Query Compilation

David Toman

D.R. Cheriton School of Computer Science University of Waterloo

Joint work with Alexander Hudek and Grant Weddell

David Toman (et al.)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

GRAND UNIFIED APPROACH TO QUERY COMPILATION

PART II: HOW DOES IT WORK?

The Plan

Definability and Rewriting

Queries	range-restricted FOL over S_L definable w.r.t. Σ and S_A
Ontology/Schema	range-restricted FOL
Data	CWA (complete information for S _A symbols)

Image: A matrix

→ ∃ →

Query Plans via Rewriting

Plans as Formulas

Represent query plans as (annotated) range-restricted formulas ψ over S_A:

atomic formula	\mapsto	<pre>access path (get-first-get-next iterator)</pre>
conjunction	\mapsto	nested loops join
existential quantifier	\mapsto	projection (annotated w/duplicate info)
disjunction	\mapsto	concatenation
negation	\mapsto	simple complement

rightarrow reduces correctness of ψ to logical implication $\Sigma \models \varphi \leftrightarrow \psi$

Image: Image:

Non-logical (but necessary) Add-onss

Non-logical properties/operators

- binding patterns
- duplication of data and duplicate-preserving/eliminating projections
- sortedness of data (with respect to the iterator semantics) and sorting

Cost model

Query Plans via Rewriting

Plans as Formulas

Represent query plans as (annotated) range-restricted formulas ψ over S_A:

atomic formula	\mapsto	access path (get-first-get-next iterator)
conjunction	\mapsto	nested loops join
existential quantifier	\mapsto	projection (annotated w/duplicate info)
disjunction	\mapsto	concatenation
negation	\mapsto	simple complement

 \Rightarrow reduces correctness of ψ to logical implication $\Sigma \models \varphi \leftrightarrow \psi$

Non-logical (but necessary) Add-ons

Non-logical properties/operators

- binding patterns
- duplication of data and duplicate-preserving/eliminating projections
- sortedness of data (with respect to the iterator semantics) and sorting

Cost model

• □ ▶ • • □ ▶ • • □ ▶ •

Query Plans via Rewriting

Plans as Formulas

Represent query plans as (annotated) range-restricted formulas ψ over S_A:

 \Rightarrow reduces correctness of ψ to logical implication $\Sigma \models \varphi \leftrightarrow \psi$

Non-logical (but necessary) Add-ons

- 1 Non-logical properties/operators
 - binding patterns
 - duplication of data and duplicate-preserving/eliminating projections
 - sortedness of data (with respect to the *iterator semantics*) and sorting
- 2 Cost model

Waterloo

CHASE AND BACKCHASE

(THE OLD WAY)

Image: A matrix

→ ∃ →

IDEA #1 (Database Theory, CQ/UCQ)

$\mathsf{Inference}(s) \colon \textit{Q}, (\forall \bar{x}.\textit{Q}_1 \to \textit{Q}_2) \vdash \textit{Q} \cup \textit{Q}_2 \theta \ \text{ when } \ \textit{Q}_1 \theta \subseteq \textit{Q}$

(plan) choose a "plan" P from the expansion
 (backchase): expand P using constraints to contain Q (or fail)
 ⇒ can be extended to UCO+denial constrain

Example (Nash)

 $\mathsf{Query:} \quad Q(x,y) \leftrightarrow \exists t, u, v. R(t,x) \land R(t,u) \land R(u,v) \land R(v,y)$

IDEA #1 (Database Theory, CQ/UCQ)

Inference(s): $Q, (\forall \bar{x}.Q_1 \rightarrow Q_2) \vdash Q \cup Q_2 \theta$ when $Q_1 \theta \subseteq Q$

- 1 (chase): expand Q "maximally" using constraints
- 2 (plan) choose a "plan" P from the expansion
- 3 (backchase): expand P using constraints to contain Q (or fail)

Example (Nash)

Views: $V_1(x, y) \leftrightarrow \exists t, u, v, R(t, x) \land R(t, u) \land R(u, y)$ $V_2(x, y) \leftrightarrow \exists u, R(x, u) \land R(u, y)$ $V_3(x, y) \leftrightarrow \exists t, u, R(x, t) \land R(t, u) \land R(u, y)$ Output: $O(x, u) \leftrightarrow \exists t, u, w, R(t, x) \land R(t, u) \land R(u, y)$

IDEA #1 (Database Theory, CQ/UCQ)

Inference(s): $Q, (\forall \bar{x}.Q_1 \rightarrow Q_2) \vdash Q \cup Q_2 \theta$ when $Q_1 \theta \subseteq Q$

- 1 (chase): expand Q "maximally" using constraints
- 2 (plan) choose a "plan" P from the expansion
- 3 (backchase): expand P using constraints to contain Q (or fail)

 \Rightarrow can be extended to UCQ+denial constraints

Example (Nash)

Views: $V_1(x, y) \leftrightarrow \exists t, u, v. R(t, x) \land R(t, u) \land R(u, y)$ $V_2(x, y) \leftrightarrow \exists u. R(x, u) \land R(u, y)$ $V_3(x, y) \leftrightarrow \exists t, u. R(x, t) \land R(t, u) \land R(u, y)$ Output $Q(u, y) \leftrightarrow \exists t, u, y, R(t, y) \land R(t, y) \land R(u, y)$

IDEA #1 (Database Theory, CQ/UCQ)

Inference(s): $Q, (\forall \bar{x}.Q_1 \rightarrow Q_2) \vdash Q \cup Q_2 \theta$ when $Q_1 \theta \subseteq Q$

- 1 (chase): expand Q "maximally" using constraints
- 2 (plan) choose a "plan" P from the expansion
- 3 (backchase): expand P using constraints to contain Q (or fail)

 \Rightarrow can be extended to UCQ+denial constraints

Example (Nash)

Query: $Q(x, y) \leftrightarrow \exists t, u, v.R(t, x) \land R(t, u) \land R(u, v) \land R(v, y)$

IDEA #1 (Database Theory, CQ/UCQ)

Inference(s): $Q, (\forall \bar{x}.Q_1 \rightarrow Q_2) \vdash Q \cup Q_2 \theta$ when $Q_1 \theta \subseteq Q$

- 1 (chase): expand Q "maximally" using constraints
- 2 (plan) choose a "plan" P from the expansion
- 3 (backchase): expand P using constraints to contain Q (or fail)

 \Rightarrow can be extended to UCQ+denial constraints

Example (Nash)

Views:	$V_1(x)$ $V_2(x)$,y)∢ ,y)∢	⇔∃t,u ⇔∃u.F	v, v.R(t, R(x,u) /	x) / ∖ R	$\wedge R(t, u, y)$	u),	$\wedge R(u$, у)	
	$V_3(x)$,y) ∢	$\Rightarrow \exists t, u$	R(x,t)	$\wedge I$	R(t, u)) ^ I	R(<i>u</i> , y)	
~	-	``	-		``		•	- (- (

Query: $Q(x, y) \leftrightarrow \exists t, u, v.R(t, x) \land R(t, u) \land R(u, v) \land R(v, y)$

Solution(s): $\exists z. V_1(x, z) \land \forall v. V_2(v, z) \rightarrow V_3(v, y)$ $\exists z. V_3(z, y) \land \forall v. V_2(v, z) \rightarrow V_1(x, v)$

David Toman (et al.)

IDEA #1 (Database Theory, CQ/UCQ)

Inference(s): $Q, (\forall \bar{x}.Q_1 \rightarrow Q_2) \vdash Q \cup Q_2 \theta$ when $Q_1 \theta \subseteq Q$

- 1 (chase): expand Q "maximally" using constraints
- 2 (plan) choose a "plan" P from the expansion
- 3 (backchase): expand P using constraints to contain Q (or fail)

 \Rightarrow can be extended to UCQ+denial constraints

Example (Nash)

So

Waterloo

Views:	$V_1(x, y) \leftrightarrow \exists t, u, v.R(t, x) \land R(t, u) \land R$ $V_2(x, y) \leftrightarrow \exists u.R(x, u) \land R(u, y)$ $V_3(x, y) \leftrightarrow \exists t, u.R(x, t) \land R(t, u) \land R(u)$	(u,y) ,y)
Query:	$Q(x,y) \leftrightarrow \exists t, u, v.R(t,x) \land R(t,u) \land R(t,u)$	$(u,v) \wedge R(v,y)$
lution(s):	$ \exists z. V_1(x, z) \land \forall v. V_2(v, z) \to V_3(v, y) \\ \exists z. V_3(z, y) \land \forall v. V_2(v, z) \to V_1(x, v) $	but no sol's in C&B

INTERPOLATION

(THE NEW WAY—THAT IS REALLY OLD)

Query Compilation

• E •

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of Σ

 \dots for a fixed interpretation of S_A (i.e., where the actual data is).

φ is Beth definable [Beth'56] if $\Sigma \cup \Sigma' \models \varphi \rightarrow \varphi'$ where $\Sigma' (\varphi')$ is $\Sigma (\varphi)$ in which symbols NOT in S_{Λ} are primed, respectively.

low do we find the rewriting

If $\Sigma \cup \Sigma' \models \varphi \to \varphi'$ then there is ψ s.t. $\Sigma \cup \Sigma' \models \varphi \to \psi \to \varphi'$ with $\mathcal{L}(\psi) \subseteq \mathcal{L}(S_{\Lambda})$.

... ψ is called the *Craig Interpolant* [Craig'57].

...we can extract an *interpolant* ψ from a (LK) proof of $\Sigma \cup \Sigma' \models \varphi \rightarrow \varphi'$

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of Σ

 \dots for a fixed interpretation of S_A (i.e., where the actual data is).

How do we test for this?

 φ is *Beth definable* [Beth'56] if $\Sigma \cup \Sigma' \models \varphi \rightarrow \varphi'$ where $\Sigma' (\varphi')$ is $\Sigma (\varphi)$ in which symbols *NOT in* S_A are *primed*, respectively.

If $\Sigma \cup \Sigma' \models \varphi \to \varphi'$ then there is ψ s.t. $\Sigma \cup \Sigma' \models \varphi \to \psi \to \varphi'$ with $\mathcal{L}(\psi) \subseteq \mathcal{L}(S_A)$.

. ψ is called the *Craig Interpolant* [Craig'57].

...we can extract an *interpolant* ψ from a (LK) proof of $\Sigma \cup \Sigma' \models \varphi \rightarrow \varphi'$

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of Σ

 \dots for a fixed interpretation of S_A (i.e., where the actual data is).

How do we test for this?

 φ is *Beth definable* [Beth'56] if $\Sigma \cup \Sigma' \models \varphi \rightarrow \varphi'$ where $\Sigma' (\varphi')$ is $\Sigma (\varphi)$ in which symbols *NOT in* S_A are *primed*, respectively.

Why??

How do we find the rewriting

If $\Sigma \cup \Sigma' \models \varphi \rightarrow \varphi'$ then there is ψ s.t. $\Sigma \cup \Sigma' \models \varphi \rightarrow \psi \rightarrow \varphi'$ with $\mathcal{L}(\psi) \subseteq \mathcal{L}(S_{\Lambda})$.

 ψ is called the *Craig Interpolant* [Craig'57].

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of Σ

 \dots for a fixed interpretation of S_A (i.e., where the actual data is).

How do we test for this?

 φ is *Beth definable* [Beth'56] if $\Sigma \cup \Sigma' \models \varphi \rightarrow \varphi'$ where $\Sigma' (\varphi')$ is $\Sigma (\varphi)$ in which symbols *NOT in* S_A are *primed*, respectively.

 $\begin{array}{ll} \mbox{Why}\ref{eq:symbols in } \Sigma \cup \{\varphi\} \mbox{ are interpreted as in the 1st model} \\ (ii) \mbox{ symbols in } \Sigma' \cup \{\varphi'\} \mbox{ are interpreted as in the 2nd model} \\ (iii) \mbox{ symbols in } S_A \mbox{ must be interpreted the same} \end{array}$

If $\Sigma \cup \Sigma' \models \varphi \rightarrow \varphi'$ then there is ψ s.t. $\Sigma \cup \Sigma' \models \varphi \rightarrow \psi \rightarrow \varphi'$ with $\mathcal{L}(\psi) \subseteq \mathcal{L}(S_{\lambda})$.

Image: Image:

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of Σ

 \dots for a fixed interpretation of S_A (i.e., where the actual data is).

How do we test for this?

David Toman (et al.)

Waterloo

 φ is *Beth definable* [Beth'56] if $\Sigma \cup \Sigma' \models \varphi \rightarrow \varphi'$ where $\Sigma' (\varphi')$ is $\Sigma (\varphi)$ in which symbols *NOT in* S_A are *primed*, respectively.

How do we find the rewriting ψ ?

If $\Sigma \cup \Sigma' \models \varphi \rightarrow \varphi'$ then there is ψ s.t. $\Sigma \cup \Sigma' \models \varphi \rightarrow \psi \rightarrow \varphi'$ with $\mathcal{L}(\psi) \subseteq \mathcal{L}(\mathsf{S}_{\mathsf{A}})$.

... ψ is called the *Craig Interpolant* [Craig'57].

・ロト ・回ト ・ヨト ・ヨト

... we can extract an *interpolant* ψ from a (LK) proof of $\Sigma \cup \Sigma' \models \varphi \rightarrow \varphi'$

Query Compilation

Sequent Calculus: LK

Identity Rules:

$$\frac{1}{\Gamma, \varphi \vdash \varphi, \Delta}$$
 (Axiom)

$$\frac{\Gamma \vdash \varphi, \Delta \quad \Gamma, \varphi \vdash \Delta}{\Gamma \vdash \Delta} (Cut)$$

Logical Rules:

$$\frac{\mathsf{\Gamma}\vdash\varphi,\Delta}{\mathsf{\Gamma},(\neg\varphi)\vdash\Delta}\;(\neg L)$$

$$\frac{\mathsf{\Gamma}, \varphi \vdash \Delta \quad \mathsf{\Gamma}, \psi \vdash \Delta}{\mathsf{\Gamma}, (\varphi \lor \psi) \vdash \Delta} \; (\lor L)$$

$$\frac{\mathsf{\Gamma}, \varphi, \psi \vdash \Delta}{\mathsf{\Gamma}, (\varphi \land \psi) \vdash \Delta} \; (\land L)$$

$$\frac{\mathsf{\Gamma}, \varphi \vdash \Delta}{\mathsf{\Gamma} \vdash (\neg \varphi), \Delta} \ (\neg R)$$

$$\frac{\mathsf{\Gamma}\vdash\varphi,\psi,\Delta}{\mathsf{\Gamma}\vdash(\varphi\vee\psi),\Delta}\;(\lor R)$$

$$\frac{\Gamma \vdash \varphi, \Delta \quad \Gamma \vdash \psi, \Delta}{\Gamma \vdash (\varphi \land \psi), \Delta} \ (\land R)$$

Waterloo

Sequent Calculus: Cut Elimination

Theorem (Hauptsatz)

For every proof of a sequent $\Gamma \vdash \Delta$ in *LK* there is also proof of the same sequent in *LK* – {*Cut*}.

Sequent Calculus (for NNF)

Identity Rules:

$$\frac{1}{\Gamma, \varphi \vdash \varphi, \Delta} \text{ (Axiom LR)}$$

$$\frac{1}{\Gamma, \varphi, \neg \varphi \vdash \Delta} \text{ (Axiom RR)} \qquad \qquad \frac{1}{\Gamma \vdash \varphi, \neg \varphi, \Delta} \text{ (Axiom LL)}$$

Logical Rules:

$$\frac{\mathsf{\Gamma}, \varphi \vdash \Delta \qquad \mathsf{\Gamma}, \psi \vdash \Delta}{\mathsf{\Gamma}, (\varphi \lor \psi) \vdash \Delta} \; (\lor L)$$

$$\frac{\mathsf{\Gamma},\varphi,\psi\vdash\Delta}{\mathsf{\Gamma},(\varphi\wedge\psi)\vdash\Delta}\;(\wedge L)$$

$$\frac{\mathsf{\Gamma}\vdash\varphi,\psi,\Delta}{\mathsf{\Gamma}\vdash(\varphi\vee\psi),\Delta}\;(\forall R)$$

$$\frac{{\displaystyle \Gamma\vdash\varphi,\Delta\quad \Gamma\vdash\psi,\Delta}}{{\displaystyle \Gamma\vdash(\varphi\wedge\psi),\Delta}}\;(\wedge {\it R})$$

Image: Image:

Sequent Calculus (for NNF) and Interpolation

ß

Identity Rules:

$$\Gamma, \varphi \vdash \varphi, \Delta \leadsto \varphi$$

$$\Gamma, \varphi, \neg \varphi \vdash \Delta \leadsto \bot$$

$$\Gamma \vdash \varphi, \neg \varphi, \Delta \leadsto \mathsf{T}$$

Logical Rules:

$$\frac{\Gamma, \varphi \vdash \Delta \rightsquigarrow \alpha \qquad \Gamma, \psi \vdash \Delta \leadsto}{\Gamma, (\varphi \lor \psi) \vdash \Delta \rightsquigarrow \alpha \lor \beta}$$
$$\frac{\Gamma, \varphi, \psi \vdash \Delta \rightsquigarrow \alpha}{\Gamma, (\varphi \land \psi) \vdash \Delta \rightsquigarrow \alpha}$$
Waterloo

$$\frac{\Gamma \vdash \varphi, \psi, \Delta \rightsquigarrow \alpha}{\Gamma \vdash (\varphi \lor \psi), \Delta \rightsquigarrow \alpha}$$

$$\frac{\Gamma \vdash \varphi, \Delta \rightsquigarrow \alpha \qquad \Gamma \vdash \psi, \Delta \rightsquigarrow \beta}{\Gamma \vdash (\varphi \land \psi), \Delta \rightsquigarrow \alpha \land \beta}$$

$$\begin{split} \Sigma \cup \Sigma' \models \varphi \to \varphi' &\iff (\bigwedge \Sigma) \land (\bigwedge \Sigma)' \models \varphi \to \varphi' \\ &\iff \models (\bigwedge \Sigma) \to ((\bigwedge \Sigma)' \to (\varphi \to \varphi')) \\ &\iff \models (\bigwedge \Sigma) \to (\varphi \to ((\bigwedge \Sigma)' \to \varphi')) \\ &\iff (\bigwedge \Sigma) \land \varphi \models (\bigwedge \Sigma)' \to \varphi') \\ &\iff (\bigwedge \Sigma) \land \varphi \models (\bigvee \neg \Sigma)' \lor \varphi' \\ &\iff \Sigma, \varphi \vdash (\neg \Sigma'), \varphi' \quad (\text{due to soundness/completeness}) \end{split}$$

Not convenient: needs both Σ and negated Σ'

 \Rightarrow we use ANALYTIC TABLEAU: a refutation variant of LK to show

 $\Sigma, \Sigma', \varphi, \neg \varphi' \vdash \bot$ a.k.a. is inconsistent.

⇒ need to tag left (L)/right(R) formulae to simulate sequent sides (for interpolation)!

・ロト ・回 ト ・ ヨト ・ ヨ

$$\begin{split} \Sigma \cup \Sigma' \models \varphi \to \varphi' &\iff (\bigwedge \Sigma) \land (\bigwedge \Sigma)' \models \varphi \to \varphi' \\ &\iff \models (\bigwedge \Sigma) \to ((\bigwedge \Sigma)' \to (\varphi \to \varphi')) \\ &\iff \models (\bigwedge \Sigma) \to (\varphi \to ((\bigwedge \Sigma)' \to \varphi')) \\ &\iff (\bigwedge \Sigma) \land \varphi \models (\bigwedge \Sigma)' \to \varphi') \\ &\iff (\bigwedge \Sigma) \land \varphi \models (\bigvee \neg \Sigma)' \lor \varphi' \\ &\iff \Sigma, \varphi \vdash (\neg \Sigma'), \varphi' \quad (\text{due to soundness/completeness}) \end{split}$$

Not convenient: needs both Σ and negated Σ' !

 \Rightarrow we use ANALYTIC TABLEAU: a refutation variant of LK to show

 $\Sigma, \Sigma', \varphi, \neg \varphi' \vdash \bot$ a.k.a. is inconsistent

⇒ need to tag left (L)/right(R) formulae to simulate sequent sides (for interpolation)!

$$\begin{split} \Sigma \cup \Sigma' \models \varphi \to \varphi' &\iff (\bigwedge \Sigma) \land (\bigwedge \Sigma)' \models \varphi \to \varphi' \\ &\iff \models (\bigwedge \Sigma) \to ((\bigwedge \Sigma)' \to (\varphi \to \varphi')) \\ &\iff \models (\bigwedge \Sigma) \to (\varphi \to ((\bigwedge \Sigma)' \to \varphi')) \\ &\iff (\bigwedge \Sigma) \land \varphi \models (\bigwedge \Sigma)' \to \varphi') \\ &\iff (\bigwedge \Sigma) \land \varphi \models (\bigvee \neg \Sigma)' \lor \varphi' \\ &\iff \Sigma, \varphi \vdash (\neg \Sigma'), \varphi' \quad (\text{due to soundness/completeness}) \end{split}$$

Not convenient: needs both Σ and negated Σ' !

 \Rightarrow we use ANALYTIC TABLEAU: a refutation variant of LK to show

 $\Sigma, \Sigma', \varphi, \neg \varphi' \vdash \bot$ a.k.a. is inconsistent

⇒ need to *tag* left (L)/right(R) formulae to simulate sequent sides (for interpolation)!

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

$$\begin{split} \Sigma \cup \Sigma' \models \varphi \to \varphi' &\iff (\bigwedge \Sigma) \land (\bigwedge \Sigma)' \models \varphi \to \varphi' \\ &\iff \models (\bigwedge \Sigma) \to ((\bigwedge \Sigma)' \to (\varphi \to \varphi')) \\ &\iff \models (\bigwedge \Sigma) \to (\varphi \to ((\bigwedge \Sigma)' \to \varphi')) \\ &\iff (\bigwedge \Sigma) \land \varphi \models (\bigwedge \Sigma)' \to \varphi') \\ &\iff (\bigwedge \Sigma) \land \varphi \models (\bigvee \neg \Sigma)' \lor \varphi' \\ &\iff \Sigma, \varphi \vdash (\neg \Sigma'), \varphi' \quad (\text{due to soundness/completeness}) \end{split}$$

Not convenient: needs both Σ and negated Σ' !

 \Rightarrow we use ANALYTIC TABLEAU: a refutation variant of LK to show

 $\Sigma, \Sigma', \varphi, \neg \varphi' \vdash \bot$ a.k.a. is inconsistent

⇒ need to *tag* left (L)/right(R) formulae to simulate sequent sides (for interpolation)!

■ an interpolant $S \xrightarrow{int} \psi$; invariant $(\bigwedge S^L) \to \psi$ and $\psi \to (\neg \bigwedge S^R)$ where S^L and S^R are the left/right subsets of S;

tableau rules (sample):

David Toman (et al.)

■ an interpolant $S \xrightarrow{int} \psi$; invariant $(\bigwedge S^L) \to \psi$ and $\psi \to (\neg \bigwedge S^R)$ where S^L and S^R are the left/right subsets of S;

tableau rules (sample):

• LL clash $S \cup \{P^L, \neg P^L\} \xrightarrow{int} \bot$ (similar for "RR": \top) ■ LR clash $S \cup \{P^L, \neg P^R\} \xrightarrow{int} P$, where $P \in S_A$ **RL** clash $S \cup \{\neg P^L, P^R\} \xrightarrow{int} \neg P$, where $P \in S_A$

David Toman (et al.)

- an interpolant $S \xrightarrow{int} \psi$; invariant $(\bigwedge S^L) \to \psi$ and $\psi \to (\neg \bigwedge S^R)$ where S^L and S^R are the left/right subsets of S;
- tableau rules (sample):

• LL clash $S \cup \{P^L, \neg P^L\} \xrightarrow{int} \bot$ (similar for "RR": \top) • LR clash $S \cup \{P^L, \neg P^R\} \xrightarrow{int} P$, where $P \in S_A$ ■ RL clash $S \cup \{\neg P^L, P^R\} \xrightarrow{int} \neg P$, where $P \in S_A$ • L-conjunction $\frac{S \cup \{\alpha^L, \beta^L\} \xrightarrow{int} \delta}{S \cup \{(\alpha \land \beta)^L\} \xrightarrow{int} \delta}$

■ an interpolant $S \xrightarrow{int} \psi$; invariant $(\bigwedge S^L) \to \psi$ and $\psi \to (\neg \bigwedge S^R)$ where S^L and S^R are the left/right subsets of S;

tableau rules (sample):

David Toman (et al.)

■ LL clash $S \cup \{P^L, \neg P^L\} \xrightarrow{int} \bot$ (similar for "RR": \top) • LR clash $S \cup \{P^L, \neg P^R\} \xrightarrow{int} P$, where $P \in S_A$ ■ RL clash $S \cup \{\neg P^L, P^R\} \xrightarrow{int} \neg P$, where $P \in S_A$ • L-conjunction $\frac{S \cup \{\alpha^L, \beta^L\} \xrightarrow{int} \delta}{S \cup \{(\alpha \land \beta)^L\} \xrightarrow{int} \delta}$ **R**-Disjunction $\frac{S \cup \{\alpha^R\} \xrightarrow{int} \delta_{\alpha} \qquad S \cup \{\beta^R\} \xrightarrow{int} \delta_{\beta}}{S \cup \{(\alpha \lor \beta)^R\} \xrightarrow{int} \delta_{\alpha} \land \delta_{\beta}}$ etc. (see [Fitting] for details) Waterloo

How does it work? 14/24

First-order Variables and Equality

Quantifier rules

inference rules with Ground constants/terms

Quantifier Rules:

$$\frac{\Gamma, \varphi(t/x) \vdash \Delta}{\Gamma, (\forall x.\varphi) \vdash \Delta} (\forall L) \qquad \frac{\Gamma \vdash \varphi(y/x), \Delta}{\Gamma \vdash (\forall x.\varphi), \Delta} (\forall R)$$

2 unification tableau and Skolemization (refutation systems)

High-school Axioms (immediate implementation)

 $\vdash \mathbf{x} = \mathbf{x}$ $\mathbf{x} = \mathbf{y} \land \varphi \vdash \varphi(\mathbf{y}/\mathbf{x})$

Superposition rules (efficient implementation)

First-order Variables and Equality

Quantifier rules

inference rules with Ground constants/terms

Quantifier Rules:

$$\frac{\Gamma, \varphi(t/x) \vdash \Delta}{\Gamma, (\forall x.\varphi) \vdash \Delta} \; (\forall L) \qquad \frac{\Gamma \vdash \varphi(y/x), \Delta}{\Gamma \vdash (\forall x.\varphi), \Delta} \; (\forall R)$$

2 unification tableau and Skolemization (refutation systems)

Equality

Waterloo

1 High-school Axioms (immediate implementation)

 $\vdash \mathbf{x} = \mathbf{x} \\ \mathbf{x} = \mathbf{y} \land \varphi \vdash \varphi(\mathbf{y}/\mathbf{x})$

・ロト ・同ト ・ヨト ・ヨ

Issues with TABLEAU

Dealing with the subformula property of Tableau

- \Rightarrow analytic tableau *explores* formulas *structurally*
- ⇒ (to large degree) the structure of interpolant depends on where access paths are present in queries/constraints.

Separate general constraints from physical rules in the formulation of the definability question (and the subsequent interpolant extraction): $\Sigma^{L} \cup \Sigma^{R} \cup \Sigma^{LR} \models \varphi^{L} \rightarrow \varphi^{R}$ where $\Sigma^{LR} = \{\forall \bar{x}. P^{L} \leftrightarrow P \leftrightarrow P^{R} \mid P \in S_{A}\}$

Factoring logical reasoning from plan enumeration

 \Rightarrow backtracking tableau to get alternative plans: too slow, too few plans

Define *conditional* tableau exploration (using general constraints) and separate it from plan generation (using physical rules)

Issues with TABLEAU

Dealing with the subformula property of Tableau

- \Rightarrow analytic tableau *explores* formulas *structurally*
- ⇒ (to large degree) the structure of interpolant depends on where access paths are present in queries/constraints.

IDEA #3:

Separate *general constraints* from *physical rules* in the formulation of the definability question (and the subsequent interpolant extraction):

 $\Sigma^{L} \cup \Sigma^{R} \cup \Sigma^{LR} \models \varphi^{L} \rightarrow \varphi^{R} \text{ where } \Sigma^{LR} = \{ \forall \bar{x}. P^{L} \leftrightarrow P \leftrightarrow P^{R} \mid P \in S_{A} \}$

Factoring logical reasoning from plan enumeration

 \Rightarrow backtracking tableau to get alternative plans: too slow, too few plans

IDEA #4:

Define *conditional* tableau exploration (using general constraints) and separate it from plan generation (using physical rules)

・ロト ・回ト ・ヨト ・ヨト

Conditional Formulæ and Tableau

Conditional Formulæ

 $\varphi[C]$ where C is a set of (ground) atoms over S_P

 φ only exists if all atoms in ${\it C}$ are "used" in a plan tableau.

Absorbed Range-restricted Formulæ: ANF

$$oldsymbol{Q} \, ::= \, oldsymbol{R}(ar{x}) \, \mid \, \perp \, \mid \, oldsymbol{Q} \wedge oldsymbol{Q} \, \mid \, oldsymbol{Q} \lor oldsymbol{Q} \, \mid \, orall ar{x}.oldsymbol{R}(ar{x})
ightarrow oldsymbol{Q},$$

 \dots and all \exists 's are Skolemized.

Conditional Tableau Rules for ANF

$$\frac{S \cup \{\varphi[C], \psi[C]\}}{(\varphi \land \psi)[C] \in S} \text{ (conj)} \qquad \qquad \frac{S \cup \{\varphi[C]\} \quad S \cup \{\psi[C]\}}{(\varphi \lor \psi)[C] \in S} \text{ (disj)}$$

$$\frac{S \cup \{(\varphi[\bar{t}/\bar{x}])[C \cup D]\}}{R(\bar{t})[C], (\forall \bar{x}.R(\bar{x}) \to \varphi)[D]\} \subseteq S} \text{ (abs)} \quad \frac{S \cup \{R(\bar{t})[R(\bar{t})]\}}{S} \quad R(\bar{x}) \in S_{A} \text{ (phys)}$$

Conditional Tableau and Interpolation

Conditional Tableau for (Q, Σ, S_A)

$$\begin{array}{ll} \text{Proof trees } (T^L, T^R) & T^L \text{ for } \Sigma^L \cup \{Q^L(\bar{a})\} \text{ over } \{P^L \mid P \in \mathsf{S}_{\mathsf{A}}\} \\ & T^R \text{ for } \Sigma^R \cup \{Q^R(\bar{a}) \to \bot\} \text{ over } \{P^R \mid P \in \mathsf{S}_{\mathsf{A}}\} \end{array}$$

Closing Set(s)

We call a set C of literals over S_A a *closing set* for T if, for every branch

- 1 there is an atom $R(\overline{t})[D]$ such that $D \cup \{\neg R(\overline{t})\} \subseteq C$.
- **2** there is $\perp [D]$ such that $D \subseteq C$.

 \Rightarrow there are many different *minimal* closing sets for *T*.

Observation

For an arbitrary closing set *C*, the interpolant for $T^{L}(T^{R})$ is $\bot(\top)$.

Conditional Tableau and Interpolation: dirty secrets

Binding patterns

- \Rightarrow needs additional physical atoms that provide *bindings*
- \Rightarrow must appear in the tableau "on the correct side"
- \Rightarrow added to closing sets "soundly"

Functionality (for duplicates) ⇒ needs additional physical atoms that *functionally determine quantified variables* ⇒ must appear in the tableau "on the correct side" ⇒ added to closing sets "soundly"

Conditional Tableau and Interpolation: dirty secrets

Binding patterns

- \Rightarrow needs additional physical atoms that provide bindings
- \Rightarrow must appear in the tableau "on the correct side"
- \Rightarrow added to closing sets "soundly"
- Functionality (for duplicates)
 - \Rightarrow needs additional physical atoms

that functionally determine quantified variables

- \Rightarrow must appear in the tableau "on the correct side"
- \Rightarrow added to closing sets "soundly"

Physical Tableau T^P for a Plan P

P :	L _P	R _P
$P(\overline{t})$:	$\{\{\neg P^L(\overline{t})\}\}$	$\{\{P^R(\bar{t})\}\}$
$P_1 \wedge P_2$:	$L_{P_1} \cup L_{P_2}$	$\{ oldsymbol{S}_1 \cup oldsymbol{S}_2 \mid oldsymbol{S}_1 \in oldsymbol{R}_{P_1}, oldsymbol{S}_2 \in oldsymbol{R}_{P_2} \}$
$P_1 \lor P_2$:	$\{S_1 \cup S_2 \mid S_1 \in L_{P_1}, S_2 \in L_{P_2}\}$	$R_{P_1} \cup R_{P_2}$
$ eg P_1$:	$\{\{L^L(\overline{t}) \mid L^R(\overline{t}) \in S\} \mid S \in R_{P_1}\}$	$\{\{L^R(\overline{t}) \mid L^L(\overline{t}) \in S\} \mid S \in L_{P_1}\}$
$\exists x.P_1$:	$L_{P_1[t/x]}$	$R_{P_1[t/x]}$

For a range-restricted formula *P* over S_A there is an analytic tableau tree T^P that uses only formulæ in Σ^{LR} such that:

- Open branches of T^P correspond to sets of literals $C \in L_P$ (left branch) or $C \in R_P$ (right branch); and
- The interpolant extracted from the closed tableau T^P[T^L, T^R], the closure of (T^L, T^R) by (the branches of) T^P, is logically equivalent to P.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Physical Tableau T^P for a Plan P

P :	L _P	R _P
$P(\overline{t})$:	$\{\{\neg P^L(\overline{t})\}\}$	$\{\{P^R(\overline{t})\}\}$
$P_1 \wedge P_2$:	$L_{P_1} \cup L_{P_2}$	$\{ S_1 \cup S_2 \mid S_1 \in R_{P_1}, S_2 \in R_{P_2} \}$
$P_1 \lor P_2$:	$\{ S_1 \cup S_2 \mid S_1 \in L_{P_1}, S_2 \in L_{P_2} \}$	$R_{P_1} \cup R_{P_2}$
$ eg P_1$:	$\{\{L^L(\overline{t}) \mid L^R(\overline{t}) \in S\} \mid S \in R_{P_1}\}$	$\{\{L^R(\overline{t}) \mid L^L(\overline{t}) \in S\} \mid S \in L_{P_1}\}$
$\exists x.P_1$:	$L_{P_1[t/x]}$	$R_{P_1[t/x]}$

 $(P^L \rightarrow P)$

 $(P \rightarrow P^R)$

interpolant: F

Physical Tableau T^P for a Plan P

P :	L _P	R _P
$P(\overline{t})$:	$\{\{\neg P^L(\overline{t})\}\}$	$\{\{P^R(\overline{t})\}\}$
$P_1 \wedge P_2$:	$L_{P_1} \cup L_{P_2}$	$\{ S_1 \cup S_2 \mid S_1 \in R_{P_1}, S_2 \in R_{P_2} \}$
$P_1 \lor P_2$:	$\{ S_1 \cup S_2 \mid S_1 \in L_{P_1}, S_2 \in L_{P_2} \}$	$R_{P_1} \cup R_{P_2}$
$ eg P_1$:	$\{\{L^L(\overline{t}) \mid L^R(\overline{t}) \in S\} \mid S \in R_{P_1}\}$	$\{\{L^R(\overline{t}) \mid L^L(\overline{t}) \in S\} \mid S \in L_{P_1}\}$
$\exists x.P_1$:	$L_{P_1[t/x]}$	$R_{P_1[t/x]}$

 $(P^L o P)$ $(P o P^R)$

interpolant: P

Waterloo

Physical Tableau T^P for a Plan P

P :	L _P	R _P
$P(\overline{t})$:	$\{\{\neg P^L(\overline{t})\}\}$	$\{\{P^{R}(\overline{t})\}\}$
$P_1 \wedge P_2$:	$L_{P_1} \cup L_{P_2}$	$\{S_1 \cup S_2 \mid S_1 \in R_{P_1}, S_2 \in R_{P_2}\}$
$P_1 \lor P_2$:	$\{ S_1 \cup S_2 \mid S_1 \in L_{P_1}, S_2 \in L_{P_2} \}$	$R_{P_1} \cup R_{P_2}$
$ eg P_1$:	$\{\{L^L(\overline{t}) \mid L^R(\overline{t}) \in S\} \mid S \in R_{P_1}\}$	$\{\{L^R(\overline{t}) \mid L^L(\overline{t}) \in S\} \mid S \in L_{\mathcal{P}_1}\}$
$\exists x.P_1$:	$L_{P_1[t/x]}$	$R_{P_1[t/x]}$

Observation

For a range-restricted formula *P* over S_A there is an analytic tableau tree T^P that uses only formulæ in Σ^{LR} such that:

- 1 Open branches of T^P correspond to *sets of literals* $C \in L_P$ (left branch) or $C \in R_P$ (right branch); and
- The interpolant extracted from the closed tableau T^P[T^L, T^R], the closure of (T^L, T^R) by (the branches of) T^P, is logically equivalent to P.

Logical&Physical Combined, Controlling the Search

Basic Strategy

- 1 build (T^L, T^R) for (Q, Σ, S_A) to a *certain depth*,
- **2** build T^P and test if each element in $L_P(R_P)$ closes $T^L(T^R)$.

if so, $T^{P}[T^{L}, T^{R}]$ is closed tableau yielding an interpolant equivalent to P; (... otherwise extend depth in step 1 and repeat.)

NOTE: in step 2 we can "test" many *P*s (plan enumeration), but how do we know which ones to try? while building these bottom-up?

Controlling the Search

• only use the (phys) rule in $T^{L}(T^{R})$ for $R(\bar{t})$ that appears in $T^{R}(T^{L})$,

• only consider *fragments* that help closing (T^L, T^R)

 \Rightarrow this is determined using the minimal closing sets for (T^L, T^R) .

... combine with A* search (among Ps) with respect to a cost model.

・ロト ・回ト ・ヨト ・ヨト

Postprocessing: Duplicate Elimination Elimination

IDEA:

Separate the projection operation $(\exists \bar{x}.)$ to

- a duplicate preserving projection (∃) and
- an explicit (idempotent) duplicate elimination operator ({·}).

$\begin{aligned} & Q[\{B(\mathbf{x}_{1},\ldots,\mathbf{x}_{n})] \leftrightarrow Q[B(\mathbf{x}_{1},\ldots,\mathbf{x}_{n})] \\ & Q[\{Q_{1} \land Q_{2}\}] \leftrightarrow Q[\{Q_{1}\} \land \{Q_{2}\}] \\ & Q[\{\neg Q_{1}\}\} \leftrightarrow Q[\neg Q_{1}] \\ & Q[\neg Q_{1}]] \leftrightarrow Q[\neg Q_{1}] \\ & Q[\neg Q_{1}]] \leftrightarrow Q[\neg Q_{1}] \\ & Q[\{Q_{1} \lor Q_{2}\}] \leftrightarrow Q[\{Q_{1}\} \lor \{Q_{2}\}] & \text{if } \Sigma \cup \{Q[]\} \models Q_{1} \land Q_{2} \rightarrow \bot \\ & Q[\{Q_{1} \lor Q_{2}\}] \leftrightarrow Q[\{Q_{1}\} \lor \{Q_{2}\}] & \text{if } \Sigma \cup \{Q_{1}\} \land \{Q_{2}\}] \\ & Q[\{\Xi, X, Q_{1}\}] \leftrightarrow Q[\exists X, \{Q_{1}\}] & \text{if } \Sigma \cup \{Q_{1}\} \land \{Q_{2}\}] \\ & \Sigma \cup \{Q[[\Lambda](X)] \land [\Lambda](X)] \land \{Q_{2}\}\} \cup Z \end{aligned}$

reasoning abstracted: a DL CFD_{nc}^{V-} (a PTIME fragment)

(日)

Postprocessing: Duplicate Elimination Elimination

IDEA:

Separate the projection operation $(\exists \bar{x}.)$ to

- a duplicate preserving projection (∃) and
- an explicit (idempotent) duplicate elimination operator ({·}).

Use the following rewrites to eliminate/minimize the use of $\{\cdot\}$:

$$\begin{aligned} &Q[\{R(x_1, \dots, x_k)\}] \leftrightarrow Q[R(x_1, \dots, x_k)] \\ &Q[\{Q_1 \land Q_2\}] \leftrightarrow Q[\{Q_1\} \land \{Q_2\}] \\ &Q[\{\neg Q_1\}] \leftrightarrow Q[\neg Q_1] \\ &Q[\neg \{Q_1\}] \leftrightarrow Q[\neg Q_1] \\ &Q[\{Q_1 \lor Q_2\}] \leftrightarrow Q[\{Q_1\} \lor \{Q_2\}] \quad \text{if } \Sigma \cup \{Q[]\} \models Q_1 \land Q_2 \to \bot \\ &Q[\{\exists x.Q_1\}] \leftrightarrow Q[\exists x.\{Q_1\}] \quad \text{if} \\ &\Sigma \cup \{Q[] \land (Q_1)[y_1/x] \land (Q_1)[y_2/x\} \models y_1 \approx y_2 \end{aligned}$$

reasoning abstracted: a DL CFD_{nc}^{V-} (a PTIME fragment)

Postprocessing: Duplicate Elimination Elimination

IDEA:

Separate the projection operation $(\exists \bar{x}.)$ to

- a duplicate preserving projection (∃) and
- an explicit (idempotent) duplicate elimination operator ({·}).

Use the following rewrites to eliminate/minimize the use of $\{\cdot\}$:

$$\begin{aligned} &Q[\{R(x_1,\ldots,x_k)\}] \leftrightarrow Q[R(x_1,\ldots,x_k)] \\ &Q[\{Q_1 \land Q_2\}] \leftrightarrow Q[\{Q_1\} \land \{Q_2\}] \\ &Q[\{\neg Q_1\}] \leftrightarrow Q[\neg Q_1] \\ &Q[\neg \{Q_1\}] \leftrightarrow Q[\neg Q_1] \\ &Q[\{Q_1 \lor Q_2\}] \leftrightarrow Q[\{Q_1\} \lor \{Q_2\}] \quad \text{if } \Sigma \cup \{Q[]\} \models Q_1 \land Q_2 \to \bot \\ &Q[\{\exists x.Q_1\}] \leftrightarrow Q[\exists x.\{Q_1\}] \quad \text{if} \\ &\Sigma \cup \{Q[] \land (Q_1)[y_1/x] \land (Q_1)[y_2/x\} \models y_1 \approx y_2 \end{aligned}$$

... reasoning abstracted: a DL $CFD_{nc}^{\forall -}$ (a PTIME fragment)

Summary

Take Home

While in theory *interpolation* essentially solves the *query rewriting over FO schemas/views* problem, the devil is (as usual) in the details.

[Borgida, de Bruijn, Franconi, Seylan, Straccia, Toman, Weddell: On Finding Query Rewritings under Expressive Constraints. SEBD 2010: 426-437 ... but an (almost) working system only this year.

- **1** FO (\mathcal{DLFDE}) tableau based interpolation algorithm
 - \Rightarrow enumeration of plans factored from of tableau reasoning
 - \Rightarrow extra-logical binding patterns and cost model
- 2 Post processing (using CFDInc approximation)
 - \Rightarrow duplicate elimination elimination
 - \Rightarrow cut insertion
- 3 Run time
 - ⇒ library of common data/legacy structures+schema constraints
- ⇒ finger data structures to simulate merge joins et al.

・ロト ・回ト ・ヨト ・ヨト

Research Directions and Open Issues

- Dealing with ordered data? (merge-joins etc.: we have a partial solution)
- 2 Decidable schema languages (decidable interpolation problem)?
- 3 More powerful schema languages (inductive types, etc.)?
- 4 Beyond FO Queries/Views (e.g., count/sum aggregates)?
- **5** Coding extra-logical bits (e.g., binding patterns, postprocessing, etc.) in the schema itself?
- 6 Standard Designs (a plan can always be found as in SQL)?
- Explanation(s) of non-definability?
- 8 Fine(r)-grained updates?

... and, as always, performance, performance, performance!

9 . . .