Functional Programming Languages
Programming Languages CS442

David Toman

School of Computer Science
University of Waterloo

David Toman (University of Waterloo) Functional PL

Core of a Functional Language

e Types: bool, int, list
¢ Syntax and Typing Rules:

E :bool Ei:7 Eo:7

true : bool false :bool
if E then Eq else Exfi:7

E1:int E2:int E1:int E2:int
N :int

E; + E,:int E; = E5:bool

o Ei:7 E,:7list E:7list E :7list E:rlist
nil : 7list

cons E; Es:7list hdE:# tE:7list null E:bool

=- what happened to loops? left for recursive abstractions

David Toman (University of Waterloo) Functional PL 217

Reductions

e Booleans (values {true ,false }):

iftruethen uelsevfi —u
iffalsethen uelsevfi —v

e Integers (values {0,1,2,...}):

m + m — p where p is the sum of values m and n
m =m — true
m = n — false

e Lists (what are “values” here???)

hd(cons E; E,) — E; null (nil) — true
tl(cons E; Ez) — E; null (cons E; E,) — false

value(rlist) = {nil } U {cons E; E; | E; € value(r), E; € value(rlist)}

David Toman (University of Waterloo) Functional PL 3/7

Abstraction and Qualification
e Syntax:

nHE:T T E; im Ey:mo

mkvall=E:{l:7} TmhHE,Exim U

mHE;:m wymbEEyiT (:t)yen a{l:i7}FE:7T

mhHletElinEy:T a7 mhreclE:r

¢ Reductions:
letval |, = El,...,val Ik = ExinE — [E1/|1,...,Ek/|k]E
rec |.E — [rec |.LE/I]E

What are “values” now? i.e., can we “substitute” non-values?

David Toman (University of Waterloo) Functional PL

417

Parametrization

e Syntax:
TO{X :T}FE: 7 nhEy:7—7 wFEy:T
TEME:T—7 (B Ep): 7

e Reductions:

What are “values” here?

value(r — ") ={Al:7.E |7 - Ml:7.E:7 — 7/ for some 7}

David Toman (University of Waterloo) Functional PL 5/7

Denotational Semantics

e most of the language = simply typed A-calculus w/names

= same semantic equations (cf. soundness of § and (-val)
= no “store” to trigger evaluation!

e we need improper fail and | values
= impacts the eager/lazy issue!

e but what is the meaning of lists?
Eager finite lists of 7 values
Lazy finite-or-infinite lists of values (or “fail”, 1)
= what does [rec X :int list. cons 0 X] mean?

David Toman (University of Waterloo) Functional PL

6/7

Summary

¢ Functional languages = everything is an expression

= no store and side-effects caused by assignments
= loops usually realized by recursion
= often has complex data-types (a.k.a., lists)

o Eager/Lazy issues still around

=- determined by designating values for all types
= impacts data (e.g., lists) as well as functions

e Questions:
@ can failure be handled using exceptions?
® what can we do about those annoying type tags?

David Toman (University of Waterloo) Functional PL

717

