How do we ask Questions about Employees?

Find all employees who work for “Bob”!

Question: \(\{(x, y) \mid \text{EMP}(x, y, Bob)\} \)

Answer: \(\{(Sue, CS), (Bob, CO)\} \)

why? because (Sue, CS, Bob), etc., appear in EMP!

Find pairs of emp-s working for the same boss!

Q: \(\{(x_1, x_2) \mid \exists y_1, y_2, z. \text{EMP}(x_1, y_1, z) \land \text{EMP}(x_2, y_2, z)\} \)

A: \(\{(Sue, Bob), (Fred, John), (Jim, Eve)\} \) ← is that all?

Find employees who are their own bosses!

Q: \(\{(x) \mid \exists y. \text{EMP}(x, y, x)\} \)

A: \(\{(Sue), (Bob)\} \)

The Relational Model

Idea

All information is organized in (a finite number of) relations.

Features:

- simple and clean data model
- powerful and declarative query/update languages
- semantic integrity constraints
- data independence
Relational Structures/Databases

Components:

- **Universe**: a set of values \(D \) with equality \((=) \)
- **Relation**
 - schema: name \(R \), arity \(k \) (the number of attributes)
 - instance: a relation \(R \subseteq D^k \)
- **Database**
 - schema: finite set of relation schemes
 - instance: a relation \(R_i \) for each \(R_i \)

Notation

Signature: \(\rho = (R_1, \ldots, R_n) \)

Instance: \(D = (D, =, R_1, \ldots, R_n) \)

Examples of Relational Structures a.k.a. Databases

- the integer numbers with addition and multiplication:
 \(\rho = (\text{plus, times}) \)
 \(D = (\mathbb{Z}, =, \text{plus, times}) \)
- a Bibliography Database
- ...

Example: Bibliography

Relations (signatures) used in examples:

- author(\text{aid, name})
- wrote(\text{author, publication})
- publication(\text{pubid, title})
- book(\text{pubid, publisher, year})
- journal(\text{pubid, volume, no, year})
- proceedings(\text{pubid, year})
- article(\text{pubid, crossref, startpage, endpage})

⇒ names of attributes will be important later (for SQL)

Example (sample instance)

\begin{align*}
\text{author} &= \{ (1, \text{John}), (2, \text{Sue}) \} \\
\text{wrote} &= \{ (1, 1), (1, 4), (2, 3) \} \\
\text{publication} &= \{ (1, \text{Mathematical Logic}), (3, \text{Trans. Databases}), (2, \text{Principles of DB Syst.}), (4, \text{Query Languages}) \} \\
\text{book} &= \{ (1, \text{AMS, 1990}) \} \\
\text{journal} &= \{ (3, 35, 1, 1990) \} \\
\text{proceedings} &= \{ (2, 1995) \} \\
\text{article} &= \{ (4, 2, 30, 41) \}
\end{align*}
Simple (Atomic) “Truth”

Relationships between objects (tuples) that are present in an instance are true, relationships absent are false.

In the sample *Bibliography* database instance

- “John” is an *author* with id “1”: \((1, \text{John}) \in \text{author}\);
- “Mathematical Logic” is a publication: \((1, \text{Mathematical Logic}) \in \text{publication}\);
 - Moreover it is a book published by “AMS” in “1990”: \((1, \text{AMS}, 1990) \in \text{book}\);
- “John” wrote “Mathematical Logic”: \((1, 1) \in \text{wrote}\);
- “John” has NOT written “Trans. Databases”: \((1, 3) \notin \text{wrote}\);
- etc.

⇒ that’s why relations are often called “tables”.

Queries

IDEA1: use *variables* to collect answers

author\((x, y)\) asks for all answer tuples \([x \mapsto a, y \mapsto b]\) such that the pair \((a, b) \in \text{author}\)

IDEA2: build more complex queries from simpler ones using...

Logical connectives:
- Conjunction (and): \(\text{author}(x, y) \land \text{wrote}(x, z)\)
- Disjunction (or): \(\text{author}(x, y) \lor \text{publication}(x, y)\)
- Negation (not): \(\neg \text{author}(x, y)\)

Quantifiers:
- Existential (there is...): \(\exists x. \text{author}(x, y)\)

Relational Calculus: Summary

Definition (Syntax)

Queries over a database schema \((R_1, \ldots, R_k)\) are

\[Q := R(x_1, \ldots, x_k) \mid x_i = x_j \mid Q_1 \land Q_2 \mid \exists x_i. Q \mid Q_1 \lor Q_2 \mid \neg Q \]

Definition (Answer tuples and Answer(s))

An answer tuple \(t\) for \(Q\) assigns values to \(Q\)'s (free) variables.

The answer tuple \(t\) is an answer for formula \(Q\) (written \(t \in Q\)) if:

- \(t \in R(x_1, \ldots, x_k)\) if \((t(x_1), \ldots, t(x_k)) \in R^D\)
- \(t \in x_i = x_j\) if \(t(x_i) = t(x_j)\)
- \(t \in Q_1 \land Q_2\) if \(t \in Q_1\) and \(t \in Q_2\)
- \(t \in Q_1 \lor Q_2\) if \(t \in Q_1\) or \(t \in Q_2\)
- \(t \in \neg Q_1\) if it is not the case that \(t \in Q_1\)
- \(t \in \exists x_i. Q_i\) if \(t[x_i \mapsto v] \in Q_i\) for some value \(v\)

An answer to \(Q\) is \(\{t \mid t \in Q\}\) (i.e., all answer tuples that make \(Q\) true).
Example

Find pairs of emp-s working for the same boss!
Q: \{ (x_1, x_2) \mid \exists y_1, y_2, z. EMP(x_1, y_1, z) \land EMP(x_2, y_2, z) \}\nA: \{ (Sue, Fred), \ldots \}

because:

1. \[x_1 \mapsto Sue, y_1 \mapsto CS, z \mapsto Bob \in EMP(x_1, y_1, z) \]
2. \[x_2 \mapsto Fred, y_2 \mapsto CO, z \mapsto Bob \in EMP(x_2, y_2, z) \]
3. \[x_1 \mapsto Sue, y_1 \mapsto CS, x_2 \mapsto Fred, y_2 \mapsto CO, z \mapsto Bob \in EMP(x_1, y_1, z) \land EMP(x_2, y_2, z) \]
4. \[x_1 \mapsto Sue, x_2 \mapsto Fred \in \exists y_1, y_2, z. EMP(x_1, y_1, z) \land EMP(x_2, y_2, z) \]

Sample Queries

over numbers (with addition and multiplication):
- list all composite numbers
- list all prime numbers

over the bibliography database:
- list all publications
- list titles of all publications
- list titles of all books
- list all publications without authors
- list (pairs of) coauthor names
- list titles of publications written by a single author

Equivalences and Syntactic Sugar

Boolean Equivalences
- \(\neg (\neg Q_1) \equiv Q_1 \)
- \(Q_1 \lor Q_2 \equiv (\neg Q_1 \land \neg Q_2) \)
- \(Q_1 \rightarrow Q_2 \equiv \neg Q_1 \lor Q_2 \)
- \(Q_1 \leftrightarrow Q_2 \equiv (Q_1 \rightarrow Q_2) \land (Q_2 \rightarrow Q_1) \)
- \(\ldots \)

First-order Equivalences
- \(\forall x. Q \equiv \neg \exists x. \neg Q \)

Find the neutral element (of addition)!
Question: \{ (x) \mid PLUS(x, x, x) \}\nAnswer: \{ (0) \}\n
but shouldn’t the query really be
\{ (x) \mid \forall y. PLUS(x, y, y) \land PLUS(y, x, y) \}\n
\((*) \)

IDEA
(\(* \)) is the same as \{ (x) \mid \forall y. PLUS(x, y, y) \}\nbecause PLUS is commutative
is the same as \{ (x) \mid PLUS(x, x, x) \}\nbecause PLUS is monotone

⇒ Laws of Arithmetic for Natural Numbers
Laws a.k.a. Integrity Constraints

Idea

What must be always true for the natural numbers (i.e., for PLUS)?

- Addition is commutative
 \[\forall x, y, z. \text{PLUS}(x, y, z) \rightarrow \text{PLUS}(y, x, z) \]
 \[(\neg \exists x, y, z. \text{PLUS}(x, y, z) \land \neg \text{PLUS}(y, x, z)) \]

- Addition is a (relational representation of a) binary function
 \[\forall x, y, z_1, z_2. \text{PLUS}(x, y, z_1) \land \text{PLUS}(x, y, z_2) \rightarrow z_1 = z_2 \]
 \[(\neg \exists x, y, z_1, z_2. \text{PLUS}(x, y, z_1) \land \text{PLUS}(x, y, z_2) \land (z_1 = z_2)) \]

- Addition is a total function
 \[\forall x, y. \exists z. \text{PLUS}(x, y, z) \]

- Addition is monotone in both arguments (harder), etc., etc.

Integrity Constraints

Relational signature captures only the structure of relations.

Idea

Valid database instances satisfy additional integrity constraints.

- Values of a particular attribute belong to a prescribed data type.
- Values of attributes are unique among tuples in a relation (keys).
- Values appearing in one relation must also appear in another relation (referential integrity).
- Values cannot appear simultaneously in certain relations (disjointness).
- Values in certain relation must appear in at least one of another set of relations (coverage).
- . . .
Example Revisited (cont.)

Disjointness
- “books” are different from “journals”.
- “books” are different from “proceedings”.

Coverage
- Every “publication” is a “book” or a “journal” or a “proceedings” or an “article”.
- Every “article” appears in a “book” or in a “journal” or in “proceedings”.

Story so far...

1. databases ⇔ relational structures
2. queries ⇔ formulas in First-Order logic
3. integrity constraints ⇔ closed formulas in FO logic

... so is there anything new here?

⇒ YES: database instances must be finite

Views and Integrity Constraints

Idea

Answers to queries can be used to define derived relations (views) ⇒ extension of a DB schema

- subtraction, complement, ...
- collection-style publication, editor, ...

In general, a view is an integrity constraint of the form
\[\forall x_1, \ldots, x_k. R(x_1, \ldots, x_k) \leftrightarrow Q \]
for \(R \) a new relation name and \(x_1, \ldots, x_k \) answer variables of \(Q \).

Unsafe Queries

- \(\neg \exists x. \text{author}(x, y) \)
- \(\text{book}(x, y, z) \lor \text{proceedings}(x, y) \)
- \(x = y \)

⇒ we want only queries with finite answers (over finite instances).

Definition (Range restricted queries)

\[Q ::= R(x_1, \ldots, x_k) \]
\[Q_1 \land Q_2 \]
\[Q \land x_i = x_j \]
\[\exists x_i. Q \]
\[Q_1 \lor Q_2 \]
\[Q_1 \land \neg Q_2 \]

at least one of \(x_i, x_j \) is answer variable of \(Q \)
answer variables of \(Q_1 \) and \(Q_2 \) are the same

this explains SQL’s restrictions (e.g., \text{UNION} compatibility)!
Computational Properties

- Evaluation of every query terminates
 ⇒ relational calculus is not Turing complete

- **Data Complexity** in the size of the database, for a *fixed* query.
 ⇒ in PTIME
 ⇒ in LOGSPACE
 ⇒ \(\text{AC}_0 \) (constant time on polynomially many CPUs in parallel)

- **Combined complexity**
 ⇒ in PSPACE
 ⇒ can express NP-hard problems (encode SAT)

What queries cannot be expressed in RC?

Note

\(\text{RC is not Turing-complete} \)

⇒ there must be computable queries that cannot be written in RC.

Built-in Operations
- ordering, arithmetic, string operations, etc.

Counting/Aggregation
- cardinality of sets (*parity*)

Reachability/Connectivity/...
- *paths in a graph* (*binary relation*)

Model extensions: Incompleteness/Inconsistency
- tuples with *unknown* (but existing) values
- incomplete relations and *open world assumption*
- conflicting information (e.g., from different data sources)