KR in Database Systems Implementation
(or Life beyond Lite Logics and CQ/UCQ)

David Toman

D.R. Cheriton School of Computer Science
University of Waterloo

Joint work with Alexander Hudek and Grant Weddell
Queries and Ontologies

IDEA:
Queries are answered not only w.r.t. *explicit data*
but also w.r.t. *background knowledge*
⇒ Ontology-based Data Access (OBDA)

Example
- Bob is a BOSS (explicit data)
- Every BOSS is an EMPloyee (ontology)

List all EMPloyees ⇒ \{Bob\} (query)

How do we answer queries?
via *logical implication*:

$$\text{Ans}(Q, A, T) = \{Q(a_1, \ldots, a_k) \mid T \cup A \models Q(a_1, \ldots, a_k)\}$$

i.e., answers are *ground Q-atoms* implied by
the *data A* and the *background knowledge T*.
Queries and Ontologies

IDEA:
Queries are answered not only w.r.t. *explicit data* but also w.r.t. *background knowledge* ⇒ Ontology-based Data Access (OBDA)

Example
- Bob is a BOSS (explicit data)
- Every BOSS is an EMPloyee (ontology)

List all EMPloyees ⇒ \{Bob\} (query)

How do we answer queries?
via logical implication:

\[\text{Ans}(Q, A, T) = \{ Q(a_1, \ldots, a_k) \mid T \cup A \models Q(a_1, \ldots, a_k) \} \]

i.e., answers are ground \(Q\)-atoms implied by the data \(A\) and the background knowledge \(T\).
Queries and Ontologies

IDEA:

Queries are answered not only w.r.t. *explicit data* but also w.r.t. *background knowledge* ⇒ Ontology-based Data Access (OBDA)

Example

- Bob is a BOSS (explicit data)
- Every BOSS is an EMPloyee (ontology)

List all EMPloyees ⇒ {Bob}

How do we answer queries?

via *logical implication*:

\[
\text{Ans}(Q, \mathcal{A}, \mathcal{T}) = \{Q(a_1, \ldots, a_k) \mid \mathcal{T} \cup \mathcal{A} \models Q(a_1, \ldots, a_k)\}
\]

i.e., answers are *ground Q-atoms* implied by the *data* \(\mathcal{A}\) and the *background knowledge* \(\mathcal{T}\).
Difficulties

Good/Standard News

LOGSPACE/PTIME (data complexity) for query answering:
- (U)CQ and
- DL-Lite/$\mathcal{EL}_{⊥}$/\mathcal{CFD}_{nc}/“rules”-lite (Horn)

Bad News

Everything else: coNP (or worse), in particular:
- no negations in ABox
- no closed-world assumption

Counter-intuitive query answers
- no negative queries or sub-queries
Difficulties

Good/Standard News

LOGSPACE/PTIME (data complexity) for query answering:
- (U)CQ and
- DL-Lite/\mathcal{EL}_\perp/\mathcal{CFD}^\forall_{nc}/“rules”-lite (Horn)

Bad News

Everything else: coNP (or worse), in particular:
- no negations in ABox
- no closed-world assumption

Counter-intuitive query answers
- no negative queries or sub-queries
Difficulties: Unintuitive Answers

Example: DL-Lite

- \(EMP(Sue) \)
- \(EMP \sqsubseteq \exists \text{PHONENUM} \)

\[(\forall x. EMP(x) \rightarrow \exists y. \text{PHONENUM}(x, y))\]
Difficulties: Unintuitive Answers

Example: DL-Lite

- EMP(Sue)
- EMP ⊑ ∃PHONENUM

\((∀x.EMP(x) → ∃y.PHONENUM(x, y))\)

User: Does Sue have a phone number?

Information System: YES
Difficulties: Unintuitive Answers

Example: DL-Lite

- EMP(Sue)
- EMP ⊑ ∃PHONENUM

(∀x.EMP(x) → ∃y.PHONENUM(x, y))

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)
Difficulties: Unintuitive Answers

Example: DL-Lite

- EMP(Sue)
- EMP ⊑∃PHONENUM

(∀x.EMP(x) → ∃y.PHONENUM(x, y))

User: Does Sue have a phone number?
Information System: YES

User: OK, tell me Sue’s phone number!
Information System: (no answer)

User:
What to do?

Definability and Rewriting

- Queries: range-restricted FOL (a.k.a. SQL)
- Ontology/Schema: range-restricted FOL
- Data: CWA (complete information)

\[\Sigma_L \]

\[S_L \]

(Logical Schema)
What to do?

Definability and Rewriting

Queries
range-restricted FOL over S_L definable w.r.t. Σ and S_A

Ontology/Schema
range-restricted FOL

Data
CWA (complete information for S_A symbols)

Σ_L \models S_L \leftarrow φ (Logical Schema)

Σ_{LP} \downarrow \downarrow

\cdot \cdot

Σ_P \models $S_A \subseteq S_P$ \leftarrow ψ (Physical Schema)

Compiler
Relational Algebra (over S_A)

\uparrow \uparrow

Evaluator
Answers

\models $S_A \subseteq S_P$
What to do?

Definability and Rewriting

Queries range-restricted FOL over S_L definable w.r.t. Σ and S_A
Ontology/Schema range-restricted FOL
Data CWA (complete information for S_A symbols)

Query (S_L) \arrow{2} \text{Compiler} \arrow{2} \text{Evaluator} \arrow{2} \text{Answers}

Schema ($S_L \cup S_P$) \arrow{2} \text{Compiler} \arrow{2} \text{Evaluator} \arrow{2} \text{Answers}

Data ($S_A \subset S_P$)
Definability and Rewriting

Queries
Ontology/Schema
Data

range-restricted FOL over \(S_L \)
range-restricted FOL
CWA (complete information for \(S_P \))

Query \((S_L)\)
Schema \((S_L \cup S_P)\)
Data \((S_A \subset S_P)\)

Compiler
Relational Algebra (over \(S_A \))
Evaluator
Answers

- users: looks like a single model (of the conceptual schema)
- implementation: many models

but definable queries answer the same in each of them
What to do?

Definability and Rewriting

<table>
<thead>
<tr>
<th>Queries</th>
<th>range-restricted FOL over S_L definable in S_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontology/Schema</td>
<td>range-restricted FOL</td>
</tr>
<tr>
<td>Data</td>
<td>CWA (complete information for S_L)</td>
</tr>
</tbody>
</table>

- Query (S_L)
- Schema ($S_L \cup S_P$)
- Data ($S_A \subset S_P$)

- decidable (schema) languages?
- finite models?

Compiler

Relational Algebra (over S_A)

Evaluator

Answers
GRAND UNIFIED APPROACH TO QUERY COMPILATION

PART I: WHAT CAN IT DO?
What can this do?

GOAL

Generate query plans *that compete with hand-written programs in C*

1. linked data structures, pointers, . . .
2. access to search structures (index access and selection),
3. hash-based access to data (including hash-joins),
4. multi-level storage (aka disk/remote/distributed files), . . .
5. materialized views (FO-definable),
6. updates through logical schema (*needs id invention!*), . . .

. . . all *without* having to code (too much) in C/C++ !
Lists and Pointers

1. **Logical Schema**

 - Employee
 - Number
 - Name
 - Salary
 - Works
 - Employee number
 - Department number
 - Department
 - Number
 - Name
 - Manager

2. **Physical Design:** A linked list of emp records pointing to dept records.

 - Record emp of:
 - Integer num
 - String name
 - Integer salary
 - Reference dept
 - Record dept of:
 - Integer num
 - String name
 - Reference manager

3. **Access Paths:** empfile/1/0, emp-num/2/1, ... (but no deptfile)

4. **Integrity Constraints** (many), e.g.,

 \[\forall x, y, z. \text{employee}(x, y, z) \rightarrow \exists w. \text{empfile}(w) \land \text{emp-num}(w, x), \]
 \[\forall a, x. \text{empfile}(a) \land \text{emp-num}(a, x) \rightarrow \exists y, z. \text{employee}(x, y, z), \ldots \]
What can this do: navigating pointers

List all employee numbers and names ($\exists z.\text{employee}(x, y, z)$):

$$\exists a.\text{empfile}(a) \land \text{emp-num}(a, x) \land \text{emp-name}(a, y)$$
What can this do: navigating pointers

List all employee numbers and names ($\exists z. \text{employee}(x, y, z)$):

$$\exists a. \text{empfile}(a) \land \text{emp-num}(a, x) \land \text{emp-name}(a, y)$$

or, in C-like syntax:

```c
for a in empfile do
  x := a->num;
  y := a->name;
```
What can this do: navigating pointers

1. List all employee numbers and names ($\exists z.\text{employee}(x, y, z)$):

 $\exists a.\text{empfile}(a) \land \text{emp-num}(a, x) \land \text{emp-name}(a, y)$

2. List all department numbers with their manager names

 ($\exists z, u, v.\text{department}(x, z, u) \land \text{employee}(u, y, v)$):

 $\exists a.\text{empfile}(a) \land \text{emp-name}(a, y) \land \text{emp-dept}(a, d) \land \text{dept-num}(d, x) \land \text{dept-mgr}(d, e) \land \text{compare}(a, e)$
What can this do: navigating pointers

1. List all employee numbers and names ($\exists z.\text{employee}(x, y, z)$):
 $$\exists a.\text{empfile}(a) \land \text{emp-num}(a, x) \land \text{emp-name}(a, y)$$

2. List all department numbers with their manager names
 ($\exists z, u, v.\text{department}(x, z, u) \land \text{employee}(u, y, v)$):
 $$\exists a, d, e.\text{empfile}(a) \land \text{emp-dept}(a, d)$$
 $$\land \text{dept-num}(d, x) \land \text{dept-mgr}(d, e) \land \text{emp-name}(e, y)$$
 $$\Rightarrow \text{needs “departments have at least one employee”.$$}
What can this do: navigating pointers

1. List all employee numbers and names ($\exists z.\text{employee}(x, y, z)$):
 $$\exists a.\text{empfile}(a) \land \text{emp-num}(a, x) \land \text{emp-name}(a, y)$$

2. List all department numbers with their manager names
 ($\exists z, u, v.\text{department}(x, z, u) \land \text{employee}(u, y, v)$):
 $$\exists a, d, e.\text{empfile}(a) \land \text{emp-dept}(a, d)$$
 $$\land \text{dept-num}(d, x) \land \text{dept-mgr}(d, e) \land \text{emp-name}(e, y)$$
 $$\Rightarrow \text{needs “departments have at least one employee”}.$$

 $$\exists a, b, d.\text{empfile}(a) \land \text{emp-name}(a, y) \land \text{emp-dept}(a, d)$$
 $$\land \text{dept-num}(d, x) \land \text{dept-mgr}(d, b) \land \text{compare}(a, b)$$
 $$\Rightarrow \text{needs “managers work in their own departments”}.$$
What can this do: navigating pointers

1. List all employee numbers and names (\(\exists z.\)employee\((x, y, z)\)):
 \[
 \exists a.\text{empfile}(a) \land \text{emp-num}(a, x) \land \text{emp-name}(a, y)
 \]

2. List all department numbers with their manager names
 (\(\exists z, u, v.\)department\((x, z, u) \land \text{employee}(u, y, v)\)):
 \[
 \exists a, d, e.\text{empfile}(a) \land \text{emp-dept}(a, d) \\
 \land \text{dept-num}(d, x) \land \text{dept-mgr}(d, e) \land \text{emp-name}(e, y)
 \Rightarrow \text{needs "departments have at least one employee".}
 \]
 \[
 \ldots \text{needs } \text{duplicate elimination} \text{ during projection.}
 \]
 \[
 \exists a, b, d.\text{empfile}(a) \land \text{emp-name}(a, y) \land \text{emp-dept}(a, d) \\
 \land \text{dept-num}(d, x) \land \text{dept-mgr}(d, b) \land \text{compare}(a, b)
 \Rightarrow \text{needs "managers work in their own departments".}
 \]
 \[
 \ldots \text{NO } \text{duplicate elimination} \text{ during projection.}
 \]
What can it do: Hashing, Lists, et al.

Hash Index with (list-based) Separate Chaining

Hash Array Separate Chaining Linked Lists Dept Records

\ldots

i: $\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bot$

j: \bot

n: $\bullet \rightarrow \bullet \rightarrow \bot$

$D1$

$D2$

$D3$
Hash Index on department’s name:

Access paths:

\[S_A \supseteq \{ \text{hash/2/1, hasharraylookup/2/1, listscan/2/1} \} \].

Physical Constraints:

\[\Sigma_{LP} \supseteq \{ \forall x, y.((\text{deptfile}(x) \land \text{dept-name}(x, y)) \rightarrow \exists z, w. (\text{hash}(y, z) \land \text{hasharraylookup}(z, w) \land \text{listscan}(w, x))), \\
\forall x, y. (\text{hash}(x, y) \rightarrow \exists z. \text{hasharraylookup}(y, z)), \\
\forall x, y. (\text{listscan}(x, y) \rightarrow \text{deptfile}(y)) \} \]
What can it do: Hashing, Lists, et al.

Hash Index on department’s name:

Access paths:
\[S_A \supseteq \{ \text{hash/2/1, hasharraylookup/2/1, listscan/2/1} \} \].

Physical Constraints:
\[\Sigma_{LP} \supseteq \{ \forall x, y.((\text{deptfile}(x) \land \text{dept-name}(x, y)) \rightarrow \exists z, w.(\text{hash}(y, z) \land \text{hasharraylookup}(z, w) \land \text{listscan}(w, x))), \forall x, y.(\text{hash}(x, y) \rightarrow \exists z.\text{hasharraylookup}(y, z)), \forall x, y.(\text{listscan}(x, y) \rightarrow \text{deptfile}(y)) \} \]

Query:
\[\exists y, z.(\text{department}(x_1, p, y) \land \text{employee}(y, x_2, z))\{p\}. \]
What can this do: two-level store

The access path empfile is refined by $\text{emppages}/1/0$ and $\text{emprecords}/2/1$:
- emppages returns (sequentially) disk pages containing emp records, and
- emprecords given a disc page, returns emp records in that page.

List all employees with the same name
$(\exists z, u, v, w, t. \text{employee}(x_1, z, u, v) \land \text{employee}(x_2, z, w, t))$:

$$
\exists y, z, w, v, p, q. \text{emppages}(p) \land \text{emppages}(q) \\
\land \text{emprecords}(p, y) \land \text{emp-num}(y, x_1) \land \text{emp-name}(y, w) \\
\land \text{emprecords}(q, z) \land \text{emp-num}(z, x_2) \land \text{emp-name}(z, v) \\
\land \text{compare}(w, v).
$$

\Rightarrow this plan implements the block nested loops join algorithm.

...more examples in ...
User updates **only through logical schema**:

⇒ supplying “delta” relations (sets of tuples)

- Two copies of the schema: Σ^{old} and Σ^{new};
- Delta relations: R^+ (insertions) and R^- (deletions);
- Constraints:
 \[
 \forall \bar{x}. (R^{old}(\bar{x}) \lor R^+(\bar{x})) \equiv (R^{new}(\bar{x}) \lor R^-(\bar{x})),
 \forall \bar{x}. (R^+(\bar{x}) \land R^-(\bar{x})) \rightarrow \perp
 \]
User updates *only through logical schema*:
⇒ supplying “delta” relations (sets of tuples)

- Two copies of the schema: \(\Sigma^{\text{old}} \) and \(\Sigma^{\text{new}} \);
- Delta relations: \(R^+ \) (insertions) and \(R^- \) (deletions);
- Constraints:
 \[
 \forall \bar{x} (R^{\text{old}}(\bar{x}) \lor R^+ (\bar{x})) \equiv (R^{\text{new}}(\bar{x}) \lor R^-(\bar{x})), \\
 \forall \bar{x} (R^+(\bar{x}) \land R^-(\bar{x})) \rightarrow \bot
 \]

Update turned into *definability* question

Is \(A^{\text{new}} \) (or \(A^+, A^- \)) definable in terms of \(A_i^{\text{old}} \in S_A^{\text{old}} \) (old access paths) and \(U_j^+, U_j^- \) (user updates) for every access path \(A \in S_A \)?
What can this do: updates

User updates only through logical schema:
⇒ supplying “delta” relations (sets of tuples)

- Two copies of the schema: \(\Sigma^{\text{old}} \) and \(\Sigma^{\text{new}} \);
- Delta relations: \(R^+ \) (insertions) and \(R^- \) (deletions);
- Constraints:
 \[
 \forall \bar{x}. (R^{\text{old}}(\bar{x}) \lor R^+(\bar{x})) \equiv (R^{\text{new}}(\bar{x}) \lor R^-(\bar{x})),
 \forall \bar{x}. (R^+(\bar{x}) \land R^-(\bar{x})) \rightarrow \bot
 \]

Update turned into definability question

Is \(A^{\text{new}} \) (or \(A^+, A^- \)) definable in terms of \(A_i^{\text{old}} \in S_A^{\text{old}} \) (old access paths) and \(U_j^+, U_j^- \) (user updates) for every access path \(A \in S_A \)?

How do we get “anonymous values”?

Constant Complement tables (access paths that do `malloc` and such);
cyclic dependencies between *anonymous values* broken via *reification*.
GRAND UNIFIED APPROACH TO QUERY COMPILATION

PART II: HOW DOES IT WORK?
The Plan

Definability and Rewriting

Queries
- range-restricted FOL over S_L definable w.r.t. Σ and S_A

Ontology/Schema
- range-restricted FOL

Data
- CWA (complete information for S_A symbols)

(Logical Schema)

(SA ⊆ SP)

(rewriting)

(Physical Schema)
Idea #1: Plans as Formulas

Represent *query plans* as (annotated) range-restricted formulas ψ over S_A:

- atomic formula \leadsto access path (*get-first–get-next iterator*)
- conjunction \leadsto nested loops join
- existential quantifier \leadsto projection (annotated w/duplicate info)
- disjunction \leadsto concatenation
- negation \leadsto simple complement
Query Plans via Interpolation

Idea #1: Plans as Formulas

Represent *query plans* as (annotated) range-restricted formulas ψ over S_A:

- **atomic formula** \mapsto access path (get-first–get-next iterator)
- **conjunction** \mapsto nested loops join
- **existential quantifier** \mapsto projection (annotated w/duplicate info)
- **disjunction** \mapsto concatenation
- **negation** \mapsto simple complement

Non-logical (but necessary) Add-ons

1. **Non-logical properties/operators**
 - binding patterns
 - duplication of data and duplicate-preserving/elminating projections
 - sortedness of data (with respect to the *iterator semantics*) and sorting

2. **Cost model(s)**
Idea #1 (cont):

Represent *physical design* as *access paths* (S_A) and *constraints* (Σ).

Represent *query plans* as (annotated) range-restricted formulas ψ over S_A.

\[\Rightarrow \text{reduces correctness of } \psi \text{ to logical implication } \Sigma \models \varphi \leftrightarrow \psi \]
Query Plans via Interpolation

Idea #1 (cont):

Represent *physical design* as *access paths* (S_A) and *constraints* (Σ).
Represent *query plans* as (annotated) range-restricted formulas ψ over S_A.

⇒ reduces correctness of ψ to logical implication $\Sigma \models \varphi \leftrightarrow \psi$

IDEA #2:

Use *interpolation* to search for ψ:

extract an *interpolant* ψ from a (TABLEAU) proof of $\Sigma \cup \Sigma^* \models \varphi \rightarrow \varphi^*$
Query Plans via Interpolation

Idea #1 (cont):
Represent physical design as *access paths* (S_A) and *constraints* (Σ).
Represent query plans as (annotated) range-restricted formulas ψ over S_A.

\implies reduces correctness of ψ to logical implication $\Sigma \models \varphi \iff \psi$

IDEA #2:
Use *interpolation* to search for ψ:
extract an *interpolant* ψ from a (TABLEAU) proof of $\Sigma \cup \Sigma^* \models \varphi \rightarrow \varphi^*$

\implies Beth definability of φ over Σ and S_A resolves the existence of ψ.
Issues with TABLEAU

Dealing with the *subformula property* of Tableau

⇒ analytic tableau *explores* formulas *structurally*
⇒ (to large degree) the structure of interpolant depends on where access paths are present in queries/constraints.

Factoring *logical reasoning from plan enumeration*

⇒ backtracking tableau to get alternative plans: too slow, too few plans
Issues with TABLEAU

Dealing with the subformula property of Tableau

⇒ analytic tableau explores formulas structurally
⇒ (to large degree) the structure of interpolant depends on where access paths are present in queries/constraints.

IDEA #3:
Separate general constraints from physical rules in the formulation of the definability question (and the subsequent interpolant extraction):

\[\Sigma^L \cup \Sigma^R \cup \Sigma^{LR} \models \varphi^L \rightarrow \varphi^R \text{ where } \Sigma^{LR} = \{ \forall \bar{x}. P^L \leftrightarrow P \leftrightarrow P^R \mid P \in S_A \} \]

Factoring logical reasoning from plan enumeration
⇒ backtracking tableau to get alternative plans: too slow, too few plans

IDEA #4:
Define conditional tableau exploration (using general constraints) and separate it from plan generation (using physical rules)
Conditional Formulæ and Tableau

Conditional Formulæ

$\varphi[C]$ where C is a set of (ground) atoms over S_A

φ only exists if all atoms in C are “used” in a plan tableau.

Absorbed Range-restricted Formulæ: ANF

$$Q ::= R(\bar{x}) \mid \bot \mid Q \land Q \mid Q \lor Q \mid \forall \bar{x}.R(\bar{x}) \rightarrow Q,$$

...and all \exists’s are Skolemized.

Conditional Tableau Rules for ANF

$$\frac{S \cup \{\varphi[C], \psi[C]\}}{(\varphi \land \psi)[C] \in S} \quad \text{(conj)}$$

$$\frac{S \cup \{(\varphi[\bar{t}/\bar{x}])[C \cup D]\}}{\{R(\bar{t})[C], (\forall \bar{x}.R(\bar{x}) \rightarrow \varphi)[D]\} \subseteq S} \quad \text{(abs)}$$

$$\frac{S \cup \{\varphi[C]\}}{(\varphi \lor \psi)[C] \in S} \quad \text{(disj)}$$

$$\frac{S \cup \{\psi[C]\}}{R(\bar{x}) \in S_A \quad \text{(phys)}}$$
Goal: a *closed tableau* of the form

- T^L and T^R are *logical left- and right-tableau* (only logical constraints Σ^L and Σ^R, built 1st)
- T^P is a *physical tableau* (only physical rules Σ^{LR}, built 2nd)
Conditional Tableau: Logical Parts

Conditional Tableau for \((Q, \Sigma, S_A)\)

Proof trees \((T^L, T^R)\):
- \(T^L\) for \(\Sigma^L \cup \{Q^L(\bar{a})\}\) over \(\{P^L \mid P \in S_A\}\)
- \(T^R\) for \(\Sigma^R \cup \{Q^R(\bar{a}) \rightarrow \bot\}\) over \(\{P^R \mid P \in S_A\}\)

Closing Set(s)

We call \(S\) of atoms over \(S_A\) a closing set for \(T\) if, for every branch,

1. there is an atom \(R(\bar{t})[C]\), \(R(\bar{t}) \not\in C\), such that \(C \cup \{\neg R(\bar{t})\} \subseteq S\), or
2. there is \(\bot[C]\) such that \(C \subseteq S\).

\[\Rightarrow\] there are many different minimal closing sets for \(T\).

Observation

For arbitrary closing set \(S\), an interpolant for \(T^L(T^R)\) is \(\bot(\top)\).
Plan Enumeration

Physical Tableau T^P

<table>
<thead>
<tr>
<th>P</th>
<th>L_P</th>
<th>R_P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R(t)$</td>
<td>${{\neg R^L(t)}}$</td>
<td>${{R^R(t)}}$</td>
</tr>
<tr>
<td>$P_1 \land P_2$</td>
<td>$L_{P_1} \cup L_{P_2}$</td>
<td>${S_1 \cup S_2 \mid S_1 \in R_{P_1}, S_2 \in R_{P_2}}$</td>
</tr>
<tr>
<td>$P_1 \lor P_2$</td>
<td>${S_1 \cup S_2 \mid S_1 \in L_{P_1}, S_2 \in L_{P_2}}$</td>
<td>$R_{P_1} \cup R_{P_2}$</td>
</tr>
<tr>
<td>$\neg P_1$</td>
<td>${{L^L(t) \mid L^R(t) \in S} \mid S \in R_{P_1}}$</td>
<td>${{L^R(t) \mid L^L(t) \in S} \mid S \in L_{P_1}}$</td>
</tr>
<tr>
<td>$\exists x.P_1$</td>
<td>$L_{P_1}[t/x]$</td>
<td>$R_{P_1}[t/x]$</td>
</tr>
</tbody>
</table>

Observation

For a range-restricted formula P over S_A there is an analytic tableau T^P that uses only formulæ in $\Sigma^{LR} \cup \{\forall x.\text{true}^R(x)\}$ such that:

1. Open branches of T^P correspond to sets $S \in L_P$ (left branch) or $S \in R_P$ (right branch); and

2. The interpolant extracted from this tableau is logically equivalent to P, assuming that the closure of each left branch interpolates to \bot and for right branch to \top.
Logical & Physical Combined, Controlling the Search

Basic Strategy

1. build \((T^L, T^R)\) for \((Q, \Sigma, S_A)\) to a certain depth,
2. build \(T^P\) and test if each element in \(L_P(R_P)\) closes \(T^L(T^R)\).

If so, \(T^P[T^L, T^R]\) is closed tableau yielding an interpolant equivalent to \(P\);
(\ldots otherwise extend depth in step 1 and repeat.)
Logical & Physical Combined, Controlling the Search

Basic Strategy

1. build \((T^L, T^R)\) for \((Q, \Sigma, S_A)\) to a *certain depth*,
2. build \(T^P\) and test if each element in \(L_P(R_P)\) closes \(T^L(T^R)\).

 if so, \(T^P[T^L, T^R]\) is closed tableau yielding an interpolant equivalent to \(P\);

 (\ldots otherwise extend depth in step 1 and repeat.)

In step 2 we can “test” many \(P\)s (plan enumeration), but how do we know which ones to try? while building these bottom-up?

Controlling the Search

- only use the (phys) rule in \(T^L(T^R)\) for \(R(\tilde{t})\) that appears in \(T^R(T^L)\),
- only consider *fragments* that help closing \((T^L, T^R)\)
 \(\Rightarrow \) this is determined using the minimal closing sets for \((T^L, T^R)\).

\(\ldots\) combine with *search* (among \(P\)’s) with respect to a *cost model*.
Postprocessing

Duplicate Elimination Elimination

\[Q[\{R(x_1, \ldots, x_k)\}] \leftrightarrow Q[R(x_1, \ldots, x_k)] \]
\[Q[\{Q_1 \land Q_2\}] \leftrightarrow Q[\{Q_1\} \land \{Q_2\}] \]
\[Q[\{\neg Q_1\}] \leftrightarrow Q[\neg Q_1] \]
\[Q[\neg\{Q_1\}] \leftrightarrow Q[\neg Q_1] \]
\[Q[\{Q_1 \lor Q_2\}] \leftrightarrow Q[\{Q_1\} \lor \{Q_2\}] \quad \text{if } \Sigma \cup \{Q[]\} \models Q_1 \land Q_2 \rightarrow \bot \]
\[Q[\exists x. Q_1] \leftrightarrow Q[\exists x.\{Q_1\}] \quad \text{if } \Sigma \cup \{Q[]\} \land Q_1[y_1/x] \land Q_1[y_2/x] \models y_1 \approx y_2 \]

\[\mathcal{CFD}_{nc} \] logic to approximate \(\Sigma \) and to reason about FDs/disjointness in PTIME.
Postprocessing

Duplicate Elimination

\[Q[\{R(x_1, \ldots, x_k)\}] \leftrightarrow Q[R(x_1, \ldots, x_k)] \]
\[Q[\{Q_1 \land Q_2\}] \leftrightarrow Q[\{Q_1\} \land \{Q_2\}] \]
\[Q[\{\neg Q_1\}] \leftrightarrow Q[\neg Q_1] \]
\[Q[\neg\{Q_1\}] \leftrightarrow Q[\neg Q_1] \]
\[Q[\{Q_1 \lor Q_2\}] \leftrightarrow Q[\{Q_1\} \lor \{Q_2\}] \]
\[Q[\exists x. Q_1] \leftrightarrow Q[\exists x. \{Q_1\}] \]
\[\text{if } \Sigma \cup \{Q[\cdot]\} \models Q_1 \land Q_2 \rightarrow \bot \]
\[\text{if } \Sigma \cup \{Q[\cdot]\} \land Q_1[y_1/x] \land Q_1[y_2/x] \models y_1 \approx y_2 \]

\mathcal{CFD}_{nc} logic to approximate Σ and to reason about FDs/disjointness in PTIME.

\[\Rightarrow \text{ also CUT insertion (similar—see } \text{)} \text{.} \]
Summary of the Approach

1. **FO (DLFDE) tableau based interpolation algorithm**
 - Enumeration of plans factored from reasoning
 - Range-restricted queries and constraints \rightarrow ground terms only
 - Extra-logical binding patterns and cost model

2. Post processing (using \mathcal{CFD} approximation)
 - Duplicate elimination elimination
 - Cut insertion

3. Run time
 - Library of common data structures + schema constraints
 - Or an interface to a legacy system
 - Finger data structures to simulate merge joins et al.
Open Issues

1. Dealing with ordered data? (merge-joins etc.: we have a partial solution)
2. Decidable schema languages (decidable interpolation problem)?
3. More powerful schema languages (inductive types, etc.)?
4. Beyond FO Queries/Views (e.g., count/sum aggregates)?
5. Coding extra-logical bits (e.g., binding patterns, postprocessing, etc.) in the schema itself?
6. Standard Designs (a plan can always be found as in SQL)?
7. Explanation(s) of non-definability?
8. Fine(r)-grained updates?
9. . . .

... and, as always, performance, performance, performance!
Message from our Sponsors

Database Group at the University of Waterloo

- 7 professors, affiliated faculty, postdocs, 30+ graduate students, ...
- wide range of research interests
 - Advanced query processing/Knowledge representation
 - System aspects of database systems and Distributed data management
 - Data quality/Managing uncertain data/Data mining
 - New(-ish) domains (text, streaming, graph data/RDF, OLAP)
- research sponsored by governments, and local/global companies
 - NSERC/CFI/OIT and Google, IBM, SAP, OpenText, ...
- part of a School of CS with 75+ professors, 300+ grad students, etc.
 - AI (incl ML), Algorithms&Data Structures, PL, Theory, Systems ...

Cheriton School of Computer Science has been ranked #18 in CS by the world by US News and World Report (#1 in Canada).

... and we are always looking for good graduate students (MMath/PhD)
 ⇒ comes with full support over multiple years