
Noname manuscript No.
(will be inserted by the editor)

Using Feature-Based Description Logics to avoid Duplicate Elimination
in Object-Relational Query Languages

David Toman · Grant Weddell

Received: date / Accepted: date

Abstract A sound inference procedure is presented for re-
moving operations that eliminate duplicates in queries for-
mulated in a bag-algebra. The procedure is shown complete
for positive queries over finite databases, and operates by ap-
peal to logical consequence problems for feature-based de-
scription logics in which a TBox embeds an object-relational
schema. For unions of conjunctive queries in which an em-
bedded schema excludes cover constraints, the procedure
runs in PTIME, and in EXPTIME otherwise.

1 Introduction

Query plans for queries in SQL are usefully abstracted as
expressions in a bag-algebra, and are usually required to
compute answers that are sets of tuples. Consequently, such
plans may ultimately require operations that perform tuple
duplicate elimination (TDE) in query answers. Such oper-
ations often constitute a considerable performance penalty,
e.g., by inducing a temporary store and sorting of interme-
diate results that would otherwise be avoided by pipelining
which often suffices for the remaining operations. In this pa-
per, we show how dialects of the FunDL family of feature-
based description logics (DLs) [9] can be usefully employed
in rewrite rules that reduce the scope or eliminate the oc-
currence of TDE operations for a bag-algebra over object-
relational data sources, thus controlling and possibly elimi-
nating the need for unbounded store and for sorting in query
evaluation.

We focus on two FunDL dialects with respective EXP-
TIME and PTIME complexity for their logical consequence

D. Toman · G. Weddell
Cheriton School of Computer Science, University of Waterloo
200 University Ave. W., Waterloo, ON N2L3G1, Canada
Tel.: +1(519)888-4567
E-mail: {david,gweddell}@uwaterloo.ca

STRING

PERSON

name

//

DEPT

name

oo

head

oo

STUDENT

8@

gpa

//

PROF

^f

dept

//

CHAIR

KS

��
reports

TAKES

student

OO

class //

mark

��

CLASS

dept

OO

inst

//

room

��
timeoo

numooINT

Fig. 1 A UNIV OBJECT-RELATIONAL SCHEMA.

problems: partial-DLFDE and partial-CFDnc. In common
with all FunDL dialects, these logics were designed for cap-
turing and integrating data sources that include a variety of
common equality and tuple generating dependencies. For
example, either logic is capable of embedding in a so-called
TBox the object-relational schema illustrated in Figure 1,
presumably the metadata for a hypothetical university data
source. Here: (1) single arrows are attributes, realized as
features in partial-DLFDE and partial-CFDnc (denoting
partial unary functions), and (2) underlined attributes and
double arrows indicate primary keys and inheritance respec-
tively, and are embedded with so-called path functional de-

2 David Toman, Grant Weddell

pendencies (PFDs), a concept constructor common to all
member FunDL dialects that generalizes the notions of pri-
mary keys, uniqueness constraints and functional dependen-
cies ubiquitous in object-relational schemata.

Figure 1 itself can be viewed as a purely relational schema
with SQL tables. For example, consider the following SQL
data definition for STUDENT and TAKES:

create table STUDENT (
name STRING not null,
gpa INT not null,
primary key (name),
foreign key (name)
references PERSON (name));

create table TAKES (
class-dept-name STRING not null,
class-num INT not null,
student-name STRING not null,
mark INT not null,
primary key (class-dept-name,
class-num, student-name),

constraint student
foreign key (student-name)
references STUDENT (name),

constraint class
foreign key (class-dept-name, class-num)
references CLASS (dept-name, num));

Here, table columns correspond directly to attributes in Fig-
ure 1 that are integer or string valued, and indirectly to the
remaining attributes in the figure according to primary key
declarations. Indeed, this correspondence is sufficiently tight-
knit that any need to manually provide, for example, so-
called mapping rules in ontology based data access OBDA
[2,10], is rendered mute [11].

To illustrate the utility of our results, consider the fol-
lowing queries over the UNIV schema expressed in terms of
SQL/OQL-style syntax:

Example 1 “Find the names of students taking some course
taught at the same time as some other course numbered p1
with an instructor in a department named p2”:

(v1) select distinct s.name as n
from STUDENT s, TAKES t, CLASS c
where s = t.student and c.time = t.class.time
and c.inst .dept .name = :p1 and c.num = :p2

(v2) select s.name as n
from STUDENT s, TAKES t, CLASS c
where s = t.student and c.time = t.class.time
and c.inst .dept .name = :p1 and c.num = :p2

Note that p1 and p2 are parameters to the queries, and ob-
serve that the distinct keyword is absent in the second
version. 2

Example 2 “Find the names of all students and professors”:
(v1) (select s.name as n from STUDENT s)

union (select d.name as n from DEPT d)

(v1) (select s.name as n from STUDENT s)
union all (select d.name as n from DEPT d)

Observe that the duplicate preserving union all opera-
tion in the second version replaces the TDE union operation
in the first version. 2

Our results will enable rewrite rules to infer that the sec-
ond version of each query in the two examples must produce
the same result as the first version. Indeed, all queries map
in a straightforward way to formulations in our bag-algebra
called QL, and the QL formulations of the second versions
are absent of QL’s TDE operation.

The remainder of the paper is organized as follows. The
necessary background and definitions are given next in Sec-
tion 2. Here, we review the FunDL dialects of DLs, and in-
troduce our bag-algebra,QL. In Section 3, we consider base
cases of TDE removal in QL that apply for CQs (conjunc-
tive queries), and for UCQs (unions of CQs). Our main re-
sult is given in Section 4 which shows how the base cases
can be generalized to cover all positive queries in QL via a
notion of query contexts. In Section 5, we consider arbitrary
QL queries with negation, and the issue of completeness
for infinite interpretations. Summary comments and conclu-
sions then follow in Section 6.

2 Background and Definitions

We begin by reviewing two FunDL dialects of DLs. Recall
that such dialects are feature-based, that is, they substitute
the usual notion of roles in DLs that are interpreted as binary
predicates with features that are interpreted as partial func-
tions. Also recall that all such dialects include the PFD con-
cept constructor for capturing common varieties of equality
generating dependencies in object-relational schema.

We begin by introducing TBoxes and the logical conse-
quence problem for various FunDL dialects (see [9] for a
more thorough review).

Definition 1 (Feature-Based Dialects of DLs)
Let F and PC be sets of feature names and primitive concept
names, respectively. A partial path expression is defined
by the grammar “Pf ::= f.Pf | id” for f ∈ F. We define
derived concept descriptions by the grammar on the left-
hand-side of Figure 2. (The final production labelled PFD
introduces path functional dependency concepts that enable
capturing a variety of equality generating dependencies, see
below.) An inclusion dependency C is an expression of the
form C1 v C2. A terminology (TBox) T consists of a fi-
nite set of inclusion dependencies. A posed question Q is a
single inclusion dependency.

The semantics of expressions is defined with respect to a
structure I = (4, ·I), where4 is a domain of “objects” and
·I an interpretation function that fixes the interpretations of
primitive concepts A to be subsets of 4 and primitive fea-
tures f to be partial functions fI : 4 → 4. The interpre-
tation is extended to partial path expressions, idI = λx.x,

Using Feature-Based Description Logics to avoid Duplicate Elimination in Object-Relational Query Languages 3

SYNTAX: C ::= SEMANTICS: DEFN OF (·)I

A AI ⊆ 4 (primitive concept; A ∈ PC)
C1 u C2 CI

1 ∩ CI
2 (conjunction)

∀Pf .C {x | PfI(x) ∈ CI} (value restriction)
C1 t C2 CI

1 ∪ CI
2 (disjunction)

¬C 4− CI (negation)
> 4 (top)
⊥ ∅ (bottom)
(Pf1 = Pf2) {x | PfI1 (x) = PfI2 (x)} (same-as)

C : {Pf1, ...,Pfk} → Pf {x | ∀y ∈ (C u ∃Pf)I .
(
x ∈ (∃Pf)I (PFD)

∧
∧k

i=1(Pf
I
i (x) = PfIi (y))

⇒ PfI(x) = PfI(y)
)
}

Fig. 2 CONCEPT CONSTRUCTORS IN partial-DLFDE .

(f.Pf)I = PfI ◦fI , in the natural way, and to derived con-
cept descriptions C as defined in the centre column of Fig-
ure 2. Also, to improve readability, we omit mention of trail-
ing occurrences of id in partial path expressions.

A strict interpretation of undefined values is assumed,
which means that argument terms must be defined whenever
equality and set membership do hold. This implies the in-
terpretation of any value restriction ∀Pf .C will exclude any
object for which Pf is undefined. To denote all objects for
which Pf is defined we write ∃Pf as shorthand for ∀Pf .>.

An interpretation I satisfies an inclusion dependency
C1 v C2 ifCI1 ⊆ CI2 and is a model of T , written I |= T , if
it satisfies all inclusion dependencies in T . A logical conse-
quence problem is to determine if T |= Q holds for a given
T and Q, that is, if Q is satisfied in all models of T . 2

As defined, this logical consequence problem is undecidable
for a variety of reasons. Thus, all member dialects of the
FunDL family limit how concepts may be used in inclusion
dependencies and in posed questions. The following defines
a representative pair of dialects reviewed in [9] with respec-
tive complexity for their logical consequence problems in
EXPTIME and PTIME.

Definition 2 (partial-DLFDE and partial-CFDnc)
Inclusion dependencies and posed questions in both dialects
must adhere to the respective forms C v D and E v E,
where, for partial-DLFDE , concepts C,D andE are given
by the grammar:

C ::= A | C1 u C2 | C1 t C2 | ∀f.C | ¬C | >
D ::= C | D1 uD2 | D1 tD2 | ∀f.D
| C : {Pf1, ...,Pfk} → Pf

E ::= C | ⊥ | E1 u E2 | ¬E | ∀f.E | (Pf1 = Pf2);

and, for partial-CFDnc, by the grammar:

C ::= A | ∀f.C
D ::= C | ¬C | D1 uD2 | ∀f.D | C : {Pf1, ...,Pfk} → Pf

E ::= C | ⊥ | E1 u E2 | ∀f.E | (Pf1 = Pf2).

(attribute typing) PERSON v ∀name.STRING
(unary primary keys) PERSON v PERSON : {name} → id

(inheritance) STUDENT v PERSON
(binary primary keys) CLASS v CLASS : {dept, num} → id

(a) ATTRIBUTES, PRIMARY KEYS AND INHERITANCE.

(disjoint classes) PERSON v ¬DEPT
(disjoint attribute values) PERSON v DEPT : {name} → id

(views) ∀reports.CHAIR v PROF
(time/space interactions)

TAKES v TAKES : {student, class.room, class.time} → class

(cover) PERSON v STUDENT t PROF
(inapplicable attributes) DEPT v ¬∃gpa

(b) ADDITIONAL DATA DEPENDENCIES.

Fig. 3 PART OF A TUNIV TBOX EMBEDDING THE UNIV SCHEMA.

In addition, in both cases the PFD constructor must adhere
to a boundary condition, in particular, to have either of the
following two forms:

C : {Pf1, . . . ,Pf .Pfi, . . . ,Pfk} → Pf , and
C : {Pf1, . . . ,Pf .Pfi, . . . ,Pfk} → Pf .f ,

for some feature f . 2

The logics can also accommodate posed questions of the
form E v E : Pf1, . . . ,Pfk → Pf by converting then to
a subsumption between plain equational concepts [6]. To il-
lustrate how these dialects can be used to capture object-
relational schemata, again consider the UNIV data source
depicted in Figure 1. Figure 3 (a) is a list of representative
examples of the inclusion dependencies in a TBox that em-
beds UNIV, that is, for capturing attributes, primary keys and
inheritance. Note that an exhaustive list would include, for
example, thirteen additional inclusion dependencies to cap-
ture attribute typing alone. Figure 3 (b) is a list of additional
data dependencies beyond what is indicated by the UNIV
schema that would be satisfied by any UNIV database, ex-
pressing time/space dependencies via PFDs for example. In
this case, an exhaustive list would, for example, include sev-
enteen additional inclusion dependencies expressing disjoint-
ness between classes. Note that all qualify as partial-DLFDE
inclusion dependencies, and that all but the final two depen-
dencies in Figure 3 (b) qualify as partial-CFDnc inclusion
dependencies.

We now introduce the query language QL in which a
query denotes a function that, when applied to an interpre-
tation, obtains a bag of tuples. Here, tuples are semantic
artifacts that will correspond to finite valuations, a circum-
stance that suffices for capturing when rewrite rules overQL
should be viewed as correct.

Definition 3 (Query Language QL) Let F and PC be re-
spective sets of feature names and primitive concept names,
as with feature-based DLs, and let V be a set of variable

4 David Toman, Grant Weddell

SYNTAX: Q ::= SEMANTICS: DEFN OF [[Q]](I) †

A(x) {{x 7→ e} : 1 | e ∈ AI}

x1.Pf1 = x2.Pf2 {t : 1 | PfI1 (t(x1)) = PfI2 (t(x2))}

Q1 ∧Q2 {t : n1 · n2 |∧
i∈{1,2} t[Fv(Qi)] : ni ∈ [[Qi]](I)}

Q1 ∨Q2 {t : n1 + n2 |∧
i∈{1,2} t[Fv(Qi)] : ni ∈ [[Qi]](I)}

∪ {t : n | t[Fv(Q1)] : n ∈ [[Q1 ∧ ¬Q2]](I)}
∪ {t : n | t[Fv(Q2)] : n ∈ [[Q2 ∧ ¬Q1]](I)}

∃x.Q {t :
∑

t′:n∈St
n | St 6= ∅}

where St = {t′ : m | t′ : m ∈ [[Q]](I)
∧ t′[Fv(∃x.Q)] = t}

{Q} {t : 1 | t : n ∈ [[Q]](I)}

¬Q {t : 1 | ¬∃n s.t. t : n ∈ [[Q]](I)}

† where t denotes a partial valuation with domain Fv(Q).

Fig. 4 SYNTAX AND SEMANTICS OF QL.

names disjoint from F and PC. We define queries according
to the grammar on the left-hand-side of Figure 4 in which
non-logical parameters are given by unary predicates A in
PC, by path expressions Pfi over F, and by variables xi in V.
Without loss of generality, queries must also satisfy a single
use condition for variables, in particular, where no variable
is existentially quantified more than once. Also, to improve
readability for occurrences of equality in queries, we omit
mention of id in terms of the form “x. id”.

The semantics for queries is also defined with respect to
a struct I = (4, ·I), and is given on the right-hand-side of
Figure 4. Here, a bag semantics for a query Q is assumed in
which [[Q]](I), the function denoted byQ applied to I, com-
putes a possibly infinite set of pairs 〈t, n〉, written “t : n”,
in which tuple t is a finite partial valuation over Fv(Q), the
free variables of Q, to objects in4, and in which n denotes
a cardinal number.1 Also, it holds that t1 6= t2 whenever
{t1 : n1, t2 : n2} ⊆ [[Q]](I). In defining the semantics,
we write t[V] to denote the partial valuation obtained by re-
stricting the domain of t to the set V of variables.

A query Q is range restricted if it satisfies additional
syntactic conditions. First, for existential quantification and
disjunction, x ∈ Fv(Q) and Fv(Q2) = Fv(Q1) hold re-
spectively. And second, Q is among the queries defined by
a modification to the grammar on the left-hand-side of Fig-
ure 4 in which the productions for equality and for nega-
tion are replaced by the following respective range restricted
variants: Q ∧ x1.Pf1 = x2.Pf2 and Q1 ∧ ¬Q2, where
now also Fv(Q2) ⊆ Fv(Q1) must hold with negation, x1 ∈
Fv(Q) must hold with equality, and, if Pf2 6= id , x2 ∈
Fv(Q) must also hold with equality.

1 Thus, arithmetic operations on n denote cardinal arithmetic.

Finally, for a given TBox T , we writeQ1
T
=Q2 to denote

a rewrite rule, and say that the rule is correct when

[[Q1]](I) = [[Q2]](I)
holds for any structure I for which I |= T and n < ℵ0
whenever t : n ∈ [[Q1]](I). 2

Note that a TBox capturing an object-relational data source
will have a finite structure, as in the case of the above UNIV
schema, since databases that underlie the tables and classes
in these data sources will themselves be finite. Observe in
such cases that the semantics of range restricted QL also
qualifies as an operational semantics that aligns with the
relational algebra extended the usual way with bag seman-
tics. Indeed, query plans and bag-algebras mentioned in our
introductory comments naturally correspond to queries in
range restricted QL, and TDE operators to occurrences of
QL’s “{·}” construct.

Example 3 Consider the first version of the queries in Ex-
amples 1 and 2 above. Translating these queries into respec-
tive formulations inQL is straightforward, and would obtain
the following:

{∃s.∃t.∃c.(STUDENT(s) ∧ TAKES(t) ∧ CLASS(c)
∧ s.name = n
∧ s = t.student ∧ c.time = t.class.time
∧ c.inst .dept .name = p1 ∧ c.num = p2}, and

{(∃s.(STUDENT(s) ∧ s.name = n)
∨ (∃d.(DEPT(d) ∧ d.name = n)}.

Observe that n is the answer variable for both queries, and
also that we have followed our protocol of removing men-
tion of id in terms such as “n. id”. 2

Observe how both formulations are also range restricted, and
that the range restricted queries will qualify as query plans
in the context of a UNIV TBox. To reiterate our introduc-
tory comments, rewrite rules introduced below can elimi-
nate QL’s TDE operator “{·}” in these queries via logical
consequence problems for the UNIV TBox that includes the
dependencies listed in Figure 3. Indeed, doing so would ob-
tain the respective second versions of these queries in Ex-
amples 1 and 2.

3 Duplicate Elimination Removal: the Base Cases

In this section, we consider how QL’s TDE operator can
be moved within the scope of both existential quantifica-
tion and disjunction when occurring near the root of a query.
In preparation, we introduce an abstraction of positive QL
queries using concepts in the description logic DL as fol-
lows:

Definition 4 (Positive Queries as FunDL concepts)
Let Q be a positive QL query satisfying the single use con-
dition in which quantified variables have unique names. We

Using Feature-Based Description Logics to avoid Duplicate Elimination in Object-Relational Query Languages 5

define a derived FunDL concept EQ induced by Q accord-
ing to the following:

EA(x) = ∀fx.A,
Ex.Pf1=y.Pf2 = (fx.Pf1 = fy.Pf2),
EQ1∧Q2 = EQ1 u EQ2 ,
EQ1∨Q2

= EQ1
t EQ2

,
E∃x.Q = EQ, and
E{Q} = EQ,

where fx are distinct fresh features not appearing in T that
are associated with variables V. 2

Although features are interpreted as partial functions in both
partial-DLFDE and partial-CFDnc, the strict interpreta-
tion of equality together with the first two cases in the above
ensures that the fx features will be defined for all variables
of Q.

We use this abstraction primarily to reason about du-
plicate semantics of QL queries. However, to illustrate its
utility, it can also be shown to correctly abstract the query
emptiness problem (for positive QL queries):

Theorem 1 Let T be a TBox that represents a database
schema and Q a positive query. Then [[Q]](I) is empty in
every model I of T if and only if T |= EQ v ⊥.

Proof (by contradiction) Let I be a model of T such that
there is an object o ∈ EIQ. Then, by simultaneous induction
on the structure of Q and EQ we have
Case A(x): o ∈ (∀fx.A)I and thus fIx (o) (that must ex-

ist by the definition of value restrictions) qualifies as an
answer {x 7→ fIx (o)} : 1 ∈ [[Q]](I);

Case x.Pf1 = y.Pf2: o ∈ (fx.Pf1 = fy.Pf2)
I and thus

{x 7→ fIx (o), y 7→ fIy (o)} : 1 ∈ [[Q]](I);
Case Q1 ∧Q2: o ∈ (EQ1 u EQ2)

I and, by the definition
of u and the induction hypothesis we must have a par-
tial valuation t = {xi 7→ fIxi

(o) | xi ∈ Fv(Q1 ∧Q2)}
such that t[Fv(Q1)] : n1 ∈ [[Q1]](I) and t[Fv(Q2)] :
n2 ∈ [[Q2]](I) and t[Fv(Q1)] and t[Fv(Q2)] must agree
on the values of common variables due to the defini-
tion of EQ1∧Q2 with n1, n2 > 0. Hence t : n1 · n2 ∈
[[Q1 ∧Q2]](I);

Case Q1 ∨Q2: o ∈ (EQ1
tEQ2

)I . Hence, by the inductive
hypothesis, there must exist a tuple t = {xi 7→ fIxi

(o) |
xi ∈ Fv(Q1 ∨Q2)} such that t[Fv(Q1)] : n ∈ [[Q1]](I)
or t[Fv(Q2)] : n ∈ [[Q2]](I) for some n > 0. Thus
t : m ∈ [[Q1 ∨Q2]](I) for some m ≥ n.

Case ∃x.Q: o ∈ (E∃x.Q)
I = EIQ. By inductive hypothesis

we have at least one t : n ∈ [[Q]](I) where n > 0
and, by the definition of the semantics of ∃x.Q we have
t[Fv(∃x.Q)] : m ∈ [[∃x.Q]](I) for some m ≥ n.

Case {Q}: o ∈ EI{Q} = EIQ and thus there must be t : n ∈
[[Q]](I) with n > 0. Hence, t : 1 ∈ [[{Q}]](I).

In all cases we constructed at least one answer valuation
for the query in question starting from o ∈ EIQ, contradic-
tion with Q being empty. The reverse direction follows since

all cases above are “if and only if” cases in the following
sense: at the end of each case we extend the model I of T
that makes the query Q non-empty by an additional object
o such that o ∈ EIQ, and where interpretations of features
fIyi

(o) = wi for yi 7→ wi ∈ t and yi ∈ Fv(Q). It is easy to
check that this interpretation is still a model of T in which
EIQ is non-empty. 2

3.1 Conjunctive Queries and Projections

We now consider applying the above abstraction to manipu-
lating QL’s TDE operator, starting with CQs:

Theorem 2 Let T be TBox that represents a database schema
and Q a QL query of the form

Q1 ∧ {∃x.Q2}, (1)

where each Qi is a CQ. Then the following rewrite rule is
correct if and only if T |= EQ v EQ : Fv(Q)→ x:

Q1 ∧ {∃x.Q2}
T
= Q1 ∧ ∃x.{Q2}.

Proof Assume that T 6|= EQ v EQ : Fv(Q) → x. Then
there must be a model I of T and two objects o1, o2 ∈ 4
such that fIy (o1) = fIy (o2) for all y ∈ Fv(Q) and fIx (o1) 6=
fIx (o2). We construct partial valuations t12 = {yi 7→ fIyi

(o1) |
yi ∈ Fv(Q2)} t22 = {yi 7→ fIyi

(o2) | yi ∈ Fv(Q2)} t1 =
{yi 7→ fIyi

(o1) | yi ∈ Fv(Q1)} such that t1 : n ∈ [[Q1]](I)
and t12 : m1, t

2
2 : m2 ∈ [[Q2]](I) for n,m1,m2 > 0 as in

Theorem 1. Then t12 : 1, t22 : 1 ∈ [[{Q2}]](I) Then, however,
t12[Fv(Q2) − {x}] : 1 ∈ [[{∃x.Q2}]](I) while t12[Fv(Q2) −
{x}] : m ∈ [[∃x.{Q2}]](I) for m ≥ 2 as t12[Fv(Q2) −
{x}] = t22[Fv(Q2)−{x}]. HenceQ1∧{∃x.Q2} will have n
duplicate answers whileQ1∧∃x.{Q2} will have at least 2n
duplicate answers (constructed out of t1 and t12[Fv(Q2) −
{x}]).

For the other direction, if

[[Q1 ∧ {∃x.Q2}]](I) 6= [[Q1 ∧ ∃x.{Q2}]](I),
there must be t such that t : n ∈ [[Q1 ∧ {∃x.Q2}]](I) and t :
m ∈ [[Q1 ∧ ∃x.{Q2}]](I) with m 6= n (it is easy to see that
the answers to these two queries only differ in the number of
duplicates). For this to be possible, t[Fv(∃x.{Q2}) : m2 ∈
[[∃x.{Q2}]](I) for m2 ≥ 2 (while t[Fv({∃x.Q2}) : 1 ∈
[[{∃x.Q2}]](I) by the definition of the duplicate elimination
operator). Hence there must be at least two distinct values
v1, v2 binding to x in Q2 (extending t). We now extend I
with two new objects o1, o2 such that o1, o2 ∈ EIQ and where
interpretations of features fIx (o1) = v1, fIx (o2) = v2, and
fIyi

(o1) = fIyi
(o2) = wi for yi 7→ wi ∈ t and yi ∈ Fv(Q).

It is easy to check that this is a model of T that violates
EQ v EQ : Fv(Q)→ x. 2

As presented, the above rewrite rule has limited utility on
its own. (Theorem 2, however, is used in proving our main

6 David Toman, Grant Weddell

result in the next section.) This utility can be improved by
admitting a QL query of the form “true” (denoting a func-
tion returning {{} : 1}), by introducing the rewrite rule

Q
T
= (true ∧Q), (2)

and by introducing more general rewrite rules of the form
(for i > 0):

Q1 ∧ ∃x1. · · · .∃xi.{∃x.Q2}
T
= Q1 ∧ ∃x1. · · · .∃xi.∃x.{Q2}

(3)

when the condition

T |= EQ v EQ : Fv(Q) ∪ {x1, . . . , xi} → x

holds. These additional rules are straightforward corollaries
of Theorem 2. Altogether, this expanded set of rules can be
usefully applied to the first of our running example UNIV
queries:

Example 4 Consider the first QL query in Example 3. Ap-
plying the above rewrite rules (1), (2) and (3), would obtain
the following equivalent formulation:

∃s.∃t.∃c.{STUDENT(s) ∧ TAKES(t) ∧ CLASS(c)
∧ s.name = n
∧ s = t.student ∧ c.time = t.class.time
∧ c.inst .dept .name = p1 ∧ c.num = p2}.

To qualify as correct, the final application of one of the (3)
rules, for example, requires ensuring that

TUNIV |= EQ v EQ : {p1, p2, s, t} → c

holds, where EQ is the concept

(∀fs.STUDENT ∧ ∀ft.TAKES ∧ ∀fc.CLASS
∧ fs.name = fn
∧ fs = ft.student ∧ fc.time = ft.class.time
∧ fc.inst .dept .name = p1 ∧ fc.num = p2). 2

The rules presented so far derive from earlier work [7] in
which conjunctive queries were first mapped to a normal
form. In Section 4 that follows, we introduce what we call
query contexts to mitigate any need to “migrate” queries to
normal forms, to introduce additional operations in QL that
are syntactic sugar, or to introduce an unbounded number of
rewrite rules.

3.2 Unions of Conjunctive Queries

As with existential quantification (or projection),QL’s TDE
operator does not freely commute with disjunction. The fol-
lowing theorem provides a sufficient and, for range-restricted
queries, necessary condition in which such commuting con-
stitutes a correct rewriting:

Theorem 3 Let T be a TBox that represents a database
schema and consider a QL query of the form

Q ∧ {Q1 ∨Q2}. (4)

Then the following rewrite rule is correct if and only if T |=
EQ u EQ1

u EQ2
v ⊥.

Q ∧ {Q1 ∨Q2}
T
= Q ∧ ({Q1} ∨ {Q2}).

Proof Assume that T 6|= EQ u EQ1 u EQ2 v ⊥. Then
there must be an model I of T and an object o such that
o ∈ QI ∩ EIQ1

∩ EIQ2
. Then there must be t such that

t[Fv(Q)],m ∈ [[Q]](I),
t[Fv(Q1)], n1 ∈ [[Q1]](I), and
t[Fv(Q2)], n2 ∈ [[Q2]](I)

as in Theorem 1. Then, however

t[Fv(Q1) ∪ Fv(Q2)] : 1 ∈ [[{Q1 ∨Q2}]](I) and
t[Fv(Q1) ∪ Fv(Q2)] : 2 ∈ [[{Q1} ∨ {Q2}]](I)

by the definition ofQL and thus t : m ∈ [[Q ∧ {Q1 ∨Q2}]](I)
but t : 2m ∈ [[Q ∧ ({Q1} ∨ {Q2})]](I). Conversely, if there
is a t such that t[Fv(Q)],m ∈ [[Q]](I) and

t[Fv(Q1) ∪ Fv(Q2)] : 1 ∈ [[{Q1 ∨Q2}]](I) while
t[Fv(Q1) ∪ Fv(Q2)] : 2 ∈ [[{Q1} ∨ {Q2}]](I)

(this is the only possible case since, again, the two queries
can only differ in the numbers of duplicates), then for the
later to happen, t[Fv(Q1)] : 1 ∈ [[{Q1}]](I) and t[Fv(Q2)] :
1 ∈ [[{Q2}]](I) and thus t[Fv(Q1)] : n ∈ [[Q1]](I) and
t[Fv(Q2)] : m ∈ [[Q2]](I) for m,n > 0. We now extend the
model I of T by an object o such that o ∈ (EQ1

u EQ2
)I

and where interpretations of features fIyi
(o) = wi for yi 7→

wi ∈ t and yi ∈ Fv(Q). It is again easy to check that this is
a model of T that violates EQ1

u EQ2
v ⊥. 2

Note again that the utility of the theorem can be improved by
admitting “true” queries in QL and rewrite rule (2) above.

Example 5 Consider the second QL query in Example 3.
Applying the above rewrite rule (4) together with (2) would
obtain the following equivalent formulation:

{∃s.(STUDENT(s) ∧ s.name = n}
∨ {∃d.(DEPT(d) ∧ d.name = n}.

Again, to qualify as correct, the application of rule (4) re-
quires ensuring that TUNIV |= Etrue ∧EQ1

∧EQ2
v ⊥ holds,

where Etrue, EQ1
and EQ2

are the respective concepts >,

∀fs.STUDENT ∧ fs.name = fn, and
∀fd.DEPT ∧ fs.name = fn. 2

The rules we have introduced in Theorems 2 and 3 are es-
sentially all that is needed to exhaustively determine when
QL’s TDE operator can be eliminated in UCQs. An algo-
rithm to do this begins by first pushing duplicate elimina-
tion operators through the top-level disjunctions, and then
through existential quantifiers in the conjunctive subqueries.
This yields a PTIME algorithm in the size of Q since, in the
worst case, we need to use Theorem 3 for every pair of con-
junctive subqueries and then Theorem 2 for every existential
quantifier. Indeed, the rewriting rules do not change the size
of the query.

Using Feature-Based Description Logics to avoid Duplicate Elimination in Object-Relational Query Languages 7

4 Positive Queries and Query Contexts

We now consider general positive queries in QL. One ap-
proach would be to convert a given query to a UCQ first, and
then apply the algorithm outlined just above. However, the
conversion to an equivalent UCQ query can yield a reformu-
lation that is exponential in the size of the original query. In
this section, we present a much cleaner approach that avoids
this blowup. In particular, we introduce a notion of query
contexts that allows alternative formulations of queries in
QL in which rewrite rules can then refer to arbitrary sub-
queries via such query contexts.

Definition 5 (Query Contexts) A query context Q[·] is an
arbitrary query in QL with a single occurrence of a place-
holder “[·]” occurring as a subquery. For given query con-
textsQ1[·] andQ2[·] and a given queryQ, we writeQ1[Q2[·]]
(resp. Q1[Q]) to denote a query context (resp. query) in
which [·] has been substituted with Q2[·] (resp. Q).

Thus, an equivalent formulation of any queryQ contain-
ing a subquery Q′ in QL would be Q[Q′], where Q[·] is the
query context obtained from Q by replacing its subquery Q′

with a placeholder.
Let Q[·] be a query context with Q a positive query. We

defineCQ[·], a FunDL concept derived fromQ[·], and the set
of context variables Fv(Q[·]) of Q[·] as follows:

Context Q[·] Concept CQ[·] Context Vars Fv(Q[·])
[·] > ∅
Q[Q1 ∧ [·]] EQ1

u CQ[·] Fv(Q1) ∪ Fv(Q[·])
Q[[·] ∧Q1] EQ1 u CQ[·] Fv(Q1) ∪ Fv(Q[·])
Q[Q1 ∨ [·]] CQ[·] Fv(Q[·])
Q[[·] ∨Q1] CQ[·] Fv(Q[·])
Q[∃x.[·]] CQ[·] Fv(Q[·])
Q[{[·]}] CQ[·] Fv(Q[·])

2

With contexts, we can now reformulate and extend the rewrite
rules for manipulating the duplicate elimination operator as
follows:

Theorem 4 Let T be TBox that represents a database schema
and Q a positive query. Then the following rewrite rules are
correct:

(1) Q[{[{Q1}]}]
T
= Q[{[Q1]}]

(2) Q[{A(x)}] T
= Q[A(x)]

(3) Q[{x.Pf1 = y.Pf2}]
T
= Q[x.Pf1 = y.Pf2]

(4) Q[{Q1 ∧Q2}]
T
= Q[{Q1} ∧ {Q2}]

(5) Q[{Q1 ∨Q2}]
T
= Q[{Q1} ∨ {Q2}] iff (i)

(6) Q[{∃x.Q1}]
T
= Q[∃x.{Q1}] iff (ii)

where

(i) T |= CQ[·] u EQ1
u EQ2

v ⊥
(ii) T |=CQ[·] u EQ1 v

CQ[·] u EQ1 : Fv(∃x.Q1) ∪ Fv(Q[·])→ x.

Proof (1) is immediate from the definition of QL semantics
since nested duplicate elimination operators only determine
the number of duplicates of a particular answer, but do not
affect the existence of the answer itself. (2) and (3) are also
immediate since we only consider duplicate-free atoms. (4)
follows from the multiplicative nature of conjunction (and
the fact that 1 = 1 · 1). Finally, (5) and (6) follow from
Theorems 3 and 2, observing that the context Q[·] behaves
as a conjunction with other subqueries. 2

Example 6 Now consider both QL queries in Example 3.
Applying the above rewrite rules would obtain the following
equivalent formulations:

∃s.∃t.∃c.(STUDENT(s) ∧ TAKES(t) ∧ CLASS(c)
∧ s.name = n. id
∧ s. id = t.student ∧ c.time = t.class.time
∧ c.inst .dept .name = p1 ∧ c.num = p2), and

(∃s.(STUDENT(s) ∧ s.name = n. id)
∨ (∃d.(DEPT(d) ∧ d.name = n. id).

Observe that all occurrences of QL’s TDE operators have
been removed, and also that straightforward translations of
the second version of the queries in Examples 1 and 2 in our
introductory comments would obtain them. 2

5 Negation and Infinite Interpretations

In this section, we discuss various extensions of our results
for positive QL queries (for which the reasoning is com-
plete).

5.1 Negation

The only remaining query construct ofQL is negation. Here,
however, query emptiness becomes undecidable [1], even in
the absence of a database schema. We can still approximate
the interactions with duplicate elimination as follows:

Theorem 5 Let T be TBox that captures a database schema
and Q a QL query. Then the following rewrite rules are
correct:

(7) {¬Q} T= ¬Q
(8) ¬{Q} T= ¬Q

Proof Immediate from the definition of negation in QL. 2

To abstract queries with negations, we simply ignore the
negated part in the definitions of the concept abstraction of
both queries and contexts:

E¬Q = C¬[·] = > and Fv(¬[·]) = ∅.
With this arrangement, all results about the positive frag-
ment of QL are preserved.

8 David Toman, Grant Weddell

5.2 Incompleteness for Infinite Duplications

In Sections 3 and 4, we restrict the applicability of the rewrite
rules to cases in which the interpretations (i.e., database in-
stances) over which the queries are evaluated are finite. A
closer inspection of the proofs of Theorems 2 and 3 reveals
the following:

1. The rewrite rules are sound for all interpretations; and
2. Completeness is only hindered by the use of cardinal

arithmetic when dealing with infinite numbers of dupli-
cates of the same tuple.

For example, consider the following pair of queries:

Q(x) ∧ {B(x) ∨B(x)}, and

Q(x) ∧ ({B(x)} ∨ {B(x)}).
Observe that the queries do not satisfy the condition in The-
orem 3, but that, when {x 7→ 1} : ℵ0 ∈ [[Q]](I) and when
{x 7→ 1} : n ∈ [[B]](I) (for arbitrary n), we get

{x 7→ 1} : ℵ0
to be the answer to both of the above queries since cardinal
arithmetic obscures the difference between ℵ0 and 2 · ℵ0.
An example of a subquery Q with the above answer could
be ∃y.{B(x)} ∧ A(y), where A is a concept for which the
database schema enforces an infinite interpretation (e.g., via
functionality and disjointness assertions). A similar example
can be shown for the rule in Theorem 2.

Note that infinite interpretations per se are not an issue
here. Indeed, there are two ways of addressing these issues
that we believe merit future investigation:

1. Restrictions to QL that prevent creating infinitely many
duplicates of a single tuple in answers to queries; and

2. Refinement of arithmetic that accounts for infinite num-
bers of duplicates along the lines of ordinal arithmetic.

6 Conclusions

We have introduced QL, a bag-based query language oper-
ating over standard interpretations of feature-based DLs, and
have also introduced query rewrite rules to manipulate and
ultimately eliminate QL’s TDE operator, an operator that
performs expensive tuple duplicate elimination on query re-
sults. The rules are preconditioned by an object relational
schema captured as a DL TBox, and are sound and complete
for finite instances of the schema.

In contrast to the approaches commonly used in database
theory that are base on query subsumption, we have used a
direct approach since questions relating to subsumption of
conjunctive queries under duplicate semantic are still open
[3] and are known not to be decidable for UCQs [5].

Our approach is also directly applicable in the OBDA
setting as an additional final step in query reformulation to

SQL backends in which distinct keyword elimination and
replacing union with union all can constitute performance
critical rewrites [8].

Future work relates to enhancing the QL semantics to
a more fine-grained appreciation of infinite duplication of
answers in order to obtain completeness of the rewriting for
infinite instances, as well as extending the technique to other
query constructs, such as aggregation [4].

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases.
Addison-Wesley (1995)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi,
A., Rodriguez-Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The
MASTRO system for ontology-based data access. Semantic
Web 2(1), 43–53 (2011). DOI 10.3233/SW-2011-0029. URL
https://doi.org/10.3233/SW-2011-0029

3. Chaudhuri, S., Vardi, M.Y.: Optimization of real conjunctive
queries. In: ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS), pp. 59–70 (1993)

4. DeHaan, D., Toman, D., Weddell, G.: Rewriting Aggregate
Queries using Description Logics. In: Description Logics 2003,
pp. 103–112. CEUR-WS vol.81 (2003)

5. Ioannidis, Y.E., Ramakrishnan, R.: Containment of conjunctive
queries: Beyond relations as sets. ACM Trans. Database Syst.
19(3), 288–324 (1995)

6. Khizder, V., Toman, D., Weddell, G.E.: Adding ABoxes to a De-
scription Logic with Uniqueness Constraints via Path Agreements.
In: Proc. International Workshop on Description Logics DL2007,
pp. 339–346 (2007)

7. Khizder, V.L., Toman, D., Weddell, G.: Reasoning about Duplicate
Elimination with Description Logic. In: DOOD, pp. 1017–1032
(2000)

8. McIntyre, S., Borgida, A., Toman, D., Weddell, G.E.: On lim-
ited conjunctions and partial features in parameter-tractable fea-
ture logics. In: The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019., pp. 2995–3002 (2019)

9. McIntyre, S., Toman, D., Weddell, G.E.: FunDL - A family of
feature-based description logics, with applications in querying
structured data sources. In: Description Logic, Theory Combi-
nation, and All That - Essays Dedicated to Franz Baader on the
Occasion of His 60th Birthday, pp. 404–430 (2019)

10. Pinto, F.D., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A.,
Rosati, R., Ruzzi, M., Savo, D.F.: Optimizing query rewriting in
ontology-based data access. In: Joint 2013 EDBT/ICDT Confer-
ences, EDBT ’13 Proceedings, Genoa, Italy, March 18-22, 2013,
pp. 561–572 (2013)

11. St. Jacques, J., Toman, D., Weddell, G.E.: Object-relational
queries over CFDInc knowledge bases: OBDA for the SQL-
Literate. In: Proc. IJCAI, pp. 1258–1264 (2016)

