Introduction to Domain Theory
and Denotational Semantics

Programming Languages CS442

David Toman

School of Computer Science
University of Waterloo

David Toman (University of Waterloo) Intro to Domain Theory 1/17

What is the Problem?

e What should be the semantics of the while loop?

[while E do Cod] =
As.if [E]s then [while E do C od]([C]s) else s

=- fine for operational semantics
= but what is the true meaning?

ldea
We define [while Edo Cod]| = f where f : Store; — Store is an
appropriate solution to the equation

f =if [E]s then f([C]s) else s

David Toman (University of Waterloo) Intro to Domain Theory

3/17

Examples and Desiderata

e Example (factorial):
f =An.ifn=0then 1lelse nx (f (n — 1))

e Example:
g = An.ifn =0then lelseg (n+ 1)

e Questions:
@ Do recursive equations always have a solution?
® Do they have a unique solution?
= if not, how do we pick the right one?
® Does such a solution correspond to the operational definition?

David Toman (University of Waterloo) Intro to Domain Theory

4717

Solution Idea
Idea

Define the graph of the function by iterating the associated functional.

= successive iterations = better approximations
= limit of the iterations = solution

Example
e Functional for the factorial function:

F = X.\n.if n =0then lelse nx (f (n — 1))

e Approximations:

e Solution: f = {J;5ofi

David Toman (University of Waterloo) Intro to Domain Theory

Partial Orders and CPOs

How do we guarantee that the iteration-limit trick works?
Idea

Define structures where the existence of solutions is guaranteed.

e (D, <) is a partial order if for all a,b,c € D we have

a<a a<bAb<a—a=b, a<bAb<c—a<c
e | isaleastelementof (D,<)if L <a forall acD
e CCDisachainifa<b or b<a forall a,beC
e | | X is a least upper bound of X C D if

() x <[X forall x € X, and
(2)for all d € D,if x <d for all x € Xthen | |X <d

David Toman (University of Waterloo)

Intro to Domain Theory 6/17

Partial Orders and CPOs (cont.)

Definition (Complete Partial Order)

A partial order (D, <) is a (pointed) CPO if (it has a least element and)
each chain C C D thereisa| |C € D.

Examples:
@ flat domains are CPOs (with discrete order):
=- booleans, integers (note the different order!), ...

® the powerset is a pointed CPO
= ordered by set inclusion

David Toman (University of Waterloo) Intro to Domain Theory 7117

Functions on CPOs

Idea
values = elements of CPOs (ordered the their definedness)
programs = functions between CPOs

What functions do we consider?
Example
halts = Ax. if x # L then true else false

Letf :int — intand n : int. What does halts(f(n)) do?

Definition
A function f : D — E is monotonic if

a<pb—f(a)<gf(b)foralla,beD

David Toman (University of Waterloo) Intro to Domain Theory

8/17

Functions on CPOs (cont.)

Is monotonicity quite enough? NO!

Idea

We want to be able to define the result of an application of a function
on a limit of approximations by a limit of applying the function on the
approximations.

Definition (Continuity)
A function f : D — E is continuous if

f (|_|x) = | [{f(x) Ix € X}

for all chains X C D.

David Toman (University of Waterloo) Intro to Domain Theory 9/17

The Function Space CPO

We are NOT approximating values but functions
= how do we take least upper bounds of functions?

Idea
We arrange functions into a CPO ordered by their definedness!

Definition (Function Space)

A — B is the set of all continuous functions between CPOs A and B;
partially ordered as follows:

f<a.s0 < VacAf(a) <gg(a)

= we need to show that A — B is a CPO,

=- and that abstraction/application are continuous
this is important so that functionals are continuous!!

David Toman (University of Waterloo) Intro to Domain Theory 10/17

Solution to Recursive Functions

Theorem

Let D be a pointed CPO and F : D — D a continuous function. Then
the least fixed point of F exists and is defined as

fix F =| |{F'(L)]i >0}

The meaning of a definition of the form f = F(f) is fix F.

and we still need to show:
O fix F is indeed the least fixed point, i.e., fix F = F(fix F)
® fix F matches the operational semantics

David Toman (University of Waterloo) Intro to Domain Theory

11/17

More Compound Domains

e Discrete domains = trivial CPOs

e We can construct complex CPOs from simple ones
the lifting D
the product D x E
thesumD + E
the function space D — E
= the set of all continuous functions

¢ the associated operations are continuous functions

Theorem
Any operation built using functional notation is a continuous function. J

David Toman (University of Waterloo) Intro to Domain Theory 12/17

Can Domains be Defined Recursively?

e domain constructors = more complex domains
= sufficient to interpret PCF (=simply typed A-calculus+rec)

¢ so far only stratified types are allowed!!
= this might be insufficient for

@ recursively defined types, e.g., lists, trees, ...:

alist = nil + (« x alist)
atree = a + (atree x atree)

@ self-applications (procedures-as-parameters, untyped A-calculus)

D=D—D

e we try the approximation-n-limits approach again. ..

David Toman (University of Waterloo) Intro to Domain Theory 14/17

How do we Order Domains?

ldea
Smaller domains can be embedded into larger ones.

Definition (Embedding-projection pair)

Continuous functionse : D — E and p : E — D form an
embedding-projection pair if

poe=idp eop <g ide

We use the body of recursive type equation, F, to construct:

Po P1 2 P2 3 P3 Pk k1 Pk+1
Do S F(Dg) SF9(Do) SF*(Do)=...SF (Do) S ...
e e €z €3 €k €k+1

= what is Dg? = the (ej, pj) pairs?

David Toman (University of Waterloo) Intro to Domain Theory 15/17

Inverse Limit Construction

 Given a retraction sequence

Po P1 > P2 3 P3 Pk Kl Pk+1
Do S F(Dg) SF9(Dg) SF°(Dg)S...SFH(Dg) S ...
€ e ey €3 ek €k+1

how do we construct the limit? It better be a CPO!
and taking a directed limit (essentially union) doesn’t work
e Inverse limit (co-limit) construction:

Do = {(a0.a1,...) | & € F'(Do),Xi = pi(Xi+1)}

= does D, = F(D«) hold? No, but they’re isomorphic!

David Toman (University of Waterloo) Intro to Domain Theory 16/17

Summary

¢ Fixpoint semantics gives a precise mathematical understanding of
loops and recursion.

e Continuity is essential to understand how infinite objects can be
approximated by finite programs.

e The CPO machinery pays off when we look on higher-order
programming languages.

= for integer functions: subsets of graphs approach works
= for higher-order functions it doesn't
e The approximation approach works for recursive types (e.g., lists)

= this needs inverse limit construction to get CPOs.

David Toman (University of Waterloo) Intro to Domain Theory 17117

	Recursively Defined Functions
	Recursive Types

