Query Compilation

David Toman

D.R. Cheriton School of Computer Science
University of

Waterloo

%ﬂ

Joint work with Alexander Hudek and Grant Weddell

David Toman (et al.) Query Compilation 1/24

GRAND UNIFIED APPROACH
TO QUERY COMPILATION

PART Il: HOwW DOES IT WORK?

2/24

The Plan

Definability and Rewriting

Queries range-restricted FOL over S| definable w.r.t. © and Sp
Ontology/Schema range-restricted FOL
Data CWA (complete information for Sy symbols)
L S, -—-—-——---- © (Logical Schema)
Yip (rewriting)
Xp SACSp————-—-—-~— (U (Physical Schema)
Waterioo

|
© David Toman (et al.) Query Compilation How does it work? 3/24

Query Plans via Rewriting

Plans as Formulas

Represent query plans as (annotated) range-restricted formulas) over Sa:

atomic formula — access path (get-first—get-next iterator)
conjunction — nested loops join

existential quantifier — projection (annotated w/duplicate info)
disjunction — concatenation

negation — simple complement

,,,,,,,,,,,,,

Waterloo

I
© David Toman (et al.) Query Compilation How does it work? ~ 4/24

Query Plans via Rewriting

Plans as Formulas

Represent query plans as (annotated) range-restricted formulas) over Sa:

atomic formula —
conjunction —
existential quantifier —
disjunction —
negation —

access path (get-first—get-next iterator)
nested loops join

projection (annotated w/duplicate info)
concatenation

simple complement

= reduces correctness of « to logical implication X = ¢ « ¢

,,,,,,,,,,,,,

Waterloo

¥
&7 David Toman (et al.)

Query Compilation How does it work? 4/24

Query Plans via Rewriting

Plans as Formulas

Represent query plans as (annotated) range-restricted formulas) over Sa:

atomic formula — access path (get-first—get-next iterator)
conjunction — nested loops join

existential quantifier — projection (annotated w/duplicate info)
disjunction — concatenation

negation — simple complement

= reduces correctness of ¢ to logical implication ¥ = ¢ < ¢

Non-logical (but necessary) Add-ons

Non-logical properties/operators
m binding patterns
m duplication of data and duplicate-preserving/eliminating projections
m sortedness of data (with respect to the iterator semantics) and sorting

Cost model

»»»»»»»»»»»»»»

Waterloo

7
& David Toman (et al.) Query Compilation How does it work? ~ 4/24

CHASE AND BACKCHASE

(THE OLD WAY)

University of

Waterloo

|
© David Toman (et al.) Query Compilation How does it work? 5/24

Chase and Backchase

IDEA #1 (Database Theory, CQ/UCQ)
Inference(s): Q, (VXx.Q; — Q2) F QU Q20 when Q10 C Q

,,,,,,,,,,,,,

Waterloo

|
© David Toman (et al.) Query Compilation How does it work? 6/24

Chase and Backchase

IDEA #1 (Database Theory, CQ/UCQ)
Inference(s): Q, (VXx.Q; — Q2) F QU Q20 when Q10 C Q

(chase): expand Q “maximally” using constraints
(plan) choose a “plan” P from the expansion
(backchase): expand P using constraints to contain Q (or fail)

,,,,,,,,,,,,,

Waterloo

|
© David Toman (et al.) Query Compilation How does it work? 6/24

Chase and Backchase

IDEA #1 (Database Theory, CQ/UCQ)
Inference(s): Q, (VXx.Q; — Q2) F QU Q20 when Q10 C Q

(chase): expand Q “maximally” using constraints
(plan) choose a “plan” P from the expansion
(backchase): expand P using constraints to contain Q (or fail)
= can be extended to UCQ+denial constraints

,,,,,,,,,,,,,

Waterloo

|
© David Toman (et al.) Query Compilation How does it work? 6/24

Chase and Backchase

IDEA #1 (Database Theory, CQ/UCQ)
Inference(s): Q, (VX.Q; — Q) F QU Q0 when Q160 C Q

(chase): expand Q “maximally” using constraints
(plan) choose a “plan” P from the expansion
(backchase): expand P using constraints to contain Q (or fail)
= can be extended to UCQ+denial constraints

Example (Nash)

Views: Vi(x,y) < 3t u,v.R(t,x) A R(t,u) A R(u,y)
Va(x, y) ++ 3u.R(x,u) A R(u,y)
Va(x,y) < 3t,u.R(x,t) A R(t,u) A R(u,y)

Query: Q(x,y) < 3t,u,v.R(t,x) A R(t,u) A R(u,v) A R(v,y)

,,,,,,,,,,,,,

Waterloo

s
& David Toman (et al.) Query Compilation How does it work? 6/24

Chase and Backchase

IDEA #1 (Database Theory, CQ/UCQ)
Inference(s): Q, (VX.Q; — Q) F QU Q0 when Q160 C Q

(chase): expand Q “maximally” using constraints
(plan) choose a “plan” P from the expansion
(backchase): expand P using constraints to contain Q (or fail)
= can be extended to UCQ+denial constraints

Example (Nash)

Views: Vi(x,y) < 3t u,v.R(t,x) A R(t,u) A R(u,y)
Va(x, y) ++ 3u.R(x,u) A R(u,y)
(x,¥) < 3t,u.R(x,t) AR(t,u) A R(u,y)

Query: Q(x,y) < 3t,u,v.R(t,x) A R(t,u) A R(u,v) A R(v,y)

Solution(s): 3z.Vi(x,z) AVv.Va(v,2) — V3(v,y)
3z.V3(z,y) AVV.Vo(V, Z2) = Vi(X, V)

,,,,,,,,,,,,,

Waterloo

s
& David Toman (et al.) Query Compilation How does it work? 6/24

Chase and Backchase

IDEA #1 (Database Theory, CQ/UCQ)
Inference(s): Q, (VX.Q; — Q) F QU Q0 when Q160 C Q

(chase): expand Q “maximally” using constraints
(plan) choose a “plan” P from the expansion
(backchase): expand P using constraints to contain Q (or fail)
= can be extended to UCQ+denial constraints

Example (Nash)

Views: Vi(x,y) < 3t u,v.R(t,x) A R(t,u) A R(u,y)
Va(x, y) ++ 3u.R(x,u) A R(u,y)
(x,¥) < 3t,u.R(x,t) AR(t,u) A R(u,y)

Query: Q(x,y) < 3t,u,v.R(t,x) A R(t,u) A R(u,v) A R(v,y)

Solution(s): 3z.Vi(x,z) AVv.Va(v,2) — V3(v,y)
3z.Va(z,y) AVv.Vo(v,z) = Vi(x,v) butno sol'sin C&B

,,,,,,,,,,,,,

Waterloo

s
& David Toman (et al.) Query Compilation How does it work? 6/24

INTERPOLATION

(THE NEW WAY—THAT IS REALLY OLD)

University of

Waterloo

|
© David Toman (et al.) Query Compilation How does it work? 7/24

Beth Definability and Interpolation

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of x
... for a fixed interpretation of Sx (i.e., where the actual data is).

,,,,,,,,,,,,,

Waterloo

|
© David Toman (et al.) Query Compilation How does it work? 8/24

Beth Definability and Interpolation

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of x
... for a fixed interpretation of Sx (i.e., where the actual data is).

How do we test for this?

v is Beth definable [Beth’56] if “ U Y’ = ¢ — ¢’ where X’ (¢) is T (¢)
in which symbols NOT in Sp are primed, respectively.

,,,,,,,,,,,,,

Waterloo

|
© David Toman (et al.) Query Compilation How does it work? 8/24

Beth Definability and Interpolation

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of x
... for a fixed interpretation of Sx (i.e., where the actual data is).

How do we test for this?

v is Beth definable [Beth’56] if “ U Y’ = ¢ — ¢’ where X’ (¢) is T (¢)
in which symbols NOT in Sp are primed, respectively.

Why??

,,,,,,,,,,,,,

Waterloo

|
© David Toman (et al.) Query Compilation How does it work? 8/24

Beth Definability and Interpolation

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of x
... for a fixed interpretation of Sx (i.e., where the actual data is).

How do we test for this?

v is Beth definable [Beth’56] if “ U Y’ = ¢ — ¢’ where X’ (¢) is T (¢)
in which symbols NOT in Sp are primed, respectively.

Why?? (i) symbols in X U {¢} are interpreted as in the 1st model
(i) symbols in X' U {('} are interpreted as in the 2nd model
(ii) symbols in S must be interpreted the same

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Query Compilation How does it work? 8/24

Beth Definability and Interpolation

We only allow queries that have the same answer in every model of x
... for a fixed interpretation of Sx (i.e., where the actual data is).

How do we test for this?
v is Beth definable [Beth’56] if “ U Y’ = ¢ — ¢’ where X’ (¢) is T (¢)
in which symbols NOT in Sp are primed, respectively.

How do we find the rewriting ¢?

If UL = p — ¢’ then there is ¢ s.t. TUY' |= o — ¢ — ¢ with L(10) C L(Sh).
. v is called the Craig Interpolant [Craig’57].

...we can extract an interpolant > from a (LK) proof of T U Y | ¢ — ¢

vvvvvvvvvvvvv

Waterloo

3
& David Toman (et al.) Query Compilation How does it work? 8/24

Sequent Calculus: LK

Identity Rules:

— (Axiom)
Mebep A

Logical Rules:
M=o, A

() A

-

LoFA TgkA
F(pVvy)kEA

e, vEA
F(eAy)FEA

,,,,,,,,,,,

15
&7 David Toman (et al.)

(VD)

MekFA
e (=), A

-

M=o, A

— (VR)
FE(pvy),A

MrM-e,A THY A

Query Compilation

FE(eAy),A

How does it work?

9/24

Sequent Calculus: Cut Elimination

Theorem (Hauptsatz)

For every proof of a sequentT - A in LK there is also proof of the same
sequent in LK — {Cult}.

,,,,,,,,,,,,,

Waterloo

|
© David Toman (et al.) Query Compilation How does it work? 10/24

Sequent Calculus (for NNF)

Identity Rules:

—— (Axiom LR)
Mebep A

— (AxiomRR)
r, ¥, 7P FA

Logical Rules:
Mek-A MykEA

(VL)
F(eVy) A
r FA
o (L)
r7(§0/\¢)|_A

,,,,,,,,,,,

|
& David Toman (et al.) Query Compilation

r|_§07_‘§0aA

M=o, A

— (VR)
F=(pVvae), A

N, A THyY A

FE(endg), A

How does it work?

(Axiom LL)

11/24

Sequent Calculus (for NNF) and Interpolation
Identity Rules:

MekFp, A~

Mo~ A~ L M=, =p, A~ T

Logical Rules:

Mok A~a MyYykFEA~Q(MEp, A~ «
NevVyy)FA~aVvp N-(pVvy),A~ «
Mo, vk A~ a NrFp,A~a THEY,A~B
NpAP)FA~ FrE(pAY),A~anp
Waterioo

|
© David Toman (et al.) Query Compilation How does it work? 12/24

LK and Theories

YUY Eeo— ¢

How does it work? 13/24

LK and Theories

TUT Ee o = (NDAND) Ee—
= EAX) = (AX) = (0= ¢)
= E(ANL) = (¢ = (AX) = ¢))
= (AND)AeE(NE) = ¢)
= (AND A (V-E) vy
<~ Y, pk(-Y),¢ (due to soundness/completeness)

Not convenient: needs both ¥ and negated ¥’!

,,,,,,,,,,,

¥
© David Toman (et al.) Query Compilation How does it work? 13/24

LK and Theories

YUY Eeo— ¢

poreeet

(=X),¢" (due to soundness/completeness)

Not convenient: needs both ¥ and negated ¥’!

= we use ANALYTIC TABLEAU: a refutation variant of LK to show

Y, Y o, ¢’ L aka. isinconsistent

University of

Waterloo

¥
© David Toman (et al.) Query Compilation How does it work? 13/24

LK and Theories

YUY Eeo— ¢

poreeet

(-X'),¢’ (due to soundness/completeness)

Not convenient: needs both ¥ and negated ¥’!

= we use ANALYTIC TABLEAU: a refutation variant of LK to show
Y, Y o, ¢’ L aka. isinconsistent

= need to tag left (L)/right(R) formulae to simulate
sequent sides (for interpolation)!

,,,,,,,,,,,,,

Waterloo

¥
© David Toman (et al.) Query Compilation How does it work? 13/24

Tableau and Interpolant Extraction (by example)

m an interpolant s ¥; invariant (A St) — ¢ and ¢ — (- A Sf)
where St and S* are the left/right subsets of S;

,,,,,,,,,,,,,

|
© David Toman (et al.) Query Compilation How does it work? 14/24

Tableau and Interpolant Extraction (by example)

m an interpolant s ¥; invariant (A St) — ¢ and ¢ — (- A Sf)
where St and S* are the left/right subsets of S;

m tableau rules (sample):

m LLclash| SU{P:, P} | (similar for “RR”: T)

m LR clash | SU{P", ~PR}-" P | where P € Sp

m RL clash | SU {~PL, PR} P | where P € Sa

,,,,,,,,,,,

15
&7 David Toman (et al.) Query Compilation How does it work? 14/24

Tableau and Interpolant Extraction (by example)

m an interpolant s ¥; invariant (A St) — ¢ and ¢ — (- A Sf)
where St and S* are the left/right subsets of S;

m tableau rules (sample):

m LLclash| Su {Pt,-P-}-™ |

m LRclash|Su{P",-PF}- ™ P

m RL clash SU{_‘PL’PR}ﬂ)ﬁP

m L-conjunction

,,,,,,,,,,,

Waterloo

15
& David Toman (et al.)

(similar for “RR”: T)

, where P € Sp

, where P € Sp

Su{at, gt} 5

Su{(anB)t-™s

Query Compilation How does it work? 14/24

Tableau and Interpolant Extraction (by example)

m an interpolant s ¥; invariant (A St) — ¢ and ¢ — (- A Sf)
where St and S* are the left/right subsets of S;

m tableau rules (sample):

m LLclash| Su {Pt,-P-}-™ |

(similar for “RR”: T)

m LR clash | SU{P", ~PR}-" P | where P € Sp
m RL clash | SU {~PL, PR} P | where P € Sa

m L-conjunction

m R-Disjunction

Su{at,ptr-™ s

Su{(anB)t-™s

Su{af}- 5,

Su{pft- 5,

Su{(aVB)F 6. Ads

— m etc. (see [Fitting] for details)

Waterloo

15
& David Toman (et al.)

Query Compilation How does it work?

14/24

First-order Variables and Equality
m Quantifier rules
inference rules with Ground constants/terms

Quantifier Rules:
I o(t/x)F A M=oe(y/x),A
(t/x) L (y/x) y
I, (vx.) F A M (Yx.), A

unification tableau and Skolemization (refutation systems)

University of

Waterloo

|
© David Toman (et al.) Query Compilation How does it work? 15/24

First-order Variables and Equality
m Quantifier rules
inference rules with Ground constants/terms

Quantifier Rules:
I o(t/x)F A M=oe(y/x),A
(t/x) L (y/x) y
I, (vx.) F A M (Yx.), A

unification tableau and Skolemization (refutation systems)
m Equality
Bl High-school Axioms (immediate implementation)

Fx=x
x=ynNetpy/Xx)

Superposition rules (efficient implementation)

University of

Waterloo

|
© David Toman (et al.) Query Compilation How does it work?

15/24

Issues with TABLEAU

Dealing with the subformula property of Tableau
= analytic tableau explores formulas structurally
= (to large degree) the structure of interpolant
depends on where access paths are present in queries/constraints.

Factoring logical reasoning from plan enumeration
= backtracking tableau to get alternative plans: too slow, too few plans

University of

Waterloo

|
© David Toman (et al.) Query Compilation How does it work? 16/24

Issues with TABLEAU

Dealing with the subformula property of Tableau
= analytic tableau explores formulas structurally

= (to large degree) the structure of interpolant
depends on where access paths are present in queries/constraints.

IDEA #3:

Separate general constraints from physical rules in the formulation of
the definability question (and the subsequent interpolant extraction):

YLUTRUTHA E b — o where X7 = {Vx.P- & P < PR | P c Sp}

Factoring logical reasoning from plan enumeration
= backtracking tableau to get alternative plans: too slow, too few plans

IDEA #4:

Define conditional tableau exploration (using general constraints)
and separate it from plan generation (using physical rules)

,,,,,,,,,,,,,

Waterloo

|7
& David Toman (et al.) How does itwork? ~ 16/24

Query Compilation

Conditional Formulee and Tableau

Conditional Formulae

»[C] where C is a set of (ground) atoms over Sp
» only exists if all atoms in C are “used” in a plan tableau.

Absorbed Range-restricted Formulee: ANF
Q:=RX) | L] QAQ | QvQ | ¥x.R(X)— Q,

...and all I's are Skolemized.

Conditional Tableau Rules for ANF

SuU{p[Cl.¥[C]} . Suf{elCl} Su{y[C]l} . .
(conj) (disj)
(pAY)[Cle S (pVy)[Cle s
SULlANICUDY o SULRDIROD po o o
{R(D[C], (vx.R(X) = ¢)[D]} € S S

vvvvvvvvvvvvvv

Waterloo

|
& David Toman (et al.) Query Compilation How does it work? 17/24

Conditional Tableau and Interpolation

Conditional Tableau for (Q, X, Sa)

Proof trees (T, TA): Ttfor Xt U {Q4(a@)} over {P- | P € Sa}
TRfor ZF U {QR(a) — L} over {PR | P c Sa}

Closing Set(s)

We call a set C of literals over Sp a closing set for T if, for every branch
El there is an atom R(%)[D] such that DU {-R(?)} C C.
there is L[D] such that D C C.
= there are many different minimal closing sets for T.

For an arbitrary closing set C, the interpolant for T-(T#) is 1(T).

vvvvvvvvvvvvv

Waterloo

B
& David Toman (et al.) Query Compilation How does itwork? ~ 18/24

Conditional Tableau and Interpolation: dirty secrets

m Binding patterns
=- needs additional physical atoms that provide bindings
= must appear in the tableau “on the correct side”
= added to closing sets “soundly”

,,,,,,,,,,,

|
&7 David Toman (et al.) Query Compilation How does it work?

19/24

Conditional Tableau and Interpolation: dirty secrets

m Binding patterns
=- needs additional physical atoms that provide bindings
= must appear in the tableau “on the correct side”
= added to closing sets “soundly”

m Functionality (for duplicates)

= needs additional physical atoms
that functionally determine quantified variables

=- must appear in the tableau “on the correct side”
= added to closing sets “soundly”

,,,,,,,,,,,,,

Waterloo

|
© David Toman (et al.) Query Compilation How does it work? 19/24

Plan Enumeration

Physical Tableau T* for a Plan P

P : Lp Rp
P © {{-P4(D}} {PA(D}}
Py AP L;r:v1 U LP2 {51 usS | S e RP1,82 € RPz}
PyVv P {31 usS, | NS LP“ S e LPz} RP1 @] RPz
-P o {{LD) | LA(H) € S SeRp} {{LA(D)|L5() € S}| Selp}
Py Lpyjyx Rpit/x

,,,,,,,,,,,,,

Waterloo

|
< David Toman (et al.)

Query Compilation

How does it work? 20/24

Plan Enumeration

Physical Tableau T* for a Plan P

P : Lp Rp
P © {{-P4(D}} {PA(D}}
Py AP L;r:v1 U LP2 {51 usS | S e RP1,82 € RPz}
PyVv P {31 usS, | NS LP“ S e LPz} RP1 @] RPz
-P o {{LD) | LA(H) € S SeRp} {{LA(D)|L5() € S}| Selp}
Py Lpyjyx Rpit/x

,,,,,,,,,,,,,

Waterloo

|2
< David Toman (et al.)

PL/ N P
P/ \PF’

Query Compilation

(Pt — P)

(P — PR)

How does it work? 20/24

Plan Enumeration

Physical Tableau T* for a Plan P

P : Lp Rp
P © {{-P4(D}} {PA(D}}
PiNPs : L;r:v1 U LP2 {51 USs | S e RP1,82 € RPz}

PyVv P {31 U_Sg | 81_6 LP“ S e LPz} RP1 U_RP2 _
-P o {{LD) | LA(H) € S SeRp} {{LA(D)|L5() € S}| Selp}
Py Lpyjyx Rpit/x

VRN (Pt — P)
P
AR (P PR)
P PR

Tt X TR interpolant: P

~pPL

,,,,,,,,,,,,,

Waterloo
P
K David Toman (et al.) Query Compilation How does it work? 20/24

Plan Enumeration

Physical Tableau T for a Plan P

P LP RP
P {{-P- (D} {PR(O}
Py AP Lp1 U Lp2 {81 usS | S e RP1782 € RPz}

PyVv P {31 U_Sg | 81_6 LP“ S e LPz} RP1 U_sz _
-Py o {{L"1) | LA(t) e S} Se Rp} {{LR(D) LN € S}|SelLp}
Py : Lpgyx Ree/x

For a range-restricted formula P over Sa there is an analytic tableau tree T7
that uses only formulze in X7 such that:
Open branches of T* correspond to sets of literals C € Lp (left branch) or
C € Rp (right branch); and
The interpolant extracted from the closed tableau TP[Tt, T#], the closure
of (TL, TF) by (the branches of) T*, is logically equivalent to P.

vvvvvvvvvvvvvv

Waterloo

s
& David Toman (et al.) Query Compilation How does it work? 20/24

Logical&Physical Combined, Controlling the Search

Basic Strategy

build (7%, TA) for (Q, X, Sa) to a certain depth,
build 7% and test if each element in Lp(Rp) closes TH(TH).

if so, TP[Tt, TH] is closed tableau yielding an interpolant equivalent to P;
(...otherwise extend depth in step 1 and repeat.)

NOTE: in step 2 we can “test” many Ps (plan enumeration), but
how do we know which ones to try? while building these bottom-up?

Controlling the Search

m only use the (phys) rule in TX(TH) for R(%) that appears in TR(TL),
m only consider fragments that help closing (Tt, TF)
= this is determined using the minimal closing sets for (T, TF).

... combine with A* search (among Ps) with respect to a cost model.

vvvvvvvvvvvvvv

Waterloo

s
& David Toman (et al.) Query Compilation How does it work? 21/24

Postprocessing: Duplicate Elimination Elimination

IDEA:

Separate the projection operation (3x.) to

m a duplicate preserving projection (3) and
m an explicit (idempotent) duplicate elimination operator ({-}).

,,,,,,,,,,,,,

Waterloo

|
© David Toman (et al.) Query Compilation How does it work? 22/24

Postprocessing: Duplicate Elimination Elimination

Separate the projection operation (3x.) to

m a duplicate preserving projection (3) and
m an explicit (idempotent) duplicate elimination operator ({-}).

Use the following rewrites to eliminate/minimize the use of {-}:

QH{R(X1, ..., xk)}] < Q[R(X1, ..., Xk)]
QA1 A Qo}] < Q{1 } A {Q2}]
Q-1 }] < Q[-Q]
Q{1 }] < Q[-Q]
QU V Q)< Q{1 V)] fZU{Q} F Qi AQ— L
QI{3x.Q4}] < Q[Fx.{Q}] if
TUu{Q A (Q)A/XIA (Qi)ly2/x} E vy = e

,,,,,,,,,,,,,

Waterloo

K David Toman (et al.) Query Compilation How does it work? 22/24

Postprocessing: Duplicate Elimination Elimination

Separate the projection operation (3x.) to

m a duplicate preserving projection (3) and
m an explicit (idempotent) duplicate elimination operator ({-}).

Use the following rewrites to eliminate/minimize the use of {-}:

QH{R(X1, ..., xk)}] < Q[R(X1, ..., Xk)]
QA1 A Qo}] < Q{1 } A {Q2}]
Q-1 }] < Q[-Q]
Q{1 }] < Q[-Q]
QU V Q)< Q{1 V)] fZU{Q} F Qi AQ— L
QI{3x.Q4}] < Q[Fx.{Q}] if
TUu{Q A (Q)A/XIA (Qi)ly2/x} E vy = e

.. reasoning abstracted: a DL CFD}; (a PTIME fragment)

,,,,,,,,,,,,,

Waterloo

K David Toman (et al.) Query Compilation How does it work? 22/24

Summary

Take Home

While in theory interpolation essentially solves the query rewriting over FO
schemas/views problem, the devil is (as usual) in the details.

[Borgida, de Bruijn, Franconi, Seylan, Straccia, Toman, Weddell: On Finding
Query Rewritings under Expressive Constraints. SEBD 2010: 426-437

... but an (almost) working system only this year.

FO (DLFDE) tableau based interpolation algorithm

= enumeration of plans factored from of tableau reasoning
= extra-logical binding patterns and cost model

Post processing (using CFDZnc approximation)
= duplicate elimination elimination
= cut insertion

Run time

= library of common data/legacy structures+schema constraints
= finger data structures to simulate merge joins et al.
Waterioo

i
@ David Toman (et al.) Query Compilation Summary 23/24

Research Directions and Open Issues

Dealing with ordered data? (merge-joins etc.: we have a partial solution)
Decidable schema languages (decidable interpolation problem)?

More powerful schema languages (inductive types, etc.)?

Beyond FO Queries/Views (e.g., count/sum aggregates)?

Coding extra-logical bits (e.g., binding patterns, postprocessing, etc.)
in the schema itself?

A Standard Designs (a plan can always be found as in SQL)?
Explanation(s) of non-definability?

H Fine(r)-grained updates?

...and, as always, performance, performance, performance!

,,,,,,,,,,,,,

Waterloo

|
& David Toman (et al.) Query Compilation Summary 24/24

