
CS 348: Assignment 3 (Spring 2024)

Assigned on June 11 and due by 5:00pm EDT on June 28

Overview
For this assignment, you must use your Linux accounts and DB2 to implement
an ENROLLMENT system consisting of two applications. The relational schema for
ENROLLMENT must operate on the enrollment database introduced in Assignment
2 (with minor modifications) and formally defined in file Assignment3Schema.txt
(that you need to download). Note that the file contains additional commands
to recreate a bibliography database and includes sample data that correspond
to the examples below. When testing your code, you should replace the sample
data with appropriate alternative selections of your own test data: it is not
sufficient to test your applications on the sample data provided.

ENROLLMENT consists of two application programs with simple command line
interfaces. The requirements for the programs are given below. Finally, C
together with SQL and the static embedded SQL protocol must be used to
implement both application programs.

Assignment submission
Your submission to Marmoset should be a single zip file that contains your source
code for the two applications and a Makefile that compiles the applications
(you are strongly encouraged to use the provided Makefile). Marmoset will
automatically prepare all appropriate tables and run tests. For each application
there will be one public test and a number of secret tests. You can only see
the results of the public test. You can submit multiple times. The score from
your last submission will be considered. You must test your solutions locally
before submitting to Marmoset to avoid clogging the build queue, which is a
shared and limited resource. Also note that Marmoset builds can take a long
time and last minute submissions may not return the public test results before
the deadline.

1



Application Programs

(program schedule)

This application is to print a weekly schedule for the current term given a
person id that can identify a professor, a student, or both. A single id will be
supplied as an argument on the command line. The first line of the output
should contain the person’s name. For persons that are both a professor and
a student it should be the professor’s name (e.g. ”John Doe”). The second
line should list the current term (defined in the same way as in Assignment 2).
the remaining lines should report all activities assigned to that person, namely:
teaching assignments (T), office hours (O), and enrollments in classes (C). The
format of these lines must follow the format below:

Monday 10:00:00 CS245 1 T

Thursday 15:00:00 CS245 - O*

Thursday 15:00:00 CS348 2 C*

Each line starts with a day of the week (10 characters), a single space, the
starting time of the activity (8 characters in the hh:mm:ss format, a single
space, the class code (5 characters), a single space, the section number (1 digit)
if the activity is associated with a section and a ”-” otherwise, a single space,
and a single character indicating the type of the activity (as specified above). If a
conflict in the schedule is detected, a * is added to the end of the line. A conflict
in a schedule is a situation in which two or more activities are scheduled at the
same time (comparing the start times is sufficient here). All such activities must
be marked with a ”*”. The printed schedule must be sorted first by the activity
(with teaching assignments sorted before office hours and with class enrollments
last), then by day, and last by time. The schedule should be followed by a single
line (terminated by \n) stating

This schedule has conflicts

if (and only if) conflicts are found. An example of the output of a run of the
application (e.g., ”$ schedule 1”) could look as follows:

John Doe

S2022

Monday 10:00:00 CS245 1 T

Thursday 15:00:00 CS245 - O*

Thursday 15:00:00 CS348 2 C*

This schedule has conflicts

The application must print a single line (terminated by \n) containing ”Error”
(without any further elaboration) whenever the user asks for a non-existent
person and terminate. There MUST NOT be any additional (e.g., debugging)
output beyond what is stated in the specification above.

2



(program enroll)

This application’s purpose is to add an activity to someone’s current schedule.
It is invoked with the following command line parameters (in order):

1. a person id,

2. a type of activity (i.e., T, O, or C),

3. day (i.e., Monday, . . . , Friday),

4. time (e.g. 10:00:00),

5. a class id (e.g, CS348), and

6. a section number (if needed)

The application can assume that its inputs will be well-formed (and does not
have to validate these). The application should print a single line (again, ter-
minated by \n) containing one of the following:

• “Error: unknown professor/student id”;

• “Error: assigning lecture to a non-professor”;

• “Error: this section exists at a different time”;

• “Error: assigning office hours to a non-professor”;

• “Error: office hours for an unknown class”;

• “Error: enrolling a non-student in a class”;

• “Error: unknown class”;

• “Warning: time conflict” (the request conflicts with an existing one);

• “OK” otherwise,

without any further elaboration. The last two cases should modify the database
while the “Error:” cases need to correctly rollback any changes. In the case of
multiple errors, the application should print the top-most in the above list that
applies. There MUST NOT be any additional (e.g., debugging) output beyond
what is stated in the specifications and shown in the examples.

For example

$ enroll 1 T Friday ’12.00.00’ CS234 2

OK

succeeds assigning teaching section 2 of CS234 to professor 1 on Friday at noon
(or create a new section, if one does not exist). Consequently,

$ enroll 1 O Friday ’12.00.00’ CS345

Warning: time conflict

succeeds assigning office hours for CS345 to professor 1 again on Friday at
noon, but warns about the ensuing conflict.

$ enroll 9 C Friday ’12.00.00’ CS234 2

Error: unknown professor/student id

fails enrolling a non-existent person into CS234 (were 9 a professor only, the
message should have been “Error: enrolling non-student in a class”).

3


