view)
Goal of a DBMS

Execute user queries/updates (as fast as possible)
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Requirements (user point of view)

Goal of a DBMS
Execute user queries/updates (as fast as possible) J

(typical) Requirements:

© Stores all of your Data (scalability)

® Physical Data Independence (SQL vs. B-trees et al.)
© Durability (the idea of a transaction)

@ Isolation (sharing/concurrency)
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Requirements (user point of view)

Goal of a DBMS
Execute user queries/updates (as fast as possible) J

(typical) Requirements:

© Stores all of your Data (scalability)

® Physical Data Independence (SQL vs. B-trees et al.)
® Durability (the idea of a transaction)

@ Isolation (sharing/concurrency)

= do we need all of the above all the time?

David Toman (University of Waterloo) CS848 Spring 2022

9/23



Standard Architecture: Client-Server “System”

Query/Update Compiler

= compiles a logical expression to a plan
Query/Update Execution Engine:

= executes a prepared plan

© Query processor (access paths)
® Transaction Manager

® Recovery Manager

@ Buffer Pool
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Where does the Time go? (a case study)

e SHORE (Scalable Heterogeneous Object Repository, Wisconsin '90s)
= the whole database is preloaded in main memory

e TPC-C (OLTP) benchmark: “new order” and “payment” transactions
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Where does the Time go? (a case study)

e SHORE (Scalable Heterogeneous Object Repository, Wisconsin '90s)
= the whole database is preloaded in main memory

e TPC-C (OLTP) benchmark: “new order” and “payment” transactions

Warehouse
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item

ltem
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New-Order order [~ Order
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5-15

Order-Line
(size > W x 300k)

Figure 3. TPC-C Schema.
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Where does the Time go? (a case study)

e SHORE (Scalable Heterogeneous Object Repository, Wisconsin '90s)
= the whole database is preloaded in main memory

e TPC-C (OLTP) benchmark: “new order” and “payment” transactions
= 50/50 mix of the transactions in experiments

e Experiments show performance gain by removing/simplifying:

© B-Tree keys (no prefix compression)

® no logging (no durability)

® no locks (no concurrency)

@ no latches (no transactions: begin/commit/. . .)
@® no buffer manager (remember DB preloaded!)
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Where does the Time go? (setup)

Assumptions:

© all data preloaded into main
memory

® transactions compiled and
linked against SHORE

® 50-50 mix
O 40k transaction runs

New Order
begin
for loop(10)
..... Btree lookup(l), pin
Btree lookup(D), pin
Btree lookup (W), pin
Btree lookup (C), pin
update rec (D)
for loop (10)
..... Btree lookup(S), pin
..... update rec (S)
..... create rec (O-L)
.....insert Btree (O-L)
create rec (O)
insert Btree (O)
create rec (N-O)
insert Btree (N-O)
insert Btree 2ndary(N-O)
commit

Payment
begin
Btree lookup(D), pin
Btree lookup (W), pin
Btree lookup (C), pin
update rec (C)
update rec (D)
update rec (W)
create rec (H)
commit

Figure 4. Calls to Shore’s methods for New Order and
Payment transactions.
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Where does the Time go?
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Where does the Time go?
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Figure 6. Detailed instruction count breakdown for New Order transaction.
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Where does the
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Figure 8. Instructions (left) vs. Cycles (right) for New Order.
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Where does the Time go? (conclusions)

Having a giant buffer cache to fit the whole dataset
doesn’t seem to solve all problems (90+% OVERHEAD!)J
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Where does the Time go? (conclusions)

Having a giant buffer cache to fit the whole dataset
doesn’t seem to solve all problems (90+% OVERHEAD!)

v

However. ..
...the savings in experiments at cost of functionality

= can MMDBs be engineered to mittigate the overhead
without sacrifising functionality?
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Where does the Time go? (conclusions)

Having a giant buffer cache to fit the whole dataset
doesn’t seem to solve all problems (90+% OVERHEAD!)

v

However. ..
...the savings in experiments at cost of functionality

= can MMDBs be engineered to mittigate the overhead
without sacrifising functionality?

Single threading vs. multicore
Availability (replication) vs. logging
Variations on isolation
Cache-conscious data structures
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Compilation-based Approaches

IDEA:
can we use a

* high level system description
® a compiler
to generate tailored code for our appilication?
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Compilation-based Approaches
Definability and Rewriting

Queries range-restricted FOL (a.k.a. SQL)

Data CWA (complete information)

y [ S k------ 0 Logical Schema

and User Queries
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Compilation-based Approaches
Definability and Rewriting

Queries range-restricted FOL over S| definable w.r.t. © and Sp
Schema range-restricted FOL ¥ = >tuxtPuxFr

Data CWA (complete information for Sa symbols)
> S, k------ © Logical Schema
‘ and User Queries
Yip (compilation)

h S, CSpkk - - - - —— h Physical Schema
P@( v and Query Plans

[Borgida, de Bruijn, Franconi, Seylan, Straccia, Toman, Weddell: On Finding
Query Rewritings under Expressive Constraints. SEBD 2010: 426-437]
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Compilation-based Approaches
Definability and Rewriting
Queries range-restricted FOL over S| definable w.r.t. © and Sp

Schema range-restricted FOL ¥ = >tuxtPuxFr
Data CWA (complete information for Sa symbols)

¢ to users it looks like a single model (of the logical schema)
¢ implementation can pick from many models
but definable queries answer the same in each of them

¥

| Query (S.)
1 (Relational Algebra over Sp)
| Schema (S_ U Sp) T

| Data (Sa C Sp

) | (instance of) S,
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Compilation-based Approaches
Definability and Rewriting

&I\L& MORGAN &Lﬁl.'\'w ‘['t YOL PUBLISHERS
Fundamentals of
Queries range-restricted FOL over S| defin  Physical Design and

Query Compilation
Schema range-restricted FOL ¥ = >Luxt yReme

Data CWA (complete information for Sp ¢

David Toman

Grant Weddell

¢ to users it looks like a single model (of the
¢ implementation can pick from many models
but definable queries answer th

SYNTHESIS LECTURES ON DATA MANAGEMENT

¥

| Query (S.)
1 (Relational Algebra over Sp)
| Schema (S_ U Sp) —

|(instance of) Sp

| Data(Sa C Sp) |
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Example

S —————— conceptual modelling —-——————-—
% disjoint coverage
student (x,y) <-> (ugrad(x,y) or grad(x,v)),

ugrad(x,y) and grad(x,z) —> bot,
% student id is a key
student (x,y) and student (x,z) -> y=z,

[}

o

o\

——————— physical modelling ————————

two access paths: pOastudent and plagrad use record ids
student (x,y) <-> ex(r,plastudent (r,x,v)),

grad(x,V) <-> ex(r,plOastudent (r,x,y) and plagrad(r)),

% record ids are keys too

pOastudent (r, x,y) and pOastudent (r,z,w) —-> x=z,
pOastudent (r, x,y) and pOastudent (s,x,z) —-> r=s,

o

5 ——————— queries ———————-
g0gs (x,y) <-> grad(x,vy),
qOus (x,y) <—-> ugrad(x,y)
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Example (cont.)

david@david$ cat tests/old_format/848ex/students.fol |

query (gq0gs, 2,0, [var (1, int),var(2,int)]) <->
project ([var(3,int) ],
nlij(

ap (pOastudent, [var (3, int),var(l,int),var(2,int) ], £scan)
ap(plagrad, [var(3,int) ], flookup, 1)
)

)

query (qOus, 2,0, [var (1,int),var(2,int)]) <->
project ([var (3,int)],
nlj(

ap (pOastudent, [var (3, int),var (1, int),var(2,int) ], fscan)
complement (
ap(plagrad, [var (3,int) ], flookup, 1)
)
)
)
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Example (header file: us.h)

#include "runtime.h"
// struct for us
struct us_data {

// public:
long var_1;
long var_2;
long var_3;

// operators:
// AP private:
struct fscan_data

apvar0;

struct flookup_data apvarl;

}i

David Toman (University of Waterloo)

CS848 Spring 2022



Example (C source: us.c)

#include <stdio.h>
#include <stdlib.h>
#include "us.h"

static int inline __attribute_ ((always_inline)) getfirst_simpcomp2 (struct us_data =q) {
if (getfirst_plagrad(& (g->apvarl), &(g->var_3))) return 0;
return 1;

bi

static int inline __attribute__ ((always_inline)) getnext_simpcomp2 (struct us_data *q) {
return 0;

bi

static int inline __attribute__ ((always_inline)) getfirst_nlj3(struct us_data =*qg) {
if (!getfirst_pOastudent (& (g->apvar0), &(g->var_3), &(g->var_l), &(g->var_2))) return 0;
while (!getfirst_simpcomp2(q))
if (!getnext_pOastudent (& (g->apvar0), &(g->var_3), &(g->var_1l), &(g->var_2))) return 0;
return 1;
bi
static int inline __attribute_ ((always_inline)) getnext_nlj3(struct us_data *q) {
if (getnext_simpcomp2(q)) return 1;
while (getnext_pOastudent (& (g->apvar0), &(g->var_3), &(g->var_1l), &(g->var_2)))
if (getfirst_simpcomp2(q)) return 1;
return 0;
bi

static int inline __attribute__ ((always_inline)) getfirst_project4 (struct us_data *q) {
return getfirst_nlj3(q);

bi

static int inline __attribute__ ((always_inline)) getnext_project4 (struct us_data =*q) {
return getnext_nlj3(q);

u]
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Take Home

Focus of this class: DB engine vs. Compilation aproaches
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Take Home

Focus of this class: DB engine vs. Compilation aproaches J

Lots of open issues:
© Main memory data organization
® Multilevel memory/storage
® Ordered data
@ Parallelism and partitioning (many levels)

9"' v
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Take Home

Focus of this class: DB engine vs. Compilation aproaches J

Lots of open issues:
© Main memory data organization
® Multilevel memory/storage
® Ordered data
@ Parallelism and partitioning (many levels)

0 ... J

Next time
© Basics of DB implementation (crash course)
® Basics of Query Compilation (with examples)
® Discussion of presentations/projects
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