

Introduction to Domain Theory and Denotational Semantics

Programming Languages CS442

David Toman

School of Computer Science
University of Waterloo

What is the Problem?

- What should be the semantics of the **while** loop?

$\llbracket \text{while } E \text{ do } C \text{ od} \rrbracket =$
 $\underline{\lambda s. \text{if } \llbracket E \rrbracket s \text{ then } \llbracket \text{while } E \text{ do } C \text{ od} \rrbracket(\llbracket C \rrbracket s) \text{ else } s}$

⇒ fine for *operational semantics*
⇒ but what is the true meaning?

Idea

We define $\llbracket \text{while } E \text{ do } C \text{ od} \rrbracket = f$ where $f : \text{Store}_{\perp} \rightarrow \text{Store}_{\perp}$ is an appropriate solution to the equation

$$f = \text{if } \llbracket E \rrbracket s \text{ then } f(\llbracket C \rrbracket s) \text{ else } s$$

Examples and Desiderata

- Example (factorial):

$$f = \lambda n. \mathbf{if}\ n = 0 \mathbf{then}\ 1 \mathbf{else}\ n * (f\ (n - 1))$$

- Example:

$$g = \lambda n. \mathbf{if}\ n = 0 \mathbf{then}\ 1 \mathbf{else}\ g\ (n + 1)$$

- Questions:

- ① Do recursive equations always have a solution?
- ② Do they have a *unique* solution?
⇒ if not, how do we pick the *right* one?
- ③ Does such a solution correspond to the *operational definition*?

Solution Idea

Idea

Define the graph of the function by iterating the associated functional.

- ⇒ successive iterations = better approximations
- ⇒ limit of the iterations = solution

Example

- Functional for the *factorial* function:

$$F = \lambda f. \lambda n. \mathbf{if} \ n = 0 \ \mathbf{then} \ 1 \ \mathbf{else} \ n * (f \ (n - 1))$$

- Approximations:

$$f_0 = \{\} \quad f_1 = \{(0, 1)\} \quad f_2 = \{(0, 1), (1, 1)\}$$

$$f_3 = \{(0, 1), (1, 1), (2, 2)\} \quad f_4 = \{(0, 1), (1, 1), (2, 2), (3, 6)\} \dots$$

- Solution: $f = \bigcup_{i \geq 0} f_i$

Partial Orders and CPOs

How do we guarantee that the *iteration-limit* trick works?

Idea

Define structures where the existence of solutions is guaranteed.

- (D, \leq) is a *partial order* if for all $a, b, c \in D$ we have

$$a \leq a, \quad a \leq b \wedge b \leq a \rightarrow a = b, \quad a \leq b \wedge b \leq c \rightarrow a \leq c$$

- \perp is a *least element* of (D, \leq) if $\perp \leq a$ for all $a \in D$
- $C \subseteq D$ is a *chain* if $a \leq b$ or $b \leq a$ for all $a, b \in C$
- $\sqcup X$ is a *least upper bound* of $X \subseteq D$ if
 - (1) $x \leq \sqcup X$ for all $x \in X$, and
 - (2) for all $d \in D$, if $x \leq d$ for all $x \in X$ then $\sqcup X \leq d$

Partial Orders and CPOs (cont.)

Definition (Complete Partial Order)

A partial order (D, \leq) is a (pointed) CPO if (it has a least element and) each chain $C \subseteq D$ there is a $\sqcup C \in D$.

Examples:

- ① *flat* domains are CPOs (with discrete order):
⇒ booleans, integers (note the *different* order!), ...
- ② the *powerset* is a pointed CPO
⇒ ordered by *set inclusion*

Functions on CPOs

Idea

values = elements of CPOs (ordered by their definedness)

programs = functions between CPOs

What functions do we consider?

Example

$halts = \lambda x. \text{if } x \neq \perp \text{ then true else false}$

Let $f : \text{int} \rightarrow \text{int}$ and $n : \text{int}$. What does $halts(f(n))$ do?

Definition

A function $f : D \rightarrow E$ is **monotonic** if

$a \leq_D b \rightarrow f(a) \leq_E f(b)$ for all $a, b \in D$

Functions on CPOs (cont.)

Is monotonicity quite enough? NO!

Idea

We want to be able to define the *result of an application of a function on a limit of approximations* by *a limit of applying the function on the approximations*.

Definition (Continuity)

A function $f : D \rightarrow E$ is **continuous** if

$$f\left(\bigsqcup X\right) = \bigsqcup\{f(x) \mid x \in X\}$$

for all chains $X \subseteq D$.

The Function Space CPO

We are NOT approximating values but *functions*

⇒ how do we take *least upper bounds of functions*?

Idea

We arrange *functions* into a CPO ordered by their **definedness**!

Definition (Function Space)

$A \rightarrow B$ is the set of all continuous functions between CPOs A and B ;
partially ordered as follows:

$$f \leq_{A \rightarrow B} g \iff \forall a \in A. f(a) \leq_B g(a)$$

- ⇒ we need to show that $A \rightarrow B$ is a CPO,
- ⇒ and that abstraction/application are continuous
 - this is important so that *functionals* are continuous!!

Solution to Recursive Functions

Theorem

Let D be a pointed CPO and $F : D \rightarrow D$ a continuous function. Then the *least fixed point of F* exists and is defined as

$$\text{fix } F = \bigsqcup \{F^i(\perp) \mid i \geq 0\}$$

The meaning of a definition of the form $f = F(f)$ is $\text{fix } F$.

and we still need to show:

- 1 $\text{fix } F$ is indeed the least fixed point, i.e., $\text{fix } F = F(\text{fix } F)$
- 2 $\text{fix } F$ matches the operational semantics

More Compound Domains

- Discrete domains = trivial CPOs
- We can *construct* complex CPOs from simple ones
 - the *lifting* D_{\perp}
 - the *product* $D \times E$
 - the *sum* $D + E$
 - the *function space* $D \rightarrow E$
 - ⇒ the set of all *continuous functions*
- the associated operations are continuous functions

Theorem

Any operation built using functional notation is a continuous function.

Can Domains be Defined Recursively?

- *domain constructors* \Rightarrow more complex domains
 \Rightarrow sufficient to interpret PCF (=simply typed λ -calculus+**rec**)
- so far only **stratified** types are allowed!!
 \Rightarrow this might be insufficient for
 - ① recursively defined types, e.g., *lists*, *trees*, . . . :

$$\begin{aligned}\alpha \text{list} &= \text{nil} + (\alpha \times \alpha \text{list}) \\ \alpha \text{tree} &= \alpha + (\alpha \text{tree} \times \alpha \text{tree})\end{aligned}$$

- ② self-applications (procedures-as-parameters, untyped λ -calculus)

$$D = D \rightarrow D$$

- we try the *approximation-n-limits* approach again. . .

How do we Order Domains?

Idea

Smaller domains can be *embedded* into larger ones.

Definition (Embedding-projection pair)

Continuous functions $e : D \rightarrow E$ and $p : E \rightarrow D$ form an **embedding-projection pair** if

$$p \circ e = id_D \quad e \circ p \leq_E id_E$$

We use the **body of recursive type equation**, F , to construct:

$$D_0 \xleftarrow[e_0]{p_0} F(D_0) \xleftarrow[e_1]{p_1} F^2(D_0) \xleftarrow[e_2]{p_2} F^3(D_0) \xleftarrow[e_3]{p_3} \dots \xleftarrow[e_k]{p_k} F^{k+1}(D_0) \xleftarrow[e_{k+1}]{p_{k+1}} \dots$$

\Rightarrow what is D_0 ?

\Rightarrow the (e_i, p_i) pairs?

Inverse Limit Construction

- Given a *retraction* sequence

$$D_0 \xrightarrow[e_0]{p_0} F(D_0) \xrightarrow[e_1]{p_1} F^2(D_0) \xrightarrow[e_2]{p_2} F^3(D_0) \xrightarrow[e_3]{p_3} \dots \xrightarrow[e_k]{p_k} F^{k+1}(D_0) \xrightarrow[e_{k+1}]{p_{k+1}} \dots$$

how do we construct the *limit*? It better be a CPO!

and taking a directed limit (essentially union) doesn't work

- Inverse limit* (co-limit) construction:

$$D_\infty = \{(a_0, a_1, \dots) \mid a_i \in F^i(D_0), x_i = p_i(x_{i+1})\}$$

\Rightarrow does $D_\infty = F(D_\infty)$ hold? No, but they're isomorphic!

Summary

- *Fixpoint semantics* gives a precise *mathematical understanding* of loops and recursion.
- *Continuity* is essential to understand how infinite objects can be approximated by finite programs.
- The CPO machinery pays off when we look on higher-order programming languages.
 - ⇒ for integer functions: subsets of graphs approach works
 - ⇒ for higher-order functions it doesn't
- The *approximation* approach works for recursive types (e.g., lists)
 - ⇒ this needs *inverse limit* construction to get CPOs.