Topics in Database Systems:
Modern Database Systems
CS848 Spring 2022

David Toman

Wednesday 10:30-1:00 (DC 2568)

cs.uwaterloo.ca/ “david/cs848/

David Toman (University of Waterloo) CS848 Spring 2022 1/23

Proliferation of NEW DB(-like) Implementations

Quick sample:

(@)
A CHE |

=

cassndra Liskiszdn, MObieCt memsql monerds)

TR

APACHE
ORACLE R]VE R -)
.mongoDB NOSQL DATABASE WSQL ite w A A4

VOLTDB suseromms

. and dozens of others

David Toman (University of Waterloo) CS848 Spring 2022 2/23

Proliferation of NEW DB(-like) Implementations

Quick sample:

a4

cassandra HBRASE m@,bm!?gft, memsql monetdb ’
RIVER
ORACLE"
. mongoDB Nosar batasase 7S(QL ite v

YOLTDB =

. and dozens of others

In contrast to. ..
. before Y~2000 it was pretty much divided between
the big four (ORALE, IBM/DB2, Sybase, and MS Server)
and (later, with the advent of the WEB) Postgress, MySQL, etc.

David Toman (University of Waterloo) CS848 Spring 2022 2/23

Why so many? And why Main-Memory?

Copuright

1 JUST GOT OUR
CONSULTANT'S REPORT.
HE'S IDENTIFIED

2 1996 United Feature Syndicate,

1 RECOMMEND THAT
WE BUILD A TRACKING
DATABASE.

11=-0

Fedistribution in whole ar in part prohibited

David Toman (University of Waterloo)

OUR BIGGEST H

PROBLEM. £ LE CAN PUT TT
3 ON THE
: NETWORK.
H _ g
v raw '
% g oy
e V) W)

CS848 Spring 2022

q‘djllgEE 18686 Uniiod Fenture Syndicaie, Ing JHY)

LWOULD
YOU LIKE
TO HEAR
WHAT THE
PROBLEM
IS FIRSTT

L HATETO
DWELL ONTHE
NEGATIVE.

WE LIKE
DATABASES,
L]

3/23

Why so many? And why Main-Memory?

1 JUST GOT OUR E| {1 RECOMMEMD THAT £| woulp I HATE TO
CONSULTANT'S REPORT. || [WE BUILD A TRACKING |3 | YOU LIKE piuELL ONTHE
HE'S IDENTIFIED 2| | DATABASE. 2| TO HEAR NEGATIVE.
OUR. BIGGEST 2 }] Lowtat THE [wr: LIKE
PROBLEM. £ LIE CAN PUT TT || PROBLEM DATABASES

2 ON THE #| IS FIRST? -

: NETWORK. F 1T

w 0 = '

w I'll \' ' H "

% o = :;'; -

" i V) 0 N

Copuright 2 1996 United Feature Syndicate, Inc.
Fedistribution in whole ar in part prohibited

New Circumstances
© cheap and abundant hardware (Extra CPUs and Main Memory)
® changes in applications/workloads (often fitin main memory!)
® cost (we won'’t focus on this though)

David Toman (University of Waterloo) CS848 Spring 2022 3/23

Topics of Interest

© What are the main differences between managing memory
resident data v.s. data in external storage?

® impact on query/update processing
how many instructions does it take to answer simple queries?

* what happens to ACID (and can we afford durability at all)?

® What is the impact on programming interface to MMDBs?
¢ declarative (SQL-like) vs. procedural (C++-like)
® query optimization?

® What is the impact of multi-core/CPU hardware
® data partitioning and query compilation/allocation

® communication/synchronization between parallel operations
dependency on architecture (Multicore, NUMA, Shared-nothing)?

David Toman (University of Waterloo) CS848 Spring 2022 4/23

Topics of Interest

© What are the main differences between managing memory
resident data v.s. data in external storage?

® impact on query/update processing
how many instructions does it take to answer simple queries?

* what happens to ACID (and can we afford durability at all)?

® What is the impact on programming interface to MMDBs?
¢ declarative (SQL-like) vs. procedural (C++-like)
® query optimization?

® What is the impact of multi-core/CPU hardware
® data partitioning and query compilation/allocation

® communication/synchronization between parallel operations
dependency on architecture (Multicore, NUMA, Shared-nothing)?

@ UDTs (user-defined topics)

David Toman (University of Waterloo) CS848 Spring 2022 4/23

Outline&Organization

¢ QOrganization:
= Lectures (4-5),
= Presentations of papers (reading list), and
= Projects

¢ First meeting: Wed May 4, 2022 at 10:30 in DC 2568

® Prerequisites:

= Intro to Databases (CS348-like), and
= standard programming skills
(although this is not necessarily an implementation class)

e Class web site: cs.uwaterloo.ca/ " david/cs848/
reading list, schedule of classes/presentations, policies, etc.

David Toman (University of Waterloo) CS848 Spring 2022 5/23

Organization (ii)

Week 1: Organization,
Issues in classical DB implementations, and
What can be done about it?
Week 2: Introduction to DB implementation,
Classical Approaches vs. Query compilation (examples);
Discussion/assignment of presentations/projects.
Weeks 3-5: More on Query Compilation:
Multi-level Store (a.k.a. Disks),
Sorted Data and better algorithms,
How does this really work?
What to do about Updates? (and perhaps more)

Weeks 7-12: In-class Paper/Project Discussion&Consultation
Week 13: Summary and Wrap-up
= see the course website for details

David Toman (University of Waterloo) CS848 Spring 2022 6/23

Assessment

© class participation (20%)

@ in class presentation of a topic/paper from the reading list
(optional, up to 30%)

©® project (50-80%)

NB: I'll discuss assignments/presentations/projects later in class. . .
= but look at the reading list on the web site

David Toman (University of Waterloo) CS848 Spring 2022 7/23

DATABASE IMPLEMENTATION

(STANDARD APPROACHES AND TECHNIQUES)

David Toman (University of Waterloo) CS848 Spring 2022 8/23

Requirements (user point of view)
Goal of a DBMS

Execute user queries/updates (as fast as possible)

David Toman (University of Waterloo)

CS848 Spring 2022

Requirements (user point of view)

Goal of a DBMS
Execute user queries/updates (as fast as possible) J

(typical) Requirements:

© Stores all of your Data (scalability)

® Physical Data Independence (SQL vs. B-trees et al.)
© Durability (the idea of a transaction)

@ Isolation (sharing/concurrency)

David Toman (University of Waterloo) CS848 Spring 2022

9/23

Requirements (user point of view)

Goal of a DBMS
Execute user queries/updates (as fast as possible) J

(typical) Requirements:

© Stores all of your Data (scalability)

® Physical Data Independence (SQL vs. B-trees et al.)
® Durability (the idea of a transaction)

@ Isolation (sharing/concurrency)

= do we need all of the above all the time?

David Toman (University of Waterloo) CS848 Spring 2022

9/23

Standard Architecture: Client-Server “System”

Query/Update Compiler

= compiles a logical expression to a plan
Query/Update Execution Engine:

= executes a prepared plan

© Query processor (access paths)
® Transaction Manager

® Recovery Manager

@ Buffer Pool

David Toman (University of Waterloo) CS848 Spring 2022 10/23

Where does the Time go? (a case study)

e SHORE (Scalable Heterogeneous Object Repository, Wisconsin '90s)
= the whole database is preloaded in main memory

e TPC-C (OLTP) benchmark: “new order” and “payment” transactions

David Toman (University of Waterloo) CS848 Spring 2022 11/23

Where does the Time go? (a case study)

e SHORE (Scalable Heterogeneous Object Repository, Wisconsin '90s)
= the whole database is preloaded in main memory

e TPC-C (OLTP) benchmark: “new order” and “payment” transactions

Warehouse

10 districts / warehouse

(size W)
100k stocks /
v warehouse

Stock
(size W x 100k)

W stocks /
item

ltem
(size 100k)

n District
(size W x 10)

7L (size V
h 3k customers /
>= 1 history)
record | district
Histol ustomer™ Customer
(size > W x 30k) (size W x 30k)
>=1 order/
Oor1new customer
orders /
New-Order order [~ Order
(size > W x 9k) (size > W x 30k),

5-15

Order-Line
(size > W x 300k)

Figure 3. TPC-C Schema.

David Toman (University of Waterloo)

CS848 Spring 2022

order-line entries /
order

11/23

Where does the Time go? (a case study)

e SHORE (Scalable Heterogeneous Object Repository, Wisconsin '90s)
= the whole database is preloaded in main memory

e TPC-C (OLTP) benchmark: “new order” and “payment” transactions
= 50/50 mix of the transactions in experiments

e Experiments show performance gain by removing/simplifying:

© B-Tree keys (no prefix compression)

® no logging (no durability)

® no locks (no concurrency)

@ no latches (no transactions: begin/commit/. . .)
@® no buffer manager (remember DB preloaded!)

David Toman (University of Waterloo) CS848 Spring 2022 11/23

Where does the Time go? (setup)

Assumptions:

© all data preloaded into main
memory

® transactions compiled and
linked against SHORE

® 50-50 mix
O 40k transaction runs

New Order
begin
for loop(10)
..... Btree lookup(l), pin
Btree lookup(D), pin
Btree lookup (W), pin
Btree lookup (C), pin
update rec (D)
for loop (10)
..... Btree lookup(S), pin
..... update rec (S)
..... create rec (O-L)
.....insert Btree (O-L)
create rec (O)
insert Btree (O)
create rec (N-O)
insert Btree (N-O)
insert Btree 2ndary(N-O)
commit

Payment
begin
Btree lookup(D), pin
Btree lookup (W), pin
Btree lookup (C), pin
update rec (C)
update rec (D)
update rec (W)
create rec (H)
commit

Figure 4. Calls to Shore’s methods for New Order and
Payment transactions.

University of Waterloo)

CS848 Spring 2022 12/23

Where does the Time go?

| L
160K 1 e | T
140K logging
@ 120K 2%52% |
S .
= 100K locking
2
® 80K A 6% 1 T~
= S0k latching
1 29.8%
40K + buffer
20K manager
@FT% ___1__ _ _ _ _ femainingoverhead_ _

Figure 5. Detailed instruction count breakdown for Payment transaction.

niversity of Waterloo)

CS848 Spring 2022

@ commit

W create record

O 3 x update record
O 3 xpin/unpin

O 3 x Btree lookup
W begin

< & >
ng}@% &
SRS

13/23

Where does the Time go?

1.8M
@ commit
1.6M 1 W 13 xinsert index
1.4M |T % W 12 x create record
11 x update record
2 12M A 16.3% = ? .
o locking [23 x pin / unpin
otmMy 1 [23 x Btree lookup
2 142% beain
‘g 8M latching| I beg
= e %46% | T 7 -
M buffer
manager
2M A —
¥ T ... temaining overtiead N
N T . g T < T
€ (\'Z'(Q,Q@ \@'}
9

Figure 6. Detailed instruction count breakdown for New Order transaction.

niversity of Waterloo) CS848 Spring 2022 14/23

Where does the

1.6M

1.4M -

()
=
1

Instructions
P
=
1

BM

AM ~

2M ~

] |6.8% |

Time go?

16.2% 3.5M
Btree
keys
3.0M A
1.9%
logging
16.3% 2.5M A
locking
i 8 20Mm
4.2% . g
latching O 4emd
34.6%
1.0M A
buffer
manager 5M 4

eys

21%

logging
18.7%

locking
102%
latching
29.6%

buffer
manager

12.3%

Figure 8. Instructions (left) vs. Cycles (right) for New Order.

David Toman (University of Waterloo)

CS848 Spring 2022

15/23

Where does the Time go? (conclusions)

Having a giant buffer cache to fit the whole dataset
doesn’t seem to solve all problems (90+% OVERHEAD!)J

David Toman (University of Waterloo) CS848 Spring 2022 16/23

Where does the Time go? (conclusions)

Having a giant buffer cache to fit the whole dataset
doesn’t seem to solve all problems (90+% OVERHEAD!)

v

However. ..
...the savings in experiments at cost of functionality

= can MMDBs be engineered to mittigate the overhead
without sacrifising functionality?

David Toman (University of Waterloo) CS848 Spring 2022 16/23

Where does the Time go? (conclusions)

Having a giant buffer cache to fit the whole dataset
doesn’t seem to solve all problems (90+% OVERHEAD!)

v

However. ..
...the savings in experiments at cost of functionality

= can MMDBs be engineered to mittigate the overhead
without sacrifising functionality?

Single threading vs. multicore
Availability (replication) vs. logging
Variations on isolation
Cache-conscious data structures

David Toman (University of Waterloo) CS848 Spring 2022 16/23

Compilation-based Approaches

IDEA:
can we use a

* high level system description
® a compiler
to generate tailored code for our appilication?

David Toman (University of Waterloo) CS848 Spring 2022

17/23

Compilation-based Approaches
Definability and Rewriting

Queries range-restricted FOL (a.k.a. SQL)

Data CWA (complete information)

y [S k------ 0 Logical Schema

and User Queries

David Toman (University of Waterloo) CS848 Spring 2022 18/23

Compilation-based Approaches
Definability and Rewriting

Queries range-restricted FOL over S| definable w.r.t. © and Sp
Schema range-restricted FOL ¥ = >tuxtPuxFr

Data CWA (complete information for Sa symbols)
> S, k------ © Logical Schema
‘ and User Queries
Yip (compilation)

h S, CSpkk - - - - —— h Physical Schema
P@(v and Query Plans

[Borgida, de Bruijn, Franconi, Seylan, Straccia, Toman, Weddell: On Finding
Query Rewritings under Expressive Constraints. SEBD 2010: 426-437]

David Toman (University of Waterloo) CS848 Spring 2022 18/23

Compilation-based Approaches
Definability and Rewriting
Queries range-restricted FOL over S| definable w.r.t. © and Sp

Schema range-restricted FOL ¥ = >tuxtPuxFr
Data CWA (complete information for Sa symbols)

¢ to users it looks like a single model (of the logical schema)
¢ implementation can pick from many models
but definable queries answer the same in each of them

¥

| Query (S.)
1 (Relational Algebra over Sp)
| Schema (S_ U Sp) T

| Data (Sa C Sp

) | (instance of) S,

David Toman (University of Waterloo) CS848 Spring 2022 18/23

Compilation-based Approaches
Definability and Rewriting

&I\L& MORGAN &Lﬁl.'\'w ‘['t YOL PUBLISHERS
Fundamentals of
Queries range-restricted FOL over S| defin Physical Design and

Query Compilation
Schema range-restricted FOL ¥ = >Luxt yReme

Data CWA (complete information for Sp ¢

David Toman

Grant Weddell

¢ to users it looks like a single model (of the
¢ implementation can pick from many models
but definable queries answer th

SYNTHESIS LECTURES ON DATA MANAGEMENT

¥

| Query (S.)
1 (Relational Algebra over Sp)
| Schema (S_ U Sp) —

|(instance of) Sp

| Data(Sa C Sp) |

David Toman (University of Waterloo) CS848 Spring 2022 18/23

Example

S —————— conceptual modelling —-——————-—
% disjoint coverage
student (x,y) <-> (ugrad(x,y) or grad(x,v)),

ugrad(x,y) and grad(x,z) —> bot,
% student id is a key
student (x,y) and student (x,z) -> y=z,

[}

o

o\

——————— physical modelling ————————

two access paths: pOastudent and plagrad use record ids
student (x,y) <-> ex(r,plastudent (r,x,v)),

grad(x,V) <-> ex(r,plOastudent (r,x,y) and plagrad(r)),

% record ids are keys too

pOastudent (r, x,y) and pOastudent (r,z,w) —-> x=z,
pOastudent (r, x,y) and pOastudent (s,x,z) —-> r=s,

o

5 ——————— queries ———————-
g0gs (x,y) <-> grad(x,vy),
qOus (x,y) <—-> ugrad(x,y)

David Toman (University of Waterloo) CS848 Spring 2022 19/23

Example (cont.)

david@david$ cat tests/old_format/848ex/students.fol |

query (gq0gs, 2,0, [var (1, int),var(2,int)]) <->
project ([var(3,int)],
nlij(

ap (pOastudent, [var (3, int),var(l,int),var(2,int)], £scan)
ap(plagrad, [var(3,int)], flookup, 1)
)

)

query (qOus, 2,0, [var (1,int),var(2,int)]) <->
project ([var (3,int)],
nlj(

ap (pOastudent, [var (3, int),var (1, int),var(2,int)], fscan)
complement (
ap(plagrad, [var (3,int)], flookup, 1)
)
)
)

David Toman (University of Waterloo) CS848 Spring 2022 20/23

Example (header file: us.h)

#include "runtime.h"
// struct for us
struct us_data {

// public:
long var_1;
long var_2;
long var_3;

// operators:
// AP private:
struct fscan_data

apvar0;

struct flookup_data apvarl;

}i

David Toman (University of Waterloo)

CS848 Spring 2022

Example (C source: us.c)

#include <stdio.h>
#include <stdlib.h>
#include "us.h"

static int inline __attribute_ ((always_inline)) getfirst_simpcomp2 (struct us_data =q) {
if (getfirst_plagrad(& (g->apvarl), &(g->var_3))) return 0;
return 1;

bi

static int inline __attribute__ ((always_inline)) getnext_simpcomp2 (struct us_data *q) {
return 0;

bi

static int inline __attribute__ ((always_inline)) getfirst_nlj3(struct us_data =*qg) {
if (!getfirst_pOastudent (& (g->apvar0), &(g->var_3), &(g->var_l), &(g->var_2))) return 0;
while (!getfirst_simpcomp2(q))
if (!getnext_pOastudent (& (g->apvar0), &(g->var_3), &(g->var_1l), &(g->var_2))) return 0;
return 1;
bi
static int inline __attribute_ ((always_inline)) getnext_nlj3(struct us_data *q) {
if (getnext_simpcomp2(q)) return 1;
while (getnext_pOastudent (& (g->apvar0), &(g->var_3), &(g->var_1l), &(g->var_2)))
if (getfirst_simpcomp2(q)) return 1;
return 0;
bi

static int inline __attribute__ ((always_inline)) getfirst_project4 (struct us_data *q) {
return getfirst_nlj3(q);

bi

static int inline __attribute__ ((always_inline)) getnext_project4 (struct us_data =*q) {
return getnext_nlj3(q);

u]
]
I
ul
it

CS848 Spring 2022

Take Home

Focus of this class: DB engine vs. Compilation aproaches

David Toman (University of Waterloo)

CS848 Spring 2022

)

Take Home

Focus of this class: DB engine vs. Compilation aproaches J

Lots of open issues:
© Main memory data organization
® Multilevel memory/storage
® Ordered data
@ Parallelism and partitioning (many levels)

9"' v

David Toman (University of Waterloo) CS848 Spring 2022 23/23

Take Home

Focus of this class: DB engine vs. Compilation aproaches J

Lots of open issues:
© Main memory data organization
® Multilevel memory/storage
® Ordered data
@ Parallelism and partitioning (many levels)

0 ... J

Next time
© Basics of DB implementation (crash course)
® Basics of Query Compilation (with examples)
® Discussion of presentations/projects

David Toman (University of Waterloo) CS848 Spring 2022 23/23

