
Query Compilation

David Toman

D.R. Cheriton School of Computer Science

Joint work with Alexander Hudek and Grant Weddell

David Toman (et al.) Query Compilation 1 / 24

GRAND UNIFIED APPROACH

TO QUERY COMPILATION

PART II: HOW DOES IT WORK?

David Toman (et al.) Query Compilation 2 / 24

The Plan

Definability and Rewriting
Queries range-restricted FOL over SL definable w.r.t. Σ and SA
Ontology/Schema range-restricted FOL
Data CWA (complete information for SA symbols)

ΣL SL ϕoo (Logical Schema)

ΣLP (rewriting)

��

ΣP SA ⊆ SP ψoo (Physical Schema)

David Toman (et al.) Query Compilation How does it work? 3 / 24

Query Plans via Rewriting

Plans as Formulas

Represent query plans as (annotated) range-restricted formulas ψ over SA:

atomic formula 7→ access path (get-first–get-next iterator)
conjunction 7→ nested loops join
existential quantifier 7→ projection (annotated w/duplicate info)
disjunction 7→ concatenation
negation 7→ simple complement

⇒ reduces correctness of ψ to logical implication Σ |= ϕ↔ ψ

Non-logical (but necessary) Add-ons

1 Non-logical properties/operators
binding patterns
duplication of data and duplicate-preserving/eliminating projections
sortedness of data (with respect to the iterator semantics) and sorting

2 Cost model

David Toman (et al.) Query Compilation How does it work? 4 / 24

Query Plans via Rewriting

Plans as Formulas

Represent query plans as (annotated) range-restricted formulas ψ over SA:

atomic formula 7→ access path (get-first–get-next iterator)
conjunction 7→ nested loops join
existential quantifier 7→ projection (annotated w/duplicate info)
disjunction 7→ concatenation
negation 7→ simple complement

⇒ reduces correctness of ψ to logical implication Σ |= ϕ↔ ψ

Non-logical (but necessary) Add-ons

1 Non-logical properties/operators
binding patterns
duplication of data and duplicate-preserving/eliminating projections
sortedness of data (with respect to the iterator semantics) and sorting

2 Cost model

David Toman (et al.) Query Compilation How does it work? 4 / 24

Query Plans via Rewriting

Plans as Formulas

Represent query plans as (annotated) range-restricted formulas ψ over SA:

atomic formula 7→ access path (get-first–get-next iterator)
conjunction 7→ nested loops join
existential quantifier 7→ projection (annotated w/duplicate info)
disjunction 7→ concatenation
negation 7→ simple complement

⇒ reduces correctness of ψ to logical implication Σ |= ϕ↔ ψ

Non-logical (but necessary) Add-ons

1 Non-logical properties/operators
binding patterns
duplication of data and duplicate-preserving/eliminating projections
sortedness of data (with respect to the iterator semantics) and sorting

2 Cost model

David Toman (et al.) Query Compilation How does it work? 4 / 24

CHASE AND BACKCHASE

(THE OLD WAY)

David Toman (et al.) Query Compilation How does it work? 5 / 24

Chase and Backchase

IDEA #1 (Database Theory, CQ/UCQ)

Inference(s): Q, (∀x̄ .Q1 → Q2) ` Q ∪Q2θ when Q1θ ⊆ Q

1 (chase): expand Q “maximally” using constraints
2 (plan) choose a “plan” P from the expansion
3 (backchase): expand P using constraints to contain Q (or fail)

⇒ can be extended to UCQ+denial constraints

Example (Nash)

Views: V1(x , y)↔ ∃t ,u, v .R(t , x) ∧ R(t ,u) ∧ R(u, y)
V2(x , y)↔ ∃u.R(x ,u) ∧ R(u, y)
V3(x , y)↔ ∃t ,u.R(x , t) ∧ R(t ,u) ∧ R(u, y)

Query: Q(x , y)↔ ∃t ,u, v .R(t , x) ∧ R(t ,u) ∧ R(u, v) ∧ R(v , y)

Solution(s): ∃z.V1(x , z) ∧ ∀v .V2(v , z)→ V3(v , y)
∃z.V3(z, y) ∧ ∀v .V2(v , z)→ V1(x , v)

David Toman (et al.) Query Compilation How does it work? 6 / 24

Chase and Backchase

IDEA #1 (Database Theory, CQ/UCQ)

Inference(s): Q, (∀x̄ .Q1 → Q2) ` Q ∪Q2θ when Q1θ ⊆ Q

1 (chase): expand Q “maximally” using constraints
2 (plan) choose a “plan” P from the expansion
3 (backchase): expand P using constraints to contain Q (or fail)

⇒ can be extended to UCQ+denial constraints

Example (Nash)

Views: V1(x , y)↔ ∃t ,u, v .R(t , x) ∧ R(t ,u) ∧ R(u, y)
V2(x , y)↔ ∃u.R(x ,u) ∧ R(u, y)
V3(x , y)↔ ∃t ,u.R(x , t) ∧ R(t ,u) ∧ R(u, y)

Query: Q(x , y)↔ ∃t ,u, v .R(t , x) ∧ R(t ,u) ∧ R(u, v) ∧ R(v , y)

Solution(s): ∃z.V1(x , z) ∧ ∀v .V2(v , z)→ V3(v , y)
∃z.V3(z, y) ∧ ∀v .V2(v , z)→ V1(x , v)

David Toman (et al.) Query Compilation How does it work? 6 / 24

Chase and Backchase

IDEA #1 (Database Theory, CQ/UCQ)

Inference(s): Q, (∀x̄ .Q1 → Q2) ` Q ∪Q2θ when Q1θ ⊆ Q

1 (chase): expand Q “maximally” using constraints
2 (plan) choose a “plan” P from the expansion
3 (backchase): expand P using constraints to contain Q (or fail)

⇒ can be extended to UCQ+denial constraints

Example (Nash)

Views: V1(x , y)↔ ∃t ,u, v .R(t , x) ∧ R(t ,u) ∧ R(u, y)
V2(x , y)↔ ∃u.R(x ,u) ∧ R(u, y)
V3(x , y)↔ ∃t ,u.R(x , t) ∧ R(t ,u) ∧ R(u, y)

Query: Q(x , y)↔ ∃t ,u, v .R(t , x) ∧ R(t ,u) ∧ R(u, v) ∧ R(v , y)

Solution(s): ∃z.V1(x , z) ∧ ∀v .V2(v , z)→ V3(v , y)
∃z.V3(z, y) ∧ ∀v .V2(v , z)→ V1(x , v)

David Toman (et al.) Query Compilation How does it work? 6 / 24

Chase and Backchase

IDEA #1 (Database Theory, CQ/UCQ)

Inference(s): Q, (∀x̄ .Q1 → Q2) ` Q ∪Q2θ when Q1θ ⊆ Q

1 (chase): expand Q “maximally” using constraints
2 (plan) choose a “plan” P from the expansion
3 (backchase): expand P using constraints to contain Q (or fail)

⇒ can be extended to UCQ+denial constraints

Example (Nash)

Views: V1(x , y)↔ ∃t ,u, v .R(t , x) ∧ R(t ,u) ∧ R(u, y)
V2(x , y)↔ ∃u.R(x ,u) ∧ R(u, y)
V3(x , y)↔ ∃t ,u.R(x , t) ∧ R(t ,u) ∧ R(u, y)

Query: Q(x , y)↔ ∃t ,u, v .R(t , x) ∧ R(t ,u) ∧ R(u, v) ∧ R(v , y)

Solution(s): ∃z.V1(x , z) ∧ ∀v .V2(v , z)→ V3(v , y)
∃z.V3(z, y) ∧ ∀v .V2(v , z)→ V1(x , v)

David Toman (et al.) Query Compilation How does it work? 6 / 24

Chase and Backchase

IDEA #1 (Database Theory, CQ/UCQ)

Inference(s): Q, (∀x̄ .Q1 → Q2) ` Q ∪Q2θ when Q1θ ⊆ Q

1 (chase): expand Q “maximally” using constraints
2 (plan) choose a “plan” P from the expansion
3 (backchase): expand P using constraints to contain Q (or fail)

⇒ can be extended to UCQ+denial constraints

Example (Nash)

Views: V1(x , y)↔ ∃t ,u, v .R(t , x) ∧ R(t ,u) ∧ R(u, y)
V2(x , y)↔ ∃u.R(x ,u) ∧ R(u, y)
V3(x , y)↔ ∃t ,u.R(x , t) ∧ R(t ,u) ∧ R(u, y)

Query: Q(x , y)↔ ∃t ,u, v .R(t , x) ∧ R(t ,u) ∧ R(u, v) ∧ R(v , y)

Solution(s): ∃z.V1(x , z) ∧ ∀v .V2(v , z)→ V3(v , y)
∃z.V3(z, y) ∧ ∀v .V2(v , z)→ V1(x , v)

David Toman (et al.) Query Compilation How does it work? 6 / 24

Chase and Backchase

IDEA #1 (Database Theory, CQ/UCQ)

Inference(s): Q, (∀x̄ .Q1 → Q2) ` Q ∪Q2θ when Q1θ ⊆ Q

1 (chase): expand Q “maximally” using constraints
2 (plan) choose a “plan” P from the expansion
3 (backchase): expand P using constraints to contain Q (or fail)

⇒ can be extended to UCQ+denial constraints

Example (Nash)

Views: V1(x , y)↔ ∃t ,u, v .R(t , x) ∧ R(t ,u) ∧ R(u, y)
V2(x , y)↔ ∃u.R(x ,u) ∧ R(u, y)
V3(x , y)↔ ∃t ,u.R(x , t) ∧ R(t ,u) ∧ R(u, y)

Query: Q(x , y)↔ ∃t ,u, v .R(t , x) ∧ R(t ,u) ∧ R(u, v) ∧ R(v , y)

Solution(s): ∃z.V1(x , z) ∧ ∀v .V2(v , z)→ V3(v , y)
∃z.V3(z, y) ∧ ∀v .V2(v , z)→ V1(x , v) but no sol’s in C&B

David Toman (et al.) Query Compilation How does it work? 6 / 24

INTERPOLATION

(THE NEW WAY—THAT IS REALLY OLD)

David Toman (et al.) Query Compilation How does it work? 7 / 24

Beth Definability and Interpolation

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of Σ

. . . for a fixed interpretation of SA (i.e., where the actual data is).

How do we test for this?

ϕ is Beth definable [Beth’56] if Σ ∪ Σ′ |= ϕ→ ϕ′ where Σ′ (ϕ′) is Σ (ϕ)
in which symbols NOT in SA are primed, respectively.

How do we find the rewriting ψ?

If Σ∪Σ′ |= ϕ→ ϕ′ then there is ψ s.t. Σ∪Σ′ |= ϕ→ ψ → ϕ′ with L(ψ) ⊆ L(SA).

. . . ψ is called the Craig Interpolant [Craig’57].

. . . we can extract an interpolant ψ from a (LK) proof of Σ ∪ Σ′ |= ϕ→ ϕ′

David Toman (et al.) Query Compilation How does it work? 8 / 24

Beth Definability and Interpolation

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of Σ

. . . for a fixed interpretation of SA (i.e., where the actual data is).

How do we test for this?

ϕ is Beth definable [Beth’56] if Σ ∪ Σ′ |= ϕ→ ϕ′ where Σ′ (ϕ′) is Σ (ϕ)
in which symbols NOT in SA are primed, respectively.

How do we find the rewriting ψ?

If Σ∪Σ′ |= ϕ→ ϕ′ then there is ψ s.t. Σ∪Σ′ |= ϕ→ ψ → ϕ′ with L(ψ) ⊆ L(SA).

. . . ψ is called the Craig Interpolant [Craig’57].

. . . we can extract an interpolant ψ from a (LK) proof of Σ ∪ Σ′ |= ϕ→ ϕ′

David Toman (et al.) Query Compilation How does it work? 8 / 24

Beth Definability and Interpolation

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of Σ

. . . for a fixed interpretation of SA (i.e., where the actual data is).

How do we test for this?

ϕ is Beth definable [Beth’56] if Σ ∪ Σ′ |= ϕ→ ϕ′ where Σ′ (ϕ′) is Σ (ϕ)
in which symbols NOT in SA are primed, respectively.

Why?? (i) symbols in Σ ∪ {ϕ} are interpreted as in the 1st model
(ii) symbols in Σ′ ∪ {ϕ′} are interpreted as in the 2nd model
(iii) symbols in SA must be interpreted the same

How do we find the rewriting ψ?

If Σ∪Σ′ |= ϕ→ ϕ′ then there is ψ s.t. Σ∪Σ′ |= ϕ→ ψ → ϕ′ with L(ψ) ⊆ L(SA).

. . . ψ is called the Craig Interpolant [Craig’57].

. . . we can extract an interpolant ψ from a (LK) proof of Σ ∪ Σ′ |= ϕ→ ϕ′David Toman (et al.) Query Compilation How does it work? 8 / 24

Beth Definability and Interpolation

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of Σ

. . . for a fixed interpretation of SA (i.e., where the actual data is).

How do we test for this?

ϕ is Beth definable [Beth’56] if Σ ∪ Σ′ |= ϕ→ ϕ′ where Σ′ (ϕ′) is Σ (ϕ)
in which symbols NOT in SA are primed, respectively.

Why?? (i) symbols in Σ ∪ {ϕ} are interpreted as in the 1st model
(ii) symbols in Σ′ ∪ {ϕ′} are interpreted as in the 2nd model
(iii) symbols in SA must be interpreted the same

How do we find the rewriting ψ?

If Σ∪Σ′ |= ϕ→ ϕ′ then there is ψ s.t. Σ∪Σ′ |= ϕ→ ψ → ϕ′ with L(ψ) ⊆ L(SA).

. . . ψ is called the Craig Interpolant [Craig’57].

. . . we can extract an interpolant ψ from a (LK) proof of Σ ∪ Σ′ |= ϕ→ ϕ′David Toman (et al.) Query Compilation How does it work? 8 / 24

Beth Definability and Interpolation

IDEA #2: What Queries do we allow?

We only allow queries that have the same answer in every model of Σ

. . . for a fixed interpretation of SA (i.e., where the actual data is).

How do we test for this?

ϕ is Beth definable [Beth’56] if Σ ∪ Σ′ |= ϕ→ ϕ′ where Σ′ (ϕ′) is Σ (ϕ)
in which symbols NOT in SA are primed, respectively.

How do we find the rewriting ψ?

If Σ∪Σ′ |= ϕ→ ϕ′ then there is ψ s.t. Σ∪Σ′ |= ϕ→ ψ → ϕ′ with L(ψ) ⊆ L(SA).

. . . ψ is called the Craig Interpolant [Craig’57].

. . . we can extract an interpolant ψ from a (LK) proof of Σ ∪ Σ′ |= ϕ→ ϕ′

David Toman (et al.) Query Compilation How does it work? 8 / 24

Sequent Calculus: LK

Identity Rules:

Γ, ϕ ` ϕ,∆
(Axiom)

Γ ` ϕ,∆ Γ, ϕ ` ∆

Γ ` ∆
(Cut)

Logical Rules:

Γ ` ϕ,∆

Γ, (¬ϕ) ` ∆
(¬L)

Γ, ϕ ` ∆

Γ ` (¬ϕ),∆
(¬R)

Γ, ϕ ` ∆ Γ, ψ ` ∆

Γ, (ϕ ∨ ψ) ` ∆
(∨L)

Γ ` ϕ,ψ,∆

Γ ` (ϕ ∨ ψ),∆
(∨R)

Γ, ϕ, ψ ` ∆

Γ, (ϕ ∧ ψ) ` ∆
(∧L)

Γ ` ϕ,∆ Γ ` ψ,∆

Γ ` (ϕ ∧ ψ),∆
(∧R)

David Toman (et al.) Query Compilation How does it work? 9 / 24

Sequent Calculus: Cut Elimination

Theorem (Hauptsatz)

For every proof of a sequent Γ ` ∆ in LK there is also proof of the same
sequent in LK− {Cut}.

David Toman (et al.) Query Compilation How does it work? 10 / 24

Sequent Calculus (for NNF)

Identity Rules:

Γ, ϕ ` ϕ,∆
(Axiom LR)

Γ, ϕ,¬ϕ ` ∆
(Axiom RR)

Γ ` ϕ,¬ϕ,∆
(Axiom LL)

Logical Rules:

Γ, ϕ ` ∆ Γ, ψ ` ∆

Γ, (ϕ ∨ ψ) ` ∆
(∨L)

Γ ` ϕ,ψ,∆

Γ ` (ϕ ∨ ψ),∆
(∨R)

Γ, ϕ, ψ ` ∆

Γ, (ϕ ∧ ψ) ` ∆
(∧L)

Γ ` ϕ,∆ Γ ` ψ,∆

Γ ` (ϕ ∧ ψ),∆
(∧R)

David Toman (et al.) Query Compilation How does it work? 11 / 24

Sequent Calculus (for NNF) and Interpolation

Identity Rules:

Γ, ϕ ` ϕ,∆ ; ϕ

Γ, ϕ,¬ϕ ` ∆ ; ⊥ Γ ` ϕ,¬ϕ,∆ ; >

Logical Rules:

Γ, ϕ ` ∆ ; α Γ, ψ ` ∆ ; β

Γ, (ϕ ∨ ψ) ` ∆ ; α ∨ β

Γ ` ϕ,ψ,∆ ; α

Γ ` (ϕ ∨ ψ),∆ ; α

Γ, ϕ, ψ ` ∆ ; α

Γ, (ϕ ∧ ψ) ` ∆ ; α

Γ ` ϕ,∆ ; α Γ ` ψ,∆ ; β

Γ ` (ϕ ∧ ψ),∆ ; α ∧ β

David Toman (et al.) Query Compilation How does it work? 12 / 24

LK and Theories

Σ ∪ Σ′ |= ϕ→ ϕ′ ⇐⇒ (
∧

Σ) ∧ (
∧

Σ)′ |= ϕ→ ϕ′

⇐⇒ |= (
∧

Σ)→ ((
∧

Σ)′ → (ϕ→ ϕ′))
⇐⇒ |= (

∧
Σ)→ (ϕ→ ((

∧
Σ)′ → ϕ′))

⇐⇒ (
∧

Σ) ∧ ϕ |= (
∧

Σ)′ → ϕ′)
⇐⇒ (

∧
Σ) ∧ ϕ |= (

∨
¬Σ)′ ∨ ϕ′

⇐⇒ Σ, ϕ ` (¬Σ′), ϕ′ (due to soundness/completeness)

Not convenient: needs both Σ and negated Σ′!

⇒ we use ANALYTIC TABLEAU: a refutation variant of LK to show

Σ,Σ′, ϕ,¬ϕ′ ` ⊥ a.k.a. is inconsistent

⇒ need to tag left (L)/right(R) formulae to simulate
sequent sides (for interpolation)!

David Toman (et al.) Query Compilation How does it work? 13 / 24

LK and Theories

Σ ∪ Σ′ |= ϕ→ ϕ′ ⇐⇒ (
∧

Σ) ∧ (
∧

Σ)′ |= ϕ→ ϕ′

⇐⇒ |= (
∧

Σ)→ ((
∧

Σ)′ → (ϕ→ ϕ′))
⇐⇒ |= (

∧
Σ)→ (ϕ→ ((

∧
Σ)′ → ϕ′))

⇐⇒ (
∧

Σ) ∧ ϕ |= (
∧

Σ)′ → ϕ′)
⇐⇒ (

∧
Σ) ∧ ϕ |= (

∨
¬Σ)′ ∨ ϕ′

⇐⇒ Σ, ϕ ` (¬Σ′), ϕ′ (due to soundness/completeness)

Not convenient: needs both Σ and negated Σ′!

⇒ we use ANALYTIC TABLEAU: a refutation variant of LK to show

Σ,Σ′, ϕ,¬ϕ′ ` ⊥ a.k.a. is inconsistent

⇒ need to tag left (L)/right(R) formulae to simulate
sequent sides (for interpolation)!

David Toman (et al.) Query Compilation How does it work? 13 / 24

LK and Theories

Σ ∪ Σ′ |= ϕ→ ϕ′ ⇐⇒ (
∧

Σ) ∧ (
∧

Σ)′ |= ϕ→ ϕ′

⇐⇒ |= (
∧

Σ)→ ((
∧

Σ)′ → (ϕ→ ϕ′))
⇐⇒ |= (

∧
Σ)→ (ϕ→ ((

∧
Σ)′ → ϕ′))

⇐⇒ (
∧

Σ) ∧ ϕ |= (
∧

Σ)′ → ϕ′)
⇐⇒ (

∧
Σ) ∧ ϕ |= (

∨
¬Σ)′ ∨ ϕ′

⇐⇒ Σ, ϕ ` (¬Σ′), ϕ′ (due to soundness/completeness)

Not convenient: needs both Σ and negated Σ′!

⇒ we use ANALYTIC TABLEAU: a refutation variant of LK to show

Σ,Σ′, ϕ,¬ϕ′ ` ⊥ a.k.a. is inconsistent

⇒ need to tag left (L)/right(R) formulae to simulate
sequent sides (for interpolation)!

David Toman (et al.) Query Compilation How does it work? 13 / 24

LK and Theories

Σ ∪ Σ′ |= ϕ→ ϕ′ ⇐⇒ (
∧

Σ) ∧ (
∧

Σ)′ |= ϕ→ ϕ′

⇐⇒ |= (
∧

Σ)→ ((
∧

Σ)′ → (ϕ→ ϕ′))
⇐⇒ |= (

∧
Σ)→ (ϕ→ ((

∧
Σ)′ → ϕ′))

⇐⇒ (
∧

Σ) ∧ ϕ |= (
∧

Σ)′ → ϕ′)
⇐⇒ (

∧
Σ) ∧ ϕ |= (

∨
¬Σ)′ ∨ ϕ′

⇐⇒ Σ, ϕ ` (¬Σ′), ϕ′ (due to soundness/completeness)

Not convenient: needs both Σ and negated Σ′!

⇒ we use ANALYTIC TABLEAU: a refutation variant of LK to show

Σ,Σ′, ϕ,¬ϕ′ ` ⊥ a.k.a. is inconsistent

⇒ need to tag left (L)/right(R) formulae to simulate
sequent sides (for interpolation)!

David Toman (et al.) Query Compilation How does it work? 13 / 24

Tableau and Interpolant Extraction (by example)
an interpolant S int−→ψ; invariant (

∧
SL)→ ψ and ψ → (¬

∧
SR)

where SL and SR are the left/right subsets of S;

tableau rules (sample):

LL clash S ∪ {PL,¬PL} int−→⊥ (similar for “RR”: >)

LR clash S ∪ {PL,¬PR} int−→P , where P ∈ SA

RL clash S ∪ {¬PL,PR} int−→¬P , where P ∈ SA

L-conjunction
S ∪ {αL, βL} int−→ δ

S ∪ {(α ∧ β)L} int−→ δ

R-Disjunction
S ∪ {αR} int−→ δα S ∪ {βR} int−→ δβ

S ∪ {(α ∨ β)R} int−→ δα ∧ δβ

etc. (see [Fitting] for details)

David Toman (et al.) Query Compilation How does it work? 14 / 24

Tableau and Interpolant Extraction (by example)
an interpolant S int−→ψ; invariant (

∧
SL)→ ψ and ψ → (¬

∧
SR)

where SL and SR are the left/right subsets of S;

tableau rules (sample):

LL clash S ∪ {PL,¬PL} int−→⊥ (similar for “RR”: >)

LR clash S ∪ {PL,¬PR} int−→P , where P ∈ SA

RL clash S ∪ {¬PL,PR} int−→¬P , where P ∈ SA

L-conjunction
S ∪ {αL, βL} int−→ δ

S ∪ {(α ∧ β)L} int−→ δ

R-Disjunction
S ∪ {αR} int−→ δα S ∪ {βR} int−→ δβ

S ∪ {(α ∨ β)R} int−→ δα ∧ δβ

etc. (see [Fitting] for details)

David Toman (et al.) Query Compilation How does it work? 14 / 24

Tableau and Interpolant Extraction (by example)
an interpolant S int−→ψ; invariant (

∧
SL)→ ψ and ψ → (¬

∧
SR)

where SL and SR are the left/right subsets of S;

tableau rules (sample):

LL clash S ∪ {PL,¬PL} int−→⊥ (similar for “RR”: >)

LR clash S ∪ {PL,¬PR} int−→P , where P ∈ SA

RL clash S ∪ {¬PL,PR} int−→¬P , where P ∈ SA

L-conjunction
S ∪ {αL, βL} int−→ δ

S ∪ {(α ∧ β)L} int−→ δ

R-Disjunction
S ∪ {αR} int−→ δα S ∪ {βR} int−→ δβ

S ∪ {(α ∨ β)R} int−→ δα ∧ δβ

etc. (see [Fitting] for details)

David Toman (et al.) Query Compilation How does it work? 14 / 24

Tableau and Interpolant Extraction (by example)
an interpolant S int−→ψ; invariant (

∧
SL)→ ψ and ψ → (¬

∧
SR)

where SL and SR are the left/right subsets of S;

tableau rules (sample):

LL clash S ∪ {PL,¬PL} int−→⊥ (similar for “RR”: >)

LR clash S ∪ {PL,¬PR} int−→P , where P ∈ SA

RL clash S ∪ {¬PL,PR} int−→¬P , where P ∈ SA

L-conjunction
S ∪ {αL, βL} int−→ δ

S ∪ {(α ∧ β)L} int−→ δ

R-Disjunction
S ∪ {αR} int−→ δα S ∪ {βR} int−→ δβ

S ∪ {(α ∨ β)R} int−→ δα ∧ δβ

etc. (see [Fitting] for details)

David Toman (et al.) Query Compilation How does it work? 14 / 24

First-order Variables and Equality
Quantifier rules

1 inference rules with Ground constants/terms

Quantifier Rules:

Γ, ϕ(t/x) ` ∆

Γ, (∀x .ϕ) ` ∆
(∀L)

Γ ` ϕ(y/x),∆

Γ ` (∀x .ϕ),∆
(∀R)

2 unification tableau and Skolemization (refutation systems)

Equality

1 High-school Axioms (immediate implementation)

` x = x
x = y ∧ ϕ ` ϕ(y/x)

2 Superposition rules (efficient implementation)

David Toman (et al.) Query Compilation How does it work? 15 / 24

First-order Variables and Equality
Quantifier rules

1 inference rules with Ground constants/terms

Quantifier Rules:

Γ, ϕ(t/x) ` ∆

Γ, (∀x .ϕ) ` ∆
(∀L)

Γ ` ϕ(y/x),∆

Γ ` (∀x .ϕ),∆
(∀R)

2 unification tableau and Skolemization (refutation systems)

Equality

1 High-school Axioms (immediate implementation)

` x = x
x = y ∧ ϕ ` ϕ(y/x)

2 Superposition rules (efficient implementation)

David Toman (et al.) Query Compilation How does it work? 15 / 24

Issues with TABLEAU

Dealing with the subformula property of Tableau
⇒ analytic tableau explores formulas structurally
⇒ (to large degree) the structure of interpolant

depends on where access paths are present in queries/constraints.

IDEA #3:

Separate general constraints from physical rules in the formulation of
the definability question (and the subsequent interpolant extraction):

ΣL ∪ ΣR ∪ ΣLR |= ϕL → ϕR where ΣLR = {∀x̄ .PL ↔ P ↔ PR | P ∈ SA}

Factoring logical reasoning from plan enumeration
⇒ backtracking tableau to get alternative plans: too slow, too few plans

IDEA #4:
Define conditional tableau exploration (using general constraints)

and separate it from plan generation (using physical rules)

David Toman (et al.) Query Compilation How does it work? 16 / 24

Issues with TABLEAU

Dealing with the subformula property of Tableau
⇒ analytic tableau explores formulas structurally
⇒ (to large degree) the structure of interpolant

depends on where access paths are present in queries/constraints.

IDEA #3:

Separate general constraints from physical rules in the formulation of
the definability question (and the subsequent interpolant extraction):

ΣL ∪ ΣR ∪ ΣLR |= ϕL → ϕR where ΣLR = {∀x̄ .PL ↔ P ↔ PR | P ∈ SA}

Factoring logical reasoning from plan enumeration
⇒ backtracking tableau to get alternative plans: too slow, too few plans

IDEA #4:
Define conditional tableau exploration (using general constraints)

and separate it from plan generation (using physical rules)

David Toman (et al.) Query Compilation How does it work? 16 / 24

Conditional Formulæ and Tableau
Conditional Formulæ

ϕ[C] where C is a set of (ground) atoms over SP

ϕ only exists if all atoms in C are “used” in a plan tableau.

Absorbed Range-restricted Formulæ: ANF

Q ::= R(x̄) | ⊥ | Q ∧Q | Q ∨Q | ∀x̄ .R(x̄)→ Q,

. . . and all ∃’s are Skolemized.

Conditional Tableau Rules for ANF

S ∪ {ϕ[C], ψ[C]}
(ϕ ∧ ψ)[C] ∈ S

(conj)
S ∪ {ϕ[C]} S ∪ {ψ[C]}

(ϕ ∨ ψ)[C] ∈ S
(disj)

S ∪ {(ϕ[̄t/x̄])[C ∪ D]}
{R(̄t)[C], (∀x̄ .R(x̄)→ ϕ)[D]} ⊆ S

(abs)
S ∪ {R(̄t)[R(̄t)]}

S
R(x̄) ∈ SA (phys)

David Toman (et al.) Query Compilation How does it work? 17 / 24

Conditional Tableau and Interpolation

Conditional Tableau for (Q,Σ,SA)

Proof trees (T L,T R): T L for ΣL ∪ {QL(ā)} over {PL | P ∈ SA}
T R for ΣR ∪ {QR(ā)→ ⊥} over {PR | P ∈ SA}

Closing Set(s)

We call a set C of literals over SA a closing set for T if, for every branch
1 there is an atom R(̄t)[D] such that D ∪ {¬R(̄t)} ⊆ C.
2 there is ⊥[D] such that D ⊆ C.

⇒ there are many different minimal closing sets for T .

Observation

For an arbitrary closing set C, the interpolant for T L(T R) is ⊥(>).

David Toman (et al.) Query Compilation How does it work? 18 / 24

Conditional Tableau and Interpolation: dirty secrets

Binding patterns
⇒ needs additional physical atoms that provide bindings
⇒ must appear in the tableau “on the correct side”
⇒ added to closing sets “soundly”

Functionality (for duplicates)
⇒ needs additional physical atoms

that functionally determine quantified variables
⇒ must appear in the tableau “on the correct side”
⇒ added to closing sets “soundly”

David Toman (et al.) Query Compilation How does it work? 19 / 24

Conditional Tableau and Interpolation: dirty secrets

Binding patterns
⇒ needs additional physical atoms that provide bindings
⇒ must appear in the tableau “on the correct side”
⇒ added to closing sets “soundly”

Functionality (for duplicates)
⇒ needs additional physical atoms

that functionally determine quantified variables
⇒ must appear in the tableau “on the correct side”
⇒ added to closing sets “soundly”

David Toman (et al.) Query Compilation How does it work? 19 / 24

Plan Enumeration

Physical Tableau T P for a Plan P

P : LP RP

:P (̄t) : {{¬PL(̄t)}} {{PR (̄t)}}
P1 ∧ P2 : LP1 ∪ LP2 {S1 ∪ S2 | S1 ∈ RP1 ,S2 ∈ RP2}
P1 ∨ P2 : {S1 ∪ S2 | S1 ∈ LP1 ,S2 ∈ LP2} RP1 ∪ RP2

¬P1 : {{LL(̄t) | LR (̄t) ∈ S} | S ∈ RP1} {{LR (̄t) | LL(̄t) ∈ S} | S ∈ LP1}
∃x .P1 : LP1[t/x] RP1[t/x]

Observation

For a range-restricted formula P over SA there is an analytic tableau tree T P

that uses only formulæ in ΣLR such that:
1 Open branches of T P correspond to sets of literals C ∈ LP (left branch) or

C ∈ RP (right branch); and
2 The interpolant extracted from the closed tableau T P [T L,T R], the closure

of (T L,T R) by (the branches of) T P , is logically equivalent to P.

David Toman (et al.) Query Compilation How does it work? 20 / 24

Plan Enumeration

Physical Tableau T P for a Plan P

P : LP RP

:P (̄t) : {{¬PL(̄t)}} {{PR (̄t)}}
P1 ∧ P2 : LP1 ∪ LP2 {S1 ∪ S2 | S1 ∈ RP1 ,S2 ∈ RP2}
P1 ∨ P2 : {S1 ∪ S2 | S1 ∈ LP1 ,S2 ∈ LP2} RP1 ∪ RP2

¬P1 : {{LL(̄t) | LR (̄t) ∈ S} | S ∈ RP1} {{LR (̄t) | LL(̄t) ∈ S} | S ∈ LP1}
∃x .P1 : LP1[t/x] RP1[t/x]

(PL → P)

¬PL P

(P → PR)

¬P PR

T L × T R interpolant: P
...

...

Observation

For a range-restricted formula P over SA there is an analytic tableau tree T P

that uses only formulæ in ΣLR such that:
1 Open branches of T P correspond to sets of literals C ∈ LP (left branch) or

C ∈ RP (right branch); and
2 The interpolant extracted from the closed tableau T P [T L,T R], the closure

of (T L,T R) by (the branches of) T P , is logically equivalent to P.

David Toman (et al.) Query Compilation How does it work? 20 / 24

Plan Enumeration

Physical Tableau T P for a Plan P

P : LP RP

:P (̄t) : {{¬PL(̄t)}} {{PR (̄t)}}
P1 ∧ P2 : LP1 ∪ LP2 {S1 ∪ S2 | S1 ∈ RP1 ,S2 ∈ RP2}
P1 ∨ P2 : {S1 ∪ S2 | S1 ∈ LP1 ,S2 ∈ LP2} RP1 ∪ RP2

¬P1 : {{LL(̄t) | LR (̄t) ∈ S} | S ∈ RP1} {{LR (̄t) | LL(̄t) ∈ S} | S ∈ LP1}
∃x .P1 : LP1[t/x] RP1[t/x]

(PL → P)

¬PL P

(P → PR)

¬P PR

T L × T R interpolant: P
...

...

Observation

For a range-restricted formula P over SA there is an analytic tableau tree T P

that uses only formulæ in ΣLR such that:
1 Open branches of T P correspond to sets of literals C ∈ LP (left branch) or

C ∈ RP (right branch); and
2 The interpolant extracted from the closed tableau T P [T L,T R], the closure

of (T L,T R) by (the branches of) T P , is logically equivalent to P.

David Toman (et al.) Query Compilation How does it work? 20 / 24

Plan Enumeration

Physical Tableau T P for a Plan P

P : LP RP

:P (̄t) : {{¬PL(̄t)}} {{PR (̄t)}}
P1 ∧ P2 : LP1 ∪ LP2 {S1 ∪ S2 | S1 ∈ RP1 ,S2 ∈ RP2}
P1 ∨ P2 : {S1 ∪ S2 | S1 ∈ LP1 ,S2 ∈ LP2} RP1 ∪ RP2

¬P1 : {{LL(̄t) | LR (̄t) ∈ S} | S ∈ RP1} {{LR (̄t) | LL(̄t) ∈ S} | S ∈ LP1}
∃x .P1 : LP1[t/x] RP1[t/x]

Observation

For a range-restricted formula P over SA there is an analytic tableau tree T P

that uses only formulæ in ΣLR such that:
1 Open branches of T P correspond to sets of literals C ∈ LP (left branch) or

C ∈ RP (right branch); and
2 The interpolant extracted from the closed tableau T P [T L,T R], the closure

of (T L,T R) by (the branches of) T P , is logically equivalent to P.

David Toman (et al.) Query Compilation How does it work? 20 / 24

Logical&Physical Combined, Controlling the Search

Basic Strategy

1 build (T L,T R) for (Q,Σ,SA) to a certain depth,
2 build T P and test if each element in LP(RP) closes T L(T R).

if so, T P [T L,T R] is closed tableau yielding an interpolant equivalent to P;
(. . . otherwise extend depth in step 1 and repeat.)

NOTE: in step 2 we can “test” many Ps (plan enumeration), but
how do we know which ones to try? while building these bottom-up?

Controlling the Search

only use the (phys) rule in T L(T R) for R(̄t) that appears in T R(T L),
only consider fragments that help closing (T L,T R)

⇒ this is determined using the minimal closing sets for (T L,T R).

. . . combine with A∗ search (among Ps) with respect to a cost model.

David Toman (et al.) Query Compilation How does it work? 21 / 24

Postprocessing: Duplicate Elimination Elimination

IDEA:
Separate the projection operation (∃x̄ .) to

a duplicate preserving projection (∃) and
an explicit (idempotent) duplicate elimination operator ({·}).

Use the following rewrites to eliminate/minimize the use of {·}:

Q[{R(x1, . . . , xk)}]↔Q[R(x1, . . . , xk)]

Q[{Q1 ∧Q2}]↔Q[{Q1} ∧ {Q2}]
Q[{¬Q1}]↔Q[¬Q1]

Q[¬{Q1}]↔Q[¬Q1]

Q[{Q1 ∨Q2}]↔Q[{Q1} ∨ {Q2}] if Σ ∪ {Q[]} |= Q1 ∧Q2 → ⊥
Q[{∃x .Q1}]↔Q[∃x .{Q1}] if

Σ ∪ {Q[] ∧ (Q1)[y1/x] ∧ (Q1)[y2/x} |= y1 ≈ y2

. . . reasoning abstracted: a DL CFD∀−nc (a PTIME fragment)

David Toman (et al.) Query Compilation How does it work? 22 / 24

Postprocessing: Duplicate Elimination Elimination

IDEA:
Separate the projection operation (∃x̄ .) to

a duplicate preserving projection (∃) and
an explicit (idempotent) duplicate elimination operator ({·}).

Use the following rewrites to eliminate/minimize the use of {·}:

Q[{R(x1, . . . , xk)}]↔Q[R(x1, . . . , xk)]

Q[{Q1 ∧Q2}]↔Q[{Q1} ∧ {Q2}]
Q[{¬Q1}]↔Q[¬Q1]

Q[¬{Q1}]↔Q[¬Q1]

Q[{Q1 ∨Q2}]↔Q[{Q1} ∨ {Q2}] if Σ ∪ {Q[]} |= Q1 ∧Q2 → ⊥
Q[{∃x .Q1}]↔Q[∃x .{Q1}] if

Σ ∪ {Q[] ∧ (Q1)[y1/x] ∧ (Q1)[y2/x} |= y1 ≈ y2

. . . reasoning abstracted: a DL CFD∀−nc (a PTIME fragment)

David Toman (et al.) Query Compilation How does it work? 22 / 24

Postprocessing: Duplicate Elimination Elimination

IDEA:
Separate the projection operation (∃x̄ .) to

a duplicate preserving projection (∃) and
an explicit (idempotent) duplicate elimination operator ({·}).

Use the following rewrites to eliminate/minimize the use of {·}:

Q[{R(x1, . . . , xk)}]↔Q[R(x1, . . . , xk)]

Q[{Q1 ∧Q2}]↔Q[{Q1} ∧ {Q2}]
Q[{¬Q1}]↔Q[¬Q1]

Q[¬{Q1}]↔Q[¬Q1]

Q[{Q1 ∨Q2}]↔Q[{Q1} ∨ {Q2}] if Σ ∪ {Q[]} |= Q1 ∧Q2 → ⊥
Q[{∃x .Q1}]↔Q[∃x .{Q1}] if

Σ ∪ {Q[] ∧ (Q1)[y1/x] ∧ (Q1)[y2/x} |= y1 ≈ y2

. . . reasoning abstracted: a DL CFD∀−nc (a PTIME fragment)

David Toman (et al.) Query Compilation How does it work? 22 / 24

Summary

Take Home

While in theory interpolation essentially solves the query rewriting over FO
schemas/views problem, the devil is (as usual) in the details.

[Borgida, de Bruijn, Franconi, Seylan, Straccia, Toman, Weddell: On Finding
Query Rewritings under Expressive Constraints. SEBD 2010: 426-437

. . . but an (almost) working system only this year.

1 FO (DLFDE) tableau based interpolation algorithm
⇒ enumeration of plans factored from of tableau reasoning
⇒ extra-logical binding patterns and cost model

2 Post processing (using CFDInc approximation)
⇒ duplicate elimination elimination
⇒ cut insertion

3 Run time
⇒ library of common data/legacy structures+schema constraints
⇒ finger data structures to simulate merge joins et al.

David Toman (et al.) Query Compilation Summary 23 / 24

Research Directions and Open Issues

1 Dealing with ordered data? (merge-joins etc.: we have a partial solution)

2 Decidable schema languages (decidable interpolation problem)?

3 More powerful schema languages (inductive types, etc.)?

4 Beyond FO Queries/Views (e.g., count/sum aggregates)?

5 Coding extra-logical bits (e.g., binding patterns, postprocessing, etc.)
in the schema itself?

6 Standard Designs (a plan can always be found as in SQL)?

7 Explanation(s) of non-definability?

8 Fine(r)-grained updates?

9 . . .

. . . and, as always, performance, performance, performance!

David Toman (et al.) Query Compilation Summary 24 / 24

