
A Comprehensive XQuery to SQL Translation
using Dynamic Interval Encoding

David DeHaan, David Toman, Mariano P. Consens, M. Tamer Özsu
University of Waterloo

School of Computer Science
Waterloo, Canada

{dedehaan, david, mconsens, tozsu}@uwaterloo.ca

ABSTRACT
The W3C XQuery language recommendation, based on a
hierarchical and ordered document model, supports a wide
variety of constructs and use cases. There is a diversity
of approaches and strategies for evaluating XQuery expres-
sions, in many cases only dealing with limited subsets of the
language. In this paper we describe an implementation ap-
proach that handles XQuery with arbitrarily-nested FLWR
expressions, element constructors and built-in functions (in-
cluding structural comparisons). Our proposal maps an
XQuery expression to a single equivalent SQL query using
a novel dynamic interval encoding of a collection of XML
documents as relations, augmented with information tied to
the query evaluation environment. The dynamic interval
technique enables (suitably enhanced) relational engines to
produce predictably good query plans that do not restrict
the use of sort-merge join query operators. The benefits
are realized despite the challenges presented by intermedi-
ate results that create arbitrary documents and the need
to preserve document order as prescribed by semantics of
XQuery. Finally, our experimental results demonstrate that
(native or relational) XML systems can benefit from the
above technique to avoid a quadratic scale up penalty that
effectively prevents the evaluation of nested FLWR expres-
sions for large documents.

1. INTRODUCTION
With the widespread adoption of XML both as a doc-

ument format and as a data exchange format, the inter-
est in querying growing XML repositories has increased.
XQuery [10] is emerging as the standard XML query lan-
guage and there is growing recognition that it can rapidly
gain a high level of adoption. The language addresses a
wide range of requirements, thus incorporating a rich set of
features.

A diverse set of strategies for evaluating queries over XML
data has been proposed. One approach favors the imple-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

mentation of XML specific query processors [7, 23]. Other
approaches attempt to leverage relational implementations
by resorting to encoding XML data as relations and trans-
lating XML queries into relational queries [9, 25, 28]. Such
a translation is particularly relevant when the XML data
are already stored in a relational system. This may hap-
pen because relational data are used to produce XML docu-
ments, or because XML documents are stored in a relational
database, or a combination of both. Even when the source
XML is external to the relational system, there are still very
good reasons to use a SQL engine as the target query pro-
cessor for XQuery expressions: maturity of the implemen-
tations, extensive tuning, proven scalability, sophisticated
optimizers, etc.

There are significant challenges in evaluating XQuery ex-
pressions using a SQL query processor. The most commonly
cited difficulties connected with the use of relational tech-
nology are often linked to the following features of XQuery
expressions:

1. The iterative nature of many XML operations, e.g., the
ancestor/descendent/sibling like operations, combined
with the nested nature of XML documents;

2. The definition and use of structural equality in FLWR
where clauses;

3. The full compositionality of XML query expressions,
in particular the possibility of nesting FLWR expres-
sions within functions operating on XML documents
(cf. Figures 2 and 3);

4. The need for constructed XML documents representing
intermediate results during query evaluation;

5. The translation of sorting within XML queries ; and
6. The requirement to preserve the document order .

The above features are often at odds with the first-order
and first normal form nature of relational queries. Indeed,
queries utilizing various combinations of the above features
are often labeled as untranslatable to SQL and an escape
to a general-purpose programming language is commonly
used to fully support these features [22]. In addition, the
requirement to evaluate queries while preserving the docu-
ment order has often been used as a justification for restrict-
ing implementation to nested-loop style strategies. Indeed,
our experimental results show that most current implemen-
tations [1, 2, 3, 4, 5] exhibit undesirable (at least) quadratic
behavior consistent with the use of such strategies.

In this paper we provide a novel solution to all of these
challenges based on an encoding of XML documents using

dynamic intervals, an extension of the standard encoding of
ordered forests based upon intervals (or regions) [14]. The
extended encoding allows us to represent an iterated appli-
cation of XQuery expressions on a sequence of XML docu-
ments by a single relational query. The contributions of our
approach and of this paper are:

1. We define a novel encoding of sequences of XML docu-
ments using dynamic intervals. Although interval en-
coding of trees has been discussed before [14], the use
of dynamic intervals to handle iteration constructs in
XQuery is novel to this paper. Approaches that main-
tain a static interval for each element throughout the
entire query evaluation cannot handle nested queries
(such as Q9 in Section 6.3) due to document order con-
straints on the results of nested FLWR expressions.
Furthermore, dynamic intervals are essential for the
compositionality of translated XQuery expressions.

2. We develop a comprehensive translation of XQuery
(including XPath) expressions to relational queries op-
erating on this encoding. The proposed translation is
compositional and fully supports arbitrary (syntacti-
cally valid) combinations and nesting of basic functions
and FLWR expressions (cf. Figures 2 and 3) without
the need for an escape to a general-purpose program-
ming language. This automatically guarantees termi-
nation of queries and low data complexity of query
evaluation. The proposed translation also handles a
much larger fragment of XQuery than other proposals
(e.g., [22]).

3. The proposed approach provides an implementation
strategy for the generated queries on top of standard
relational technology. In particular, the translation
does not impose any restrictions on the use of com-
putationally preferable query operators, e.g., the use
of merge-sort joins, in the generated queries while still
adhering to the semantics of XQuery, in particular to
the requirement to preserve document ordering .

4. Performance advantages of our approach are supported
by experimental results. There is no comparable anal-
ysis to the one presented in this paper that shows that
predictably good query plans could be generated for
the SQL produced by a generic XQuery translation
working with arbitrary XML documents.

While the strategies are described in the context of a rela-
tional implementation, it is clear that a native XML system
can make use of them by manipulating dynamic intervals
as an internal representation. The proposed XQuery pro-
cessor assumes interval encoded XML forests on input. At
first glance, this may suggest potential update problems;
however, the issue of updates is orthogonal to the strategies
developed in this paper and can be handled by techniques
described in [15, 16, 27].

Example 1.1 We use the query “list names of persons and
the number of items they bought” (Q8) from the XMark
benchmark [6] as a running example throughout the paper:

for $p in document("auction.xml")/site/people/person
let $a := for $t in document("auction.xml")/site/

closed_auctions/closed_auction
where $t/buyer/@person = $p/@id
return $t

return <item person="{$p/name/text()}">count($a)</item>

This query is used to illustrate many of the features of the
proposed translation. In particular, it shows how nested
FLWR expressions are translated to a single SQL query and
how efficient merge-sort style operations can be used while
preserving document order prescribed by XQuery’s seman-
tics. The same query (with minor modifications) is also used
in the performance tests (Section 6) that show the perfor-
mance advantages of using our approach over the common
“nested loop”-based approaches.

Sample data used by the running example is taken from
the relevant portion of an XMark document and is shown in
Figure 1.

<site>
<people>
<person id="person0">
<name>Jaak Tempesti</name>
<emailaddress>mailto:Tempesti@labs.com</emailaddress>
<phone>+0 (873) 14873867</phone>
<homepage>http://www.labs.com/~Tempesti</homepage>
</person>
<person id="person1">
<name>Cong Rosca</name>
<emailaddress>mailto:Rosca@washington.edu</emailaddress>
<phone>+0 (64) 27711230</phone>
<homepage>http://www.washington.edu/~Rosca</homepage>
</person>
...
</people>
<closed_auctions>
<closed_auction>
<seller person="person0" />
<buyer person="person1" />
<itemref item="item1" />
<price>42.12</price>
<date>08/22/1999</date>
<quantity>1</quantity>
<type>Regular</type>
</closed_auction>
...
</closed_auctions>
...

</site>

Figure 1: Portion of XMark Database

The rest of the paper is organized as follows: Section 2
provides a concise but sufficiently precise definition of an
XQuery fragment used throughout the paper to illustrate
the capabilities and features of our approach. Note that all
features of XQuery’s FLWR expressions including XPath
can be handled in this language1. Section 3 introduces dy-
namic intervals, an interval-based relational encoding for
XML documents augmented with information tied to the
query evaluation environment. The translation of an XQuery
expression into a single SQL expression is given in Section 4,
fully accounting for arbitrarily-nested FLWR expressions,
element constructors, and a wide variety of built-in func-
tions for dealing with document structure and order. While
commercial SQL engines can be used to evaluate the result-
ing SQL queries produced by the translation, there are areas
where performance can be further improved (mainly because
commercial relational engines are tuned to a different query
workload). Consequently, Section 5 describes additional re-
lational query plan operators that fully exploit properties

1Similar to most database approaches, we do not handle
general recursive functions allowed by the XQuery proposal.

Constructors: [] : XF the empty forest constructor
XNode : String×XF → XF the element constructor (adds a labeled root to a forest)
@ : XF×XF → XF the concatenation operator

Horizontal Operations: head : XF → XF first element of a forest
tail : XF → XF all but the first element of the forest
reverse : XF → XF the forest in reverse order (top-level only)
select : String×XF → XF subforest of trees with 1st arg value in their root
distinct : XF → XF subforest of distinct trees (1st preserved)
sort : XF → XF a forest ordered by tree order

Vertical Operations: roots : XF → XF a forest of root nodes
children : XF → XF a forest of all children in original order
subtreesdfs : XF → XF a forest of all subtrees in DFS order

Boolean Conditions: equal : XF×XF → Bool test for structural (tree) equality
less : XF×XF → Bool structural (tree) ordering
empty : XF → Bool test for emptiness

Figure 2: Sample Basic Operations on XML Forests.

[[x]] E = E(x)
[[XFn(e1, . . . , ek)]] E = [[XFn]]([[e1]] E, . . . , [[ek]] E)

[[let x = e in e′]] E = [[e′]](E[x := ([[e]] E)])
[[where ϕ return e]] E = if [[ϕ]] E then [[e]] E else []

[[for x ∈ e do e′]] E = [[e′]](E[x := v1])@ . . . @ [[e′]](E[x := vk]) where [v1, . . . , vk] = [[e]] E

Figure 3: Semantics of FLWR-like Expressions.

of ordered data sets during query execution. The tech-
niques presented in the paper enable query execution plans
based on sorting and linear merge-join operations even in
the presence of nested FLWR constructs. Section 6 provides
experimental data that support our claims. These experi-
ments, conducted using the XMark benchmark, demonstrate
that iteration operations of XQuery can be efficiently imple-
mented using the approach proposed in this paper, which
scales similar to relational sort-merge join algorithms. This
is in contrast to all the other XQuery processors that we
have tested where the scale-up is quadratic. Related work
is discussed in Section 7. We conclude in Section 8.

2. XQUERY IN A NUTSHELL
The goal of this section is to provide succinct definitions

for basic XML documents and a query language that cap-
tures the complexities of dealing with the full XQuery lan-
guage but is more amenable to analysis.

We first introduce a simple model for an XML document
as an ordered forest of rooted, node-labeled, ordered trees.

Definition 2.1 (XML Forests) We define the set XF of
XML forests inductively by

XF = [] | [<s>XF </s>] | XF @ XF

where s is a String, [] denotes an empty forest, [<s>XF </s>]
denotes a forest containing a single tree with a root labeled
s and an ordered forest XF as children, and XF @ XF denotes
the concatenation of two ordered forests.

The preceding definition has no explicit accounting of node
identity, node typing, “don’t care” child node order, and so
on. Such features, however, can be easily added by addi-
tional encoding conventions that relate either to node label-
ing or to subtree patterns. A text leaf node with CDATA
text can be encoded using the label “text”, while an el-

ement tag is encoded using the label “<tag>”. A similar
approach can be taken to represent attributes, and so on.

Definition 2.2 (Minimal XQuery) The syntax for a
XQuery-like language is given by the following BNF rule:

e ::= x
| XFn(e1, . . . , ek)
| let x = e in e′

| where ϕ return e
| for x ∈ e do e′

where e, e′, and e1, . . . , ek are expressions, x is a variable,
XFn a function on XML forests, and ϕ is a boolean condition
introduced in Figure 2.

In Figure 3, the semantics of these expressions is defined
inductively with respect to an environment E using a de-
notational semantics definition of the [[.]] map. The envi-
ronment E is used to supply values (XML forests) for free
variables in an expression; the function E maps names of
(defined) variables to XML forests (“stored” in these vari-
ables by the let x = e in e′ and for x ∈ e do e′ constructs or as
names for input documents).

The language defined above can be seen as a reduced ver-
sion of the XQuery core language employed to formalize the
semantics of XQuery [19]. Despite its simplicity, the lan-
guage still captures all the intricate nuances present in the
XQuery’s FLWR and XPath expressions. The syntax al-
lows arbitrary composition of basic function invocations, lo-
cal variable definitions, filtering by Boolean conditions and
iteration over the trees in XML forests2.

2Some of the constructs, e.g. the where clause, are not al-
lowed to stand alone in XQuery. However, this is irrelevant
to the development in this paper, and our approach indeed
handles proper XQuery syntax used in the examples.

s l r

<site> 0 85
<people> 1 46
<person> 2 23
@id 3 6
person0 4 5
<name> 7 10
Jaak Tempesti 8 9

.

.

.
.
.
.

.

.

.

Figure 4: Encoded XMark Document

3. INTERVALS AND ENVIRONMENTS
To manipulate XML documents in a relational system, we

need to select an encoding—that is, a relational representa-
tion that captures enough information about XML to map
documents to and from relations. We do this in two stages.
First we encode an XML forest as triples: the node label
plus the right and left endpoints of the intervals associated
with the node.

Definition 3.1 (Interval Encoding) Let f ∈ XF be an
XML forest. We define an instance of a ternary relation
X ⊆ String×Nat × Nat to contain a tuple (s, l, r) for every
node labeled s (node s, in short) in the forest f . The values
l and r are constrained as follows:

• l < r for all (s, l, r) ∈ X,

• if node s1 is an ancestor of node s2 in f then the cor-
responding tuples (s1, l1, r1) ∈ X, and (s2, l2, r2) ∈ X
satisfy l1 < l2 and r2 < r1, and

• if the node s1 is a left sibling of the node s2 in f then
the tuples (s1, l1, r1) ∈ X and (s2, l2, r2) ∈ X satisfy
r1 < l2.

We say that the (instance of the) relation X represents (is
an encoding for) the XML forest f . We associate a value
w ∈ Nat that satisfies the condition w > max{r : (s, l, r) ∈
X} with a fixed representation X of an XML forest f , and
we call w the width of (the representation of) f .

The definition of the interval encoding is a very general one
that captures several more specific cases, in particular the
encoding where the endpoints denote the offsets in a string
representation of the XML document. Note that we do not
require the intervals representing the elements in a docu-
ment nor the width w of a document to be tight ; indeed any
values that satisfy the above inequalities are acceptable.

Example 3.2 One way to generate a valid interval encod-
ing is to perform a depth-first traversal of the document
tree, using an incrementing counter that assigns the l value
to a node when it is first encountered, and the r value when
the node is seen for the last time. Figure 4 shows the re-
lation resulting from applying this algorithm to the data in
Figure 1. This encoding has a width of 86.

The second stage in the definition of our encoding is to
extend the representation of individual XML forests to cap-
ture a sequence of environments (introduced in Figure 3).
The goal is to simulate the evaluation of arbitrary FLWR
expressions using a fixed relational query.

In particular, for the case of the “for x ∈ e do e′” expres-
sion, the semantic equation defines an iterator over a se-

quence of such environments; the result is then the con-
catenation of the results from the individual iterations. To
simulate these semantics using a single relational query we
need a relational representation of all environments of the
form E[x := vi] that participate in the evaluation of the it-
erated expression (cf. Figure 3). The general definition is as
follows:

Definition 3.3 (Dynamic Intervals) Let [E1, . . . , En] be
a sequence of environments for variables x1, . . . , xm of the
form Ei = 〈x1 = f i

1, . . . , xm = f i
m〉, where f i

j are XML
forests. We say that an instance of a relational schema
I, Tx1 , . . . , Txm , where I ⊆ Nat and Txi ⊆ String×Nat×Nat,
represents [E1, . . . , En] if

• I = {i1, . . . , in} such that ik < il whenever k < l, and

• Txj =
Sn

k=1{(s, l + ikwxj , r + ikwxj) : (s, l, r) ∈ Xk
j }

where Xk
j represents fk

j

for wxj = max{w : w width of Xk
j , 1 ≤ k ≤ n}. We call

wxj the width of (the representation of) xj .

In essence, we have created an encoding for a sequence of
tuples of XML forests representing the values for variables
(i.e., environments), together with an index set that tells us
what range the values bound to variables occupy in the over-
all interval encoding. The dynamic interval representation
serves the dual purpose of maintaining the separation of an
arbitrary sequence of environments while, at the same time,
being able to be interpreted as the representation for the
single forest that is the result of concatenating all the envi-
ronments in the sequence (the second use allows us to exit
a for x ∈ e do e′ loop without any additional computation
needed to concatenate the results). At query translation
time the intervals and environment sizes are dynamically al-
located with varying widths to maintain the separation of
XML forests belonging to each of the environments.

Example 3.4 Consider the first path expression in query
Q8 from Example1.1:

document("auction.xml")/site/people/person

Figure 5 shows the index relation, I, for the initial query en-
vironment, together with the results of the path expression,
Tperson, within this initial environment. The path expres-
sion has a (worst case) width wperson = wdocument = 86 (see
Section 4.1).

4. SQL TRANSLATION FOR XQUERY
The translation of XQuery expressions to relational que-

ries is presented in several steps. The first step consists of
translations for the basic operations on XML forests out-
lined in Figure 2. The remaining steps describe a fully com-
positional translation for FLWR expressions that mirror the
semantic rules in Figure 3.

The translation is presented as a sequence of SQL tem-
plates for fragments of queries that are composed to pro-
duce the final query. Each template can be understood as a
relational view with table (query) parameters that are to be
substituted by other templates/views. We use the notation

CREATE VIEW V(T1,...,Tk) AS Q(T1,...,Tk)

to stand for a template with parameters T1,. . . ,Tk.

I
i

0

Tperson

s l r

<person> 2 23
@id 3 6
person0 4 5
<name> 7 10
Jaak Tempesti 8 9
<emailaddress> 11 14
mailto:Tempesti@labs.com 12 13
<phone> 15 18
+0 (873) 14873867 16 17
<homepage> 19 22
http://www.labs.com/~Tempesti 20 21
<person> 24 45
@id 25 28
person1 26 27
<name> 29 32
Cong Rosca 30 31
<emailaddress> 33 36
mailto:Rosca@washington.edu 34 35
<phone> 37 40
+0 (64) 27711230 38 39
<homepage> 41 44
http://www.washington.edu/~Rosca 42 43

Figure 5: Persons in an Initial Environment

4.1 Operators
Each operator on XML forests introduced in Figure 2 has

an associated template in the translation. For example, the
template for the roots operator is defined as

CREATE VIEW ROOTS(T) AS
SELECT u.s AS s, u.l AS l, u.r AS r
FROM T u
WHERE NOT EXISTS (

SELECT *
FROM T v
WHERE v.l < u.l AND u.r < v.r)

and the template for the children operator as

CREATE VIEW CHILDREN(T) AS
SELECT u.s AS s, u.l AS l, u.r AS r
FROM T u
WHERE EXISTS (

SELECT *
FROM T v
WHERE v.l < u.l AND u.r < v.r)

The remaining operators are defined using similar definitions
and are omitted for space reasons. For each of the XFn
operations we can provide a function wXFn that provides the
(upper bound on the) width of the relational representation
generated by the template as a function of the widths of the
template’s inputs. Hence, we have that w[] = 0, wXNode =
wx+2, w@ = wx1+wx2 , whead = wx, wtail = wx, wreverse = wx,
wdistinct = wx, wroots = wx, wchildren = wx, wsubtreesdfs = w2

x,
and so on. The dynamic interval encoding allows the use of
fixed compile-time definitions for the (upper bounds on the)
widths of the resulting documents and thus reduce the need
to recompute the actual widths during query execution.

Yet another operator template, the element constructor
used in a fragment of our running example, is shown below.

Example 4.1 Consider the final return statement in Ex-
ample 1.1. Suppose the view T contains partially construc-
ted results made up of the person attribute label (@person),
person attribute value, and the value for COUNT($a). The

template defining the relational view for the constructor of
the <item> tag around the contents of T is defined as

CREATE VIEW XNODE_item AS
(SELECT ’<item>’ AS s, 0 AS l, 91 AS r
FROM UNIT)

UNION ALL
(SELECT s, l+1 as l, r+1 as r
FROM T)

where UNIT is a table containing a single tuple (which is used
to construct constant tuples in SQL). The resulting width
of each constructed item element is 92 computed as follows:
$p/name/text() has worst case width of 86 plus 2 for each
of @person, <item> and count($a).

4.2 FLWR Expressions
The templates for the basic operators in the previous sec-

tion are defined for single XML forests. This section builds
upon the templates for the XFn operators to define templates
for the FLWR constructs which evaluate the XFn operator
separately for each XF corresponding to a separate envi-
ronment. In what follows, we assume that I, Tx1 , . . . , Txm

represents the sequence of environments [E1, . . . , En] as in
Definition 3.3. The construction is extended to the FLWR
expression e; the pair I, Te then represents the sequence of
forests obtained by evaluating e in [E1, . . . , En]. The re-
maining subsections provide the definitions for the views Te

(inductively on the structure of e).

4.2.1 Functions
Given XFn, an m-ary operator on XF represented by a

relational template QXFn(Te1 , . . . , Tem) (as defined in Sec-
tion 4.1), we define a template

CREATE VIEW TXFn(e1,...,em)(Te1 , . . . , Tem) AS

SELECT s, l + i ∗ wXFn AS l, r + i ∗ wXFn AS r
FROM I, QXFn (

(SELECT s, l− i ∗ we1 , r − i ∗ we1
FROM Te1
WHERE i ∗ we1 ≤ l AND r < (i + 1) ∗ we1),
· · · ,

(SELECT s, l− i ∗ wem , r − i ∗ wem

FROM Tem

WHERE i ∗ wem ≤ l AND r < (i + 1) ∗ wem)
)

where wei are the widths of the template’s inputs and wXFn

is the width of the output. The pair of tables I, TXFn(e1,...,em)

then represents [XFn(t11, . . . , t
1
m), . . . , XFn(tn

1 , . . . , tn
m)].

Example 4.2 Continuing with fragments of our running
example, the <item>e</item> constructor compiles to

CREATE VIEW T_XNODE_item AS
SELECT s, l+i*92 AS l, r+i*92 AS r
FROM I,
(SELECT ’<item>’ AS s, 0 AS l, 91 AS r

FROM UNIT
UNION ALL

SELECT s, l+1 AS l, r+1 AS r
FROM
(SELECT s, l-i*90 AS l, r-i*90 AS r
FROM T_e
WHERE i*90<=l AND r<(i+1)*90

)
)

for we = 90 and wXNode = we +2 = 92, where e is the expres-
sion defining the “partial constructed results” discussed in
Example 4.1, and T_e is the view containing the results of
this expression. Lines 4 to 13 in the SQL code above corre-
spond to the expanded template for the constructor trans-
lation given that example, in which lines 9 to 12 correspond
to expansion of table T.

4.2.2 Assignment
Manipulating the environment is at the core of the trans-

lation of the let x = e in e′ assignment expression: this ex-
pression increases the size of the environment by adding the
binding for x = e before executing e′. Therefore, we first
extend the relational representation of the sequence of en-
vironments. The new environment encoding is defined as
follows:

CREATE VIEW I′ AS SELECT * FROM I

CREATE VIEW T ′ei
AS SELECT * FROM Tei

CREATE VIEW T ′x AS SELECT * FROM Te

We then apply the translation of e′ with respect to this set
of (primed) views I ′,T ′ei

, and T ′x obtaining T ′e′ . Finally, we
define the result as

CREATE VIEW Tlet x=e in e′ AS SELECT * FROM T ′
e′

and wlet x=e in e′ = we′ .

4.2.3 Conditional
Similar to the translation of the assignment, we first de-

fine a representation I ′, T ′e1 , . . . , T ′em
of a subsequence of

[E1, . . . , En] in which each environment satisfies condition
ϕ. The new set of environment indices is defined by

CREATE VIEW I′(Te1 , . . . , Tem) AS
SELECT i
FROM I
WHERE EXISTS Qϕ (

(SELECT s, l− i ∗ we1 , r − i ∗ we1
FROM Te1
WHERE i ∗ we1 ≤ l AND r < (i + 1) ∗ we1),
· · · ,

(SELECT s, l− i ∗ wem , r − i ∗ wek

FROM Tem

WHERE i ∗ wem ≤ l AND r < (i + 1) ∗ wem)
)

where Qϕ is a translation of ϕ and the relations representing
the expressions ei by

CREATE VIEW T ′ei
AS

SELECT s, l, r
FROM Tei , I

′
WHERE i ∗ wei ≤ l AND r < (i + 1) ∗ wei

We use this this representation to define T ′e as

CREATE VIEW Twhere ϕ return e AS SELECT * FROM T ′e

where wwhere ϕ return e = we.

4.2.4 Iteration
We define I ′, T ′e1 , . . . , T ′em

, T ′x to represent the sequence of
environments
�
E1[x = t

l11
1], . . . , E1[x = t

l
k1
1
1], . . . , En[x = t

l1n
n], . . . , En[x = t

lkn
n

n]

�

for [t
l1i
i , . . . , t

l
ki
i

i] = [[e]] Ei, 0 < i ≤ n. We then apply the
translation of the expression e′ on this sequence as required
by the semantics of the for x ∈ e do e′ iterator expression.
The representation is defined as follows:

CREATE VIEW I′(Te) AS
SELECT i ∗ we + r.l AS i
FROM I, ROOTS(Te) r
WHERE i ∗ we ≤ r.l AND r.r < (i + 1)we

CREATE VIEW T ′x(Te) AS a
SELECT s, x.l− i ∗ we + (i ∗ we + r.l) ∗ we AS l,

x.r − i ∗ we + (i ∗ we + r.l) ∗ we AS r
FROM I, Te x, ROOTS(Te) r
WHERE i ∗ we ≤ r.l AND r.r < (i + 1)we

AND r.l ≤ x.l AND x.r ≤ r.r

CREATE VIEW T ′ei
(Tei , Te) AS a

SELECT s, x.l− i ∗ wei + (i ∗ we + r.l) ∗ wei AS l,
x.r − i ∗ wei + (i ∗ we + r.l) ∗ wei AS r

FROM I, Tei x, ROOTS(Te) r
WHERE i ∗ wei ≤ r.l AND r.r < (i + 1)wei

AND i ∗ wei ≤ x.l AND x.r < (i + 1)wei

On this representation we define T ′e′ inductively. The result
of the iterator is then
CREATE VIEW Tfor x∈e do e′ AS SELECT * FROM T ′

e′
where wfor x∈e do e′ = wewe′ . Note that Tfor x∈e do e′ differs
from T ′e′ only in its width (which is adjusted as a result of
the concatenation of the results of the individual iterations
of the for x ∈ e do e′ iterator).

Figure 6 illustrates the four steps involved in the trans-
lation of a for x ∈ e do e′ expression: (1) the translation of
the subexpression e, (2) the extension of the original envi-
ronment, (3) the translation of e′ with respect to this new
environment, and (4) the return to the original environment.

Example 4.3 Continuing with Example 3.4, consider the
first iteration construct in query Q8:

for $p in document("auction.xml")/site/people/person

Below we show the SQL needed to generate I ′ and T ′p, which
encode the variable $p inside the for loop, from the relations
in Figure 5.

CREATE VIEW ROOTS_person AS
SELECT u.s AS s, u.l AS l, u.r AS r
FROM T_person u
WHERE NOT EXISTS (

SELECT *
FROM T_person v
WHERE v.l < u.l AND u.r < v.r)

CREATE VIEW I’ AS
SELECT i*86 + r.l AS i
FROM I, ROOTS_person r
WHERE i*86 <= r.l AND r.r < (i+1)*86

CREATE VIEW T_p’ AS
SELECT s,

l - i*86 + (i*86 + r.l)*86 AS l,
r - i*86 + (i*86 + r.l)*86 AS r

FROM T_person x, ROOTS_person r, I
WHERE i*86 <= r.l AND r.r < (i+1)*86
AND r.l <= x.l AND x.r <= r.r

I Tx1 Txm Te Tefor x∈e do e′

E1 i1 f1
1 fm

1 [t
l11
1 , . . . , t

l
k1
1
1] g

l11
1 @ . . . @g

l
k1
1

1

...
... · · ·

...
1−→

...
...

En in f1
n fm

n [t
l1n
n , . . . , t

lkn
n

n] g
l1n
n @ . . . @g

lkn
n

n

wx1 wxm we wefor x∈e do e′?y2
?y2

?y2
?y2

x?4

I ′ T ′x1 T ′xm
T ′x T ′e′

E1[x = t
l11
1] wei1 + l11 f1

1 fm
1 t

l11
1 g

l11
1

...
...

...
...

...

E1[x = t
l
k1
1
1] wei1 + lk1

1 f1
1 fm

1 t
l
k1
1
1 g

l
k1
1

1

...
... · · ·

...
...

3−→
...

En[x = t
l1n
n] wein + l1n f1

n fm
n t

l1n
n g

l1n
n

...
...

...
...

...

En[x = t
lkn
n

n] wein + lkn
n f1

n fm
n t

lkn
n

n g
lkn
n

n

wx1 wxm wx we′

Figure 6: Translation of “for x ∈ e do e′” in the Environment for x1, . . . , xm.

I′

i

2

24

T ′p
s l r

<person> 174 195
@id 175 178
person0 176 177
<name> 179 182
Jaak Tempesti 180 181
<emailaddress> 183 186
mailto:Tempesti@labs.com 184 185
<phone> 187 190
+0 (873) 14873867 188 189
<homepage> 191 194
http://www.labs.com/~Tempesti 192 193
<person> 2088 2109
@id 2089 2092
person1 2090 2091
<name> 2093 2096
Cong Rosca 2094 2095
<emailaddress> 2097 2100
mailto:Rosca@washington.edu 2098 2099
<phone> 2101 2104
+0 (64) 27711230 2102 2103
<homepage> 2105 2108
http://www.washington.edu/~Rosca 2106 2107

wp = 86

Figure 7: Persons Forming Separate Environments

The relations I ′ and T ′p generated by this SQL are shown in
Figure 7. The two entries in the new index table I ′ corre-
spond to the two roots of the XML forest encoded in Tperson.
Each new value of i, representing a separate environment in-
side the loop, indexes into a non-overlapping interval within
T ′p : i = 2 corresponds to the range [2∗wp, (2+1)∗wp−1] =
[2 ∗ 86, 3 ∗ 86− 1] = [172, 257], while i = 24 corresponds to
[2064, 2149]; these are guaranteed to bracket the intervals
of the corresponding persons in Figure 7.

4.3 Properties of the Translation
Using induction on structure of FLWR expressions, the

above cases yield the correctness proof for the translation.

Proposition 4.4 Let I, Tx1 , . . . , Txm be a representation of
the initial environment E, and let e be a FLWR expres-
sion over x1, . . . , xm. Then I, Te defined by the translation
given in Sections 4.1, 4.2.1, 4.2.2, 4.2.3, and 4.2.4 repre-
sents [[e]] E.

Results relating to the expressive power characterizing the
FLWR expressions as well as the translation described above
are presented in [30].

An additional benefit of being able to translate XQuery
(as defined in Definition 2.2) to SQL (first-order logic with
ordering, range-restricted arithmetic, and counting) is an
automatic guarantee of polynomial time query evaluation
algorithms. In addition, existing relational systems provide
solid foundations for implementation of an XQuery proces-
sor based on this translation.

From an implementation point of view, an essential prop-
erty of the translation is that the values of the interval en-
coding produced during the execution of the I and Te queries
are bounded by a polynomial in the size of the values in the
encoding of the inputs. The degree of the polynomial de-
pends only on the size (depth of nesting) of the expression e.
While the bound on the width of the intervals is a theoreti-
cally satisfactory result, a practical implementation will map
the interval endpoints to a (usually fixed) machine represen-
tation of integers. Using the above property, the translation
can always allocate sufficient number of integer-valued at-
tributes at query compilation time to hold the values of the
left and right endpoints of the intervals at every stage of
evaluation of the given expression.

5. IMPLEMENTATION STRATEGY
To make the XQuery translation practical, we need to ex-

amine if the queries produced by the translation are amena-
ble to efficient relational execution strategies. Indeed, we
find several patterns related to the essential use of order
predicates in the translation that negatively affect perfor-

mance of standard relational systems. Thus, care is needed
in implementing techniques that involve relational execution
of XQuery expressions.

There are two important issues that need to be addressed
in an efficient implementation. The first is the mapping
of XQuery expressions to SQL such that ordering can be
specified in the SQL queries. The second is, of course, the
development of efficient execution strategies of the resulting
queries. We discuss both of these issues in this section.

The maintenance of order in translating XQuery expres-
sions to SQL queries is accomplished, in our approach, by
the introduction of predicates in the SQL queries involving
intervals. These queries can be executed by standard re-
lational query processors, but performance is an issue. In
particular, processing joins that relate tuples via possibly
several integer order conditions , which are frequent in the
translation of basic XML operators, commonly lead to un-
acceptable performance penalty when executed using a re-
lational system. This fact has been recognized in the litera-
ture, and special-purpose operators have been developed to
address these shortcomings [8, 32].

The prototype implementation of our approach follows
a similar path. However, instead of focusing on special-
purpose algorithms for the individual operations, we con-
sider the interaction of such operators with standard re-
lational plan operators. Indeed, many of the basic XQuery
functions can be translated to efficient relational plans with-
out special-purpose operators3.

A distinguishing characteristic of the special-purpose op-
erators introduced below is that they expect their inputs
sorted by the left endpoint (or, alternatively, the right end-
point) of the interval values in the encoding. The operators
also maintain the same ordering in the outputs, usually run-
ning in linear time. This property allows for the creation of
query execution plan fragments that involve a sequence of
linear time operations. While this is possible for most of the
queries that implement the basic operations on XML forests
(cf. Figure 2), when the situation calls for a differently or-
dered representation the cost of reorderings is still O(n log n)
time (versus falling into quadratic time operations, such as
a nested loop joins).

With respect to efficient implementation of the result-
ing SQL queries, we develop new physical plan operators
(e.g., tree merge-join) and we ensure that the generated SQL
queries are amenable to optimization using these new opera-
tors. The main thrust of our approach is to be able to create
plans that employ linear (merge) operations that take ad-
vantage of the order of the relational representation (which
often coincides with the document order) while reusing all
the remaining physical operators already developed for re-
lational engines.

Example 5.1 Consider the query that defines the ROOTS

operation, given in Section 4.1. A generic relational system
takes O(n2) time in worst case as the NOT EXISTS clause
cannot be resolved due to the presence of two order selection
conditions.

This query can be implemented by an efficient plan by
adding the operation described below to the repertoire of
physical operators of the relational system.

3This is why we do not have to discuss the translations for
all the primitive operations in Figure 2.

Algorithm 5.2 (Roots Extraction) Given the precondi-
tion that the tuples in the input Iterator T are ordered by
the l value.

Iterator Roots(Iterator T) {
int max=0; // distance covered by current root
Tuple TT; // tuples for environment and tuples

Tuple fetch() {
while (true) {
TT = T.fetch();
// no more tuples
if (TT==null) return END-OF-INPUT;
// next root?
if (TT.l>max) {

max = TT.r;
return TT;

} // otherwise it’s a child; loop
}

}
}

The algorithm runs in time O(n) and space O(1) in the
number of tuples on the input iterator.

Another important primitive operation for which a spe-
cial-purpose operator is needed is the structural comparison
that compares sets of tuples that encode two forests to de-
cide their relative (structural) ordering. Although deep com-
parison can be expressed in SQL with counting, the result-
ing expression is impractical enough to justify a primitive
physical operator.

Algorithm 5.3 (Deep Comparison) Given two iterators
that produce tuples sorted by their l values, the following
procedure decides which of the iterators contains the smaller
tree (in structural order).

Comparison DeepCompare(Iterator L,R) {
// returns LESS, EQUAL, or GREATER
// depending on how forests L and R compare

Stack ST; // Stack of pairs (lr,rr) of integers
Tuple TL,TR; // Holders of (s,l,r) triples

while (true) {
// fetch next pair of tuples
TL = L.fetch(); TR = R.fetch();
// no more tuples
if (TR==null)&&(TR==NULL) return EQUAL;
// ‘‘smaller’’ forest done
if (TL==null) return LESS;
if (TR==null) return GREATER;
// check if the nodes represented by these
// two tuples fall in the same place in the
// two forests
while (ST.nonEmpty())&&

((TL.r<ST.top().lr)||(TR.r<ST.top().rr)) {
// check for a ‘‘missing sibling’’
if (TL.r>ST.top().lr) return LESS;
if (TR.r>ST.top().rr) return GREATER;
// otherwise the nodes match so far
s.pop();

} // positions match--order by label:
if (TL.s<TR.s) return LESS;
if (TL.s>TR.s) return GREATER;
// everything matches so far, so repeat
ST.push(TL.r,TR.r)

}
}

The algorithm runs in time linear in the size of the XML
forests and the required stack size is bounded by the depth
of the encoded forests.

Additional physical operators added to the relational sys-
tem to support evaluation of path navigation and structural
equality are, however, not sufficient for efficient execution
of XQuery expressions. To achieve performance compara-
ble to that of relational systems, the nested-loop evaluation
of FLWR “for x ∈ e do e′” expressions must be avoided (as
demonstrated by experiments in Section 6).

The simplest example of this situation may look as follows:

for x ∈ e1(z) do for y ∈ e2(z) dowhere x = y return e,

where the expression e2 does not depend on the variable
x. In this situation our translation recognizes that the two
loops can be executed independently using only data sup-
plied by the (encoding of the) enclosing environment to
supply the value for the variable(s) z. Applying the trans-
lation for the FLWR iterator on the encoding of an input
environment, I, Tz, independently yields two environments:
Ix, T x

z , T x
x and Iy, T y

z , T y
y (superscripted by the respective

variable name introduced by the iterator). It is easy to see
that the Ix, T x

x and Iy, T y
y components of the environments

contain sufficient information to resolve the conditional in
the expression. While this again can be done by a SQL
query, an efficient approach requires sorting the environ-
ment indices Ix and Iy with respect to the structural order-
ing of the forests represented in the T x

x and T y
y tables, re-

spectively. We utilize the efficient algorithm for determining
structural order of XML forests here. The results can then
be merged using the structural comparison in a single pass
(similar to a relational merge-join algorithm). The result
of this operation is a set of pairs of matching environment
indices. These are then used to construct the environment
Ixy, T xy

z , T xy
x , T xy

y needed as an input to the translation of
the expression e. Note that this environment is identical to
the environment we would have obtained using the nested-
loop strategy; thus all the properties of the translation, in
particular the document ordering, are preserved as required
by the semantics of XQuery.

While the above example exposes the main idea behind
our merge-join approach to executing FLWR expressions,
the actual transformation is more involved. Consider again
(a fragment of) our running example:

for $p in document("auction.xml")/site/people/person
let $a := (for $t in document("auction.xml")/site/

closed_auctions/closed_auction
where $t/buyer/@person = $p/@id
return $t)

...

While the two for loops in this example do not follow the
above pattern exactly, our translation still recognizes that
the inner loop can be executed independently of the outer
loop and produces a relational execution plan that follows
the above approach. Moreover, the handling of environ-
ments in the translation of the inner loop and the assign-
ment of its result to the variable $a automatically yields
the outer join-like behavior of the outer loop (i.e., persons
appear in the output even if they haven’t participated as a
buyer in any closed_auctions)4.
4Full details of the transformations are omitted here due to
space restrictions.

Note that while we mainly focus on operators to sup-
port relational queries obtained by translating XQueries, the
special-purpose operators developed here are relational op-
erators that correspond to patterns in SQL queries (mainly
relating to order of values present in the answers to the
queries). Such patterns are present in many other situa-
tions where ordering of values is essential, e.g., in temporal
queries [26, 29].

6. EXPERIMENTAL RESULTS
In this section, we present the results of experiments that

demonstrate the value of the dynamic interval approach de-
scribed in this paper. Although we would ideally use an
existing relational database system for this purpose, as de-
scribed in Section 5 and in other literature, existing com-
mercial relational engines are not tuned to efficiently handle
interval processing. Instead, we demonstrate our approach
using a prototype relational engine, written in Java, which
was extended with the specialized relational operators de-
scribed in Section 5. We claim that the positive performance
results obtained using on this prototype are easily transfer-
able to a similarly enhanced commercial relational system.

We will refer to our prototype as DI (for Dynamic In-
tervals) for the remainder of this section. XQueries were
translated to a relational algebra-style query plan which
implements the SQL query generated using the translation
rules detailed in Section 4. This plan was then executed by
the DI prototype. We must stress that these translations
were generic; although our query plans utilize our proposed
specialized operators where appropriate, no schema-based
rewriting or cost-based optimization was performed.

We present here a comparison of the performance of the
DI prototype with several XQuery processors and native
XML database systems, including: Galax v0.2.0 from Lu-
cent Technologies Inc. [1]; IPSI-XQ v1.1.1b from Fraunhofer
IPSI [2]; Kweelt from Sourceforge [3]; QuiP from Software
AG [4]5; and X-Hive/DB v4.0 from X-Hive Corporation [5].

We have used XML documents generated by the XMark
benchmark [6] with five scale factors, 0.001 (113kB), 0.01
(1.11MB), 0.1 (11.1MB), 1 (111MB), and 10 (1.09GB). Ex-
periments were run on a dual-1.0GHz Pentium III system
with 1GB RAM running RedHat Linux 7.1. All numbers
reported are the average of the combined user and system
CPU times over five executions. Any query evaluation that
did not finish within two hours of CPU time was terminated
(denoted “DNF” for “Did Not Finish” in charts). Our query
timings do not include any initial document load times for
those systems that required it. Since indices are not sup-
ported in several of the systems, for fairness, they were not
used in these experiments.

6.1 Result Construction
Our first experiment tests the ability of a system to re-

construct large portions of the original document, for which
we used XMark query Q13:

for $i in document("auction.xml")/site
/regions/australia/item

return
<item name="{$i/name/text()}"> $i/description </item>

5Note that in our experiments QuiP read documents from
the file system, not from a Tamino database.

Timing results for Q13 are shown in Figure 8. DI and X-Hive

XMark scale factor
System 0.001 0.01 0.1 1 10

Kweelt 1.3 2.4 9.0 94.6 IM
IPSI-XQ 2.4 3.3 6.8 45.7 IM
Galax 0.1 0.6 6.4 106 IM
QuiP 0.6 5.8 62.7 IM IM
X-Hive(v3) 4.1 4.1 5.6 16.2 164
X-Hive 4.3 4.4 5.0 9.4 51.6
DI 0.4 0.7 2.4 18.2 276

Figure 8: Q13 Timings (CPU sec)

are the only systems that scale up to large database sizes
(almost linearly). Although our system is based on a generic
shredding of the document into relations, it is competitive
with a commercial system optimized for processing XML
documents. The other systems were not able to handle large
documents. The failures of Kweelt, IPSI-XQ, Galax, and
QuiP was due to memory demands exceeding the capacity
of the experimental system, not CPU consumption. We use
‘IM’ to denote this situation in the table.

6.2 A Single Join Query
Our main experiment used query Q8 from the XMark

benchmark (with a minor modification):

for $p in document("auction.xml")/site/people/person
let $a := for $t in document("auction.xml")/site

/closed_auctions/closed_auction
where $t/buyer/@person = $p/@id
return $t

where exists($a)
return <item person="{$p/name/text()}">count($a)</item>

The query is analogous to a relational join between two ta-
bles, followed by a "group by" operation on the columns of
one of the tables. Our modification essentially converts an
outer- to an inner-join, which minimizes the size of the re-
sults and better isolates the time spent evaluating the join.
We created two different query plans for evaluating Q8 with
the DI system; the only difference between them was that
where one plan used a nested-loop join operator, the other
used a merge-sort join and then sorted by the dynamic in-
tervals to re-establish document order.

XMark scale factor
System 0.001 0.01 0.1 1 10

Kweelt 2.6 102 DNF DNF DNF
IPSI-XQ 2.8 12.2 784 DNF DNF
Galax 0.1 3.3 285 DNF DNF
QuiP 13.6 DNF DNF DNF DNF
X-Hive(v3) 4.3 6.9 211 DNF DNF
X-Hive 4.4 5.3 80 DNF DNF
DI-NLJ 2.5 4.7 263 DNF DNF
DI-MSJ 2.3 2.9 6.7 47.3 866

Figure 9: Q8 Timings (CPU sec)

Figure 9 shows timings for Q8 from the five other XQuery
systems as well as from our prototype using the two different
join plans.

All of the other systems scaled similar to DI-NLJ, which is
a quadratic query plan that fails to evaluate the 111MB doc-

ument within the two hour time limit. In contrast, DI-MSJ
easily evaluates Q8 on the 1GB file. Figure 10 shows a break-
down of the CPU time for DI-NLJ and DI-MSJ among the
plan components (path extraction, evaluation of the join,
and construction of results). While the join operator ac-
counts for almost all of the cost of the nested-loop evaluation
of the 11MB document, even for the largest document the
MSJ plan incurred most of its cost not on the join, but on
evaluating path expressions. Because paths were evaluated
using sequential scans of the relation, this cost could be sig-
nificantly reduced in most cases by the use of indices. These
results illustrate the importance of providing an alternative
to nested-loop evaluation for nested iteration constructs.

XMark scale factor
System Component 0.001 0.01 0.1 1 10

Paths 32% 25% 1% <1%
DI-NLJ Join 23% 49% 98% >99%

Construction 45% 26% 1% <1%
Paths 35% 41% 61% 71% 68%

DI-MSJ Join 16% 16% 12% 13% 27%
Construction 49% 43% 27% 15% 5%

Figure 10: Q8 Timing Breakdown

Plans DI-NLJ and DI-MSJ were written using join opera-
tors that perform structural equality comparisons described
in Section 5. However, in this query the join keys are sim-
ple attribute values, so our specialized join operators func-
tion equivalent to traditional relational NLJ and MSJ oper-
ators. In fact, in any case where either the XQuery itself or
schematic information allows us to deduce a fixed represen-
tation for the join keys, we can use traditional relational join
operators to evaluate the join. In a separate experiment (not
shown for space reasons), we replaced the attribute join keys
with elements containing trees of varying depth and fanout
and verified that the costs of structural-equality join oper-
ators grow linearly with the number of nodes in the join
key. Several of the other systems we tested failed in this
experiment because they were not able to correctly test for
structural equality of XML documents.

6.3 A Multiple Join Query
Our final experiment uses (a similarly modified) Q9 from

the XMark benchmark:

for $p in document("auction.xml")/site/people/person
let $a := for $t in document("auction.xml")/site

/closed_auctions/closed_auction
let $n := for $t2 in document("auction.xml")

/site/regions/europe/item
where $t/itemref/@item = $t2/@id
return $t2

where $t/buyer/@person = $p/@id
and exists($n)
return <item> $n/name/text() </item>

where exists($a)
return <person name="{$p/name/text()}"> $a </person>

Unlike Q8, whose aggregate function actually permits vio-
lation of document order for the inner FLWR expression,
Q9 places document order constraints on all three levels of
iteration.

An interesting feature of this query is that although it
has one more join than Q8, the join between auctions and

XMark scale factor
System 0.001 0.01 0.1 1 10

Kweelt 11.9 DNF DNF DNF DNF
IPSI-XQ 3.3 14.9 1033 DNF DNF
Galax 0.4 170 DNF DNF DNF
QuiP 141 DNF DNF DNF DNF
X-Hive(v3) 4.2 7.3 256 DNF DNF
X-Hive 4.4 4.8 94.5 DNF DNF
DI-NLJ 3.5 5.5 123 DNF DNF
DI-MSJ 3.4 4.2 9.7 69.6 1178

Figure 11: Q9 Timings (CPU sec)

items is a highly selective foreign-key-like join. Figure 11
shows timing results for Q9. As with Q8, we tested our
own system using both a NLJ-based plan and a MSJ-based
plan. Kweelt, Galax, and QuiP exhibit timings for Q9 much
worse than for Q8. In contrast, IPSI-XQ, X-Hive, DI-NLJ,
and DI-MSJ all scale similar to their Q8 performance. This
experiment demonstrates that the performance advantage
of our approach carries over to arbitrary nesting of FLWR
loops.

7. RELATED WORK
The use of an interval encoding for dealing with hierar-

chical queries in the relational world is well known [14]. The
representation has been used, in the area of document man-
agement, for specifying containment in text databases [17,
18] and for manipulating SGML data in a relational sys-
tem [11]. More recently, the performance behavior of in-
terval processing within relational systems has been studied
in the context of XML containment queries [8, 32]. The
approaches, however, do not address dynamic aspects of
XQuery evaluation that are linked to nested iteration (for-
loops) and to creation of new documents.

Other relational encodings of XML documents to relations
have been studied [21]. Recently, encodings that preserve
document order have been investigated [27] in the context
of the XPath fragment of XQuery. However, none of the
approaches addresses mapping of FLWR expressions to re-
lational queries.

The problem of mapping XPath queries to SQL queries
over the interval encoding has been studied in [20, 31]. The
approaches deal with data retrieval only and do not address
evaluation of more complex XQuery expressions.

The only translation that considers FLWR expressions
over arbitrary XML documents was proposed in [22]. How-
ever, it uses an edge-based encoding of XML documents
and relies on a transitive closure relation to encode doc-
ument hierarchy with a potential O(n2 log n) bits storage
cost (compared to the O(n log n) bits storage cost needed
by our approach).

The edge-based encoding, however, forces the translation
to use multiple SQL expressions connected via auxiliary
code in a general-purpose programming language (or non
first-order features present in the upcoming SQL standard,
since transitive closure cannot be maintained using first-
order queries). This potentially limits the opportunities for
query optimization. In contrast, our approach produces
a single SQL statement for arbitrarily-nested FLWR ex-
pressions, including the construction of new nested docu-
ments, possibly in the scope of other FLWR expressions,

while seamlessly preserving the document order required by
XQuery semantics.

Also, since the edge-based encoding does not explicitly
capture information about document order, the results of
the translation are limited to nested-loop based operations
in an attempt to preserve document order [22]. Since our
approach captures and manipulates information about doc-
ument order explicitly, the generated relational queries are
not limited to such inferior evaluation strategies. Indeed, ex-
perimental results presented in Section 6 corroborate that
the preferable algorithms enabled by our translation yield
performance advantage of several orders of magnitude. Note
that the performance boost is solely due to our ability to use
of better algorithms and is not the result of extensive tuning
of the experimental system6.

The techniques proposed in this paper (and in [22]) tar-
get arbitrary XML documents. Thus, our techniques do
not rely upon the availability of fixed (essentially relational)
schematic information that is essential to approaches for
processing XQueries over XML data “published” from re-
lational databases [13, 20, 24].

Finally, recent work on physical operators provides effi-
cient support of various fragments of XPath [8, 12, 32]. Our
approach can utilize these operators in the query plans. We
also extend the repertoire of such operators by introduc-
ing an efficient implementation for structural comparisons
of XML forests encoded using the interval representation.
Such an operation is essential to support merge-join evalu-
ation strategies in XQuery.

8. CONCLUSION
We have introduced dynamic intervals, an encoding based

on an interval representation of XML documents that sup-
ports predictably good query plans for executing arbitrarily
nested XQuery FLWR expressions.

We have presented a translation of XQuery expressions
drawn from a comprehensive subset of XQuery to single
SQL statements. This translation fully supports arbitrary
combinations and nesting of basic functions, XPath expres-
sions and axes, element constructors, structural equality,
and nested FLWR expressions, sorting, etc., without the
need for an escape to a general-purpose programming lan-
guage. The plans produced by the translation faithfully cap-
ture the semantics of XQuery and, in particular, maintain
the required document order.

In addition, our analysis and experimental results show
that the dynamic interval-based plans scale (almost) lin-
early, enabled by merge-join evaluation strategies. Experi-
mental results presented in the paper show the performance
advantage gained by our approach over quadratic behavior
exhibited by a number of other XQuery systems.

While the XQuery translation described in this paper tar-
gets a relational implementation (in particular based on ex-
tending existing relational engines), many of the proposed
techniques and strategies can also be used within the context
of native XML systems.

6Comprehensive comparison with an implementation based
on edge encoding and techniques proposed in [22] are beyond
the limits of the current paper, but and will be the subject
of future work.

Acknowledgment
We would like to thank H. V. Jagadish and Laurent Mignet
for their comments on earlier versions of this document. The
authors gratefully acknowledge the Natural Sciences and En-
gineering Research Council of Canada for support of this
research.

9. REFERENCES
[1] Galax. Available from http://db.bell-labs.com/galax/.

[2] IPSI-XQ - the XQuery demonstrator. Available from
http://ipsi.fhg.de/oasys/projects/ipsi-xq/.

[3] Kweelt. Available from http://kweelt.sourceforge.net.

[4] QuiP. Available from http://developer.softwareag.com/
tamino/quip/.

[5] X-Hive/DB. Available from http://www.x-hive.com.

[6] XMark – an XML benchmark project. Available from
http://www.xml-benchmark.org.

[7] V. Aguilera, S. Cluet, P. Veltri, D. Vodislav, and
F. Wattez. Querying XML documents in Xyleme. In
Proc. ACM SIGIR Workshop on XML and Informa-
tion Retrieval, 2000.

[8] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel,
D. Srivastava, and Y. Wu. Structural joins: A primitive
for efficient XML query pattern matching. In Proc. 18th
Intl. Conf. on Data Engineering, 2002.

[9] D. Barbosa, A. Barta, A. O. Mendelzon, G. A. Mi-
haila, F. Rizzolo, and P. Rodriguez-Guianolli. ToX -
The Toronto XML Engine. In Proc. Workshop on In-
formation Integration on the Web, pages 66–73, 2001.

[10] S. Boag, D. Chamberlin, D. Florescu, J. Robie,
J. Simeon, and M. Stefanescu. XQuery 1.0: An XML
Query Language. Technical report, W3C, 2001.

[11] L. J. Brown, M. P. Consens, I. J. Davis, C. R. Palmer,
and F. W. Tompa. Structured Text ADT for object-
relational databases. Theory and Practice of Object Sys-
tems, 4(4):227–244, 1998.

[12] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: optimal XML pattern matching. In Proc. SIG-
MOD Conference, pages 310–321, 2002.

[13] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J.
Shekita, and S. N. Subramanian. XPERANTO: Mid-
dleware for Publishing Object-Relational Data as XML
Documents. In Proc. 26th Intl. Conf. on Very Large
Data Bases, pages 646–648, 2000.

[14] J. Celko. Trees, Databases and SQL. DBMS, 7(10):48–
57, 1994.

[15] Y. Chen, G. Mihaila, S. Padmanabhan, and R. Bor-
dawekar. Labeling Your XML. (preliminary version pre-
sented at CASCON’02 Conf.), October 2002.

[16] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic
XML Trees. In Proc. 21st PODS Symposium, pages
271–281, 2002.

[17] M. P. Consens and T. Milo. Optimizing queries on files.
In Proc. SIGMOD Conference, pages 301–312, 1994.

[18] M. P. Consens and T. Milo. Algebras for querying text
regions. In Proc. 14th PODS Symposium, pages 11–22,
1995.

[19] P. Fankhauser, M. Fernandez, A. Malhotra, M. Rys,
J. Simeon, and P. Wadler. XQuery 1.0 Formal Seman-
tics. Technical report, W3C, 2001.

[20] T. Fiebig and G. Moerkotte. Evaluating Queries on
Structure with eXtended Access Support Relations. In
Proc. WebDB Workshop, volume 1997 of Lecture Notes
in Computer Science, pages 125–136, 2000.

[21] D. Florescu and D. Kossmann. Storing and Querying
XML Data using an RDMBS. IEEE Data Engineering
Bulletin, 22(3):27–34, 1999.

[22] I. Manolescu, D. Florescu, and D. Kossmann. Answer-
ing XML Queries over Heterogenous Data Sources. In
Proc. 27th Intl. Conf. on Very Large Data Bases, pages
241–250, 2001.

[23] J. McHugh, S. Abiteboul, R. Goldman, D. Quass,
and J. Widom. Lore: a database management system
for semistructured data. SIGMOD Record, 26(3):54–66,
1997.

[24] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J.
Carey, B. G. Lindsay, H. Pirahesh, and B. Reinwald.
Efficiently Publishing Relational Data as XML Docu-
ments. In Proc. 26th Intl. Conf. on Very Large Data
Bases, pages 65–76, 2000.

[25] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational
Databases for Querying XML Documents: Limitations
and Opportunities. In Proc. 25th Intl. Conf. on Very
Large Data Bases, pages 302–314, 1999.

[26] R. T. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Clif-
ford, C. E. Dyreson, R. Elmasri, F. Grandi, C. S.
Jensen, W. Kafer, N. Kline, K. Kulkarni, T. Y. C. Le-
ung, N. Lorentzos, J. F. Roddick, A. Segev, M. D. Soo,
and S. A. Sripada. TSQL2 language specification. SIG-
MOD Record, 23(1):65–86, Mar. 1994.

[27] I. Tatarinov, S. Viglas, K. S. Beyer, J. Shanmugasun-
daram, E. J. Shekita, and C. Zhang. Storing and Query-
ing Ordered XML Using a Relational Database System.
In Proc. SIGMOD Conference, pages 204–215, 2002.

[28] F. Tian, D. DeWitt, J. Chen, and C. Zhang. The design
and performance evaluation of alternative XML storage
strategies. Technical report, University of Wisconsin,
2002.

[29] D. Toman. Point-based temporal extensions of SQL.
In Proc. Intl. Conf. on Deductive and Object-Oriented
Databases, pages 103–121, 1997.

[30] D. Toman and G. E. Weddell. Querying XML: On the
Utility of Interval Encoding. Technical report, Univer-
sity of Waterloo, 2002.

[31] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Ue-
mura. XRel: A Path-Based Approach to Storage
and Retrieval of XML Documents Using Relational
Databases. ACM Transactions on Internet Technology,
1:110–141, 2001.

[32] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and
G. Lohman. On Supporting Containment Queries in
Relational Database Management Systems. In Proc.
SIGMOD Conference, pages 425–436, 2001.

