SQL: the Basics

David Toman

School of Computer Science
University of Waterloo

Introduction to Databases CS348

David Toman (University of Waterloo) SQL Basics 1/35

SQL

Structured Query Language

= Developed in IBM Almaden (system R)
Based on

= (Conjunctive) queries in Relational Calculus
= Set/Bag semantics and operations

= Aggregation

BAG SEMANTICS (next time)

A committee design

= choices often more “pragmatic” than “logical”
= several standard versions:
SQL/89, SQL/92 = SQL2, SQLS, ...

David Toman (University of Waterloo) SQL Basics 2/35

Starting Point: Range-restricted Queries

Definition (Range restricted queries)
Q = R($i1:'~-:$ik)
QNQ
QAT =z } T, z; € FV(Q)
E|$1'.Q

@1V Q- _
Ql /_‘Q2 } FV(QI) - FV(QZ)

David Toman (University of Waterloo) SQL Basics 3/35

SQL (cont.)

Three major parts of the language:
© DML (Data Manipulation Language)

= Query language
= Update language

® DDL (Data Definition Language)

= defines schema for relations
= creates (modifies/destroys) database objects.

® DCL (Data Control Language)
= access control

Also: Embedded SQL (SQL/J) and ODBC (JDBC)
= necessary for application development

David Toman (University of Waterloo) SQL Basics 4/35

Roadmap to SQL Queries

e the “select block”
simple select-from-where
subqueries in the “from” clause
grouping, aggregation, and having clauses
duplicates and “distinct”
subqueries in the “where” clause
e ordering the output
o set operations
¢ with duplicates

e naming queries and views

David Toman (University of Waterloo) SQL Basics 5/35

SQL Data Types

Values of attributes in SQL:

integer integer (32 bit)

smallint integer (16 bit)

decimal (m,n) fixed decimal

float IEEE float (32 bit)

char (n) character string (length n)
varchar (n) variable length string (at most n)
date year/month/day

time hh:mm:ss.ss

David Toman (University of Waterloo) SQL Basics 6/35

Sample Database Revisited

author (aid integer, name char (20))
wrote (author integer, publication char(8))
publication (pubid char(8), title char(70))

book (pubid char (8),
publisher char (50), year integer)

journal (pubid char (8),
volume integer, no integer, year integer)

proceedings (pubid char(8),
year integer)

article (pubid char(8), <crossref char(8),
startpage integer, endpage integer)

... SQL is NOT case sensitive.

David Toman (University of Waterloo) SQL Basics 7135

The “SELECT Block”

Basic syntax:

SELECT DISTINCT <results>
FROM <tables>
WHERE <condition>

¢ Allows formulation of conjunctive (3, A) queries

= a conjunction of <tables> and <condition>
= attributes not in <result> existentially quantified
= <result> gpecifies values in the resulting tuples

e many other clauses to follow later. ..

David Toman (University of Waterloo) SQL Basics 8/35

Example

List all authors in the database:

SQL> select distinct =
2 from author;

AID NAME URL

1 Toman, David http://db.uwaterloo.ca/~david
2 Chomicki, Jan http://cs.monmouth.edu/~chomicki
3 Saake, Gunter

The FROM clause cannot be used on its own

= the "SELECT " notation
= also reveals all attribute names

David Toman (University of Waterloo) SQL Basics 9/35

Naming Attributes

e problem: what if two relations use the same attribute name?

= publication (pubid, ...)
= book (pubid, ...)

¢ ...and we want to get, e.g., titles of all books
dp,z,y.publication(p,n) A book(p, z,y)

= we prefix the ambiguous attributes names
by the name of the appropriate relation:

e publication.pubid (first “p”)
e book.pubid (second “p”)

David Toman (University of Waterloo) SQL Basics 10/35

Example

List titles of all books:

SQL> select distinct title
2 from publication, book
3 where publication.pubid=book.pubid;

Logics for Databases and Information Systems

David Toman (University of Waterloo) SQL Basics 11/35

Naming Attributes (cont.)

e what if we need to use the same table
to be used several times in the FROM clause?

e list publications with at least two authors

Jy1, yo.wrote(yr, z) Awrote(ys,) A Y1 # Y2
= problem: y; and y, ae both called pubid
= ... and they both appear in the wrote relation
e solution: corelation names in the FROM clause
= e.g., FROM wrote rl, wrote r2 makes

Y1 = rl.author
Yo = r2.author

= r1 and r2 are corelation names

David Toman (University of Waterloo) SQL Basics 12/35

Example

List all publications with at least two authors:

SQL> select distinct rl.publication
2 from wrote rl, wrote r2
3 where rl.publication=r2.publication
4 and rl.author!=r2.author;

PUBLICATION

ChSa98
ChTo98
ChTo9%98a

David Toman (University of Waterloo) SQL Basics

13/35

The "rrOM" Clause (summary)

Syntax:
FROM Ri[ni],..., Ri[ni]

R; are relation (table) names
n, are distinct identifiers

the clause represents a conjunction R A ... A Ry

= all variables of R;’s are distinct
= we use (co)relation names to resolve ambiguities

can NOT appear alone
= only as a part of the select block

David Toman (University of Waterloo) SQL Basics 14 /35

The "seLeCcT" Clause

Syntax:

SELECT DISTINCT e[AS #%),...,ex[AS 1]

© climinate superfluous attributes from answers (3)

® form expressions:
= built-in functions applied to values of attributes

© give names to attributes in the answer

David Toman (University of Waterloo) SQL Basics 15/35

Standard Expressions

we can create values in the answer tuples using built-in functions:

on numeric types:

+,—,%,/,... (usual arithmetic)
on strings:

|| (concatenation), substr, ...

constants (of appropriate types)
"SELECT 1" is a valid query in SQL/92

UDF (user defined functions)

Note: all attribute names MUST be “present” in the FROM clause.

David Toman (University of Waterloo) SQL Basics 16/35

Example

For every article list the number of pages:

SQL> select pubid, endpage-startpage+l
2 from article;

PUBID ENDPAGE-STARTPAGE+1
ChTo98 40
ChTo98a 28
Tom97 19

David Toman (University of Waterloo) SQL Basics 17/35

Naming the Results

Results of queries <= Tables J

What are the names of attributes in the result of a SELECT clause?

¢ A single attribute: inherits the name
¢ An expression: implementation dependent

we can—and should—explicitly name the resulting attributes:
= "<expr> AS <id>" where <id> is the new name

David Toman (University of Waterloo) SQL Basics 18/35

Example

and name the resulting attributes id, numberofpages:
SQL> select pubid as id,
2 endpage—-startpage+l as numberofpages
3 from article;

ID NUMBEROFPAGES
ChTo98 40
ChTo98a 28
Tom97 19

David Toman (University of Waterloo) SQL Basics 19/35

The "wHERE" Clause

Additional conditions on tuples that qualify for the answer.

WHERE C

¢ standard atomic conditions:
© equality: =, '= (on all types)
@® order: <, <=, >, >=, <> (on numeric and string types)
e conditions may involve expressions
= similar conditions as in the SELECT clause

David Toman (University of Waterloo) SQL Basics 20/35

Example(s)

Find all journals printed since 1997:

SQL> select x from Jjournal where year>=1997;

PUBID VOLUME NO YEAR

JLP-3-98 35 3 1998

Find all articles with more than 20 pages:

SQL> select x from article
2 where endpage-startpage>20;

PUBID CROSSREF STARTPAGE ENDPAGE
ChTo98 ChSags8 31 70
ChTo98a JLP-3-98 263 290

David Toman (University of Waterloo) SQL Basics 21/35

Boolean Connectives

Atomic conditions can be combined using boolean connectives:

e AND (conjunction)
e OR (disjunction)
e NOT (negation)

David Toman (University of Waterloo) SQL Basics 22/35

Example

List all publications with at least two authors:

SQL> select distinct rl.publication
2 from wrote rl, wrote r2
3 where rl.publication=r2.publication
4 and not rl.author=r2.author;

PUBLICAT

ChSa98
ChTo98
ChTo98a

David Toman (University of Waterloo) SQL Basics

23/35

Summary

e simple SELECT block accounts for many queries
= all in 3, A fragment of relational calculus

¢ additional features

e alternative names for relations
e expressions and naming in the output
e built-in atomic predicates and boolean connectives

o well defined semantics (declarative and operational)

David Toman (University of Waterloo) SQL Basics 24/35

Complex Queries in SQL

¢ so far we can write only 3, A queries

= the SELECT BLOCK queries
= not sufficient to cover all RC queries

e remaining connectives:
© Vv, —: are expressed using set operations
= easy to enforce range-restriction requirements

® V: rewrite using negation and 3
= the same for —, +, etc.

David Toman (University of Waterloo) SQL Basics 25/35

Set Operations at Glance
Answers to Select Blocks are relations (sets of tuples)

= we can apply set operations on them:
e set union: Q; UNTION Q-

= the set of tuples in @; orin Q.
= used to express “or”.

o set difference: Qi EXCEPT @

= the set of tuples in @; but notin Q.
= used to express “and not”.

o setintersection: @1 INTERSECT (-

= the set of tuples in both @; and Q.
= used to express “and” (redundant, rarely used).

@1 and @> must have union-compatible signatures:
= same number and types of attributes

David Toman (University of Waterloo) SQL Basics 26/35

Example: Union

List all publication ids for books or journals:

SQL> (select pubid from book)
2 union
3 (select pubid from journal);

ChsSa%8
JLP-3-98

David Toman (University of Waterloo) SQL Basics 27/35

Example: Set Difference

List all publication ids except those for articles:

SQL> (select pubid from publication)
2 except
3 (select pubid from article);

Chsa98
DOOD97
JLP-3-98

David Toman (University of Waterloo) SQL Basics

28 /35

What About Nesting of Queries?

We can use SELECT Blocks (and other Set operations)
as arguments of Set operations.

What is we need to use a Set Operation inside of a SELECT Block?]

e we can use distributive laws
= (AVB)AC=(ANC)V(BAC)
= often very cumbersome
¢ nest set operation inside a select block.
= Views or extensions to the FROM clause.

David Toman (University of Waterloo) SQL Basics 29/35

Naming Queries and Views

Idea:

Queries denote relations. We provide a naming mechanism that
allows us to assign names to (results of) queries.

= can be used later in place of (base) relations.

e Syntax:
CREATE VIEW foo [<opt-schema>] AS
(<query-goes-here>);
¢ Views are permanently added to the schema

= often used to define External Schema of the database
= you must have permissions to create them

David Toman (University of Waterloo) SQL Basics 30/35

Example

List all publication titles for books or journals:

SQL> create view bookorjournal as

2 ((select pubid from book)

3 union

4 (select pubid from journal)
5)i

SQL> select title
2 from publication, bookorjournal
3 where publication.pubid=bookorjournal.pubid;

Logics for Databases and Information Systems
Journal of Logic Programming

David Toman (University of Waterloo) SQL Basics 31/35

The FrROM clause revisited

¢ using the view mechanism is often too cumbersome:

= ad-hoc querying, program-generated queries:

big overhead due to catalog access

you must remember to discard (DROP) the views
= you need the CREATE VIEW privilege

e SQL/92 allows us to inline queries in the FrROM clause:
FROM ..., (<gquery-here>) <id>, ...

= <id> stands for the result of <query-here>.
= unlike for base relations, <id> is mandatory.

e in “old” SQL (SQL/89) views were the only option. ..

David Toman (University of Waterloo) SQL Basics 32/35

Example

List all publication titles for books or journals:

SQL> select title
2 from publication,
((select pubid from book)
4 union
5 (select pubid from journal)) bj
6 where publication.pubid=bj.pubid;

Logics for Databases and Information Systems
Journal of Logic Programming

David Toman (University of Waterloo) SQL Basics 33/35

Can’t we just use OR instead of UNTON?

e A common mistake:
= use of OR in the WHERE clause instead of the UNION operator

e An incorrect solution:

SELECT title
FROM publication, book, journal
WHERE publication.pubid=book.pubid

OR publication.pubid=journal.pubid

¢ often works; but imagine there are no books...

David Toman (University of Waterloo) SQL Basics 34/35

Summary on First-Order SQL

e SQL introduced so far captures all of Relational Calculus

= optionally with duplicate semantics
= powerful (many queries can be expressed)
= efficient (PTIME, LOGSPACE)

e Shortcomings:

= some queries are hard to write (syntactic sugar)
= no “counting” (aggregation)
= no “path in graph” (recursion)

David Toman (University of Waterloo) SQL Basics 35/35

