
Introduction to Domain Theory

and Denotational Semantics

Programming Languages CS442

David Toman

School of Computer Science
University of Waterloo

David Toman (University of Waterloo) Intro to Domain Theory 1 / 17



What is the Problem?

• What should be the semantics of the while loop?

[[while E do C od ]] =
λs.if [[E ]]s then [[while E do C od ]]([[C]]s) else s

⇒ fine for operational semantics

⇒ but what is the true meaning?

Idea
We define [[while E do C od ]] = f where f : Store⊥ → Store⊥ is an
appropriate solution to the equation

f = if [[E ]]s then f ([[C]]s) else s

David Toman (University of Waterloo) Intro to Domain Theory 3 / 17



Examples and Desiderata

• Example (factorial):

f = λn. if n = 0 then 1 else n ∗ (f (n − 1))

• Example:
g = λn. if n = 0 then 1 else g (n + 1)

• Questions:
1 Do recursive equations always have a solution?

2 Do they have a unique solution?

⇒ if not, how do we pick the right one?

3 Does such a solution correspond to the operational definition?

David Toman (University of Waterloo) Intro to Domain Theory 4 / 17



Solution Idea
Idea
Define the graph of the function by iterating the associated functional.

⇒ successive iterations = better approximations

⇒ limit of the iterations = solution

Example
• Functional for the factorial function:

F = λf .λn. if n = 0 then 1 else n ∗ (f (n − 1))

• Approximations:

f0 = {} f1 = {(0, 1)} f2 = {(0, 1), (1, 1)}
f3 = {(0, 1), (1, 1), (2, 2)} f4 = {(0, 1), (1, 1), (2, 2), (3, 6)} . . .

• Solution: f =
⋃

i≥0 fi

David Toman (University of Waterloo) Intro to Domain Theory 5 / 17



Partial Orders and CPOs
How do we guarantee that the iteration-limit trick works?

Idea
Define structures where the existence of solutions is guaranteed.

• (D,≤) is a partial order if for all a, b, c ∈ D we have

a ≤ a, a ≤ b ∧ b ≤ a → a = b, a ≤ b ∧ b ≤ c → a ≤ c

• ⊥ is a least element of (D,≤) if ⊥ ≤ a for all a ∈ D

• C ⊆ D is a chain if a ≤ b or b ≤ a for all a, b ∈ C

•
⊔

X is a least upper bound of X ⊆ D if

(1) x ≤
⊔

X for all x ∈ X , and
(2) for all d ∈ D, if x ≤ d for all x ∈ X then

⊔
X ≤ d

David Toman (University of Waterloo) Intro to Domain Theory 6 / 17



Partial Orders and CPOs (cont.)

Definition (Complete Partial Order)
A partial order (D,≤) is a (pointed) CPO if (it has a least element and)
each chain C ⊆ D there is a

⊔
C ∈ D.

Examples:

1 flat domains are CPOs (with discrete order):

⇒ booleans, integers (note the different order!), . . .

2 the powerset is a pointed CPO

⇒ ordered by set inclusion

David Toman (University of Waterloo) Intro to Domain Theory 7 / 17



Functions on CPOs

Idea
values = elements of CPOs (ordered the their definedness)

programs = functions between CPOs

What functions do we consider?

Example

halts = λx . if x 6= ⊥ then true else false

Let f : int → int and n : int. What does halts(f (n)) do?

Definition
A function f : D → E is monotonic if

a ≤D b → f (a) ≤E f (b) for all a, b ∈ D

David Toman (University of Waterloo) Intro to Domain Theory 8 / 17



Functions on CPOs (cont.)

Is monotonicity quite enough? NO!

Idea
We want to be able to define the result of an application of a function
on a limit of approximations by a limit of applying the function on the
approximations.

Definition (Continuity)
A function f : D → E is continuous if

f
(⊔

X
)

=
⊔
{f (x) | x ∈ X}

for all chains X ⊆ D.

David Toman (University of Waterloo) Intro to Domain Theory 9 / 17



The Function Space CPO

We are NOT approximating values but functions
⇒ how do we take least upper bounds of functions?

Idea
We arrange functions into a CPO ordered by their definedness!

Definition (Function Space)
A → B is the set of all continuous functions between CPOs A and B;
partially ordered as follows:

f ≤A→B g ⇐⇒ ∀a ∈ A.f (a) ≤B g(a)

⇒ we need to show that A → B is a CPO,

⇒ and that abstraction/application are continuous
this is important so that functionals are continuous!!

David Toman (University of Waterloo) Intro to Domain Theory 10 / 17



Solution to Recursive Functions

Theorem
Let D be a pointed CPO and F : D → D a continuous function. Then
the least fixed point of F exists and is defined as

fix F =
⊔
{F i(⊥) | i ≥ 0}

The meaning of a definition of the form f = F (f ) is fix F .

and we still need to show:

1 fix F is indeed the least fixed point, i.e., fix F = F (fix F )

2 fix F matches the operational semantics

David Toman (University of Waterloo) Intro to Domain Theory 11 / 17



More Compound Domains

• Discrete domains = trivial CPOs

• We can construct complex CPOs from simple ones
• the lifting D⊥
• the product D × E
• the sum D + E
• the function space D → E

⇒ the set of all continuous functions

• the associated operations are continuous functions

Theorem
Any operation built using functional notation is a continuous function.

David Toman (University of Waterloo) Intro to Domain Theory 12 / 17



Can Domains be Defined Recursively?

• domain constructors ⇒ more complex domains

⇒ sufficient to interpret PCF (=simply typed λ-calculus+rec )

• so far only stratified types are allowed!!

⇒ this might be insufficient for

1 recursively defined types, e.g., lists, trees, . . . :

αlist = nil + (α× αlist)
αtree = α + (αtree× αtree)

2 self-applications (procedures-as-parameters, untyped λ-calculus)

D = D → D

• we try the approximation-n-limits approach again. . .

David Toman (University of Waterloo) Intro to Domain Theory 14 / 17



How do we Order Domains?

Idea
Smaller domains can be embedded into larger ones.

Definition (Embedding-projection pair)
Continuous functions e : D → E and p : E → D form an
embedding-projection pair if

p ◦ e = idD e ◦ p ≤E idE

We use the body of recursive type equation, F , to construct:

D0

p0

�
e0

F (D0)
p1

�
e1

F 2(D0)
p2

�
e2

F 3(D0)
p3

�
e3

. . .
pk

�
ek

F k+1(D0)
pk+1

�
ek+1

. . .

⇒ what is D0? ⇒ the (ei , pi) pairs?

David Toman (University of Waterloo) Intro to Domain Theory 15 / 17



Inverse Limit Construction

• Given a retraction sequence

D0

p0

�
e0

F (D0)
p1

�
e1

F 2(D0)
p2

�
e2

F 3(D0)
p3

�
e3

. . .
pk

�
ek

F k+1(D0)
pk+1

�
ek+1

. . .

how do we construct the limit? It better be a CPO!

and taking a directed limit (essentially union) doesn’t work

• Inverse limit (co-limit) construction:

D∞ = {(a0, a1, . . .) | ai ∈ F i(D0), xi = pi(xi+1)}

⇒ does D∞ = F (D∞) hold? No, but they’re isomorphic!

David Toman (University of Waterloo) Intro to Domain Theory 16 / 17



Summary

• Fixpoint semantics gives a precise mathematical understanding of
loops and recursion.

• Continuity is essential to understand how infinite objects can be
approximated by finite programs.

• The CPO machinery pays off when we look on higher-order
programming languages.

⇒ for integer functions: subsets of graphs approach works

⇒ for higher-order functions it doesn’t

• The approximation approach works for recursive types (e.g., lists)

⇒ this needs inverse limit construction to get CPOs.

David Toman (University of Waterloo) Intro to Domain Theory 17 / 17


	Recursively Defined Functions
	Recursive Types

