2.3 Basics from Logic 21

Propositional Logic

We begin with the propositional calculus. For this we assume an infinite set of proposi-
tional variables, typically denoted p, g, r, ..., possibly with subscripts. We also permit
the special propositional constants true and false. (Well-formed) propositional formulas
are constructed from the propositional variables and constants, using the unary connective
negation (—) and the binary connectives disjunction (V), conjunction (A\), implication (—),
and equivalence (<>). For example, p, (p A (—q)) and ((p V q) — p) are well-formed
propositional formulas. We generally omit parentheses if not needed for understanding a
formula.

A truth assignment for a set V of propositional variables is a function & : V —
{true, false}. The truth value ¢[&] of a propositional formula ¢ under truth assignment &
for the variables occurring in ¢ is defined by induction on the structure of ¢ in the natural
manner. For example,

e truel&] = true;

* if ¢ = p for some variable p, then ¢[£] = &(p);

o if o = (—) then p[&] = true iff Y [E] = false;

o (Y1 V Y)[E] = true iff at least one of r([£] = true or Y [E] = true.

If p[£] = true we say that ¢[£] is true and that ¢ is true under & (and similarly for false).

A formula ¢ is satisfiable if there is at least one truth assignment that makes it true,
and it is unsatisfiable otherwise. It is valid if each truth assignment for the variables in ¢
makes it true. The formula (p V ¢) is satisfiable but not valid; the formula (p A (—p)) is
unsatisfiable; and the formula (p Vv (—p)) is valid.

A formula ¢ logically implies formula y (or ¥ is a logical consequence of ¢), denoted
¢ = ¢ if for each truth assignment &, if @[£] is true, then ¥[£] is true. Formulas ¢ and ¢
are (logically) equivalent, denoted ¢ = ¥, if ¢ = and ¥ = ¢.

For example, (p A (p — q)) = g. Many equivalences for propositional formulas are
well known. For example,

(1 = @) =((—p1) Ve2); —(e1V @) = (=1 A=p2);
@1V Ap3= (@1 A@3) V(g2 A@3); @1 A= =@1 A (91 A —¢2);
(01 V (@2 V@3)) = (91 V @2) V @3).

Observe that the last equivalence permits us to view V as a polyadic connective. (The same
holds for A.)

A literal is a formula of the form p or —p (or true or false) for some propositional
variable p. A propositional formula is in conjunctive normal form (CNF) if it has the form
Y1 A -+ A Yy, where each formula v; is a disjunction of literals. Disjunctive normal form
(DNF) is defined analogously. It is known that if ¢ is a propositional formula, then there
is some formula ¥ equivalent to ¢ that is in CNF (respectively DNF). Note that if ¢ is in
CNF (or DNF), then a shortest equivalent formula ¢ in DNF (respectively CNF) may have
a length exponential in the length of ¢.

22 Theoretical Background

First-Order Logic

We now turn to first-order predicate calculus. We indicate the main intuitions and concepts
underlying first-order logic and describe the primary specializations typically made for
database theory. Precise definitions of needed portions of first-order logic are included in
Chapters 4 and 5.

First-order logic generalizes propositional logic in several ways. Intuitively, proposi-
tional variables are replaced by predicate symbols that range over n-ary relations over an
underlying set. Variables are used in first-order logic to range over elements of an abstract
set, called the universe of discourse. This is realized using the quantifiers 3 and V. In ad-
dition, function symbols are incorporated into the model. The most important definitions
used to formalize first-order logic are first-order language, interpretation, logical implica-
tion, and provability.

Each first-order language L includes a set of variables, the propositional connectives,
the quantifiers 3 and V, and punctuation symbols “)”, “(”, and “,”. The variation in first-
order languages stems from the symbols they include to represent constants, predicates,
and functions. More formally, a first-order language includes

(a) a (possibly empty) set of constant symbols;
(b) for each n > 0 a (possibly empty) set of n-ary predicate symbols;
(c) for each n > 1 a (possibly empty) set of n-ary function symbols.

In some cases, we also include
(d) the equality symbol ~, which serves as a binary predicate symbol,

and the propositional constants true and false. It is common to focus on languages that are
finite, except for the set of variables.
A familiar first-order language is the language Ly of the nonnegative integers, with

(a) constant symbol 0;
(b) binary predicate symbol <;

(c) binary function symbols +, x, and unary S (successor);

and the equality symbol.

Let L be a first-order language. Terms of L are built in the natural fashion from con-
stants, variables, and the function symbols. An atom is either true, false, or an expres-
sion of the form R(ty, ..., t,), where R is an n-ary predicate symbol and 7, ..., 1, are
terms. Atoms correspond to the propositional variables of propositional logic. If the equal-
ity symbol is included, then atoms include expressions of the form #; ~ f,. The family
of (well-formed predicate calculus) formulas over L is defined recursively starting with
atoms, using the Boolean connectives, and using the quantifiers as follows: If ¢ is a for-
mula and x a variable, then (3x¢) and (Vx¢) are formulas. As with the propositional case,
parentheses are omitted when understood from the context. In addition, Vv and A are viewed
as polyadic connectives. A term or formula is ground if it involves no variables.

Some examples of formulas in Ly are as follows:

2.3 Basics from Logic 23

V(0 <x), —(x=8(x)),
—Ix(Vy(y <x)), VyVzx =y xz— (y~S(0) Vv z~8§(0))).

(For some binary predicates and functions, we use infix notation.)

The notion of the scope of quantifiers and of free and bound occurrences of variables
in formulas is now defined using recursion on the structure. Each variable occurrence in an
atom is free. If ¢ is (Y1 V ¥), then an occurrence of variable x in ¢ is free if it is free as
an occurrence of ¥ or ¥»; and this is extended to the other propositional connectives. If ¢
is Ay, then an occurrence of variable x # y is free in ¢ if the corresponding occurrence is
free in 1. Each occurrence of y is bound in ¢. In addition, each occurrence of y in ¢ that is
free in v is said to be in the scope of Iy at the beginning of ¢. A sentence is a well-formed
formula that has no free variable occurrences.

Until now we have not given a meaning to the symbols of a first-order language and
thereby to first-order formulas. This is accomplished with the notion of interpretation,
which corresponds to the truth assignments of the propositional case. Each interpretation
is just one of the many possible ways to give meaning to a language.

An interpretation of a first-order language L is a 4-tuple Z = (U, C, P, F) where U
is a nonempty set of abstract elements called the universe (of discourse), and C, P, and F
give meanings to the sets of constant symbols, predicate symbols, and function symbols.
For example, C is a function from the constant symbols into U, and P maps each n-ary
predicate symbol p into an n-ary relation over U (i.e., a subset of U"). It is possible for
two distinct constant symbols to map to the same element of U.

When the equality symbol denoted =~ is included, the meaning associated with it
is restricted so that it enjoys properties usually associated with equality. Two equivalent
mechanisms for accomplishing this are described next.

Let Z be an interpretation for language L. As a notational shorthand, if ¢ is a constant
symbol in L, we use ¢’ to denote the element of the universe associated with ¢ by Z. This
is extended in the natural way to ground terms and atoms.

The usual interpretation for the language Ly is Zn, where the universe is N; 0 is
mapped to the number 0; < is mapped to the usual less than or equal relation; S is mapped
to successor; and + and x are mapped to addition and multiplication. In such cases, we
have, for example, [S(S(0) + 0) N~ 2.

As a second example related to logic programming, we mention the family of Her-
brand interpretations of Ln. Each of these shares the same universe and the same mappings
for the constant and function symbols. An assignment of a universe, and for the constant
and function symbols, is called a preinterpretation. In the Herbrand preinterpretation for
L, the universe, denoted Uy, is the set containing 0 and all terms that can be constructed
from this using the function symbols of the language. This is a little confusing because the
terms now play a dual role—as terms constructed from components of the language L, and
as elements of the universe Uy . The mapping C maps the constant symbol 0 to 0 (consid-
ered as an element of Uy,). Given aterm ¢ in U, the function F (S) maps ¢ to the term S(¢).
Given terms #; and #,, the function F(4) maps the pair (#1, #) to the term +(¢1, £2), and the
function F(x) is defined analogously.

The set of ground atoms of Ly (i.e., the set of atoms that do not contain variables)
is sometimes called the Herbrand base of Ln. There is a natural one-one correspondence

24 Theoretical Background

between interpretations of Ly that extend the Herbrand preinterpretation and subsets of
the Herbrand base of Ln. One Herbrand interpretation of particular interest is the one
that mimics the usual interpretation. In particular, this interpretation maps < to the set
(1, 0) | (1N, ™) € <)

We now turn to the notion of satisfaction of a formula by an interpretation. The
definition is recursive on the structure of formulas; as a result we need the notion of variable
assignment to accommodate variables occurring free in formulas. Let L be a language and
7 an interpretation of L with universe U. A variable assignment for formula ¢ is a partial
function u : variables of L — U whose domain includes all variables free in ¢. For terms ¢,
T+ denotes the meaning given to ¢ by Z, using s to interpret the free variables. In addition,
if w is a variable assignment, x is a variable, and u € U, then u[x/u] denotes the variable
assignment that is identical to p, except that it maps x to u. We write I |= ¢[u] to indicate
that 7 satisfies ¢ under w. This is defined recursively on the structure of formulas in the
natural fashion. To indicate the flavor of the definition, we note that Z |= p(#q, ..., t,)[u] if
(tlz’”, o2y € pTi T = ey if there is some u € U such that T = [u[x /u]]; and
I =Vxylu]if foreach u € U, I = ¥ [u[x/u]]. The Boolean connectives are interpreted
in the usual manner. If ¢ is a sentence, then no variable assignment needs to be specified.

For example, Iy = Vx3y(—(x &~ y) V x < y); InN = S(0) < 0; and

INEYYYVzx =y xz— (y=S0) Vv z~S§(0))[u]

iff (x) is 1 or a prime number.

An interpretation 7 is a model of a set @ of sentences if 7 satisfies each formula in ®.
The set @ is satisfiable if it has a model.

Logical implication and equivalence are now defined analogously to the propositional
case. Sentence ¢ logically implies sentence ¥/, denoted ¢ = v, if each interpretation that
satisfies ¢ also satisfies 1. There are many straightforward equivalences [e.g., —=(—¢) = ¢
and —Vx¢ = Jx—¢]. Logical implication is generalized to sets of sentences in the natural
manner.

It is known that logical implication, considered as a decision problem, is not recursive.
One of the fundamental results of mathematical logic is the development of effective
procedures for determining logical equivalence. These are based on the notion of proofs,
and they provide one way to show that logical implication is r.e. One style of proof,
attributed to Hilbert, identifies a family of inference rules and a family of axioms. An
example of an inference rule is modus ponens, which states that from formulas ¢ and
¢ — Y we may conclude . Examples of axioms are all tautologies of propositional logic
[e.g., =(¢ V ¥) < (—¢ A =) for all formulas ¢ and], and substitution (i.e., Vx¢o —
@y, where ¢ is an arbitrary term and ¢; denotes the formula obtained by simultaneously
replacing all occurrences of x free in ¢ by #). Given a family of inference rules and axioms,
a proof that set ® of sentences implies sentence ¢ is a finite sequence Vg, V1, ..., ¥n = @,
where for each i, either v; is an axiom, or a member of ®, or it follows from one or more
of the previous v;’s using an inference rule. In this case we write ® - ¢.

The soundness and completeness theorem of Godel shows that (using modus ponens
and a specific set of axioms) ® = ¢ iff ® - ¢. This important link between = and F
permits the transfer of results obtained in model theory, which focuses primarily on in-

2.3 Basics from Logic 25

terpretations and models, and proof theory, which focuses primarily on proofs. Notably,
a central issue in the study of relational database dependencies (see Part C) has been the
search for sound and complete proof systems for subsets of first-order logic that correspond
to natural families of constraints.

The model-theoretic and proof-theoretic perspectives lead to two equivalent ways of
incorporating equality into first-order languages. Under the model-theoretic approach, the
equality predicate ~ is given the meaning {(u, u) | u € U} (i.e., normal equality). Under
the proof-theoretic approach, a set of equality axioms E Q7 is constructed that express the
intended meaning of ~. For example, E Q} includes the sentences Vx, y, z(x X y A y &
z—> x~z)and Vx, y(x & y — (R(x) <> R(y)) for each unary predicate symbol R.

Another important result from mathematical logic is the compactness theorem, which
can be demonstrated using Godel’s soundness and completeness result. There are two
common ways of stating this. The first is that given a (possibly infinite) set of sentences
®, if ® |= ¢ then there is a finite ®’ C @ such that ®’ |= . The second is that if each finite
subset of @ is satisfiable, then @ is satisfiable.

Note that although the compactness theorem guarantees that the @ in the preceding
paragraph has a model, that model is not necessarily finite. Indeed, ® may only have
infinite models. It is of some solace that, among those infinite models, there is surely at least
one that is countable (i.e., whose elements can be enumerated: ay, ay, . . .). This technically
useful result is the Lowenheim-Skolem theorem.

To illustrate the compactness theorem, we show that there is no set W of sentences
defining the notion of connectedness in directed graphs. For this we use the language L
with two constant symbols, a and b, and one binary relation symbol R, which corresponds
to the edges of a directed graph. In addition, because we are working with general first-
order logic, both finite and infinite graphs may arise. Suppose now that W is a set of
sentences that states that a and b are connected (i.e., that there is a directed path from
atobin R). Let ¥ = {o; | i > 0}, where o; states “a and b are at least i edges apart from
each other.” For example, o3 might be expressed as

=R(a,b) A —=3x1(R(a, x1) A R(x1, b)).

It is clear that each finite subset of W U X is satisfiable. By the compactness theorem
(second statement), this implies that ¥ U X is satisfiable, so it has a model (say, 7). In Z,
there is no directed path between (the elements of the universe identified by) a and b, and
so Z = W. This is a contradiction.

Specializations to Database Theory

We close by mentioning the primary differences between the general field of mathematical
logic and the specializations made in the study of database theory. The most obvious
specialization is that database theory has not generally focused on the use of functions
on data values, and as a result it generally omits function symbols from the first-order
languages used. The two other fundamental specializations are the focus on finite models
and the special use of constant symbols.

An interpretation is finite if its universe of discourse is finite. Because most databases

26 Theoretical Background

are finite, most of database theory is focused exclusively on finite interpretations. This is
closely related to the field of finite model theory in mathematics.

The notion of logical implication for finite interpretations, usually denoted =gy, is
not equivalent to the usual logical implication =. This is most easily seen by considering
the compactness theorem. Let ® = {o; | i > 0}, where o; states that there are at least i
distinct elements in the universe of discourse. Then by compactness, ® (= false, but by the
definition of finite interpretation, ® =gy, false.

Another way to show that |= and }=gq, are distinct uses computability theory. It is
known that |= is r.e. but not recursive, and it is easily seen that =gj, is co-r.e. Thus if they
were equal, = would be recursive, a contradiction.

The final specialization of database theory concerns assumptions made about the uni-
verse of discourse and the use of constant symbols. Indeed, throughout most of this book
we use a fixed, countably infinite set of constants, denoted dom (for domain elements).
Furthermore, the focus is almost exclusively on finite Herbrand interpretations over dom.
In particular, for distinct constants ¢ and ¢/, all interpretations that are considered satisfy
—c R~ (.

Most proofs in database theory involving the first-order predicate calculus are based
on model theory, primarily because of the emphasis on finite models and because the link
between =g, and F does not hold. It is thus informative to identify a mechanism for
using traditional proof-theoretic techniques within the context of database theory. For this
discussion, consider a first-order language with set dom of constant symbols and predicate
symbols Ry, ..., R,. As will be seen in Chapter 3, a database instance is a finite Herbrand
interpretation I of this language. Following [Rei84], a family Xy of sentences is associated
with L. This family includes the axioms of equality (mentioned earlier) and

Atoms: R;(a) for each a in Rl.l.

Extension axioms: YVX(R;(X) <> (X ~a Vv ---V X X~ ap,)), where ay, . .., a, is a listing of
all elements of RI.I, and we are abusing notation by letting &~ range over vectors of
terms.

Unique Name axioms: —c =~ ¢’ for each distinct pair c, ¢’ of constants occurring in L.

Domain Closure axiom: Vx(x &~ c1 V ---V x & ¢,), where cy, ..., cy, is a listing of all
constants occurring in I.

A set of sentences obtained in this manner is termed an extended relational theory.

The first two sets of sentences of an extended relational theory express the specific
contents of the relations (predicate symbols) of I. Importantly, the Extension sentences en-
sure that for any (not necessarily Herbrand) interpretation 7 satisfying Xy, an n-tuple is in
R;7 iff it equals one of the n-tuples in RI.I. The Unique Name axiom ensures that no pair of
distinct constants is mapped to the same element in the universe of 7, and the Domain Clo-
sure axiom ensures that each element of the universe of 7 equals some constant occurring
in L. For all intents and purposes, then, any interpretation 7 that models Xj is isomorphic
to I, modulo condensing under equivalence classes induced by ~7 . Importantly, the fol-
lowing link with conventional logical implication now holds: For any set I" of sentences,
I =T iff 7 UT is satisfiable. The perspective obtained through this connection with clas-

2.3 Basics from Logic 27

sical logic is useful when attempting to extend the conventional relational model (e.g., to
incorporate so-called incomplete information, as discussed in Chapter 19).

The Extension axioms correspond to the intuition that a tuple & is in relation R only
if it is explicitly included in R by the database instance. A more general formulation of
this intuition is given by the closed world assumption (CWA) [Rei78]. In its most general
formulation, the CWA is an inference rule that is used in proof-theoretic contexts. Given
a set X of sentences describing a (possibly nonconventional) database instance, the CWA
states that one can infer a negated atom R(a) if ¥ I R(a) [i.e., if one cannot prove R(a)
from X using conventional first-order logic]. In the case where X is an extended relational
theory this gives no added information, but in other contexts (such as deductive databases)
it does. The CWA is related in spirit to the negation as failure rule of [Cla78].

5.3 The Relational Calculus 73

the semantics of nr-datalog programs. An nr-datalog™ query is a query defined by some
nr-datalog™ program with a specified target relation.

ExAMPLE 5.2.1 Assume that each movie in Movies has one director. Query (5.1) is
answered by

ans(x) < Movies(x, “Hitchcock”, z),
—Movies(x, “Hitchcock”, “Hitchcock™).

Query (5.3) is answered by

Hitch-actor(z) < Movies(x, “Hitchcock”, z)
not-ans(x) < Movies(x, y, z), —Hitch-actor(z)

ans(x) <— Movies(x, y, z), —not-ans(x).

Care must be taken when forming nr-datalog™ programs. Consider, for example, the fol-
lowing program, which forms a kind of merging of the first two rules of the previous
program. (Intuitively, the first rule is a combination of the first two rules of the preceding
program, using variable renaming in the spirit of Example 4.3.1.)

bad-not-ans(x) < Movies(x, y, z), =Movies(x', “Hitchcock”, z),
Movies(x', “Hitchcock”, 7'),

ans(x) <— Movies(x, vy, z), —bad-not-ans(x)

Rather than expressing query (5.3), it expresses the following:

(5.3) (Assuming that all movies have only one director) list those movies for which all
actors of the movie acted in a// of Hitchcock’s movies.

It is easily verified that each nr-datalog™ program with equality can be simulated by
an nr-datalog™ program not using equality (see Exercise 5.10). Furthermore (see Exer-
cise 5.11), the following holds:

PROPOSITION 5.2.2 The relational algebras and the family of nr-datalog™ programs that
have single relation output have equivalent expressive power.

5.3 The Relational Calculus

Adding negation in the calculus paradigm yields an extremely flexible query language,
which is essentially the predicate calculus of first-order logic (without function symbols).
However, this flexibility brings with it a nontrivial cost: If used without restriction, the
calculus can easily express queries whose “answers” are infinite. Much of the theoretical
development in this and the following section is focused on different approaches to make

74 Adding Negation: Algebra and Calculus

the calculus “safe” (i.e., to prevent this and related problems). Although considerable effort
is required, it is a relatively small price to pay for the flexibility obtained.

This section first extends the syntax of the conjunctive calculus to the full calculus.
Then some intuitive examples are presented that illustrate how some calculus queries can
violate the principle of “domain independence.” A variety of approaches have been devel-
oped to resolve this problem based on the use of both semantic and syntactic restrictions.

This section focuses on semantic restrictions. The first step in understanding these
is a somewhat technical definition based on “relativized interpretation” for the semantics
of (arbitrary) calculus queries; the semantics are defined relative to different “underlying
domains” (i.e., subsets of dom). This permits us to give a formal definition of domain
independence and leads to a family of different semantics for a given query.

The section closes by presenting the equivalence of the calculus under two of the se-
mantics with the algebra. This effectively closes the issue of expressive power of the calcu-
lus, at least from a semantic point of view. One of the semantics for the calculus presented
here is the “active domain” semantics; this is particularly convenient in the development of
theoretical results concerning the expressive power of a variety of languages presented in
Parts D and E.

As noted in Chapter 4, the calculus presented in this chapter is sometimes called the
domain calculus because the variables range over elements of the underlying domain of
values. Exercise 5.23 presents the tuple calculus, whose variables range over tuples, and
its equivalence with the domain calculus and the algebra. The tuple calculus and its variants
are often used in practice. For example, the practical languages SQL and Quel can be
viewed as using tuple variables.

Well-Formed Formulas, Revisited

We obtain the relational calculus from the conjunctive calculus with equality by adding
negation (—), disjunction (V), and universal quantification (V). (Explicit equality is needed
to obtain the full expressive power of the algebras; see Exercise 5.12.) As will be seen, both
disjunction and universal quantification can be viewed as consequences of adding negation,
because ¢ V ¥ = —(—¢p A =) and Vxp = —Ix—e.

The formal definition of the syntax of the relational calculus is a straightforward
extension of that for the conjunctive calculus given in the previous chapter. We include
the full definition here for the reader’s convenience. A term is a constant or a variable. For
a given input schema R, the base formulas include, as before, atoms over R and equality
(inequality) atoms of the form e = ¢’ (e # ¢’) for terms e, ¢’. The (well-formed) formulas
of the relational calculus over R include the base formulas and formulas of the form

(@) (@ A), where ¢ and ¥ are formulas over R;

(b) (¢ Vv ¥), where ¢ and v are formulas over R;

(c) —¢, where ¢ is a formula over R;

(d) Jx¢p, where x is a variable and ¢ a formula over R;

(e) Vxg, where x is a variable and ¢ a formula over R.

As with conjunctive calculus,

5.3 The Relational Calculus 75

dx1, X2, . .., X abbreviates Ax13Ix, . . . Ax,, @, and
Vx1, X2, ..., X, abbreviatesVx Vxs ... Vx,p.

It is sometimes convenient to view the binary connectives A and V as polyadic connectives.
In some contexts, e # ¢’ is viewed as an abbreviation of —(e = ¢').

It is often convenient to include two additional logical connectives, implies (—) and
is equivalent to (<>). We view these as syntactic abbreviations as follows:

g =—pVy
poY=(@AY)V(mpA=Y).
The notions of free and bound occurrences of variables in a formula, and of free(¢)
for formula ¢, are defined analogously to their definition for the conjunctive calculus. In

addition, the notion of relational calculus query is defined, in analogy to the notion of
conjunctive calculus query, to be an expression of the form

{(e1,...,em) A1, ..., Am | ¢}, in the named perspective,
{e1,...,en | ¢}, in the unnamed perspective,

or if the sort is understood from the context,

where e1, .. ., e, are terms, repeats permitted, and where the set of variables occurring in
e, ..., ey is exactly free(p).

ExAMPLE 5.3.1 Suppose that each movie has just one director. Query (5.1) can be ex-
pressed in the relational calculus as

{x; | IxsMovies(x;, “Hitchcock”, x,) A
—Movies(x;, “Hitchcock”, “Hitchcock™)}.

Query (5.3) is expressed by

{x; | Ixq4, x4 Movies(x;, X4, Xg) A
Vya (JyaMovies(x;, Y, Ya)
— 3z, Movies(z;, “Hitchock”™, y,))}.

The first conjunct ensures that the variable x, ranges over titles in the current value of
Movies, and the second conjunct enforces the condition on actors of the movie identified
by x;.

“Unsafe” Queries

Before presenting the alternative semantics for the relational calculus, we present an in-
tuitive indication of the kinds of problems that arise if the conventional definitions from
predicate calculus are adapted directly to the current context.

76 Adding Negation: Algebra and Calculus

The fundamental problems of using the calculus are illustrated by the following ex-
pressions:

(unsafe-1) {x | =Movies(“Cries and Whispers”, “Bergman”, x)}
(unsafe-2) {x,y | Movies(*“Cries and Whispers”, “Bergman”, x)
VvV Movies(y, “Bergman”, “Ullman”)}.

If the usual semantics of predicate calculus are adapted directly to this context, then
the query (unsafe-1) produces all tuples (a) where a € dom and (“Cries and Whispers”,
“Bergman”, a) is not in the input. Because all input instances are by definition finite, the
query yields an infinite set on all input instances. The same is true of query (unsafe-2), even
though it does not use explicit negation.

An intuitively appealing approach to resolving this problem is to view the different
relation columns as typed and to insist that variables occurring in a given column range
over only values of the appropriate type. For example, this would imply that the answer to
query (unsafe-1) is restricted to the set of actors. This approach is not entirely satisfactory
because query answers now depend on the domains of the types. For example, different
answers are obtained if the type Actor includes all and only the current actors [i.e., persons
occurring in macor(Movies)] or includes all current and potential actors. This illustrates
that query (unsafe-1) is not independent of the underlying domain within which the query
is interpreted (i.e., it is not “domain independent”). The same is true of query (unsafe-2).

Even if the underlying domain is finite, users will typically not know the exact contents
of the domains used for each variable. In this case it would be disturbing to have the result
of a user query depend on information not directly under the user’s control. This is another
argument for permitting only domain-independent queries.

A related but more subtle problem arises with regard to the interpretation of quantified
variables. Consider the query

(unsafe-3) {x |VyR(x, y)}.

The answer to this query is necessarily finite because it is a subset of 7| (R). However, the
query is not domain independent. To see why, note that if y is assumed to range over all
of dom, then the answer is always the empty relation. On the other hand, if the underlying
domain of interpretation is finite, it is possible that the answer will be nonempty. (This
occurs, for example, if the domain is {1, ..., 5}, and the input for R is {(3, 1), ... (3,5)}.)
So again, this query depends on the underlying domain(s) being used (for the different
variables) and is not under the user’s control.

There is a further difficulty of a more practical nature raised by query (unsafe-3).
Specifically, if the intuitively appealing semantics of the predicate calculus are used, then
the naive approach to evaluating quantifiers leads to the execution of potentially infinite
procedures. Although the proper answer to such queries can be computed in a finite manner
(see Theorem 5.6.1), this is technically intricate.

The following example indicates how easy it is to form an unsafe query mistakenly in
practice.

5.3 The Relational Calculus 77

ExAMPLE 5.3.2 Recall the calculus query answering query (5.3) in Example 5.3.1. Sup-
pose that the first conjunct of that query is omitted to obtain the following:

{x¢ | Vya(3yaMovies(xt, Ya, Ya)
— dz;Movies(z;, “Hitchcock”, y,))}.

This query returns all titles of movies that have the specified property and also all elements
of dom not occurring in 77y, (Movies). Even if x; were restricted to range over the set of
actual and potential movie titles, it would not be domain independent.

Relativized Interpretations

We now return to the formal development. As the first step, we present a definition that will
permit us to talk about calculus queries in connection with different underlying domains.

Under the conventional semantics associated with predicate calculus, quantified vari-
ables range over all elements of the underlying domain, in our case, dom. For our purposes,
however, we generalize this notion to permit explicit specification of the underlying domain
to use (i.e., over which variables may range).

A relativized instance over schema R is a pair (d, I), where I is an instance over R and
adom(I) € d C dom. A calculus formula g is interpretable over (d,I) if adom(p) C d. In
this case, if v is a valuation over free(¢) with range contained in d, then I satisfies ¢ for v
relative to d, denoted I |=q ¢[v], if

(@) @ = R(u) is an atom and v(u) € I(R);

(b) ¢ = (s =) is an equality atom and v(s) = v(s');

© o= A& and T =g Y [Vfieey)] and I E=q §[V]free(s)]:
(d) o= VvE) and I =g V[V freery)] o I Ed DV]freee) s
() ¢ =y and I |&q ¥ [v] (i.e., I =q ¥ [v] does not hold);
(f) ¢ =3xy and for some c € d, I |=q ¥/[v U {x/c}]; or

(g) ¢ =Vxy and foreach c €d, I =q ¥[v U {x/c}].

The notion of “satisfies . .. relative to” just presented is equivalent to the usual notion
of satisfaction found in first-order logic, where the set d plays the role of the universe of
discourse in first-order logic. In practical database settings it is most natural to assume that
the underlying universe is dom; for this reason we use specialized terminology here.

Recall that for a query ¢ and input instance I, we denote adom(q) U adom(I) by
adom(q, I), and the notation adom (g, I) for formula ¢ is defined analogously.

We can now define the relativized semantics for the calculus. Let R be a schema,
q ={ei1, ..., e, | ¢} acalculus query over R, and (d, I) a relativized instance over R. Then

1 v|y for variable set V denotes the restriction of v to V.

78 Adding Negation: Algebra and Calculus

the image of I under g relative to d is

gaD) ={v({e1, ..., en)) [1 Fa @lv],
v is a valuation over free(¢) with range C d}.

Note that if d is infinite, then this image may be an infinite set of tuples.
As a minor generalization, for arbitrary d € dom, the image of g on I relative to d is
defined by?

qdd (I) = qduUadom(q,I) (I) .

ExAmPLE 5.3.3 Consider the query
g ={x | R(x) AIy(=R(y) AVZ(R(z) V z=y))}

Then

gaom (/) = {} for any instance I over R
q01.2,3.4y(J1) = {} for J1 = {(1), (2)} over R
q(1,2,3,4)(J2) = Jo for Jo = {(1), (2), (3)} over R
q11,2,3,4)(J3) = {} for J3 = {(1), (2), (3), (4)} over R
q1,2,3,4)(Ja) = Ja for Ju = {(1), (2), (3), (5)} over R.

This illustrates that under an interpretation relative to a set d, a calculus query ¢ on input I
may be affected by |d — adom(q, I)]|.

It is important to note that the semantics of algebra and datalog™ queries g evaluated
on instance I are independent of whether dom or some subset d satisfying adom(q, I) C
d C dom is used as the underlying domain.

The Natural and Active Domain Semantics for Calculus Queries

The relativized semantics for calculus formulas immediately yields two important seman-
tics for calculus queries. The first of these corresponds most closely to the conventional
interpretation of predicate calculus and is thus perhaps the intuitively most natural seman-
tics for the calculus.

DEFINITION 5.3.4 For calculus query ¢g and input instance I, the natural (or unrestricted)
interpretation of g on I, denoted g,4:(I), is gdom (L) if this is finite and is undefined other-
wise.

2 Unlike the convention of first-order logic, interpretations over an empty underlying domain are
permitted; this arises only with empty instances.

5.3 The Relational Calculus 79

The second interpretation is based on restricting quantified variables to range over the
active domain of the query and the input. Although this interpretation is unnatural from the
practical perspective, it has the advantage that the output is always defined (i.e., finite). It
is also a convenient semantics for certain theoretical developments.

DEFINITION 5.3.5 For calculus query ¢ and input instance I, the active domain interpre-
tation of ¢ on I, denoted gugom(X), 1S Gadom(g,1ny(I). The family of mappings obtained from
calculus queries under the active domain interpretation is denoted CALC ,4,,-

ExAMPLE 5.3.6 Recall query (unsafe-2). Under the natural interpretation on input the
instance I shown in Chapter 3, this query yields the undefined result. On the other hand,
under the active domain interpretation this yields as output (written informally) ({actors
in “Cries and Whispers”} x adom(I)) U (adom(I) x {movies by Bergman featuring
Ullman}), which is finite and defined.

Domain Independence

As noted earlier, there are two difficulties with the natural interpretation of the calculus
from a practical point of view: (1) it is easy to write queries with undefined output, and (2)
even if the output is defined, the naive approach to computing it may involve consideration
of quantifiers ranging over an infinite set. The active domain interpretation solves these
problems but generally makes the answer dependent on information (the active domain)
not readily available to users. One approach to resolving this situation is to restrict attention
to the class of queries that yield the same output on all possible underlying domains.

DEFINITION 5.3.7 A calculus query g is domain independent if for each input instance I,
and each pair d, d’ € dom, gq(I) = ga/(I). If g is domain independent, then the image of g
on input instance I, denoted simply g (I), is ggom(I) [or equivalently, gagom(I)]. The family
of mappings obtained from domain-independent calculus queries is denoted CALCy;.

In particular, if g is domain independent, then the output according to the natural
interpretation can be obtained by computing the active domain interpretation. Thus,

LEmMA 5.3.8 CALC,; E CALCi0m-

ExXAMPLE 5.3.9 The two calculus queries of Example 5.3.1 are domain independent, and
the query of Example 5.3.2 is not (see Exercise 5.15).

Equivalence of Algebra and Calculus

We now demonstrate the equivalence of the various languages introduced so far in this
chapter.

80 Adding Negation: Algebra and Calculus

THEOREM 5.3.10 (Equivalence Theorem) The domain-independent calculus, the calcu-
lus under active domain semantics, the relational algebras, and the family of nr-datalog™
programs that have single-relation output have equivalent expressive power.

Proposition 5.2.2 shows that nr-datalog™ and the algebras have equivalent expressive
power. In addition, Lemma 5.3.8 shows that CALC,;; & CALC 4. To complete the proof,
we demonstrate that

(1) algebra © CALCy; (Lemma 5.3.11)
(ii)) CALCg4om T algebra (Lemma 5.3.12).

LEmMmMmA 5.3.11 For each unnamed algebra query, there is an equivalent domain-indepen-
dent calculus query.

Proof Let g be an unnamed algebra query with arity n. We construct a domain-
independent query g’ = {xi, ..., x, | ¢,} that is equivalent to ¢g. The formula ¢, is con-
structed using an induction on subexpressions of ¢. In particular, for subexpression E of
q, we define ¢ according to the following cases:

(a) Eis R forsome R € R: g is R(x1, ..., Xarity(R))-

(b) Eis{uy,...,un}, where each u; is a tuple of arity a: g is
Fr=ui(H A Axg=ui(@) V- Vxi=un(l) A+ A xg = um(a)).

(¢) Eis or(E1): ¢g is g, A Y, where Yr is the formula obtained from F by
replacing each coordinate identifier i by variable x;.

(d) Eismi,.. i, (E1): ¢ is

Ayis o Vi, (K1 =y A - AXp=Y,) ATyj - 3Yj0E 1 - - Yarit(ED))s
where ji, ..., j;is alisting of [1, arity(E1)] — {i1, ..., in}.
(e) Eis E1 X Ez: @ 1S @, A QB (Xarity(E)+15 - - - » Xarity(Ey) +arity(Ea)) -

() Eis E1U Ey: 9g is 9g, V @E,.

(g) Eis Ey — Ep: o is ¢, A —QE,.
We leave verification of this construction and the properties of ¢’ to the reader (see Exer-
cise 5.13a). m

LEMMA 5.3.12 For each calculus query g, there is a query in the unnamed algebra that is
equivalent to ¢ under the active domain interpretation.

Crux Letq ={xi, ..., xn | ¢} beacalculus query over R. It is straightforward to develop
a unary algebra query E 4., such that for each input instance I,

5.4 Syntactic Restrictions for Domain Independence 81

Ead()m(l) = {(a) | ac adom(q, I)}

Next an inductive construction is performed. To each subformula ¥ (yy, ..., y,) of ¢ this
associates an algebra expression Ey, with the property that (abusing notation slightly)

s ooy Y | Vhadomgn @M = Ey (@) N (adom(q, 1))™.

[This may be different from using the active domain semantics on i, because we may have
adom(y, I) C adom(q, 1).] It is clear that E, is equivalent to ¢ under the active domain
semantics.

We now illustrate a few cases of the construction of expressions Ey and leave the
rest for the reader (see Exercise 5.13b). Suppose that ¢ is a subformula of ¢. Then Ey is
constructed in the following manner:

(@ Y(y1,....ym) is R(t1,..., 1), where each #; is a constant or in y: Then Ey =
7z (oF(R)), where k and F are chosen in accordance with y and i.

(®) ¥ (y1, y2) is y1 # y2: Ey 18 012(Eadom X Eadom)-
© ¥, y2,¥3) is W(yl, y2) Vv w//(st ¥3): El// is (Elp’ X Eadom) Y (Eadom X Egb”)'
@ YO, Yym) i =Y (1, Vi) Ey is (Eadom X+ X Eadom) — Ey. |

5.4 Syntactic Restrictions for Domain Independence

As seen in the preceding section, to obtain the natural semantics for calculus queries,
it is desirable to focus on domain independent queries. However, as will be seen in the
following chapter (Section 6.3), it is undecidable whether a given calculus query is domain
independent. This has led researchers to develop syntactic conditions that ensure domain
independence, and many such conditions have been proposed.

Several criteria affect the development of these conditions, including their generality,
their simplicity, and the ease with which queries satisfying the conditions can be translated
into the relational algebra or other lower-level representations. We present one such con-
dition here, called “safe range,” that is relatively simple but that illustrates the flavor and
theoretical properties of many of these conditions. It will serve as a vehicle to illustrate
one approach to translating these restricted queries into the algebra. Other examples are
explored in Exercises 5.25 and 5.26; translations of these into the algebra are considerably
more involved.

This section begins with a brief digression concerning equivalence preserving rewrite
rules for the calculus. Next the family CALC;, of safe-range queries is introduced. It is
shown easily that the algebra & CALC;,. A rather involved construction is then presented
for transforming safe-range queries into the algebra. The section concludes by defining a
variant of the calculus that is equivalent to the conjunctive queries with union.

R
[\ %)

Adding Negation: Algebra and Calculus

1 ony < YA
2 YA AU AWt AYng2) 0 YA A Y A A Y
3 oVvy < YV
4 Y1V VYV Wt VY)YV VY Vg V Vg
5 =(pAY) < (@) V()
6 —(pVvy) < (o)A (=Y)
7 =(=) —_
8 dxg < Vx—p
9 Vxo¢ < —dx—g
10 —-3xg < Vx—o
11 —Vxe < dx—g
12 Fxe Ay < dx(e A Y¥) (x not free in)
13 Vxp Ay < VYx(p AY) (x not free in ¥r)
14 Fxpvy < Ax(¢ V¥) (x not free in)
15 VxpVviy < Vx(p V) (x notfree in v)
16 3Ixgp < dygy (ynotfree in ¢)
17 Vxo < Vygy (y notfree in)

Figure 5.1: Equivalence-preserving rewrite rules for calculus formulas

Equivalence-Preserving Rewrite Rules

We now digress for a moment to present a family of rewrite rules for the calculus. These
preserve equivalence regardless of the underlying domain used to evaluate calculus queries.
Several of these rules will be used in the transformation of safe-range queries into the
algebra.

Calculus formulas ¢, ¥ over schema R are equivalent, denoted ¢ = i, if for each I
over R, d € dom, and valuation v with range C d

I =auadom(e.py @v]if and only if I Equadomy, 1) ¥IV].

(It is verified easily that this generalizes the notion of equivalence for conjunctive calculus
formulas.)

Figure 5.1 shows a number of equivalence-preserving rewrite rules for calculus for-
mulas. It is straightforward to verify that if i transforms to v’ by a rewrite rule and if ¢’
is the result of replacing an occurrence of subformula ¥ of ¢ by formula v/, then ¢’ = ¢
(see Exercise 5.14).

Note that, assuming x ¢ free(y) and y ¢ free(¢p),

Ixp AVyY =3AxVy(p A Y) =VyIx(p A ¥).
ExAMPLE 5.4.1 Recall from Chapter 2 that a formula ¢ is in prenex normal form (PNF)

if it has the form % x| . .. %,x, ¥, where each %; is either V or 3, and no quantifiers occur
in . In this case, v is called the matrix of formula ¢.

5.4 Syntactic Restrictions for Domain Independence 83

A formula i without quantifiers or connectives — or <> is in conjunctive normal
form (CNF) if it has the form &; A --- A &, (m > 1), where each conjunct &; has the form
LiV .-V L (k> 1)and where each L; is a literal (i.e., atom or negated atom). Similarly, a
formula ¥ without quantifiers or connectives — or < is in disjunctive normal form (DNF)
if it has the form &; V -- - v &,,, where each disjunct &; has the form L A --- A Ly where
each L; is a literal (i.e., atom or negated atom).

It is easily verified (see Exercise 5.14) that the rewrite rules can be used to transform
an arbitrary calculus formula into an equivalent formula that is in PNF with a CNF matrix,
and into an equivalent formula that is in PNF with a DNF matrix.

Safe-Range Queries

The notion of safe range is presented now in three stages, involving (1) a normal form
called SRNF, (2) a mechanism for determining how variables are “range restricted” by
subformulas, and (3) specification of a required global property of the formula.

During this development, it is sometimes useful to speak of calculus formulas in terms
of their parse trees. For example, we will say that the formula (R(x) A y(S(y,2)) A
—T(x, z)) has ‘and’ or A as a root (which has an atom, an 3, and a — as children).

The normalization of formulas puts them into a form more easily analyzed for
safety without substantially changing their syntactic structure. The following equivalence-
preserving rewrite rules are used to place a formula into safe-range normal form (SRNF):

Variable substitution: This is from Section 4.2. It is applied until no distinct pair of quan-
tifiers binds the same variable and no variable occurs both free and bound.

Remove universal quantifiers: Replace subformula VX1 by —3X—1. (This and the next
condition can be relaxed; see Example 5.4.5.)

Remove implications: Replace ¥ — & by =y Vv &, and similarly for <.

Push negations: Replace

(i) ~—y by ¢
(i) =1V - V) by (ZY1 A A=)
(i) =(Y1 A AY) by (Y1 V-V o)
so that the child of each negation is either an atom or an existentially quantified
formula.

Flatten ‘and’s, ‘or’s, and existential quantifiers: This is done so that no child of an ‘and’
is an ‘and,” and similarly for ‘or’ and existential quantifiers.

The SRNF formula resulting from applying these rules to ¢ is denoted SRNF(¢). A formula
@ (query {e | ¢}) is in SRNF if SRNF(p) = ¢.

ExXAMPLE 5.4.2 The first calculus query of Example 5.3.1 is in SRNF. The second calcu-
lus query is not in SRNF; the corresponding SRNF query is

84 Adding Negation: Algebra and Calculus

{x; | Ixq4, xqaMovies(x;, xq, Xa) N\
=3y, (3yaMovies(x:, ya, ya)
A —3z;Movies(z;, “Hitchcock™, y,))}.

Transforming the query of Example 5.3.2 into SRNF yields

{x¢ | =3yaQyaMovies(x, ya, Ya)
A —3z;Movies(z;, “Hitchcock”, y;))}.

We now present a syntactic condition on SRNF formulas that ensures that each variable
is “range restricted,” in the sense that its possible values all lie within the active domain of
the formula or the input. If a quantified variable is not range restricted, or if one of the
free variables is not range restricted, then the associated query is rejected. To make the
definition, we first define the set of range-restricted variables of an SRNF formula using
the following procedure, which returns either the symbol L, indicating that some quantified
variable is not range restricted, or the set of free variables that is range restricted.

ALGORITHM 5.4.3 (Range restriction (rr))

Input: a calculus formula ¢ in SRNF
Output: a subset of the free variables of ¢ or® L

begin
case ¢ of
R(e1,...,ey) : rr(p) =the setof variables in {eq, ..., e,};
x=aora=x : rr(p)={x};
i1 A@2 o orr(e) =rr(e) Urr(ez);
. _)rr@) if {x,y}Nrr(y) =9,
pLax=y ()= { rr(y) U {x, y} otherwise;
p1Vr o orr(e)=rr(p) Nrr(g);
—g1 1 rr(p) =0;
Axey : if X Crr(e))
then rr(p) =rr(p) —
else return L
end case
end m

3 1n the following, foreach Z, LUZ =1NZ =1 —-Z7Z =7 — 1 = 1. Inaddition, we show the case
of binary ‘and’s, etc., but we mean this to include polyadic ‘and’s, etc. Furthermore, we sometimes
use ‘X’ to denote the set of variables occurring in X.

5.4 Syntactic Restrictions for Domain Independence 85

Intuitively, the occurrence of a variable x in a base relation or in an atom of the
form x = a restricts that variable. This restriction is propagated through A, possibly lost
in Vv, and always lost in —. In addition, each quantified variable must be restricted by the
subformula it occurs in.

A calculus query {u | ¢} is safe range if rr (SRNF(¢)) = free(¢p). The family of safe-
range queries is denoted by CALC,..

ExAMPLE 5.4.4 Recall Examples 5.3.1 and 5.4.2. The first query of Example 5.3.1 is safe
range. The first query of Example 5.4.2 is also safe range. However, the second query of
Example 5.4.2 is not because the free variable x; is not range restricted by the formula.

Before continuing, we explore a generalization of the notion of safe range to permit
universal quantification.

ExAMPLE 5.4.5 Suppose that formula ¢ has a subformula of the form

Y =V (X) = ¥a(3),

where X and y might overlap. Transforming into SRNF (and assuming that the parent of v
is not —), we obtain

Y = =3X (Y (X) A YD),
Now rr (') is defined iff

(a) rr(y1) =X, and
(b) rr(yrp) is defined.

In this case, rr(¥') = @. This is illustrated by the second query of Example 5.3.1, that was
transformed into SRNF in Example 5.4.2.

Thus SRNF can be extended to permit subformulas that have the form of i without
materially affecting the development.

The calculus query constructed in the proof of Lemma 5.3.11 is in fact safe range. It
thus follows that the algebra & CALC;,.

As shown in the following each safe range query is domain independent (Theo-
rem 5.4.6). For this reason, if g is safe range we generally use the natural interpretation
to evaluate it; we may also use the active domain interpretation.

The development here implies that all of CALC;,, CALCy;, and CALC 4, are equiv-
alent. When the particular choice is irrelevant to the discussion, we use the term relational
calculus to refer to any of these three equivalent query languages.

86 Adding Negation: Algebra and Calculus

From Safe Range to the Algebra

We now present the main result of this section (namely, the translation of safe-range queries
into the named algebra). Speaking loosely, this translation is relatively direct in the sense
that the algebra query E constructed for calculus query g largely follows the structure of
q. As a result, evaluation of E will in most cases be more efficient than using the algebra
query that is constructed for g by the proof of Lemma 5.3.12.

Examples of the construction used are presented after the formal argument.

THEOREM 5.4.6 CALC,, = the relational algebra. Furthermore, each safe-range query
is domain independent.

The proof of this theorem involves several steps. As seen earlier, the algebra C
CALC;,. To prove the other direction, we develop a translation from safe-range queries
into the named algebra. Because the algebra is domain independent, this will also imply
the second sentence of the theorem.

To begin, let ¢ be a safe-range formula in SRNF. An occurrence of a subformula v in
@ 1is self-contained if its root is A or if

O y=v1Vv---Viyandrr(y) =rr(Y1) = =rr(Yn) = free(y);
(i) ¥ =3xyy and rr(Y) = free(y); or
(iil) ¥ = -y and rr(y) = free(yr1).
A safe-range, SRNF formula ¢ is in* relational algebra normal form (RANF) if each
subformula of ¢ is self-contained.

Intuitively, if ¥ is a self-contained subformula of ¢ that does not have A as a root, then
all free variables in v are range restricted within vr. As we shall see, if ¢ is in RANF, this
permits construction of an equivalent relational algebra query E, using an induction from
leaf to root.

We now develop an algorithm RANF-ALG that transforms safe-range SRNF formulas
into RANF. It is based on the following rewrite rules:

(R1) Push-into-or: Consider the subformula
V=91 A AP NG,
where
E=EV V.

Suppose that rr () = free(y), butrr(&1 Vv - - - V &) # free(§1 V - - - V &,,). Nondeter-
ministically choose a subset iy, ..., i; of 1, ..., n such that

E=EAYL A APV NV En AV A A

4 This is a variation of the notion of RANF used elsewhere in the literature; see Bibliographic Notes.

5.4 Syntactic Restrictions for Domain Independence 87

satisfies rr(¢’) = free(&’). (One choice of iy, ..., i is to use all of 1,...,n; this
necessarily yields a formula & with this property.) Letting {j1, ..., ji} ={1,...,n} —
{i1, ..., i}, set

Y =SRNF(yrjy A= Ay, AE).
The application of SRNF to &’ only has the effect of possibly renaming quantified
variables® and of flattening the roots of subformulas Ep ANy Ao A Yy, Where &)

has root A; analogous remarks apply. The rewrite rule is to replace subformula i by
¥’ and possibly apply SRNF to flatten an Vv, if both [= 0 and the parent of v is V.

(R2) Push-into-quantifier: Suppose that
Y =Y1 A A Y AXE,
where rr(¥) = free(yr), but rr(§) # free(§). Then replace by
Y =SRNF(Yj, A+ Ay AJXE,
where
E=vYi A AU ANE

and where rr(&’) = free(¢') and {ji, ..., i} ={1,...,n} — {i1, ..., ix}. The rewrite
rule is to replace ¥ by ¥ and possibly apply SRNF to flatten an 3.

(R3) Push-into-negated-quantifier: Suppose that
Y=Y A A A—3XE,
where rr(¥) = free(y), but rr(§) # free(§). Then replace by
Y =SRNF(Y1 A - A Y A —3XET),
where
E =i AN AP NE
and where rr(¢§') =free(&’) and {iy, ..., ix} C {1, ..., n}. That ¥ is equivalent to ¥

follows from the observation that the propositional formulas p A g A —r and p A g A
—(p A r) are equivalent. The rewrite rule is to replace ¥ by v/'.

The algorithm RANF-ALG for applying these rewrite rules is essentially top-down
and recursive. We sketch the algorithm now (see Exercise 5.19).

31t is assumed that under SRNF renamed variables are chosen so that they do not occur in the full
formula under consideration.

