
Topics in Database Systems:
Modern Database Systems

CS848 Spring 2022

David Toman

Wednesday 10:30-1:00 (DC 2568)
cs.uwaterloo.ca/˜david/cs848/

David Toman (University of Waterloo) CS848 Spring 2022 1 / 23

Proliferation of NEW DB(-like) Implementations

Quick sample:

. . . and dozens of others

In contrast to. . .
. . . before Y∼2000 it was pretty much divided between

the big four (ORALE, IBM/DB2, Sybase, and MS Server)
and (later, with the advent of the WEB) Postgress, MySQL, etc.

David Toman (University of Waterloo) CS848 Spring 2022 2 / 23

Proliferation of NEW DB(-like) Implementations

Quick sample:

. . . and dozens of others

In contrast to. . .
. . . before Y∼2000 it was pretty much divided between

the big four (ORALE, IBM/DB2, Sybase, and MS Server)
and (later, with the advent of the WEB) Postgress, MySQL, etc.

David Toman (University of Waterloo) CS848 Spring 2022 2 / 23

Why so many? And why Main-Memory?

New Circumstances
1 cheap and abundant hardware (Extra CPUs and Main Memory)
2 changes in applications/workloads (often fit in main memory!)
3 cost (we won’t focus on this though)

David Toman (University of Waterloo) CS848 Spring 2022 3 / 23

Why so many? And why Main-Memory?

New Circumstances
1 cheap and abundant hardware (Extra CPUs and Main Memory)
2 changes in applications/workloads (often fit in main memory!)
3 cost (we won’t focus on this though)

David Toman (University of Waterloo) CS848 Spring 2022 3 / 23

Topics of Interest

1 What are the main differences between managing memory
resident data v.s. data in external storage?
• impact on query/update processing

how many instructions does it take to answer simple queries?
• what happens to ACID (and can we afford durability at all)?

2 What is the impact on programming interface to MMDBs?
• declarative (SQL-like) vs. procedural (C++-like)
• query optimization?

3 What is the impact of multi-core/CPU hardware
• data partitioning and query compilation/allocation
• communication/synchronization between parallel operations

dependency on architecture (Multicore, NUMA, Shared-nothing)?

4 UDTs (user-defined topics)

David Toman (University of Waterloo) CS848 Spring 2022 4 / 23

Topics of Interest

1 What are the main differences between managing memory
resident data v.s. data in external storage?
• impact on query/update processing

how many instructions does it take to answer simple queries?
• what happens to ACID (and can we afford durability at all)?

2 What is the impact on programming interface to MMDBs?
• declarative (SQL-like) vs. procedural (C++-like)
• query optimization?

3 What is the impact of multi-core/CPU hardware
• data partitioning and query compilation/allocation
• communication/synchronization between parallel operations

dependency on architecture (Multicore, NUMA, Shared-nothing)?

4 UDTs (user-defined topics)

David Toman (University of Waterloo) CS848 Spring 2022 4 / 23

Outline&Organization

• Organization:
⇒ Lectures (4-5),
⇒ Presentations of papers (reading list), and
⇒ Projects

• First meeting: Wed May 4, 2022 at 10:30 in DC 2568

• Prerequisites:
⇒ Intro to Databases (CS348-like), and
⇒ standard programming skills

(although this is not necessarily an implementation class)

• Class web site: cs.uwaterloo.ca/˜david/cs848/
reading list, schedule of classes/presentations, policies, etc.

David Toman (University of Waterloo) CS848 Spring 2022 5 / 23

Organization (ii)

Week 1: Organization,
Issues in classical DB implementations, and
What can be done about it?

Week 2: Introduction to DB implementation,
Classical Approaches vs. Query compilation (examples);
Discussion/assignment of presentations/projects.

Weeks 3-5: More on Query Compilation:
Multi-level Store (a.k.a. Disks),
Sorted Data and better algorithms,
How does this really work?
What to do about Updates? (and perhaps more)

Weeks 7-12: In-class Paper/Project Discussion&Consultation
Week 13: Summary and Wrap-up

⇒ see the course website for details

David Toman (University of Waterloo) CS848 Spring 2022 6 / 23

Assessment

1 class participation (20%)
2 in class presentation of a topic/paper from the reading list

(optional, up to 30%)
3 project (50-80%)

NB: I’ll discuss assignments/presentations/projects later in class. . .
⇒ but look at the reading list on the web site

David Toman (University of Waterloo) CS848 Spring 2022 7 / 23

DATABASE IMPLEMENTATION

(STANDARD APPROACHES AND TECHNIQUES)

David Toman (University of Waterloo) CS848 Spring 2022 8 / 23

Requirements (user point of view)

Goal of a DBMS
Execute user queries/updates (as fast as possible)

(typical) Requirements:

1 Stores all of your Data (scalability)
2 Physical Data Independence (SQL vs. B-trees et al.)
3 Durability (the idea of a transaction)
4 Isolation (sharing/concurrency)

⇒ do we need all of the above all the time?

David Toman (University of Waterloo) CS848 Spring 2022 9 / 23

Requirements (user point of view)

Goal of a DBMS
Execute user queries/updates (as fast as possible)

(typical) Requirements:

1 Stores all of your Data (scalability)
2 Physical Data Independence (SQL vs. B-trees et al.)
3 Durability (the idea of a transaction)
4 Isolation (sharing/concurrency)

⇒ do we need all of the above all the time?

David Toman (University of Waterloo) CS848 Spring 2022 9 / 23

Requirements (user point of view)

Goal of a DBMS
Execute user queries/updates (as fast as possible)

(typical) Requirements:

1 Stores all of your Data (scalability)
2 Physical Data Independence (SQL vs. B-trees et al.)
3 Durability (the idea of a transaction)
4 Isolation (sharing/concurrency)

⇒ do we need all of the above all the time?

David Toman (University of Waterloo) CS848 Spring 2022 9 / 23

Standard Architecture: Client-Server “System”

Query/Update Compiler
⇒ compiles a logical expression to a plan

Query/Update Execution Engine:
⇒ executes a prepared plan

1 Query processor (access paths)
2 Transaction Manager
3 Recovery Manager
4 Buffer Pool

David Toman (University of Waterloo) CS848 Spring 2022 10 / 23

Where does the Time go? (a case study)

• SHORE (Scalable Heterogeneous Object Repository, Wisconsin ’90s)

⇒ the whole database is preloaded in main memory

• TPC-C (OLTP) benchmark: “new order” and “payment” transactions
⇒ 50/50 mix of the transactions in experiments

• Experiments show performance gain by removing/simplifying:

1 B-Tree keys (no prefix compression)

2 no logging (no durability)

3 no locks (no concurrency)

4 no latches (no transactions: begin/commit/. . .)

5 no buffer manager (remember DB preloaded!)

David Toman (University of Waterloo) CS848 Spring 2022 11 / 23

Where does the Time go? (a case study)

• SHORE (Scalable Heterogeneous Object Repository, Wisconsin ’90s)

⇒ the whole database is preloaded in main memory

• TPC-C (OLTP) benchmark: “new order” and “payment” transactions

ning records, looking them up in a directory, and accessing them
through a B-tree index. In each case, we eliminated code paths
related to ungranted lock requests.

Remove latching (interchangeable with removing locking).
Removing latching was similar to removing locking; we first
changed all mutex requests to be immediately satisfied. We then
added if-statements throughout the code to avoid requests for
latches. We had to replace B-tree methods with ones that did not
use latches, since adding if-statements would have increased
overhead significantly because of the tight integration of latch
code in the B-tree methods.

Remove buffer manager calls. The most widespread modifica-
tion we performed was to remove the buffer manager methods,
once we knew that logging, locking, and latching were already
disabled. To create new records, we abandoned Shore’s page allo-
cation mechanism and instead used the standard malloc library.
We call malloc for each new record (records no longer reside in
pages) and use pointers for future accesses. Memory allocation
can potentially be done more efficiently, especially when one
knows in advance the sizes of the allocated objects. However, fur-
ther optimization of main memory allocation is an incremental
improvement relative to the overheads we are studying, and is left
for future work. We were not able to completely remove the page
interface to buffer frames, since its removal would invalidate
most of the remaining Shore code. Instead, we accelerated the
mappings between pages and buffer frames, reducing the over-
head to a minimum. Similarly, pinning and updating a record will
still go through a buffer manager layer, albeit a very thin one (we
label this set of modifications “page access” in Figure 7).

Miscellaneous optimizations. There were four optimizations we
made that can be invoked at any point during the process of
removing the above-mentioned components. These were the fol-
lowing. (1) Accelerating the B-tree code by hand-coding node
searches to optimize for the common case that keys are uncom-
pressed integers (labeled “Btree keys” in Figures 5-8). (2) Accel-
erating directory lookups by using a single cache for all
transactions (labeled “dir lookup” in Figure 7). (3) Increasing the
page size from the default size of 8KB to 32KB, the maximum
allowable in Shore (labeled “small page” in Figure 7). Larger
pages, although not suitable for disk-based OLTP, can help in a
main-memory resident database by reducing the number of levels
in a B-tree (due to the larger node size), and result in less fre-
quent page allocations for newly created records. An alternative
would be to decrease the size of a B-tree node to the size of a
cache line as proposed in [RR99], but this would have required
removing the association between a B-tree node and a Shore
page, or reducing a Shore page below 1KB (which Shore does not
allow). (4) Removing the overhead of setting up and terminating
a session for each transaction, along with the associated monitor-
ing of running transactions, by consolidating transactions into a
single session (labeled “Xactions” in Figure 7).

Our full set of changes/optimizations to Shore, along with the
benchmark suite and documentation on how to run the experi-
ments are available online2.

Next, we move to the performance section of the paper.

4. PERFORMANCE STUDY
The section is organized as follows. First we describe our variant
of the TPC-C benchmark that we used (Section 4.1). In Section
4.2 we provide details of the hardware platform, the experimen-
tal setup, and the tools we used for collecting the performance
numbers. Section 4.3 presents a series of results, detailing Shore
performance as we progressively apply optimizations and remove
components.

4.1 OLTP Workload
Our benchmark is derived from TPC-C [TPCC], which models a
wholesale parts supplier operating out of a number of warehouses
and their associated sales districts. TPC-C is designed to repre-
sent any industry that must manage, sell, or distribute a product
or service. It is designed to scale as the supplier expands and new
warehouses are created. The scaling requirement is that each
warehouse must supply 10 sales districts, and each district must
serve 3000 customers. The database schema along with the scal-
ing requirements (as a function of the number of warehouses W)
is shown in Figure 3. The database size for one warehouse is
approximately 100 MB (we experiment with five warehouses for
a total size of 500MB).

TPC-C involves a mix of five concurrent transactions of different
types and complexity. These transactions include entering orders
(the New Order transaction), recording payments (Payment),
delivering orders, checking the status of orders, and monitoring
the level of stock at the warehouses. TPC-C also specifies that
about 90% of the time the first two transactions are executed. For
the purposes of the paper, and for better understanding the effect
of our interventions, we experimented with a mix of only the first
two transactions. Their code structure (calls to Shore) is shown in
Figure 4. We made the following small changes to the original
specifications, to achieve repeatability in the experiments:

New Order. Each New Order transaction places an order for 5-15
items, with 90% of all orders supplied in full by stocks from the
customer’s “home” warehouse (10% need to access stock belong-
ing to a remote warehouse), and with 1% of the provided items
being an invalid one (it is not found in the B-tree). To avoid vari-
ation in the results we set the number of items to 10, and always
serve orders from a local warehouse. These two changes do not2. http://db.cs.yale.edu/hstore/

Figure 3. TPC-C Schema.

10 districts / warehouseWarehouse
(size W)

100k stocks /
warehouse

Stock
(size W x 100k)

W stocks /
item

Item
(size 100k)

History
(size > W x 30k)

New-Order
(size > W x 9k)

Order-Line
(size > W x 300k)

(size W x 30k)

(size > W x 30k)

(size W x 10)
District

3k customers /
district

>= 1 order /
customer

Customer

Order

>= 1 history
record /
customer

0 or 1 new
orders /
order

5-15 order-line entries /
order

⇒ 50/50 mix of the transactions in experiments

• Experiments show performance gain by removing/simplifying:

1 B-Tree keys (no prefix compression)

2 no logging (no durability)

3 no locks (no concurrency)

4 no latches (no transactions: begin/commit/. . .)

5 no buffer manager (remember DB preloaded!)

David Toman (University of Waterloo) CS848 Spring 2022 11 / 23

Where does the Time go? (a case study)

• SHORE (Scalable Heterogeneous Object Repository, Wisconsin ’90s)

⇒ the whole database is preloaded in main memory

• TPC-C (OLTP) benchmark: “new order” and “payment” transactions
⇒ 50/50 mix of the transactions in experiments

• Experiments show performance gain by removing/simplifying:

1 B-Tree keys (no prefix compression)

2 no logging (no durability)

3 no locks (no concurrency)

4 no latches (no transactions: begin/commit/. . .)

5 no buffer manager (remember DB preloaded!)

David Toman (University of Waterloo) CS848 Spring 2022 11 / 23

Where does the Time go? (setup)

Assumptions:

1 all data preloaded into main
memory

2 transactions compiled and
linked against SHORE

3 50-50 mix
4 40k transaction runs

affect the throughput. The code in Figure 4 shows the two-phase
optimization mentioned in Section 2.5, which allows us to avoid
aborting a transaction; we read all items at the beginning, and if
we find an invalid one we abort without redoing changes in the
database.

Payment. This is a lightweight transaction; it updates the cus-
tomer’s balance and warehouse/district sales fields, and generates
a history record. Again, there is a choice of home and remote
warehouse which we always set to the home one. Another ran-
domly set input is whether a customer is looked up by name or
ID, and we always use ID.

4.2 Setup and Measurement Methodology
All experiments are performed on a single-core Pentium 4
3.2GHz, with 1MB L2 cache, hyperthreading disabled, 1GB
RAM, running Linux 2.6. We compiled with gcc version 3.4.4
and O2 optimizations. We use the standard linux utility iostat to
monitor disk activity and verify in the main memory-resident
experiments there is no generated disk traffic. In all experiments
we pre-load the entire database into the main memory. Then we
run a large number of transactions (40,000). Throughput is mea-
sured directly by dividing wall clock time by the number of com-
pleted transactions.

For detailed instruction and cycle counts we instrument the
benchmark application code with calls to the PAPI library
[MBD+99] http://icl.cs.utk.edu/papi/, which provides access to
the CPU performance counters. Since we make a call to PAPI
after every call to Shore, we have to compensate for the cost of
PAPI calls when reporting the final numbers. These had an
instruction count of 535-537 and were taking between 1350 and
1500 cycles in our machine. We measure each call to Shore for
all 40,000 transactions and report the average numbers.

Most of the graphs reported in the paper are based on CPU
instruction counts (as measured through the CPU performance
counters) and not wall clock time. The reason is that instruction
counts are representative of the total run-time code path length,

and they are deterministic. Equal instruction counts among differ-
ent components can of course result in different wall clock execu-
tion times (CPU cycles), because of different microarchitectural
behavior (cache misses, TLB misses, etc.). In Section 4.3.4 we
compare instruction counts to CPU cycles, illustrating the compo-
nents where there is high micro-architectural efficiency that can
be attributed to issues like few L2 cache misses and good instruc-
tion-level parallelism.

Cycle count, however, is susceptible to various parameters, rang-
ing from CPU characteristics, such as cache size/associativity,
branch predictors, TLB operation, to run-time variables such as
concurrent processes. Therefore it should be treated as indicative
of relative time breakdown. We do not expand on the issue of
CPU cache performance in this paper, as our focus is to identify
the set of DBMS components to remove that can produce up to
two orders of magnitude better performance for certain classes of
OLTP workloads. More information on the micro-architectural
behavior of database workloads can be found elsewhere [Ail04].

Next, we begin the presentation of our results.

4.3 Experimental Results
In all experiments, our baseline Shore platform is a memory-resi-
dent database that is never flushed to disk (the only disk I/O that
might be performed is from the Log Manager). There is only a
single thread executing one transaction at a time. Masking I/O (in
the case of disk-based logging) is not a concern as it only adds to
overall response time and not to the instructions or cycles that the
transaction has actually run.

We placed 11 different switches in Shore to allow us to remove
functionality (or perform optimizations), which, during the pre-
sentation of the results, we organize into six components. For a
list of the 11 switches (and the corresponding components) and
the order we apply them, see Figure 7. These switches were
described in more detail in Section 3.2 above. The last switch is
to bypass Shore completely and run our own, minimal-overhead
kernel, which we call “optimal” in our results. This kernel is basi-
cally a memory-resident, hand-built B-tree package with no addi-
tional transaction or query processing functionality.

4.3.1 Effect on Throughput
After all of these deletions and optimizations, Shore is left with a
code residue, which is all CPU cycles since there is no I/O what-
soever; specifically, an average of about 80 microseconds per
transaction (for a 50-50 mix of New Order and Payment transac-
tions), or about 12,700 transactions per second.

In comparison, the useful work in our optimal system was about
22 microseconds per transaction, or about 46,500 transactions per
second. The main causes of this difference are a deeper call stack
depth in our kernel, and our inability to remove some of the trans-
action set up and buffer pool calls without breaking Shore. As a
point of reference, “out of the box” Shore, with logging enabled
but with the database cached in main memory, provides about 640
transactions per second (1.6 milliseconds per transaction),
whereas Shore running in main memory, but without log flushing
provides about 1,700 transactions per second, or about 588 micro-
seconds per transaction. Hence, our modifications yield a factor
of 20 improvement in overall throughput.

New Order
begin
for loop(10)
.....Btree lookup(I), pin
Btree lookup(D), pin
Btree lookup (W), pin
Btree lookup (C), pin
update rec (D)
for loop (10)
.....Btree lookup(S), pin
.....update rec (S)
.....create rec (O-L)
.....insert Btree (O-L)
create rec (O)
insert Btree (O)
create rec (N-O)
insert Btree (N-O)
insert Btree 2ndary(N-O)
commit

Payment
begin
Btree lookup(D), pin
Btree lookup (W), pin
Btree lookup (C), pin
update rec (C)
update rec (D)
update rec (W)
create rec (H)
commit

Figure 4. Calls to Shore’s methods for New Order and
Payment transactions.

David Toman (University of Waterloo) CS848 Spring 2022 12 / 23

Where does the Time go?

Given these basic throughput measurements, we now give
detailed instruction breakdowns for the two transactions of our
benchmark. Recall that the instruction and cycle breakdowns in
the following sections do not include any impact of disk opera-
tions, whereas the throughput numbers for baseline Shore do
include some log write operations.

4.3.2 Payment
Figure 5 (left side) shows the reductions in the instruction count
of the Payment transaction as we optimized B-tree key evalua-
tions and removed logging, locking, latching, and buffer manager
functionality. The right part of the figure shows, for each feature
removal we perform, its effect on the number of instructions
spent in various portions of the transaction’s execution. For the
Payment transaction, these portions include a begin call, three B-
tree lookups followed by three pin/unpin operations, followed by
three updates (through the B-tree), one record creation and a com-

mit call. The height of each bar is always the total number of
instructions executed. The right-most bar is the performance of
our minimal-overhead kernel.

Our B-tree key evaluation optimizations are reportedly standard
practice in high-performance DBMS architectures, so we per-
form them first because any system should be able to do this.
Removing logging affects mainly commits and updates, as those
are the portions of the code that write log records, and to a lesser
degree B-tree and directory lookups. These modifications remove
about 18% of the total instruction count.

Locking takes the second most instructions, accounting for about
25% of the total count. Removing it affects all of the code, but is
especially important in the pin/unpin operations, the lookups, and
commits, which was expected as these are the operations that
must acquire or release locks (the transaction already has locks on
the updated records when the updates are performed).

K

20K

40K

60K

80K

100K

120K

140K

160K

180K

In
st

ru
ct

io
ns

Sh
or
e

Btree

logging

locking

latching

buffer
manager

remaining overhead

-B
tre

e

-lo
gg

ing

-lo
ck

ing

-la
tch

ing

-bu
ffe

r

Op
tim
al

Figure 5. Detailed instruction count breakdown for Payment transaction.

keys
commit

create record

3 x update record

3 x pin / unpin

3 x Btree lookup

begin

4.7%

29.8%

12.6%

25.2%

17.7%

10.1%

man
ag

er

ke
ys

.0M

.2M

.4M

.6M

.8M

1.0M

1.2M

1.4M

1.6M

1.8M

In
st

ru
ct

io
ns

Figure 6. Detailed instruction count breakdown for New Order transaction.
Sh
or
e

Btree

logging

locking

latching

buffer
manager

remaining overhead

-B
tre

e

-lo
gg

ing

-lo
ck

ing

-la
tch

ing

-bu
ffe

r

Op
tim
al

keys

man
ag

er
ke

ys

commit
13 x insert index
12 x create record

23 x pin / unpin
23 x Btree lookup
begin

11 x update record

6.8%

34.6%

14.2%

16.3%

11.9%

16.2%

David Toman (University of Waterloo) CS848 Spring 2022 13 / 23

Where does the Time go?

Given these basic throughput measurements, we now give
detailed instruction breakdowns for the two transactions of our
benchmark. Recall that the instruction and cycle breakdowns in
the following sections do not include any impact of disk opera-
tions, whereas the throughput numbers for baseline Shore do
include some log write operations.

4.3.2 Payment
Figure 5 (left side) shows the reductions in the instruction count
of the Payment transaction as we optimized B-tree key evalua-
tions and removed logging, locking, latching, and buffer manager
functionality. The right part of the figure shows, for each feature
removal we perform, its effect on the number of instructions
spent in various portions of the transaction’s execution. For the
Payment transaction, these portions include a begin call, three B-
tree lookups followed by three pin/unpin operations, followed by
three updates (through the B-tree), one record creation and a com-

mit call. The height of each bar is always the total number of
instructions executed. The right-most bar is the performance of
our minimal-overhead kernel.

Our B-tree key evaluation optimizations are reportedly standard
practice in high-performance DBMS architectures, so we per-
form them first because any system should be able to do this.
Removing logging affects mainly commits and updates, as those
are the portions of the code that write log records, and to a lesser
degree B-tree and directory lookups. These modifications remove
about 18% of the total instruction count.

Locking takes the second most instructions, accounting for about
25% of the total count. Removing it affects all of the code, but is
especially important in the pin/unpin operations, the lookups, and
commits, which was expected as these are the operations that
must acquire or release locks (the transaction already has locks on
the updated records when the updates are performed).

K

20K

40K

60K

80K

100K

120K

140K

160K

180K

In
st

ru
ct

io
ns

Sh
or
e

Btree

logging

locking

latching

buffer
manager

remaining overhead

-B
tre

e

-lo
gg

ing

-lo
ck

ing

-la
tch

ing

-bu
ffe

r

Op
tim
al

Figure 5. Detailed instruction count breakdown for Payment transaction.

keys
commit

create record

3 x update record

3 x pin / unpin

3 x Btree lookup

begin

4.7%

29.8%

12.6%

25.2%

17.7%

10.1%

man
ag

er

ke
ys

.0M

.2M

.4M

.6M

.8M

1.0M

1.2M

1.4M

1.6M

1.8M

In
st

ru
ct

io
ns

Figure 6. Detailed instruction count breakdown for New Order transaction.
Sh
or
e

Btree

logging

locking

latching

buffer
manager

remaining overhead

-B
tre

e

-lo
gg

ing

-lo
ck

ing

-la
tch

ing

-bu
ffe

r

Op
tim
al

keys

man
ag

er
ke

ys

commit
13 x insert index
12 x create record

23 x pin / unpin
23 x Btree lookup
begin

11 x update record

6.8%

34.6%

14.2%

16.3%

11.9%

16.2%

David Toman (University of Waterloo) CS848 Spring 2022 14 / 23

Where does the Time go?

Latching accounts for about 13% of the instructions, and is pri-
marily important in the create record and B-tree lookup portions
of the transaction. This is because the buffer pool (used in create)
and B-trees are the primary shared data structures that must be
protected with latches.

Finally, our buffer manager modifications account for about 30%
of the total instruction count. Recall that with this set of modifi-
cations, new records are allocated directly with malloc, and page
lookups no longer have to go through the buffer pool in most
cases. This makes record allocation essentially free, and substan-
tially improves the performance of other components that perform
frequent lookups, like B-tree lookup and update.

At this point, the remaining kernel requires about 5% (for a 20x
performance gain!) of the total initial instruction count, and is
about 6 times the total instructions of our “optimal” system. This
analysis leads to two observations: first, all six of the major com-
ponents are significant, each accounting for 18 thousand or more
instructions of the initial 180 thousand. Second, until all of our
optimizations are applied, the reduction in instruction count is not
dramatic: before our last step of removing the buffer manager, the
remaining components used about a factor of three fewer instruc-
tions than the baseline system (versus a factor of 20 when the
buffer manager is removed).

4.3.3 New Order
A similar breakdown of the instruction count in the New Order
transaction is shown in Figure 6; Figure 7 shows a detailed
accounting of all 11 modifications and optimizations we per-
formed. This transaction uses about 10 times as many instructions
as the Payment transaction, requiring 13 B-tree inserts, 12 record
creation operations, 11 updates, 23 pin/unpin operations, and 23
B-tree lookups. The main differences in the allocation of instruc-
tions to major optimizations between New Order and Payment are

in B-tree key code, logging, and locking. Since New Order adds
B-tree insertions in the mix of operations, there is more relative
benefit to be had by optimizing the key evaluation code (about
16%). Logging and locking now only account for about 12% and
16% of the total instructions; this is largely because the total frac-
tion of time spent in operations where logging and locking per-
form a lot of work is much smaller in this case.

The buffer manager optimizations still represent the most signifi-
cant win here, again because we are able to bypass the high over-
head of record creation. Looking at the detailed breakdown in
Figure 7 for the buffer manager optimization reveals something
surprising: changing from 8K to 32K pages (labelled “small
page”) provides almost a 14% reduction in the total instruction
count. This simple optimization — which serves to reduce the
frequency of page allocations and decrease B-tree depth — offers
a sizeable gain.

4.3.4 Instructions vs. Cycles
Having looked at the detailed breakdown of instruction counts in
the Payment and New Order transactions, we now compare the
fraction of time (cycles) spent in each phase of the New Order
transaction to the fraction of instructions used in each phase. The
results are shown in Figure 8. As we noted earlier, we do not
expect these two fractions to be identical for a given phase,
because cache misses and pipeline stalls (typically due to
branches) can cause some instructions to take more cycles than
others. For example, B-tree optimizations reduce cycles less than
they reduce instructions, because the Shore B-tree code overhead
we remove is mainly offset calculations with few cache misses.
Conversely, our residual “kernel” uses a larger fraction of cycles
than it does instructions, because it is branch-heavy, consisting
mostly of function calls. Similarly, logging uses significantly
more cycles because it touches a lot of memory creating and writ-
ing log records (disk I/O time is not included in either graph).
Finally, locking and the buffer manager consume about the same
percentage of cycles as they do instructions.

.0M

.2M

.4M

.6M

.8M

1.0M

1.2M

1.4M

1.6M

1.8M

In
st

ru
ct

io
ns

main log
LSN

Btree

logging

locking

latching

buffer
manager

small page

page
access

remaining overhead

disk log

dir lookup

Xactions

keys

Figure 7. Expanding breakdown for New Order (see Section
3.2 for the labels on the left column).

.0M

.2M

.4M

.6M

.8M

1.0M

1.2M

1.4M

1.6M

.0M

.5M

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

In
st

ru
ct

io
ns

C
yc

le
s

Btree

logging

locking

latching

buffer
manager

keys

Btree

logging

locking

latching

buffer
manager

keys

Figure 8. Instructions (left) vs. Cycles (right) for New Order.

6.8%

34.6%

14.2%

16.3%

11.9%

16.2%

12.3%

29.6%

10.2%

18.7%

21%

8.1%

David Toman (University of Waterloo) CS848 Spring 2022 15 / 23

Where does the Time go? (conclusions)

Having a giant buffer cache to fit the whole dataset
doesn’t seem to solve all problems (90+% OVERHEAD!)

However. . .
. . . the savings in experiments at cost of functionality

⇒ can MMDBs be engineered to mittigate the overhead
without sacrifising functionality?

• Single threading vs. multicore
• Availability (replication) vs. logging
• Variations on isolation
• Cache-conscious data structures

David Toman (University of Waterloo) CS848 Spring 2022 16 / 23

Where does the Time go? (conclusions)

Having a giant buffer cache to fit the whole dataset
doesn’t seem to solve all problems (90+% OVERHEAD!)

However. . .
. . . the savings in experiments at cost of functionality

⇒ can MMDBs be engineered to mittigate the overhead
without sacrifising functionality?

• Single threading vs. multicore
• Availability (replication) vs. logging
• Variations on isolation
• Cache-conscious data structures

David Toman (University of Waterloo) CS848 Spring 2022 16 / 23

Where does the Time go? (conclusions)

Having a giant buffer cache to fit the whole dataset
doesn’t seem to solve all problems (90+% OVERHEAD!)

However. . .
. . . the savings in experiments at cost of functionality

⇒ can MMDBs be engineered to mittigate the overhead
without sacrifising functionality?

• Single threading vs. multicore
• Availability (replication) vs. logging
• Variations on isolation
• Cache-conscious data structures

David Toman (University of Waterloo) CS848 Spring 2022 16 / 23

Compilation-based Approaches

IDEA:
can we use a
• high level system description
• a compiler

to generate tailored code for our appilication?

David Toman (University of Waterloo) CS848 Spring 2022 17 / 23

Compilation-based Approaches
Definability and Rewriting

Queries range-restricted FOL (a.k.a. SQL)
Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information)

ΣL SL ϕoo Logical Schema
and User Queries

• to users it looks like a single model (of the logical schema)
• implementation can pick from many models

but definable queries answer the same in each of them

Query (SL)
ψ

��

Compiler
ψ (Relational Algebra over SA)

��
Schema (SL ∪ SP)

Σ

OO

Evaluator // Answers

Data (SA ⊆ SP)
(instance of) SA

OO

David Toman (University of Waterloo) CS848 Spring 2022 18 / 23

Compilation-based Approaches
Definability and Rewriting

Queries range-restricted FOL over SL definable w.r.t. Σ and SA

Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information for SA symbols)

ΣL SL ϕoo Logical Schema
and User Queries

ΣLP (compilation)

��
ΣP SA ⊆ SP ψoo Physical Schema

and Query Plans

[Borgida, de Bruijn, Franconi, Seylan, Straccia, Toman, Weddell: On Finding
Query Rewritings under Expressive Constraints. SEBD 2010: 426-437]

• to users it looks like a single model (of the logical schema)
• implementation can pick from many models

but definable queries answer the same in each of them

Query (SL)
ψ

��
Compiler

ψ (Relational Algebra over SA)

��
Schema (SL ∪ SP)

Σ

OO

Evaluator // Answers

Data (SA ⊆ SP)
(instance of) SA

OO

David Toman (University of Waterloo) CS848 Spring 2022 18 / 23

Compilation-based Approaches
Definability and Rewriting

Queries range-restricted FOL over SL definable w.r.t. Σ and SA

Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information for SA symbols)

• to users it looks like a single model (of the logical schema)
• implementation can pick from many models

but definable queries answer the same in each of them

Query (SL)
ψ

��

Compiler
ψ (Relational Algebra over SA)

��
Schema (SL ∪ SP)

Σ

OO

Evaluator // Answers

Data (SA ⊆ SP)
(instance of) SA

OO

David Toman (University of Waterloo) CS848 Spring 2022 18 / 23

Compilation-based Approaches
Definability and Rewriting

Queries range-restricted FOL over SL definable w.r.t. Σ and SA

Schema range-restricted FOL Σ := ΣL ∪ ΣLP ∪ ΣP

Data CWA (complete information for SA symbols)

• to users it looks like a single model (of the logical schema)
• implementation can pick from many models

but definable queries answer the same in each of them

Query (SL)
ψ

��

Compiler
ψ (Relational Algebra over SA)

��
Schema (SL ∪ SP)

Σ

OO

Evaluator // Answers

Data (SA ⊆ SP)
(instance of) SA

OO

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

Morgan Claypool Publishers&
w w w . m o r g a n c l a y p o o l . c o m

Series Editor: M. Tamer Özsu, University of Waterloo

CM& Morgan Claypool Publishers&SYNTHESIS LECTURES ON DATA MANAGEMENT

SYNTHESIS LECTURES ON DATA MANAGEMENT

About SYNTHESIs
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis Lectures
provide concise, original presentations of important research and development
topics, published quickly, in digital and print formats. For more information
visit www.morganclaypool.com

M. Tamer Özsu, Series Editor

M
O
R
G
A
N

&
C
L
A
Y
P
O

O
L

ISBN: 978-1-60845-278-1

9 781608 452781

90000

Series ISSN: 2153-5418

FUNDAM
ENTALS OF PHYSICAL DESIGN AND Q

UERY COM
PILATION

Fundamentals of Physical Design and
Query Compilation

University of Waterloo

Query compilation is the problem of translating user requests formulated over purely conceptual and
domain specific ways of understanding data, commonly called logical designs, to efficient executable
programs called query plans. Such plans access various concrete data sources through their low-level
often iterator-based interfaces. An appreciation of the concrete data sources, their interfaces and how
such capabilities relate to logical design is commonly called a physical design. This book is an introduction
to the fundamental methods underlying database technology that solves the problem of query
compilation. The methods are presented in terms of first-order logic which serves as the vehicle for
specifying physical design, expressing user requests and query plans, and understanding how query
plans implement user requests.

Fundamentals of
Physical Design and
Query Compilation

David Toman

c©2011

David Toman (University of Waterloo) CS848 Spring 2022 18 / 23

Example

% ------- conceptual modelling --------
% disjoint coverage
student(x,y) <-> (ugrad(x,y) or grad(x,y)),
ugrad(x,y) and grad(x,z) -> bot,
% student id is a key
student(x,y) and student(x,z) -> y=z,
%
% ------- physical modelling --------
% two access paths: p0astudent and p1agrad use record ids (r)
student(x,y) <-> ex(r,p0astudent(r,x,y)),
grad(x,y) <-> ex(r,p0astudent(r,x,y) and p1agrad(r)),
% record ids are keys too
p0astudent(r,x,y) and p0astudent(r,z,w) -> x=z,
p0astudent(r,x,y) and p0astudent(s,x,z) -> r=s,
%
% ------- queries --------
q0gs(x,y) <-> grad(x,y),
q0us(x,y) <-> ugrad(x,y)

David Toman (University of Waterloo) CS848 Spring 2022 19 / 23

Example (cont.)
david@david$ cat tests/old_format/848ex/students.fol | ...

query(q0gs,2,0,[var(1,int),var(2,int)]) <->
project([var(3,int)],
nlj(
ap(p0astudent,[var(3,int),var(1,int),var(2,int)],fscan)
ap(p1agrad,[var(3,int)],flookup,1)

)
)

query(q0us,2,0,[var(1,int),var(2,int)]) <->
project([var(3,int)],
nlj(
ap(p0astudent,[var(3,int),var(1,int),var(2,int)],fscan)
complement(
ap(p1agrad,[var(3,int)],flookup,1)
)

)
)

David Toman (University of Waterloo) CS848 Spring 2022 20 / 23

Example (header file: us.h)

#include "runtime.h"
// struct for us
struct us_data {
// public:

long var_1;
long var_2;
long var_3;

// operators:
// AP private:

struct fscan_data apvar0;
struct flookup_data apvar1;

};

David Toman (University of Waterloo) CS848 Spring 2022 21 / 23

Example (C source: us.c)
#include <stdio.h>
#include <stdlib.h>
#include "us.h"

static int inline __attribute__((always_inline)) getfirst_simpcomp2(struct us_data *q) {
if (getfirst_p1agrad(&(q->apvar1), &(q->var_3))) return 0;
return 1;

};
static int inline __attribute__((always_inline)) getnext_simpcomp2(struct us_data *q) {

return 0;
};

static int inline __attribute__((always_inline)) getfirst_nlj3(struct us_data *q) {
if (!getfirst_p0astudent(&(q->apvar0), &(q->var_3), &(q->var_1), &(q->var_2))) return 0;
while (!getfirst_simpcomp2(q))

if (!getnext_p0astudent(&(q->apvar0), &(q->var_3), &(q->var_1), &(q->var_2))) return 0;
return 1;

};
static int inline __attribute__((always_inline)) getnext_nlj3(struct us_data *q) {

if (getnext_simpcomp2(q)) return 1;
while (getnext_p0astudent(&(q->apvar0), &(q->var_3), &(q->var_1), &(q->var_2)))

if (getfirst_simpcomp2(q)) return 1;
return 0;

};

static int inline __attribute__((always_inline)) getfirst_project4(struct us_data *q) {
return getfirst_nlj3(q);

};
static int inline __attribute__((always_inline)) getnext_project4(struct us_data *q) {

return getnext_nlj3(q);
};

David Toman (University of Waterloo) CS848 Spring 2022 22 / 23

Take Home

Focus of this class: DB engine vs. Compilation aproaches

Lots of open issues:
1 Main memory data organization
2 Multilevel memory/storage
3 Ordered data
4 Parallelism and partitioning (many levels)
5 . . .

Next time
1 Basics of DB implementation (crash course)
2 Basics of Query Compilation (with examples)
3 Discussion of presentations/projects

David Toman (University of Waterloo) CS848 Spring 2022 23 / 23

Take Home

Focus of this class: DB engine vs. Compilation aproaches

Lots of open issues:
1 Main memory data organization
2 Multilevel memory/storage
3 Ordered data
4 Parallelism and partitioning (many levels)
5 . . .

Next time
1 Basics of DB implementation (crash course)
2 Basics of Query Compilation (with examples)
3 Discussion of presentations/projects

David Toman (University of Waterloo) CS848 Spring 2022 23 / 23

Take Home

Focus of this class: DB engine vs. Compilation aproaches

Lots of open issues:
1 Main memory data organization
2 Multilevel memory/storage
3 Ordered data
4 Parallelism and partitioning (many levels)
5 . . .

Next time
1 Basics of DB implementation (crash course)
2 Basics of Query Compilation (with examples)
3 Discussion of presentations/projects

David Toman (University of Waterloo) CS848 Spring 2022 23 / 23

