DATABASE DESIGN

The Entity-Relationship Model

University of Waterloo
List of Slides

1 Overview of E-R Model
2 Basic E-R Modeling
3 Basic E-R Modeling (cont’d)
4 Basic E-R Modeling (cont’d)
5 Basic E-R Modeling (cont’d)
6 Graphical Representation
7 Graphical Representation (cont’d)
8 Multiple Relationships and Role Names
9 Relationships and Attributes
10 Constraints in E-R Models
11 Binary Relationship Types
12 Binary Relationship Types (cont’d)
13 General Cardinality Constraints
14 Primary Keys
15 Existence Dependencies
16 Identifying Subordinate Entities
17 Identifying Subordinate Entities (cont’d)
18 Example E-R Diagram
19 Extensions to E-R Modeling
20 Structured Attributes
21 Aggregation
22 Specialization
23 Generalization
24 Generalization (cont’d)
25 Designing An E-R Schema
26 Attributes or Entity Sets?
27 Entity Sets or Relationships?
28 Use of Non-Binary Relationships
29 A Simple Methodology
Overview of E-R Model

Proposed by Peter Chen in 1976

... for database (conceptual schema) design

World/enterprise described in terms of

- entities
- attributes
- relationships

Visualization: ER-diagram
Basic E-R Modeling

Entity: a *distinguishable* object

Entity set: set of entities of same type

Example:
- students currently at the Institute
- flights offered by Air Canada
- burglaries in Ontario during 1994

Graphical representation of entity sets:

| Student | Flight | Burglary |
Basic E-R Modeling (cont’d)

Attributes describe properties of entities

Example: for Employee-entities: EmpNum, Name, Salary, …

Domain: set of permitted values for an attribute

Graphical representation of attributes:

- Student
 - StudentNum
 - StudentName
- Major
Basic E-R Modeling (cont’d)

Relationship: representation of the fact that certain entities are related to each other

Relationship set: set of relationships of a given type

Example:

- students registered in courses
- passengers booked on flights
- parents and their children
- bank branches, customers and their accounts

In order for a relationship to exist, the participating entities must exist.
Graphical Representation

- **Student**
 - StudentNum
 - StudentName

- **RegisteredIn**

- **Course**
 - CourseNum
Graphical Representation (cont’d)
Multiple Relationships and Role Names

Role: the function of an entity set in a relationship set

Role name: an explicit indication of a role

Example:

```
Team -- HomeTeam -> Match
     |     |
     V     V
TeamName <--- Visitor

Address

Location

TeamName

LocName
```

Role labels are needed whenever an entity set has multiple functions in a relationship set.
Relationships and Attributes

Relationships may also have attributes

Diagram:

- Team
 - TeamName
- Match
 - HomeTeam
 - Visitor
- Location
 - LocName
- Score
- Address
Constraints in E-R Models

- Binary relationship types
- General cardinality constraints
- Primary keys
- Existence dependencies
Binary Relationship Types

relationships between **TWO** entity sets A and B

- **many-to-one (N:1):** each entity in A can be related to at most one entity in B, but an entity in B may be related to many entities in A

Visualization:

```
    A  N  R  1  B
```

Example:

```
Employee  N  WorksIn  1  Department
```

- similarly: **one-to-many (1:N)**
Binary Relationship Types (cont’d)

- **one-to-one (1:1):** each entity in A can be related to at most one entity in B, and vice versa

 Example:

 ![Diagram of one-to-one relationship](image)

- **many-to-many (N:N):** an entity can be related to many entities in the other set, and vice versa

 Example:

 ![Diagram of many-to-many relationship](image)
General Cardinality Constraints

Determine lower and upper bounds on the number of relationships of a given relationship set in which a component entity may participate

Visualization:

Example:
Primary Keys

Idea: Each entity must be distinguishable from any other entity in its set by its attributes

Primary key: selection of attributes chosen by designer values of which determines the particular entity.

Example:

```plaintext
Department

Dnum  Dname  Budget  ManagerName
```

Example:

```plaintext
Employee

FirstName  Initial  LastName  Salary
```
Existence Dependencies

Sometimes the existence of an entity depends on the existence of another entity.

If \(x \) is **existence dependent** on \(y \), then

- \(y \) is a **dominant entity**
- \(x \) is a **subordinate entity**

Example: “Transactions are existence dependent on accounts.”
Identifying Subordinate Entities

Attributes of entity sets with subordinate entities only form key relative to a given dominant entity

- **Weak entity set**: an entity set with subordinate entities
- **Strong entity set**: an entity set with no subordinate entities

Example: “All transactions for a given account have a unique transaction number.”

![ER Diagram for Account Balance and Transactions](image_url)
Identifying Subordinate Entities (cont’d)

A weak entity set must have an N:1 relationship to a distinct entity set

Discriminator of a weak entity set: set of attributes that distinguish subordinate entities of the set, for a particular dominant entity

Primary key for a weak entity set: discriminator + primary key of entity set for dominating entities

Visualization: (distinguishing an identifying relationship)
Example E-R Diagram

- Course
 - CourseNum
 - CourseName
 - SectionOf
 - SectionNum
 - Section
 - TaughtBy
 - Professor
 - ProfNum
 - ProfName
 - EnrolledIn
 - Student
 - StudentNum
 - StudentName
 - Mark
 - (1, N) 1
 - (1, 1) N
 - (0, N) 1
 - (6, 50)
 - (3, 5)
Extensions to E-R Modeling

- Structured attributes
- Aggregation
- Specialization
- Generalization
Structured Attributes

Composite attributes: attributes composed of two or more other attributes

Multi-valued attributes: attributes that are set-valued

Example:

- **Employee**
 - **Address**
 - **Street**
 - **City**
 - **Province**
 - **PostalCode**
 - **Hobbies**
Aggregation

Relationships can be viewed as higher-level entities

Example: “Accounts are assigned to a given student enrollment.”
Specialization

A more specialized kind of entity set may be derived from a given entity set.

Example: “Graduate students are students that have a supervisor and a number of degrees.”
Generalization

Two or more existing entity sets can be abstracted as a more general kind of entity set.

Example: “A vehicle abstracts the notion of a car and a truck.”
Generalization (cont’d)

![ER Diagram]

- MakeAndModel
- LicenceNum
- Vehicle
- Price
- Tonnage
- Truck
- AxelCount
- Car
- MaxSpeed
- PassengerCount
Designing An E-R Schema

Usually many ways to design an E-R schema

Points to consider

- use attribute or entity set?
- use entity set or relationship set?
- degrees of relationships?
- extended features?
Attributes or Entity Sets?

No simple answer!

Example: Should one model employees’ phones by a PhoneNumber attribute, or by a Phone entity set related to the Employee entity set?

- Is it a separate object?
- Do we maintain information about it?
- Can several of its kind belong to a single entity?
- Does it make sense to delete such an object?
- Can it be missing from some of the entity set’s entities?
- Can it be shared by different entities?

An affirmative answer to any of the above implies introducing a new entity set.
Entity Sets or Relationships?

Again no simple answer!

Example: Instead of representing accounts as entities, we could represent them as relationships.
Use of Non-Binary Relationships

Can always represent a relationship on n entity sets with n binary relationships
A Simple Methodology

1. Recognize entity sets

2. Recognize relationship sets and participating entity sets

3. Recognize attributes of entity sets and attributes of relationship sets

4. Define binary relationship types and existence dependencies

5. Define general cardinality constraints, keys and discriminators

6. Draw diagram

For each step, maintain a log of assumptions motivating the choices, and of restrictions imposed by the choices