
CS 348: Assignment 2 (Spring 2024)

Assigned on May 28 and due by 5:00pm EDT on June 10

Overview
For this assignment, you must use your Unix accounts and DB2 to compose
and evaluate a number of SQL queries over an ENROLLMENT database. The
DDL for the relational schema and sample INSERTs for a simple instance are
given below, and a plain text source file with these commands is available on
Learn. Note that all submissions must use the supplied SQL DDL code, and
also that proper testing will involve replacing the supplied INSERT commands
with alternative test data.

As with the first assignment, you are given a requirement for each query in
English, and your task is to write source code in the SQL query language that
implements the requirement.

Note that some of the requirements stipulate conditions on what features
of SQL may be used in your source code, in particular whether or not GROUP

BY clauses and aggregate functions may be used. Part of the grading for your
answers in these cases relate to these conditions.

Assignment submission
Your submission to Marmoset should be a single zip file that contains one SQL
file per question. The files must be named question1.sql, question2.sql, etc.
Each of the files must contain a single SQL DML statement as a solution for one
of queries specified in English below. Each of the files must be accepted cleanly
by DB2. The file must not contain the connect to cs348 command (or any
other DB2 commands). Marmoset will automatically prepare all appropriate
tables and run tests. For each question there will be one public test and a
number of secret tests. You can only see the results of the public test. You can
submit multiple times. The score from your last submission will be considered.
You must test your solutions locally before submitting to Marmoset to avoid
clogging the build queue, which is a shared and limited resource. Also note that
Marmoset builds can take a long time and last minute submissions may not
return the public test results before the deadline.

1

Queries that may not use aggregation.

1. The professor number and last name of professors in the computer science
department (CS) who have taught a student in CS348 whose final grade
was less than 60.

2. The professor number and last name of professors in the CS department
who has taught neither CS348 nor CS234 at any time in the past, but is
teaching one of the two courses currently.

3. The professor number and last name of professors who have taught a
CS245 section in which a student obtained a grade that is the lowest ever
recorded for CS245.

4. The number, name and year of each student who is fourth year and who
has a final grade of at least 90 in every course that he or she has completed
in either the CS or the C&O (CO) departments.

5. The minimum and maximum final grade for each section in the past with
office hours on both Monday and Friday and that was taught by a professor
in the computer science department (CS). The result should include the
last name of the professor, and the primary key of the section.

Queries that may use aggregation in SQL

6. The number of different third or fourth year students in each section of
each course taught by a pure math (PM) professor in past terms. The
result, in addition to the count, should include the professor number,
professor name, course number and section, and should be sorted first by
the name of the professor, then by the professor number, third by the
course number, and finally by section. (Note that a section of a course is
identified by a term and a section number. Also assume that sorting by
section means sorting by term and then by section number. The result
will therefore have a total of six columns.)

7. The percentage of professors who have taught in the past at least two
sections of a single course during the same term, but for whom this is not
the case in the current term. Note that a percentage should be a number
between 0 and 100, and that you can assume there is at least one professor.

2

The ENROLLMENT Schema

The following CREATE TABLE commands define the metadata for a hypothet-
ical university grade management system. Information about enrollments, stu-
dents, professors, departments, courses, and sections record information about
both ongoing and past sections for a course. Note that enrollments for any
ongoing section will only have null values recorded for the grade. You may also
assume that each section has at least one enrollment and that a department has
at least one professor. Also listed are sample INSERT commands to illustrate
how values for attributes such as cnum, term and time are formatted.

create table professor (\

pnum integer not null, \

lastname varchar(30) not null, \

office char(6) not null, \

dept char(2) not null, \

primary key (pnum))

insert into professor values (1, ’Weddell’, ’DC3346’, ’CS’)

create table student (\

snum integer not null, \

firstname varchar(30) not null, \

year integer not null, \

primary key (snum))

insert into student values (1, ’Mary’, 3)

insert into student values (2, ’Fred’, 2)

create table course (\

cnum char(5) not null, \

cname varchar(50) not null, \

primary key (cnum))

insert into course values (’CS348’, ’Intro to Databases’)

create table section (\

cnum char(5) not null, \

term char(5) not null, \

section integer not null, \

pnum integer not null, \

primary key (cnum,term,section), \

foreign key (cnum) references course(cnum), \

foreign key (pnum) references professor(pnum))

insert into section values (’CS348’, ’F2018’, 1, 1)

3

insert into section values (’CS348’, ’F2018’, 2, 1)

insert into section values (’CS348’, ’S2020’, 1, 1)

insert into section values (’CS348’, ’S2020’, 2, 1)

create table officehour (\

cnum char(5) not null, \

term char(5) not null, \

pnum integer not null, \

day varchar(10) not null, \

time char(5) not null, \

primary key (cnum,term,pnum,day,time), \

foreign key (cnum) references course(cnum), \

foreign key (pnum) references professor(pnum))

insert into officehour values (’CS348’, ’S2020’, 1, ’Tuesday’, ’09:00’)

insert into officehour values (’CS348’, ’S2020’, 1, ’Thursday’, ’14:30’)

create table enrollment (\

snum integer not null, \

cnum char(6) not null, \

term char(5) not null, \

section integer not null, \

grade integer, \

primary key (snum,cnum,term,section), \

foreign key (snum) references student(snum), \

foreign key (cnum,term,section) references section(cnum,term,section))

insert into enrollment values (1, ’CS348’, ’F2018’, 1, 88)

insert into enrollment values (2, ’CS348’, ’S2020’, 1, null)

4

