
Module 10: Query Evaluation
Spring 2022

Cheriton School of Computer Science

CS 348: Intro to Database Management

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 1 / 49

Reading Assignments and References

To be read during the Week of May 2–6:0.

I Section 2.6 of Chapter 2 of course textbook.1

I Chapter 15 of course textbook.

I Sections 16.1 through 16.4 of Chapter 16 of course textbook.

1Silberschatz, Korth and Sudarshan, Database Systems Concepts, 7th edition
(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 2 / 49

Outline

Unit 1: Overview

Unit 2: Relational Algebra

Unit 3: Query Optimization

Unit 4: Cost Estimation

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 3 / 49

The Two-Tier Architecture

Also called the client/server architecture.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 4 / 49

The Two-Tier Architecture (cont’d)

Application:
I User interaction: query input, presentation of results.
I Application-specific tasks.

Database Server:
I DDL evaluation.
I DML compilation: selection of a query plan for a query.
I DML execution.
I Concurrency control.
I Buffer management: rollback and failure recovery.

File System:
I Storage and retrieval of unstructured data.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 5 / 49

Query Evaluation

Steps in evaluating a query Q:

1. Parsing, view expansion, and type and authorization checking of Q.

2. Translation of Q to a formulation EQ in the relational algebra.

3. Optimization of EQ .
⇒ generates an efficient query plan PQ from EQ

⇒ uses statistical metadata about the database instance

4. Execution of query plan PQ .
⇒ uses access methods to access stored relations
⇒ uses physical relational operators to combine relations

Considerations:
I How relations are stored, that is, physically represented.
I Choice of physical relational operators to answer to complex queries.
I How intermediate results are managed.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 6 / 49

Outline

Unit 1: Overview

Unit 2: Relational Algebra

Unit 3: Query Optimization

Unit 4: Cost Estimation

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 7 / 49

Relational Algebra: Overview

Idea

Define a relational algebra (RA) consisting of a set of operations on the universe U of
finite relations over an underlying universe of values D of a database instance DB.

(U ;R0, . . . ,Rk ,×, σ, π,∪,−,elim, c1, c2, . . .)

Constants:

Ri relation name (one for each relation name in a signature ρ)

ci constant (one for each constant in D)

Unary operators:

σ selection (removes rows)

π duplicate preserving projection (removes columns)

elim duplicate elimination
Binary operators:

× cross product
∪ multiset union
− multiset difference

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 8 / 49

Relational Algebra: Syntax

Definition

Given a database signature ρ = (R1/k1, . . . ,Rn/kn) and a set of constants {c1, c2, . . .},
a relational algebra (RA) query is an expression E given as follows:

E ::= Ri

| cj

| σ#i=#j (E1)

| π#i1,...,#im (E1)

| elim E1

| E1 × E2

| E1 ∪ E2

| E1 − E2

We write Eval(E ,DB) to denote the table computed by evaluating the RA query E , and
Cnum(E) to denote its arity.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 9 / 49

Relational Algebra: Semantics

I The semantics of Eval(E ,DB) is given by appeal to the range restricted relational
calculus with multiset semantics defined in Module 4, in particular, we write

Answers(Q,DB)

to denote the answers to RC query Q over DB.

I We also assume the following, where arity n and RA subquery Ei will be clear from
context:

1. Si is a table with arity Cnum(Ei) and extension Eval(Ei ,DB), and
2. x̄ is short for variables x1, . . . , xn.

relation name (for Ri/n ∈ ρ)

Eval(Ri ,DB) = Answers({(x̄) | Ri (x̄)},DB),where Cnum(Ri) = n.

constant

Eval(c) = Answers({(x) | x = c},DB),where Cnum(Ri) = 1.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 10 / 49

Relational Algebra: Semantics (cont’d)

selection

Eval(σ#i=#j (E1),DB) = Answers({(x̄) | S1(x̄) ∧ (xi = xj)},DB),

where Cnum(σ#i=#j (E1)) = Cnum(E1).

projection

Eval(π#i1,...,#im (E1),DB) = Answers({(xi1 , . . . , xim) | ∃xim+1 , . . . , xin .S1(x̄)},DB),

where Cnum(π#i1,...,#im (E1)) = m and (i1, . . . , in) is a permutation of (1, . . . , n).

duplicate elimination

Eval(elim E1),DB) = Answers({(x̄) | {S1(x̄)}},DB),

where Cnum(elim E1) = Cnum(E1).

cross product

Eval(E1 × E2,DB) = Answers({(x̄ , ȳ) | S1(x̄) ∧ S2(ȳ)},DB),

where Cnum(E1 × E2) = Cnum(E1) + Cnum(E2).

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 11 / 49

Relational Algebra: Semantics (cont’d)

multiset union

Eval(E1 ∪ E2,DB) = Answers({(x̄) | S1(x̄) ∨ S2(x̄)},DB),

where Cnum(E1 ∪ E2) = Cnum(E1).

multiset difference

Eval(E1 − E2,DB) = Answers({(x̄) | S1(x̄) ∧ ¬S2(x̄)},DB),

where Cnum(E1 − E2) = Cnum(E1).

multiset difference (an alternative semantics)

Eval(E1 − E2,DB) = Answers({(x̄) | S1(x̄) ∧ ¬(S1(x̄) ∧ {S2(x̄)})},DB),

where Cnum(E1 − E2) = Cnum(E1).

NOTE: Multiset difference with the alternative semantics can be used when translating
subqueries in SQL conditions.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 12 / 49

Relational Algebra: Examples

(signature) ρ = (
ACCOUNT/(anum, type, balance, bank, bnum),
BANK/(name, address))

(data) DB = (STR] Z, ≈,

ACCOUNT =

anum type balance bank bnum cnt

1234 CHK $1000 TD 1 1
1235 SAV $20000 TD 2 1
1236 CHK $2500 CIBC 1 1
1237 CHK $2500 Royal 5 1
2000 BUS $10000 Royal 5 1
2001 BUS $10000 TD 3 1

,

BANK =

name address cnt

TD TD Centre 1
CIBC CIBC Tower 1

)

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 13 / 49

Relational Algebra: Examples (cont’d)

relation name

Example: All account information.

Eval(ACCOUNT,DB) =

anum type balance bank bnum cnt

1234 CHK $1000 TD 1 1
1235 SAV $20000 TD 2 1
1236 CHK $2500 CIBC 1 1
1237 CHK $2500 Royal 5 1
2000 BUS $10000 Royal 5 1
2001 BUS $10000 TD 3 1

constant

Example: $10000.

Eval($10000,DB) =
cnt

$10000 1

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 14 / 49

Relational Algebra: Examples (cont’d)

cross product

Example: Every pair of accounts and banks.

Eval(ACCOUNT× BANK,DB)

=

anum type balance bank bnum name address cnt

1234 CHK $1000 TD 1 TD TD Centre 1
1234 CHK $1000 TD 1 CIBC CIBC Tower 1
1235 SAV $20000 TD 2 TD TD Centre 1
1235 SAV $20000 TD 2 CIBC CIBC Tower 1
1236 CHK $2500 CIBC 1 TD TD Centre 1
1236 CHK $2500 CIBC 1 CIBC CIBC Tower 1
1237 CHK $2500 Royal 5 TD TD Centre 1
1237 CHK $2500 Royal 5 CIBC CIBC Tower 1
2000 BUS $10000 Royal 5 TD TD Centre 1
2000 BUS $10000 Royal 5 CIBC CIBC Tower 1
2001 BUS $10000 TD 3 TD TD Centre 1
2001 BUS $10000 TD 3 CIBC CIBC Tower 1

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 15 / 49

Relational Algebra: Examples (cont’d)

selection

Example: All account information, including bank addresses.

Eval(σ#4=#6(ACCOUNT× BANK),DB)

=

anum type balance bank bnum name address cnt

1234 CHK $1000 TD 1 TD TD Centre 1
1235 SAV $20000 TD 2 TD TD Centre 1
1236 CHK $2500 CIBC 1 CIBC CIBC Tower 1
2001 BUS $10000 TD 3 TD TD Centre 1

Example: All account information for accounts with a $10000 balance.

Eval(σ#3=#6(ACCOUNT× $10000),DB)

=

anum type balance bank bnum cnt

2000 BUS $10000 Royal 5 $10000 1
2001 BUS $10000 TD 3 $10000 1

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 16 / 49

Relational Algebra: Examples (cont’d)

duplicate preserving projection

Example: The type and balance of all accounts.

Eval(π#2,#3(ACCOUNT),DB) =

type balance cnt

CHK $1000 1
SAV $20000 1
CHK $2500 2
BUS $10000 2

duplicate elimination

Example: All account types.

Eval(elim π#2(ACCOUNT),DB) =

type cnt

CHK 1
SAV 1
BUS 1

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 17 / 49

Relational Algebra: Examples (cont’d)

multiset union

Example: The type and balance of all checking and savings accounts.

Eval(σ#1=#3(π#2,#3(ACCOUNT)× CHK) ∪ σ#1=#3(π#2,#3(ACCOUNT)× SAV),DB)

=

type balance cnt

CHK $1000 CHK 1
SAV $20000 SAV 1
CHK $2500 CHK 2

multiset difference

Example: Banks that do not have addresses.

Eval((elim π#4(ACCOUNT))− π#1(BANK),DB) =
bank cnt

Royal 1

Exercise: Express this with only one use of elim at the top level.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 18 / 49

Expressiveness

Range restricted RC queries with multiset semantics have at least the expressiveness
of RA queries. For the other direction, we have the following.

Theorem (Codd)

For every domain independent RC query there is an equivalent RA expression. Thus,
RA is a relationally complete query language.

An outline of translating range restricted RC queries to RA queries:
RCmap(Ri (x1, . . . , xk)) = Ri

RCmap(ϕ ∧ xi = xj) = σVmap(xi)=Vmap(xj)(RCmap(ϕ))

RCmap(xi = cj) = cj

RCmap(∃xi .ϕ) = πVmap(Fv(ϕ)−{xi})(RCmap(ϕ))

RCmap(ϕ1 ∧ ϕ2) = RCmap(ϕ1)× RCmap(ϕ2)

RCmap(ϕ1 ∨ ϕ2) = RCmap(ϕ1) ∪ RCmap(ϕ2)

RCmap(ϕ1 ∧ ¬ϕ2) = RCmap(ϕ1)− RCmap(ϕ2)

1. Must ensure Fv(Q1) ∩ Fv(Q2) = ∅ for ∧ case, and . . . ;

2. Must define Vmap, an appropriate mapping of variables to column positions; and

3. Need to add a top-level elim and projection to the RA expression.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 19 / 49

Relational Algebra: Implementation

The multiset semantics of RA enables implementations of its operators that mostly
avoids the need to store intermediate results.

Idea

An implementation for an RA operator provides a cursor OPEN/FETCH/CLOSE
interface.

In particular, any implementation of an RA operator:

1. implements the cursor interface to produce answers, and

2. uses the same interface to get answers from its children.

Providing at least one physical implementation for this protocol for each operator
enables evaluating RA queries.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 20 / 49

Relational Algebra: Implementation (cont’d)

Example: An implementation of selection in an object-oriented language could be as
follows.

// select_{#i=#j}(Child)
OPERATOR child;
int i,j;

public:
OPERATOR selection(OPERATOR c, int i0, int j0)

{ child = c; i = i0; j = j0; };
void open() { child.open(); };
tuple fetch() { tuple t = child.fetch();

if (t==NULL || t.attr(i) = t.attr(j))
return t;

return this.fetch();
};

void close() { child.close(); }

This implementation is fully pipelined since it requires a constant space overhead.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 21 / 49

Relational Algebra: Implementation (cont’d)

A fully pipelined implementation exists for most of the other operators as well.

constant
first fetch returns the constant; next fetch fails

cross product
simple nested loops algorithm

duplicate preserving projection
eliminate unwanted attributes from each tuple

multiset union
simple concatenation

multiset difference
nested loops algorithm that checks for a tuple in the inner loop

WARNING: The multiset difference implementation only works with the alternative
semantics.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 22 / 49

Relational Algebra: Implementation (cont’d)

relation name
a simple file scan of the primary index† for the relation

duplication elimination
remember tuples that have been returned

Exercise: Consider how an implementation of multiset difference with the original
semantics might work. Is full pipelining possible?

†An artifact of standard physical design; see following.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 23 / 49

Relational Algebra: Implementation (cont’d)

The implementation just sketched will work, but plans will be inefficient.

Efficiency can be improved in a number of ways.

1. Use concrete (usually disk based) data structures for efficient searching, e.g.,
choosing a Btree for the primary index (more on this following).

2. Use better algorithms to implement the operators based on SORTING or
HASHING.

3. Rewrite the RA expression to an equivalent expression enabling a more efficient
implementation (topic of next section):
⇒ remove unnecessary operations such as duplicate elimination
⇒ apply “always good” transformations, heuristics that commonly work
⇒ perform cost-based join order selection
⇒ introduce STORE operations using memory to factor computation of

common subexpressions

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 24 / 49

Relation Names and Indexing

Standard Physical Design

A standard physical design for a relational schema defines the following for each
relation name R:

1. a primary index for R materializing its extension as a concrete data structure, and

2. zero or more secondary indices for R materializing projections of the primary
index for R as concrete data structures.

A materialization of a relation adds an additional record identifier (RID) attribute to the
relation.

Secondary indices usually include the RID attribute of the primary index in their
projection of R.

We add an index scan operation to RA: σϕ(<index>), where ϕ is a condition
supplying search values for the underlying data structure.

Assuming k = Cnum(<index>) and ϕ is the condition “#i = c”, an index scan is
equivalent to

π#1,...,#k (σ#i = #k+1(<index>× c)).

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 25 / 49

Relation Names and Indexing (cont’d)

Example: Assume relation name PROF/(pnum,lname,dept) has the following
physical design:

1. a Btree primary index on pnum called PROF-PRIMARY (see next slide), and

2. a Btree secondary index on lname called PROF-SECONDARY (see slide following
next slide).

A visualization of the indices as relations is as follows:
PROF-PRIMARY
RID-P pnum lname dept

@1.1 10 Davis CS
@1.2 14 Smith C&O
@2.1 17 Taylor CS
...

...
...

...

PROF-SECONDARY
RID-S lname RID-P

@12.1 Ashton @5.1
@12.2 Davis @1.1
@12.3 Dawson @2.3
...

...
...

Example (cont’d): The last name and department of professor number 14:
π#3,#4(σ#2=14(PROF-PRIMARY))

Example (cont’d): The last names of all professors:
elim π#2(PROF-SECONDARY)

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 26 / 49

Relation Names and Primary Indices

Example (cont’d): Btree index PROF-PRIMARY on pnum:

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 27 / 49

Relation Names and Secondary Indices

Example (cont’d): Btree index PROF-SECONDARY on lname:

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 28 / 49

Outline

Unit 1: Overview

Unit 2: Relational Algebra

Unit 3: Query Optimization

Unit 4: Cost Estimation

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 29 / 49

Query Optimization

I There can be thousands of possible query plans for a given query that differ by
orders of magnitude in their performance:

1. alternative plans that derive from equivalences in RA; and
2. alternative plans that choose different implementations of RA operations.

I How is the best plan found?

1. review basic “always good” transformations; and
2. cost-based join order selection in next unit.

I Finding an optimal plan is computationally not feasible; an optimizer looks for
reasonable query plans.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 30 / 49

Query Optimization: General Approach

I Generate all physical plans equivalent to the query.

I Choose the plan having the lowest cost.

Relational Algebray
Generate Physical Plans ←→ Determine Costy xy

Physical Algebra Cost Info

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 31 / 49

. . . all physical plans equivalent to the query?

I Cannot be done in general:

⇒ undecidable if a query is (un-)satisfiable (equivalent to an empty plan)

I Very expensive for even conjunctive queries:

⇒ selecting the best join order

I In practice:

1. consider only plans of a certain form (restrictions on the search space); and
2. focus on eliminating really bad query plans.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 32 / 49

. . . the plan having the lowest cost?

I How do we determine which plan is the best one?

⇒ not possible to run the plan to find out

Instead, estimate the cost based on statistical metadata collected by the DBMS on
database instances.

I The next unit reviews a simple cost model based on disk I/O, and assumes:

uniformity all possible values of an attribute are equally likely to appear in a
relation; and

independence the likelihood that an attribute has a particular value (in a tuple)
does not depend on values of other attributes.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 33 / 49

Outline

Unit 1: Overview

Unit 2: Relational Algebra

Unit 3: Query Optimization

Unit 4: Cost Estimation

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 34 / 49

A Simple Cost Model

I For a materialized relation R with an attribute A we keep:

|R| the cardinality of R (the number of tuples in R)

b(R) the blocking factor for index R

min(R,A) the minimum value for A in R

max(R,A) the maximum value for A in R

distinct(R,A) the number of distinct values of A

I Based on these values, we try to estimate the cost of physical plans.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 35 / 49

Cost of Retrieval

Example: Consider the following case:

I R has the signature:

MARK/(studnum,course,assignnum,mark).

I E is the query:

π#1,#4(σ#2=#7(σ#1=#6(σ#4>#5(MARK× 90)× 100)× PHYS))

I The query is obtained by a translation of the following SQL query.

select studnum, mark from MARK
where course = ’PHYS’ and studnum = 100 and mark > 90

Note: the result of the query can be a multiset.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 36 / 49

Cost of Retrieval (cont’d)

I The physical design for MARK:
1. a Btree primary index on course:

MARK-PINDEX/(RID-P,studnum,course,assignnum,mark)

2. a Btree secondary index on studnum:
MARK-SINDEX/(RID-S,studnum,RID-P)

I The following statistical metadata:
1. |MARK| = 10000

2. b(MARK-PINDEX) = 50

3. distinct(MARK,studnum) = 500 (number of different students)

4. distinct(MARK,course) = 100 (number of different courses)

5. distinct(MARK,mark) = 100 (number of different marks)

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 37 / 49

Strategy 1: Use Primary Index

Query plan:

π#2,#5(σ#2=#7(σ#5>#6(σ#3=’PHYS’(MARK-PINDEX)× 90)× 100))

Cost in number of block reads:

I Assuming a uniform distribution of tuples over the courses, there will be about
|MARK|/100 = 100 tuples with course = PHYS.

I Searching the MARK-PINDEX Btree has a cost of 2, and retrieving the 100
matching tuples adds a cost of 100/b(MARK-PINDEX) data blocks.†

I The total cost is therefore 4 block reads.

†Selection of N tuples from relation R using a clustered primary index
has a cost of 2 + N/b(R).

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 38 / 49

Strategy 2: Use Secondary Index

Query plan:
π#5,#8(σ#6=#10(σ#8>#9(

(σ#2=100(MARK-SINDEX)×σ#1=#3`(MARK-PINDEX))× 90)× PHYS))

I NOTE: Part in red expresses a nested index join: “#3`” refers to column 3 of the
`eft argument of the nested cross product operator “×”.

Cost in number of block reads:

I Assuming a uniform distribution of tuples over student numbers, there will be
about |MARK|/500 = 20 tuples for each student.

I Searching the MARK-SINDEX Btree has a cost of 2. Since this is not a clustered
index, we will make the pessimistic assumption that each matching record in the
MARK-PINDEX Btree is on a separate data block, i.e., 20 blocks will need to be
read.†

I The total cost is therefore 22 block reads.

† Selection of N tuples from relation R using an unclustered secondary index
has a cost of 2 + N.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 39 / 49

Strategy 3: Scan the Primary Index

Query plan:

π#2,#5(σ#2=#8(σ#5>#7(σ#3=#6(MARK-PINDEX× PHYS)× 90)× 100))

Cost in number of block reads:

I There are 10,000/50 = 200 MARK-PINDEX Btree data pages.†

I The total cost is therefore 200 block reads.

† Selection of N tuples from relation R by an exhaustive scan of
its primary index has a cost of |R|/b(R).

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 40 / 49

Cost of other Relational Operations

Costs of physical operations in block reads and writes:

I selection
cost(σϕ(E)) = (1 + εϕ) cost(E).

I nested loop join (R is the outer relation):

cost(R × S) = cost(R) + (|R|/b) cost(S)

I nested index join (R is the outer relation, S is the inner relation, and Btree has
depth dS):

cost(R × σϕ(S)) = cost(R) + dS |R|

I sort-merge join:

cost(R 1ϕ S) = cost(sort(R)) + cost(sort(S))

where
cost(sort(E)) = cost(E) + (|E |/b) log(|E |/b).

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 41 / 49

Size Estimation

Cost estimation requires an estimate of the size of results of operations.

Use selectivity estimates, defined, for a condition σϕ(R), as:

sel(σϕ(R)) =
|σϕ(R)|
|R|

An optimizer will estimate selectivity using simple rules based on its statistics:

sel(σA=c(R)) ≈ 1
distinct(R,A)

sel(σA≤c(R)) ≈ c −min(R,A)

max(R,A)−min(R,A)

sel(σA≥c(R)) ≈ max(R,A)− c
max(R,A)−min(R,A)

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 42 / 49

Size Estimation (cont.)

For joins:

I general join (where ϕ is an equality on column with attribute name A of R and
column with attribute name B of S):

|R 1ϕ S| ≈ |R| |S|
distinct(S,B)

or as

|R 1ϕ S| ≈ |S| |R|
distinct(R,A)

I foreign key join (e.g., ACCOUNT and BANK where ϕ is “bank=name”):

|R 1ϕ S| = |R| |S||S| = |R|

Many joins are foreign key joins, like this one.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 43 / 49

More Advanced Statistics

We have presented a very simple model for cost estimation.

Much more complex models are used in practice:

I histograms to approximate non-uniform distributions;

I correlations between attributes;

I uniqueness (keys) and containment (inclusions);

I sampling methods;

I etc.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 44 / 49

“Always good” Transformations

I Push selections:
σϕ(E1 1θ E2) = σϕ(E1) 1θ E2

for ϕ involving columns of E1 only (and vice versa).

I Push projections:
πV (R 1θ S) = πV (πV1 (R) 1θ πV2 (S))

where V1 is the set of all columns of R involved in θ and V (similarly for V2).

I Replace products by joins:

σϕ(R × S) = R 1ϕ S

These rewrites also reduce the space of plans to search.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 45 / 49

Example

I Assume the following.

1. There are |S| = 1000 students,

2. enrolled in |C| = 500 classes.

3. The enrollment table is |E | = 5000,

4. and, on average, each student is registered for five courses.

I Then:
cost(σname=′Smith′(S 1 (E 1 C)))

greatly exceeds
cost(σname=′Smith′(S) 1 (E 1 C)).

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 46 / 49

Join Order Selection

I Joins are associative R 1 S 1 T 1 U can be equivalently expressed as

1. ((R 1 S) 1 T) 1 U

2. (R 1 S) 1 (T 1 U)

3. R 1 (S 1 (T 1 U))

⇒ try to minimize the intermediate result(s).

I Moreover, we need to decide which of the subexpressions is evaluated first.

⇒ e.g., cost of nested loop join is not symmetric.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 47 / 49

Example

Consider choosing one of the following two join orders:

1. σname=′Smith′(S) 1 (E 1 C)

This order evaluates E 1 C, which has one tuple for each course registration (by
any student) ∼ 5000 tuples.

2. (σname=′Smith′(S) 1 E) 1 C

This join order produces an intermediate relation which has one tuple for each
course registration by a student named Smith.

If there are only a few Smith’s among the 1,000 students (say there are 10), this
relation will contain about 50 tuples.

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 48 / 49

Summary

Relational algebra is the basis for efficient implementation of SQL.

I Provides a connection between conceptual and physical level;

I Expresses query execution in (easily) manageable pieces;

I Allows the use of efficient algorithms/data structures

I Provides a mechanism for query optimization based on logical transformations
(including simplifications based on integrity constraints, etc.)

Performance of database operations depends on the way queries and updates are
executed against a particular physical database design.

Understanding the basics of query evaluation is necessary to good physical design
decisions.

Performance also depends a great deal on transaction management (next module)

(Cheriton School of Computer Science) Query Evaluation CS 348: Intro to Database Management 49 / 49

