The Complexity of Reasoning with Concrete Domains

Carsten Lutz

LTCS-Report 99-01

Preliminary Version.
The Complexity of Reasoning with Concrete Domains

Carsten Lutz
RWTH Aachen, LuFg Theoretical Computer Science
Ahornstr. 55, 52074 Aachen
January 20, 1999

Abstract

Description logics are knowledge representation and reasoning formalisms which represent conceptual knowledge on an abstract logical level. Concrete domains are a theoretically well-founded approach to the integration of description logic reasoning with reasoning about concrete objects such as numbers, time intervals or spatial regions. In this paper, the complexity of combined reasoning with description logics and concrete domains is investigated. We extend $\mathcal{ALC}(D)$, which is the basic description logic for reasoning with concrete domains, by the operators “feature agreement” and “feature disagreement”. For the extended logic, called $\mathcal{ALCF}(D)$, an algorithm for deciding the ABox consistency problem is devised. The strategy employed by this algorithm is vital for the efficient implementation of reasoners for description logics incorporating concrete domains. Based on the algorithm, it is proved that the standard reasoning problems for both logics $\mathcal{ALC}(D)$ and $\mathcal{ALCF}(D)$ are PSPACE-complete - provided that the satisfiability test of the concrete domain used is in PSPACE.

1 Introduction

Description logics are formalisms for reasoning about conceptual knowledge on an abstract level. However, for a variety of applications, it is essential
to integrate the abstract knowledge with knowledge of a more concrete nature. Examples of such “concrete knowledge” include all kinds of numerical data as well as temporal and spatial information. Important application areas which have been found to depend on integrated reasoning with concrete knowledge are, e.g., mechanical engineering [7], reasoning about aggregation in databases [10], reasoning with physical laws [21] as well as temporal and spatial reasoning (see [16] and [24]). Description logic systems like, e.g., CLASSIC, KRY, and TAXON (see [11], [8], and [2], resp.), provide more or less elaborated interfaces that allow the attachment of external reasoning facilities which are capable of dealing with concrete information. Surprisingly, the complexity of combined reasoning with abstract and concrete knowledge has, to the best of our knowledge, never been formally analyzed and provably optimal algorithms have not been developed. Recent efficient implementations of expressive description logics like FACT (see [20]) concentrate on logics for which reasoning is in PSPACE. An important reason why these systems fail to integrate concrete knowledge is that no complexity results and no efficient algorithms are available.

Baader and Hanschke [6] introduce concrete domains as an approach to integrated reasoning with abstract and concrete knowledge. They define the basic description logic \(\mathcal{ALC}(D) \), which can be parameterized with a concrete domain \(D \). A concrete domain defines a set of concrete objects and predicates over these objects. Baader and Hanschke prove that the standard reasoning problems concept satisfiability, concept subsumption and ABox consistency are decidable for the logic \(\mathcal{ALC}(D) \) if an “admissible” concrete domain \(D \) (i.e., \(D \) fulfills a certain set of requirements) is used. However, to the best of our knowledge, the exact complexity of reasoning with \(\mathcal{ALC}(D) \) has never been formally analyzed. The logic \(\mathcal{ALC}(D) \) uses features (single-valued roles) to establish the connection between the abstract and the concrete domain. It does not, however, include two of the basic operators on features called feature agreement and feature disagreement. These operators first appeared in \(\mathcal{ALCF} \), which is the basic extension of \(\mathcal{ALC} \) with features [19].

In this paper, two issues are treated: First, \(\mathcal{ALC}(D) \) is extended with the feature agreement and feature disagreement operators yielding the new logic \(\mathcal{ALCF}(D) \), which is a combination of \(\mathcal{ALC}(D) \) and \(\mathcal{ALCF} \). Algorithms for deciding the concept satisfiability and ABox consistency problems for this logic are devised and their soundness and completeness is proved. The main strategy employed by the algorithms is to divide the concrete domain satisfiability test into polynomial chunks. This technique is vital for efficient
implementations of description logics incorporating concrete domains. Second, the complexity of reasoning with $\mathcal{ALCF}(D)$ and $\mathcal{ALC}(D)$ is examined and a tight complexity bound is established. Since deciding ABox consistency involves a satisfiability check for the concrete domain, the complexity of the combined formalism depends on the complexity of reasoning in the concrete domain. It is proved that concept satisfiability, concept subsumption and ABox consistency are PSPACE-complete for the description logics $\mathcal{ALC}(D)$ and $\mathcal{ALCF}(D)$, provided that the complexity of the concrete domain satisfiability test is in PSPACE. A lower complexity cannot be achieved since reasoning in \mathcal{ALC}, which is a proper subset of $\mathcal{ALC}(D)$, \mathcal{ALCF}, and $\mathcal{ALCF}(D)$, is already PSPACE-complete. The complexity results show that the proposed algorithms are optimal.

2 The Description Logic $\mathcal{ALCF}(D)$

In this section, the description logic $\mathcal{ALCF}(D)$ is introduced. The logic $\mathcal{ALCF}(D)$ extends $\mathcal{ALC}(D)$, as given in [6], by the operators feature agreement and disagreement (see [19]). First, concrete domains need to be defined.

Definition 1. A concrete domain D is a pair (Δ_D, Φ_D), where Δ_D is a set called the domain, and Φ_D is a set of predicate names. Each predicate name P from Φ_D is associated with an arity n and an n-ary predicate $P^D \subseteq \Delta_D^n$. A concrete domain D is called admissible iff (1) the set of its predicate names is closed under negation and contains a name \top_D for Δ_D and (2) the satisfiability of finite conjunctions of predicates is decidable.

On the basis of concrete domains, the syntax of $\mathcal{ALCF}(D)$ concepts can be formally introduced.

Definition 2. Let C, R, and F be disjoint sets of concept, role, and feature names\(^1\). A composition of features $f_1f_2\cdots f_n$ is called a feature chain. Any element of C is a concept (atomic concept). If C and D are concepts, R is a role or feature, $P \in \Phi_D$ is a predicate name with arity n, and u_1, \ldots, u_n are feature chains, then the following expressions are also concepts:

- $\neg C$ (negation), $C \sqcap D$ (conjunction), $C \sqcup D$ (disjunction), $\forall R.C$ (value restriction), $\exists R.C$ (exists restriction),

\(^1\)In the following, the notion role (feature) is used synonymously for role name (feature name).
• \(\exists u_1, \ldots, u_n.P \) (predicate operator)
• \(u_1 \downarrow u_2 \) (feature agreement), \(u_1 \uparrow u_2 \) (feature disagreement).

Please note that a simple feature can be viewed as a feature chain of length one. The predicate operator is written as \(P(u_1, \ldots, u_n) \) in [6]. For a feature chain \(u = f_1 \cdots f_n, \exists u.C \) and \(\forall u.C \) will be used as abbreviations for \(\exists f_1, \ldots, \exists f_n.C \) and \(\forall f_1, \ldots, \forall f_n.C \), respectively. \(\mathcal{ALC}(\mathcal{D}) \) concepts are \(\mathcal{ALCF}(\mathcal{D}) \) concepts in which neither the feature agreement nor the feature disagreement operator appears. \(\mathcal{ALCF} \) concepts are \(\mathcal{ALCF}(\mathcal{D}) \) concepts in which the predicate operator does not appear.

As usual, a set theoretic semantics is given. The semantics for \(\mathcal{ALCF}(\mathcal{D}) \) is a combination of the semantics for \(\mathcal{ALC}(\mathcal{D}) \) and \(\mathcal{ALCF} \).

Definition 3. An interpretation \(\mathcal{I} = (\Delta_I, \cdot^\mathcal{I}) \) consists of a set \(\Delta_I \) (the abstract domain) and an interpretation function \(\cdot^\mathcal{I} \). The sets \(\Delta_D \) and \(\Delta_I \) must be disjoint. The interpretation function maps

- each concept name \(C \) to a subset \(C^\mathcal{I} \) of \(\Delta_I \),
- each role name \(R \) to a subset \(R^\mathcal{I} \) of \(\Delta_I \times \Delta_I \),
- and each feature name \(f \) to a partial function \(f^\mathcal{I} \) from \(\Delta_I \) to \(\Delta_D \cup \Delta_I \), where \(f^\mathcal{I}(a) = x \) will be written as \((a, x) \in f^\mathcal{I} \).

If \(u = f_1 \cdots f_k \) is a feature chain, then \(u^\mathcal{I} \) is defined as the composition \(f_1^\mathcal{I} \circ \cdots \circ f_k^\mathcal{I} \) of the partial functions \(f_1^\mathcal{I}, \ldots, f_k^\mathcal{I} \). Let the symbols \(C, D, R, P \), and \(u_1, \ldots, u_n \) be defined as in Definition 2. Then the interpretation function can be extended to complex concepts as follows:

\[
(C \cap D)^\mathcal{I} := C^\mathcal{I} \cap D^\mathcal{I} \\
(C \cup D)^\mathcal{I} := C^\mathcal{I} \cup D^\mathcal{I} \\
(\neg C)^\mathcal{I} := \Delta_I \setminus C^\mathcal{I} \\
(\exists R.C)^\mathcal{I} := \{ a \in \Delta_I \mid \exists b \in \Delta_I: (a, b) \in R^\mathcal{I} \land b \in C^\mathcal{I} \} \\
(\forall R.C)^\mathcal{I} := \{ a \in \Delta_I \mid \forall b: (a, b) \in R^\mathcal{I} \rightarrow b \in C^\mathcal{I} \} \\
(\exists u_1, \ldots, u_n.P)^\mathcal{I} := \{ a \in \Delta_I \mid \exists x_1, \ldots, x_n \in \Delta_D: \ (a, x_1) \in u_1^\mathcal{I} \land \cdots \land (a, x_n) \in u_n^\mathcal{I} \land (x_1, \ldots, x_n) \in P^\mathcal{D} \}
\]
\[(u_1 \downarrow u_2)^T := \{ a \in \Delta_I \mid \exists b \in \Delta_I: (a, b) \in u_1^T \land (a, b) \in u_2^T \} \]
\[(u_1 \uparrow u_2)^T := \{ a \in \Delta_I \mid \exists b_1, b_2 \in \Delta_I: b_1 \neq b_2 \land (a, b_1) \in u_1^T \land (a, b_2) \in u_2^T \} \]

An interpretation \(\mathcal{I} \) is a model of a concept \(C \) iff \(C^\mathcal{I} \neq \emptyset \). A concept \(C \) is satisfiable iff there exists a model \(\mathcal{I} \) of \(C \). A concept \(C \) subsumes a concept \(D \) (written \(D \preceq C \)) iff \(D^\mathcal{I} \subseteq C^\mathcal{I} \) for all interpretations \(\mathcal{I} \).

In the presence of negation, subsumption can be reduced to satisfiability since \(D \preceq C \) iff the concept \(D \cap \neg C \) is unsatisfiable.

Please note that the feature agreement and feature disagreement operators consider only objects from \(\Delta_I \) and no objects from \(\Delta_D \). If agreement and disagreement over concrete objects is desired, a concrete domain which includes an equality predicate has to be used. Feature agreement and disagreement over concrete objects, only, may then be expressed as \(\exists u_1, u_2. = \) and \(\exists u_1, u_2. \neq \), respectively. This can also be disjunctively combined with the feature agreement and disagreement operators to obtain “global” agreement and disagreement over both domains. Global agreement is expressed by the concept \(u_1 \downarrow u_2 \sqcup \exists u_1, u_2. = \) and global disagreement is expressed by \(u_1 \uparrow u_2 \sqcup \exists u_1, u_2. \neq \sqcup (\exists u_1. T \sqcap \exists u_2. T_D) \sqcup (\exists u_2. T \sqcap \exists u_1. T_D) \), where \(T \) is an abbreviation for \(A \sqcap \neg A^2 \).

In ALC\(\mathcal{F} \), the additional operator \(u^\uparrow \) (feature undefinedness) is introduced [19]. Its semantics is
\[(u^\uparrow)^T := \{ a \in \Delta_I \mid \neg \exists b \in \Delta_A: (a, b) \in u^T \} \].

We do not consider this operator since it is obviously just syntactic sugar for \(\forall u. \downarrow \sqcup \exists u. T_D \). Next, the assertional formalism is introduced.

Definition 4. Let \(O_D \) and \(O_A \) be disjoint sets of object names. Elements from \(O_D \) are called concrete objects while Elements from \(O_A \) are called abstract objects. If \(C \) is a concept, \(R \) a role or feature name, \(f \) a feature name,

\(^2\)In fact, feature agreement and disagreement could also have been defined to take into account both abstract and concrete objects. This would have led to a language with exactly the same expressivity but would have made some technical issues more complicated. For example, the definition of a concrete domain \(D \) to be admissible would have had to be extended: \(\Phi_D \) would also be required to include an equality predicate. This approach was not followed because global agreement and disagreement are not considered to be very “natural” operators.
P a predicate name with arity n, a and b are elements of O_A and x, and x_1, \ldots, x_n are elements of O_D, then the following expressions are *assertional axioms.*

$$ a: C, \quad (a, b): R, \quad (a, x): f, \quad a \neq b, \quad (x_1, \ldots, x_n): P $$

A finite set of assertional axioms is called an $\mathcal{ALCF}(D)$ ABox. An *interpretation* for the concept language can be extended to the assertional language by mapping every object name from O_A to an element of Δ_I and every object name from O_D to an element of Δ_D. The unique name assumption is not imposed, i.e. $a^T = b^T$ may hold even if a and b are distinct object names. An interpretation satisfies an assertional axiom

$$ a: C \iff a^T \in C^I, $$

$$ (a, b): R \iff (a^T, b^T) \in R^I, $$

$$ (a, x): f \iff (a^T, x^T) \in f^I, $$

$$ a \neq b \iff a^T \neq b^T, $$

$$ (x_1, \ldots, x_n): P \iff (x_1^T, \ldots, x_n^T) \in P^D. $$

An interpretation is a *model* of an ABox \mathcal{A} iff it satisfies all assertional axioms in \mathcal{A}. An ABox is *consistent* iff it has a model.

An object b is called a *successor* of an object a in an ABox \mathcal{A} iff \mathcal{A} contains an assertional axiom $(a, b): R$, where R is a role or feature.

An $\mathcal{ALC}(D)$ ABox is an $\mathcal{ALCF}(D)$ ABox in which only $\mathcal{ALC}(D)$ concepts are used. Analogously, an \mathcal{ALCF} ABox is an $\mathcal{ALCF}(D)$ ABox in which only \mathcal{ALC} concepts are used.

Satisfiability of concepts, as introduced in Definition 3, can be reduced to ABox consistency since a concept C is satisfiable iff the ABox $\{a: C\}$ is consistent.

3 A Completion Algorithm

In this section, a completion algorithm is devised which can be used to decide the consistency of $\mathcal{ALCF}(D)$ ABoxes. Completion algorithms, which are also known as tableau algorithms, are characterized by a set of completion rules and a strategy to apply these rules to the assertional axioms of an ABox. The algorithm starts with an initial ABox \mathcal{A}_0 whose consistency is to be
decided. As noted before, if only the satisfiability of a single concept C is to be checked, the special ABox $\{a : C\}$ is considered. The algorithm repeatedly applies completion rules that add new axioms, and, by doing so, it makes all knowledge that is implicitly contained in the ABox explicit. If the algorithm succeeds to construct an ABox \mathcal{A}_c which is complete (i.e., to which no more completion rules are applicable) and which does not contain an obvious contradiction, then \mathcal{A}_c defines a canonical model for \mathcal{A}_0. Otherwise, \mathcal{A}_0 does not have a model. In fact, things are a little more difficult due to the presence of so-called branching rules. The application of a completion rule to an ABox \mathcal{A} yields one or more succeeding ABoxes (descendants of \mathcal{A}). The rules for which more than one descendant per application is obtained are called branching rules. In the presence of branching rules, a completion algorithm creates a tree of ABoxes. Again, if a complete ABox is found which does not contain a contradiction, then this ABox defines a canonical model for \mathcal{A}_0.

In [19], it is proved that reasoning with \mathcal{ALCF} is PSPACE-complete. A completion algorithm is employed for the proof. To the contrary, the complexity of reasoning with $\mathcal{ALC}(\mathcal{D})$ is yet unknown. Baader and Hanschke propose a completion algorithm for deciding the consistency of $\mathcal{ALC}(\mathcal{D})$ ABoxes without analyzing its complexity [6]. This algorithm is discussed in the following section.

3.1 Analyzing Baader and Hanschke’s algorithm

In [6], Baader and Hanschke define a completion algorithm (from now on called “BHA”) in order to demonstrate decidability of the consistency problem for $\mathcal{ALC}(\mathcal{D})$ ABoxes. The algorithm applies completion rules until a complete ABox is found (keeping the whole ABox in memory) and then performs a concrete domain satisfiability check on all axioms of the form $(x_1, \ldots, x_n) : P$ (concrete domain axioms) found during the rule application process. As will be discussed in this section, BHA may in the worst case generate ABoxes which are exponential in the size of the initial ABox.

A formal notion of “size” will be introduced later. For now, consider the size of a concept C to be the number of operators in C, and the size of an ABox \mathcal{A} to be the sum of the sizes of all concepts used in assertional axioms in \mathcal{A}. When used with ABoxes that contain concepts according to the following schema, BHA generates a complete ABox that is exponential in the size of
the original ABox.

\[\exists R.C \sqcap \exists R.D \]
\[\sqcap \forall R.(\exists R.C \sqcap \exists R.D) \]
\[\ldots \]
\[\sqcap \forall R^n.(\exists R.C \sqcap \exists R.D) \]

Here, \(\forall R^n \) denotes \(n \) nested value restrictions over \(R \). ABoxes can be seen as graphs where role successor relationships are edges and objects are nodes. In this sense, all models (complete ABoxes) that are generated by BHA are trees. Please note that concepts following the given schema are also satisfied by a cyclic (non-tree) model with only 2 domain objects. This is, however, not a general phenomenon. Halpern and Moses [17] show that for the modal logic \(K \), there exist formulae that have models of exponential size only. Since it is well-known that the logic \(K_n \) is a notational variant of \(\text{ALC} \) ([30]), these formulae can be directly translated into \(\text{ALC}(\mathcal{D}) \) concepts. On the other hand, Schmidt-Schauß and Smolka show that for the logic \(\text{ALC} \) (as for a number of other logics), algorithms can be devised which use only polynomial space for exploring exponentially sized models by performing depth-first search over the role successors and keeping only a “trace” of an ABox in memory [31]. If this technique is to be applied to \(\text{ALC}(\mathcal{D}) \) or \(\text{ALC}(\mathcal{F})(\mathcal{D}) \), an additional problem arises. BHA requires that all concrete domain axioms appearing in a complete ABox \(\mathcal{A} \) are conjoined into one big conjunction and then checked for concrete domain satisfiability. The concepts obtained from the translation of the \(K \) formulae given by Halpern and Moses can easily be extended such that each abstract domain object in every model is in the extension of a concept of the form \(\exists u_1, \ldots, u_n.P \). Hence, there are also exponentially many concrete domain axioms to be collected. It is obvious that any algorithm following this strategy needs exponential space in the worst case.

In the following, it will be shown that it is not necessary to collect all concrete domain axioms at once: The concrete domain satisfiability check can be partitioned into polynomial chunks which do not interact, i.e., which do not share any variables. In the next section, a tableau algorithm is developed that does exactly this. Only a polynomial trace of the ABox is kept in memory, and, furthermore, the concrete domain satisfiability check is broken down into independent, polynomial chunks. This algorithm is then used to prove that deciding \(\text{ALC}(\mathcal{F})(\mathcal{D}) \) ABox consistency is \(\text{PSpace} \)-complete provided that the
concrete domain satisfiability test is in PSPACE.

3.2 A PSPACE Algorithm

The algorithm for deciding the consistency of $\mathcal{ALCF}(D)$ ABoxes is developed in two steps. First, an algorithm sat for deciding concept satisfiability is devised. Afterwards, an algorithm ABox-cons is developed which is capable of deciding the consistency of $\mathcal{ALCF}(D)$ ABoxes.

Sat takes a concept C as input. C has to be in negation normal form, i.e., negation is allowed only in front of atomic concepts. Conversion to NNF can be done by exhaustively applying appropriate rewrite rules to push negation inwards. We only give the conversion rules needed for the new constructors feature agreement and feature disagreement, and refer to [6] for the $\mathcal{ALC}(D)$ ruleset.

$$\neg(u_1 \downarrow u_2) = \exists u_1. T_D \lor \exists u_2. T_D \lor \forall u_1. \bot \lor \forall u_2. \bot \lor u_1 \uparrow u_2$$

$$\neg(u_1 \uparrow u_2) = \exists u_1. T_D \lor \exists u_2. T_D \lor \forall u_1. \bot \lor \forall u_2. \bot \lor u_1 \downarrow u_2$$

Any $\mathcal{ALCF}(D)$ concept can be converted into an equivalent concept in NNF in linear time.

In order to keep the further considerations simple, nondeterministic completion rules are used instead of branching rules. This means that in a branching situation, the algorithm does not explore all of the given possibilities but just a single one. It is not specified which possibility is chosen. Thus, the described completion algorithm is a nondeterministic decision procedure. Such an algorithm accepts its input (i.e. returns consistent), if there is any way to make the nondeterministic decisions such that a positive result is obtained (i.e., a complete and non-contradictory ABox is found). A convenient way to think of nondeterministic rules is that they “guess” the “right” descendant, i.e., if there is a descendant which, if chosen, leads to a complete and non-contradictory ABox, then this descendant is in fact considered.

To decide the satisfiability of the concept C, sat starts with the initial ABox $A_0 := \{o : C\}$ and then repeatedly applies completion rules. First, the set of completion rules is defined.

3.2.1 The Ruleset

To define the rules in a succinct way, the two functions succ_A and chain_A are introduced.
For an object \(a \in O_A \) and a feature chain \(u \), \(succ_A(a, u) \) denotes the object \(b \) that can be found by following \(u \) starting from \(a \) in the ABox \(A \). If no such object exists, \(succ_A(a, u) \) denotes the special object \(\epsilon \) that cannot be part of any ABox. An object name \(a \in O_A \) is called fresh in an ABox \(A \) if \(a \) is not used in \(A \). Let \(a \) be an object from \(O_A \), \(x \) be an object from \(O_D \), and \(u = f_1 \cdots f_k \) be a feature chain. The function \(chain \) is defined as follows:

\[
\text{chain}_A(a, x, u) := \{(a, c_1):f_1, \ldots, (c_{k-1}, x):f_k\}
\]

where the \(c_1, \ldots, c_{k-1} \in O_A \) are distinct and fresh in \(A \).

An ABox \(A \) is said to contain a fork (for a feature \(f \)) if it contains the two axioms \((a, b):f \) and \((a, c):f \) or the two axioms \((a, x):f \) and \((a, y):f \), where \(b \) and \(c \) are from \(O_A \) and \(x \) and \(y \) are from \(O_D \). A fork can be eliminated by replacing all occurrences of \(c \) in \(A \) with \(b \), or by replacing all occurrences of \(x \) in \(A \) with \(y \), respectively. During rule application, it is assumed that forks are eliminated as soon as they appear (as an integral part of the rule application) with the proviso that newly generated object are replaced by older ones and not vice versa. Now, the set of completion rules can be formulated.

Definition 5. The following completion rules replace a given ABox \(A \) nondeterministically by an ABox \(A' \). \(A' \) is called a descendant of \(A \). In the following, \(C \) and \(D \) denote concepts, \(\bar{R} \) denotes a role, \(f \) denotes a feature, \(P \) denotes a predicate name from \(\Phi_D \), \(u_1, \ldots, u_n \) denote feature chains, and \(a \) and \(b \) denote object names from \(O_A \).

- **R□** The conjunction rule.
 Premise: \(a: C \land D \in A, \quad \{a: C, a: D\} \not\subseteq A \)
 Consequence: \(A' = A \cup \{a: C, a: D\} \)

- **R☐** The (nondeterministic) disjunction rule.
 Premise: \(a: C \lor D \in A, \quad \{a: C, a: D\} \cap A = \emptyset \)
 Consequence: \(A' = A \cup \{a: C\} \lor A' = A \cup \{a: D\} \)

- **Rr∃C** The role exists restriction rule.
 Premise: \(a: \exists \bar{R}. C \in A, \quad \neg\exists b \in O_A: \{(a, b): \bar{R}, b: C\} \subseteq A \)
 Consequence: \(A' = A \cup \{(a, b): \bar{R}, b: C\} \) where \(b \in O_A \) is fresh in \(A \).

- **Rf∃C** The feature exists restriction rule (may create forks).
 Premise: \(a: \exists f. C \in A, \quad \neg\exists b \in O_A: \{(a, b): f, b: C\} \subseteq A \)
 Consequence: \(A' = A \cup \{(a, b): f, b: C\} \) where \(b \in O_A \) is fresh in \(A \).

10
\textbf{Rr}\forall C \text{ The role value restriction rule.}

Premise: \(a \forall R.C \in A, \ \exists b \in O_A: \{(a, b): R, \ b: C\} \subseteq A \)

Consequence: \(A' = A \cup \{b : C\} \)

\textbf{Rf}\forall C \text{ The feature value restriction rule.}

Premise: \(a \forall f.C \in A, \ \exists b \in O_A: \{(a, b): f, \ b: C\} \subseteq A \)

Consequence: \(A' = A \cup \{b : C\} \)

\textbf{R}\exists P \text{ The predicate exists restriction rule (may create forks).}

Premise: \(a : \exists u_1, \ldots, u_n, P \in A, \neg \exists x_1, \ldots, x_n \in O_D: (\text{succ}_A(a, u_1) = x_1 \land \ldots \land \text{succ}_A(a, u_n) = x_n \land (x_1, \ldots, x_n) : P \in A) \)

Consequence: \(C_0 := A \cup \{(x_1, \ldots, x_n) : P\} \)

where the \(x_i \in O_D \) are distinct and fresh in \(A \).

\(C_1 := \text{chain}_{C_0}(a, x_1, u_1), \ldots, C_n := \text{chain}_{C_{n-1}}(a, x_n, u_n) \)

\(A' = \bigcup_{i=0..n} C_i \)

\textbf{R}\downarrow \text{ The agreement rule (may create forks).}

Premise: \(a : u_1 \downarrow u_2 \in A, \neg \exists b \in O_A : (\text{succ}_A(a, u_1) = \text{succ}_A(a, u_2) = b) \)

Consequence: \(C = A \cup \text{chain}_A(a, b, u_1) \) where \(b \in O_A \) is fresh in \(A \).

\(A' = C \cup \text{chain}_C(a, b, u_2) \)

\textbf{R}\uparrow \text{ The disagreement rule (may create forks).}

Premise: \(a : u_1 \uparrow u_2 \in A, \neg \exists b_1, b_2 \in O_A : (\text{succ}_A(a, u_1) = b_1 \land \text{succ}_A(a, u_2) = b_2 \land b_1 \neq b_2 \in A) \)

Consequence: \(C = A \cup \text{chain}_A(a, b_1, u_1) \)

\(A' = C \cup \text{chain}_C(a, b_2, u_2) \cup \{b_1 \neq b_2\} \)

where the \(b_1, b_2 \in O_A \) are distinct and fresh in \(A \).

Rule applications that generate new objects are called \textit{generating}. All other rule applications are called \textit{non-generating}. All applications of the Rr\exists C rule are generating. Application of the rules Rf\exists C, R\exists P, R\downarrow, R\uparrow are usually generating but may be non-generating if fork elimination takes place.

The ruleset is identical to the one used for BHA with three exceptions: (i) The rule R\downarrow is nondeterministic; this serves the purpose of making our further considerations simpler; (ii) the rules Rr\exists C and Rf\exists C, as well as Rf\forall C and Rf\forall C, respectively, are unified in a single rule in Baader and Hanschke’s ruleset; in our setting, it is more convenient to separate the rules since in the
satisfiability algorithm to be defined, rule application to axioms of the form
\((a, x):f\), where \(f\) is a feature, occurs at a different time than rule applications
to axioms \((a, b):\hat{R}\), where \(\hat{R}\) is a role; (iii) there are two new rules for dealing
with feature agreement and disagreement, see [19]. A formalized notion of
contradictory and complete ABoxes needs to be introduced.

Definition 6. Let the same naming conventions be given as in Definition 5.
Additionally, let \(f\) be a feature. An ABox \(\mathcal{A}\) is called *contradictory* if one
of the following *clash triggers* is applicable. If none of the clash triggers is
applicable to an ABox \(\mathcal{A}\), then \(\mathcal{A}\) is called *clash-free*.

- **Primitive clash:** \(a:C \in \mathcal{A}, \quad a:\neg C \in \mathcal{A}\)
- **Feature domain clash:** \((a, x):f \in \mathcal{A}, \quad (a, b):f \in \mathcal{A}\)
- **All domain clash:** \((a, x):f \in \mathcal{A}, \quad a:\forall f.C \in \mathcal{A}\)
- **Agreement clash:** \(a \neq a \in \mathcal{A}\)

An ABox to which no completion rules are applicable is called *complete*. An
ABox \(\mathcal{A}\) is called *concrete domain satisfiable* if there exists a mapping \(\delta\) from
\(O_D\) to \(\mathcal{D}\), such that \(\bigwedge_{(x_1,\ldots,x_n)\in\mathcal{A}}(\delta(x_1),\ldots,\delta(x_n)) \in P^\mathcal{D}\) is true in \(\mathcal{D}\).

In the following section, the satisfiability algorithm is described.

3.2.2 The Satisfiability Algorithm

The satisfiability algorithm makes use of two auxiliary functions which will
be described only informally. The function *apply* takes two arguments which
are an ABox \(\mathcal{A}\) and a completion rule \(r\). It applies \(r\) once to arbitrary axioms
from \(\mathcal{A}\) matching \(r\)'s premise and returns a descendant of \(\mathcal{A}\) obtained by rule
application (please note that there is more than one possible descendant if a
nondeterministic rule is applied). The function *satisfiable?* takes as arguments
a concrete domain \(\mathcal{D}\) and a set \(\mathcal{C}\) of concrete domain axioms. It returns *yes*
if the conjunction of all axioms in \(\mathcal{C}\) is satisfiable w.r.t. \(\mathcal{D}\) and *no* otherwise.
Assume that the satisfiability of a concept \(\mathcal{C}\) is to be decided. Using the
two auxiliary functions just defined, the satisfiability algorithm \texttt{sat} can be
specified as follows.

Definition 7. The function \texttt{sat} can be used to decide the satisfiability of
\(\mathcal{ALCF(D)}\) concepts in NNF. To decide the satisfiability of the concept \(\mathcal{C}\),
\texttt{sat} takes the input \\{\(o:C\)\}.

12
define procedure sat(A)
 \(A' := \text{feature-complete}(A) \)
 if \(A' \) contains a clash then
 return inconsistent
 \(C := \{ \alpha \in A' \mid \alpha \text{ is of the form } (x_1, \ldots, x_n): P \} \)
 if \(\text{satisfiable}(D,C) = \text{no} \) then
 return inconsistent
 for all \(a : \exists \hat{R}. D \in A' \), where \(\hat{R} \) is a role, do
 Let \(b \) be an object name from \(O_A \).
 if \(\text{sat}(\{b:D\} \cup \{b; E \mid a; \forall \hat{R}. E \in A'\}) = \text{inconsistent} \) then
 return inconsistent
 return consistent

define procedure feature-complete(A)
 while a rule \(r \) from \{R\cap, R\cup, R\exists C, R\forall C, R\exists P, R\downarrow, R\uparrow \} is applicable to \(A \) do
 \(A := A \cup \text{apply}(A, r) \)
 return \(A \)

We will now informally describe the strategy followed by \(\text{sat} \). A formal proof of its soundness and completeness will be given in Section 4. The argument of \(\text{sat} \) is an ABox containing exactly one object \(a \in O_A \). \(\text{Sat} \) uses the \text{feature-complete} function to create all feature successors of \(a \), all feature successors of these feature successors and so on. \(\text{Sat} \) thus considers a cluster of objects which are related by features, only. If the resulting ABox is interpreted as a graph (see Section 3.1), the cluster is a directed acyclic graph with a single root \(a \). Afterwards, a recursive call is made for each role successor of any object in the cluster. This strategy was first employed for \(A\text{LCFF} \) reasoning algorithms (see [19]). Each cluster is checked separately for contradictions and concrete domain satisfiability. It will later be shown that this is equivalent to the strategy used by Baader and Hanschke’s algorithm. For each recursive call, \(\text{sat} \) generates an which contains all axioms for the respective successor. Please note that the generation of the new ABox corresponds to an application of the \(Rr\exists C \) rule and finitely many applications of the \(Rr\forall C \) rule. \(\text{Sat} \) is called recursively for the newly generated ABox.

To summarize, \(\text{sat} \) is a recursive function following a “trace” of object clusters. Based on the \(\text{sat} \) algorithm, an algorithm for deciding ABox consistency can be defined.
3.2.3 The ABox Consistency Algorithm

The algorithm ABox-cons, which is introduced in this section, can be used to
decide the consistency of $\mathcal{ALCF}(D)$ ABoxes. The algorithm takes an ABox
\mathcal{A} as input, where all concepts appearing in \mathcal{A} have to be in NNF. ABox-cons
reduces the ABox consistency to concept satisfiability. It first performs pre-
processing on the input ABox, then constructs a set of “reduction concepts”
and finally checks their satisfiability using sat.

Definition 8. The algorithm ABox-cons which can be used to decide the
consistency of $\mathcal{ALCF}(D)$ ABoxes is defined as follows.

\[
\begin{align*}
\text{define procedure } & \text{ABox-cons}(\mathcal{A}) \\
& \text{eliminate forks in } \mathcal{A} \text{ (see Definition 5)} \\
& \mathcal{A} := \text{preprocess}(\mathcal{A}) \\
& C := \{ \alpha \in \mathcal{A} | \alpha \text{ is of the form } (x_1, \ldots, x_n) : P \} \\
& \text{if } \mathcal{A} \text{ contains a clash then} \\
& \quad \text{return } \text{inconsistent} \\
& \text{if } \text{satisfiable}(D,C) = \text{no} \text{ then} \\
& \quad \text{return } \text{inconsistent} \\
& \text{forall } a : \exists \hat{R}. D \in \mathcal{A}, \text{ where } \hat{R} \text{ is a role, do} \\
& \quad \text{Let } b \text{ be an object name from } O_{\mathcal{A}}. \\
& \quad \text{if } \text{sat}(\{b : (C \cap \bigcap_{\forall \hat{R}. D \in \mathcal{A}} D)\}) = \text{inconsistent} \text{ then} \\
& \quad \quad \text{return } \text{inconsistent} \\
& \text{return } \text{consistent}
\end{align*}
\]

\[
\begin{align*}
\text{define procedure } & \text{preprocess}(\mathcal{A}) \\
& \text{while a rule } r \text{ from } \{ \text{R} \cap, \text{R} \sqcup, \text{R} \forall C, \text{R} \exists C, \text{Rf} \forall C, \text{Rf} \exists C, \text{R} \exists P, \text{R} \forall, \text{R} \sqcup, \text{R} \cap \} \\
& \quad \text{is applicable to } \mathcal{A}, \text{ do} \\
& \quad \mathcal{A} := \mathcal{A} \cup \text{apply}(\mathcal{A}, r) \\
& \text{return } \mathcal{A}
\end{align*}
\]

Again, an informal description of the algorithm is given. The preproces-
sing is performed by the function preprocess, which is very similar to the
feature-complete function used by sat. The rule set used by preprocess is
identical to that used by feature-complete, except that the Rf\forall C rule is also
applied. This is necessary because in the initial ABox \mathcal{A}_0, there may already
be axioms of the form $(a, b) : \hat{R}$, where \hat{R} is a role. After the resulting ABox,
which is called preprocessing complete, has been checked for contradictions
and concrete domain satisfiability, it is sufficient to separately check all successors of objects in the preprocessing complete ABox for consistency. This is done by constructing a set of “reduction concepts” and using sat to decide their consistency. Please note that concept construction corresponds to the application of the $\text{Rr}\exists C$ and $\text{Rr}\forall C$ rules. Regarding preprocessing on ABoxes with the goal to reduce ABox consistency to concept satisfiability, see also [18] and [9].

The correctness of the reduction implemented by ABox-cons is proved in the next section.

4 Correctness and Complexity

In this section, it is proved that both the satisfiability algorithm and the consistency algorithm are sound and complete and that they can be executed using only polynomial space provided that the satisfiable? function can also be executed in polynomial space. Starting from this result, it will be straightforward to prove that deciding the consistency of an $\text{ALCF}(D)$ ABox is a PSPACE-complete problem provided that the satisfiability test for the concrete domain D is in PSPACE. Sat and ABox-cons are considered separately.

4.1 The sat Algorithm

First, some basic definitions are necessary. To characterize space requirements, a formal notion for the size of an ABox is given.

Definition 9. The size $\|C\|$ of a concept C is defined inductively. Let C and D be concepts, A an atomic concept, R a role or feature, $u = f_1 \cdots f_k$ a feature chain, and let u_1, \ldots, u_n also be feature chains.

\[
\begin{align*}
\|A\| &= 1 \\
\|C \{\land, \lor\} D\| &= \|C\| + \|D\| + 2 \\
\|\exists u_1, \ldots, u_n.P\| &= \|u_1\| + \cdots + \|u_n\| + 1 \\
\|u_1 \downarrow u_2\| &= \|u_1\| + \|u_2\| \\
\|\forall, \exists\} R.C\| &= \|C\| + 1 \\
\|u_1 \uparrow u_2\| &= \|u_1\| + \|u_2\| + 1
\end{align*}
\]

The size of an axiom α is $\|C\|$ if α is of the form $x : C$ and 1 otherwise. The size of an ABox \mathcal{A} is the sum of the sizes of all axioms in \mathcal{A}.

15
Please recall that sat is a nondeterministic algorithm, i.e., the sat yields a positive result if there is any way to make the nondeterministic decisions such that a positive result is obtained. A way to make the nondeterministic corresponds to a run of the algorithm. Correctness of the satisfiability algorithm can be proved by showing that (1) whenever there is a sat run returning consistent, then the initial ABox \(A_0 = \{ a : C \} \) has a model, (2) whenever all possible sat runs are returning inconsistent, then \(A_0 \) cannot have a model, and (3) sat terminates on any input \(\{ a : C \} \), i.e., all possible runs are of finite length. For doing so, it is convenient to define a sequence of ABoxes \(A^0_1, A^1_1, \ldots \) that is associated with a given run of the satisfiability algorithm. The ABoxes \(A^i_1 \) collect all axioms that the sat algorithm generates during the run. Each ABox \(A^i_1 \) is obtained by the application of a single rule to the ABox \(A^{i-1}_1 \). It will be shown that if sat terminates after \(n \) rule applications returning consistent, then the ABox \(A^n_1 \) defines a canonical model for \(A_0 \).

When defining \(A^i_1 \), we must cope with the following technical problem: The object names created by sat are unique only within the ABox considered in a single recursion step. This means that we must ensure that an object \(x \) in one recursion step can be distinguished from \(x \) in another step since these two objects are not identical. To achieve this, objects used in axioms are renamed before the axioms are added to an ABox \(A^i_1 \). For this purpose, the object names are indexed with the value of a counter \(sc \), which counts the (recursive) calls to the sat function.

Let \(A_0 = \{ a : C \} \) be the ABox that is initially passed to sat. We set \(A^0_1 = \{ a_0 : C \} \) for any sat run with \(A_0 \) as initial argument. For \(i > 0 \), \(A^i_1 \) is defined recursively by the annotated version of the sat algorithm given in Figure 1. The annotations are marked with asterisks. The annotated version introduces the two global variables \(sc \) and \(rc \), which are assumed to be initialized with the value 0. The first one is a counter for the number of calls to the sat function. The second one counts the number of rules that have been applied. Please note that the annotated version of sat is defined just to prove the correctness of the original version. It is by no means intended to be used as an algorithm for deciding the satisfiability of concepts, neither do we claim that the annotated version itself can be executed in polynomial space. The following Lemma is needed for proving the correctness of the sat algorithm.

Lemma 10. Let \(A_0 \) be an input to the sat function. Fix a run \(\tau \) of sat on \(A_0 \). Let \(A^0_1, A^1_1, \ldots \) be the sequence of ABoxes that is associated with \(\tau \). If
\[
* \text{rc} := \text{sc} := 0
\]

\textbf{define procedure \textit{sat}(\mathcal{A})}
\[\mathcal{A'} := \text{feature-complete}(\mathcal{A})\]
\textbf{if} \(\mathcal{A'}\) \textbf{contains a clash} \textbf{then}
\textbf{return} \textit{inconsistent}
\[C := \{\alpha \in \mathcal{A'} | \alpha \text{ is of the form } (x_1, \ldots, x_n) : P\}\]
\textbf{if} \textit{satisfiable}(\mathcal{D}, C) = \textit{no} \textbf{then}
\textbf{return} \textit{inconsistent}
\[\textbf{forall } a : \exists \tilde{R}. D \in \mathcal{A'}, \text{ where } \tilde{R} \text{ is a role}, \textbf{do}\]
* \(\text{sc} := \text{sc} + 1\)
* \(\text{rc} := \text{rc} + 1\)
* \text{Let } b \text{ be an object name from } O_A.
* \[\mathcal{A'}_{\text{rc}} := \mathcal{A'}_{\text{rc}}^{-1} \cup \{(a_{sc-1}, b_{sc}) : \tilde{R}\} \cup \{b_{sc} : D\}\]
* \textbf{forall } \alpha \in \mathcal{A} \text{ of the form } a : \forall \tilde{R}. E \textbf{ do}
* \(\text{rc} := \text{rc} + 1\)
* \[\mathcal{A'}_{\text{rc}} := \mathcal{A'}_{\text{rc}}^{-1} \cup \{b_{sc} : E\}\]
\textbf{if} \textit{sat}(\{b : D\} \cup \{b : E | a : \forall \tilde{R}. E \in \mathcal{A'}\}) = \textit{inconsistent} \textbf{then}
\textbf{return} \textit{inconsistent}
\textbf{return} \textit{consistent}

\textbf{define procedure \textit{feature-complete}(\mathcal{A})}
\textbf{while} a rule \(r\) from \{R\cap, R\cup, R\exists C, R\forall C, R\exists P, R\downarrow, R\uparrow\} \textbf{do}
\[\mathcal{N'} := \text{apply}(\mathcal{A}, r)\]
\[\mathcal{A} := \mathcal{A} \cup \mathcal{N'}\]
* \(\text{rc} := \text{rc} + 1\)
* \textbf{forall } \alpha \in \mathcal{N'} \textbf{ do}
* \textbf{forall } a \in O_A \text{ (and all } x \in O_D\) used in \(\alpha\) \textbf{do}
* \text{Replace each occurrence of } a \text{ (resp. } x\) \textbf{ in } \alpha \text{ with } a_{sc} \text{ (resp. } x_{sc}\)
* \[\mathcal{A'}_{\text{rc}} := \mathcal{A'}_{\text{rc}}^{-1} \cup \{\alpha\}\]
\textbf{return} \(\mathcal{A}\)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{sat_algorithm}
\caption{The annotated \textit{sat} algorithm.}
\end{figure}
the run \(\tau \) terminates then this sequence is of finite length \(n \). In this case, let \(\mathcal{A}_\cup \) denote the ABox \(\mathcal{A}_\cup \).

1. Let \(\mathcal{A} \) be an ABox. For each completion rule \(\tau \) that can be applied to \(\mathcal{A} \), we have that \(\mathcal{A} \) has a model if and only if one of the descendants of \(\mathcal{A} \) has a model.\(^3\)

2. If \(\tau \) terminates and returns inconsistent, then \(\mathcal{A}_\cup \) does not have a model.

3. If \(\tau \) terminates and returns consistent, then \(\mathcal{A}_\cup \) has a model.

4. \texttt{Sat} terminates on any input.

The four claims of the Lemma are proved separately:

(1) One direction is trivial: Since all descendants \(\mathcal{A}' \) generated by rule application are supersets of their ancestor \(\mathcal{A} \), it follows immediately that each model of \(\mathcal{A}' \) is also a model of \(\mathcal{A} \). The other direction depends on the respective rule and is straightforward in most cases. A formal proof is omitted since the rules used by the \texttt{sat} algorithm have been used in [6] and [19] and the property in question (“local correctness”) follows from the correctness proofs for the algorithms that can be found in the referred papers.\(^4\)

(2) The run \(\tau \) of \texttt{sat} returns \textit{inconsistent} if and only if an ABox \(\mathcal{A} \) is considered which either contains a clash or is not concrete domain satisfiable. In the former case, \(\mathcal{A}_\cup \) does also contain a clash; in the latter case, \(\mathcal{A}_\cup \) cannot be concrete domain satisfiable. This follows trivially from the fact that we have \(\mathcal{A} \subseteq \mathcal{A}_\cup \) modulo object renaming. The rest of the proof is straightforward, again. It suffices to show that no interpretation can satisfy an ABox to which a clash trigger is applicable or which is not concrete domain satisfiable.

(3) First, the following Lemma needs to be established.

Lemma 11. If a \texttt{sat} run \(\tau \) returns consistent, then \(\mathcal{A}_\cup \) is complete, clash-free, and concrete domain satisfiable.

\(^3\)In case of the nondeterministic rule \(R \sqsupset \), there are two possible descendants. For all other rules, there is only a single descendant.

\(^4\)To be precise, the rules presented in this paper differ in two points from those given in [6], as was discussed in Section 3.2.1. It is obvious that these two differences (non-determinism of \(R \sqsupset \) and separateness of \(Rr \exists C / R \exists C \) and \(Rr \forall C / R \forall C \)) do not influence local correctness.
Proof: In the following, the \(i \)'th recursion step of \(\tau \) means the recursion step in which the counter \(sc \) has the value \(i \). We say that \(i \) calls \(j \) if in the \(i \)'th recursion step of \(\tau \), a recursive call is made in which the counter \(sc \) has the value \(j \). Please note that \(j = i + 1 \) does not need to hold.

- completeness. Assume that there exists a set \(\mathcal{C} \) of axioms from \(\mathcal{A}_u \) to which a completion rule \(r \) is applicable. It will be shown that a contradiction can be derived from this assumption. A case analysis according to the rules has to be made. First assume the rule \(r \) to be from \(\{ R \cap, R \sqcup, R \exists C, R \forall C, R \exists P, R \sqcup, R \sqcap \} \). In this case, \(\mathcal{C} \) has the form \(\{ a_i : C \} \). From the construction of \(\mathcal{A}_u \), it follows that there exists an axiom \(\alpha = a : C \) that either is created by \texttt{feature-complete} during the \(i \)'th recursion step or that is contained in the ABox which is the argument to the \(i \)'th recursion step of \(\tau \). The latter case happens if either \(\alpha \) is the axiom from the initial ABox \(\mathcal{A}_0 \) and \(i = 0 \) or if \(\alpha \) was introduced by the implicit application of \(R \exists C \) and \(R \forall C \) during a \(j \)'th recursion step of \(\tau \), where \(j \) calls \(i \). In all of the cases mentioned, \(r \) is checked for applicability to an ABox \(\mathcal{A} \) containing \(\alpha \) during the \(i \)'th recursion step. If \(r \) is \(R \exists C \), this is done by \texttt{sat} itself; in the other cases, this is done by \texttt{feature-complete}. Assume first that \(r \) is not applicable to \(\alpha \) in \(\mathcal{A} \). This can only be the case if the axioms appearing in the consequence of the rule are already part of \(\mathcal{A} \). But since we have \(\mathcal{A} \subseteq \mathcal{A}_u \) modulo object renaming, this would clearly contradict the assumption that \(r \) is applicable to \(\mathcal{C} \) in \(\mathcal{A}_u \). Now assume that \(r \) is applied to \(\alpha \) in \(\mathcal{A} \) during the \(i \)'th recursion step. This means that the axioms appearing in the consequence of the rule are in \(\mathcal{A}_u \) (modulo object renaming). This again contradicts the assumption.

The remaining cases for \(R \forall C \) and \(R \forall C \) can be proved similarly. \(\mathcal{C} \) now contains the additional axiom \((a_i, b_i) : f \) or \((a_i, b_{i+k}) : \bar{R} \), respectively, where \(f \) is a feature and \(\bar{R} \) a role. Each axiom \((a_i, b_i) : f \) in \(\mathcal{A}_u \) corresponds to an axiom \((a, b) : f \) that was introduced by \texttt{feature-complete} during the \(i \)'th recursion step to an ABox \(\mathcal{A} \). Each axiom \((a_i, b_{i+k}) : \bar{R} \) in \(\mathcal{A}_u \) corresponds to an axiom \((a, b) : \bar{R} \) that was introduced by an implicit application of the \(R \exists C \) rule during recursion step \(i \). Having established these facts, contradiction proofs exactly analogous to the one given above can be employed.
• clash-freeness. Assume that \(\mathcal{A}_\cup \) contains a clash. A case distinction according to the clash types need to be made. Since the cases are very similar, only one case will be discussed exemplarily: \(\mathcal{A}_\cup \) contains an all domain clash if it contains two axioms \((a_i, x_i) : f \) and \(a_i : \forall f. C \). The axiom \((a_i, x_i) : f \) corresponds to an axiom \((a, x) : f \) introduced by \text{feature-complete} during the \(i \)th recursion step of \(\tau \). The axiom \(a_i : \forall f. C \) corresponds to an axiom \(a : \forall f. C \) that was introduced (i) during the \(i \)th recursion step by \text{feature-complete} or (ii) by the implicit application of the \(\text{Rr\forall C} \) or \(\text{Rr\exists C} \) rule during a recursion step \(j \), where \(j \) calls \(i \), or (iii) that is the axiom contained in the initial ABox \(\mathcal{A}_0 \) and we have \(i = 0 \). In any case, an ABox \(\mathcal{A} \) containing both \((a, x) : f \) and \(a : \forall f. C \) was checked for the applicability of clash triggers during the \(i \)th recursion step of \(\tau \). But this means that the run \(\tau \) terminated with the result \text{inconsistent} which is a contradiction.

• concrete domain satisfiability. Assume that there exists a set \(\mathcal{C} \subseteq \mathcal{A}_\cup \) of axioms of the form \((X_1, \ldots, X_n) : P \), where each \(X_i \) denotes a concrete object \(x_k \) used in \(\mathcal{C} \), such that the corresponding conjunction of concrete domain predicates is unsatisfiable. Axioms of the above form are introduced during rule application by \text{feature-complete}, only. From this follows that in any axiom \((X_1, \ldots, X_n) : P \) from \(\mathcal{C} \), all objects \(X_1, \ldots, X_n \) have the same index, i.e., if \(X_i = x_k \) and \(X_j = y_l \), then \(k = l \). This means that \(\mathcal{C} \) can be divided into subsets \(\mathcal{C}_1, \ldots, \mathcal{C}_k \), such that the sets \(\mathcal{C}_i \) are mutually disjoint, we have \(\mathcal{C} = \mathcal{C}_1 \cup \cdots \cup \mathcal{C}_k \), and, furthermore, all concrete objects appearing in a set \(\mathcal{C}_i \) have the same index. From a solution of the predicate conjunctions corresponding to the sets \(\mathcal{C}_1, \ldots, \mathcal{C}_k \), a solution for the predicate conjunction corresponding to \(\mathcal{C} \) can easily be constructed. Fix a set \(\mathcal{C}_i \). Let \(j \) be the index of the concrete objects appearing in \(\mathcal{C}_i \). Let \(\mathcal{X} \) be the set of axioms that is checked for concrete domain satisfiability in the \(j \)th recursion step of \(\tau \). By definition of \(\mathcal{A}_\cup \), we have \(\mathcal{C}_i \subseteq \mathcal{X} \). From the fact that the run \(\tau \) returned consistent, it follows that \(\mathcal{X} \) and hence also \(\mathcal{C}_i \) is concrete domain satisfiable. Since this argument holds for all \(i = 1 \ldots k \), a contradiction to the assumption is obtained.

We now return to the proof of the third claim of Lemma 10. Based on \(\mathcal{A}_\cup \), an interpretation \(\mathcal{I} \) can be defined as follows:
1. Δ_I consists of all objects in O_{A} that occur in A_{U}

2. If A is a concept name then $a \in A^I_{x}$ iff $a : A \in A_{U}$.

3. If R is a role or feature name then $(a, b) \in R^I_{x}$ iff $(a, b) : R \in A_{U}$.

4. Because there is no concrete domain clash in A_{U} (Lemma 11 Point 3), there is a variable assignment α that satisfies the conjunction of all occurring axioms $(x_1, \ldots, x_n) : P$. So we set $x^I = \alpha(x)$ for all $x \in O_D$.

It remains to be proven that I is a model for A_{U}. The proof is by induction over the size of axioms of the form $a : C$ in A_{U} and makes a case distinctions according to the topmost operator in C. A prerequisite for the proof is that the ABox A_{U}, which was used to construct the interpretation I, is complete and clash-free which is assured by Lemma 11. Most cases are already treated in [6], so we only deal with the two remaining cases, which belong to the induction start.

- Let $\alpha = a : u_1 \downarrow u_1$. Since the $R\downarrow$ rule is not applicable, there is an object $b \in O_{A}$ for which we have both $u_1^I(a^I) = b^I$ and $u_2^I(a^I) = b^I$. Hence, I satisfies α.

- Let $\alpha = a : u_1 \uparrow u_1$. Since the $R\uparrow$ rule is not applicable, there are objects $b_1, b_2 \in O_{A}$ for which we have $u_1^I(a^I) = b_1^I$ and $u_2^I(a^I) = b_2^I$. Since the agreement clash is not applicable, b_1^I is distinct from b_2^I, and, hence, I satisfies α.

(4) To finish the proof of Lemma 10, the termination of sat needs to be proven. Termination is a consequence of the following claims:

(i) **feature-complete** terminates on any input.

(ii) The recursion depth of sat is bounded.

(iii) In each recursion step, only a finite number of recursive calls are made.

Claim (iii) is obvious. Both (i) and (ii) will be proved by a lemma which establish an even stronger result. The stronger result will be helpful in proving the polynomial space-complexity of sat. The following Lemma settles claim (i).
Lemma 12. For any input ABox A, the function feature-complete terminates and constructs an ABox A' for which we have $||A'|| \leq ||A||^2 + ||A||$.

Proof: The upper bound for the size of A' given in the Lemma is a consequence of the following two points:

1. feature-complete generates no more than $||A||$ new axioms.

2. For each axiom α, we have $||\alpha|| \leq ||A||$.

Please note that axioms are never deleted which is the reason for the second summand. The second point is obvious, but the first one needs to be proven. Termination of feature-complete directly follows from this first point as well. The rules $\text{R}\exists C$ and $\text{R}\forall C$ will not be considered since they are not applied by feature-complete. For all other completion rules, the most important observation is that they can be applied at most once per axiom $a : C$. This is also true for axioms $a : \forall f.C$ and the $\text{Rf}\forall C$ rule since there is at most one successor per feature and object. Because of this, we make the simplifying assumption that the premise of the $\text{Rf}\forall C$ rule does only contain the axiom $a : \forall f.C$ but no axiom $(a, b) : f$, i.e., that it is applied to every axiom of the first form regardless if there is an axiom of the second form or not. This may result in too high an estimation of the number of generated axioms but not in one that is too low. Since in our simplified view, every completion rule is applied to exactly one axiom, we may proof the first point from above by showing that, for each axiom α in A, no more than $||\alpha||$ axioms are generated by feature-complete. This will be done in the following.

No new axioms are generated for axioms of the form $(a, b) : R$, $(a, x) : f$, $a \neq b$, and $(x_1, \ldots, x_n) : P$ since they do not appear in the premise of any completion rule (please recall the simplification we made about $\text{Rf}\forall C$). The remaining axioms are of the form $a : C$. For these axioms, the property in question can be proven by induction on the structure of C.

For the induction start, let C be $\exists u_1, \ldots, u_n.P$, $u_1 \uparrow u_2$, $u_1 \downarrow u_2$, $\exists \tilde{R}.C$, $\forall \tilde{R}.C$, or an atomic concept. In any of these cases, it is trivial to verify that at most $||C||$ new axioms may be generated. For the induction step, we need to make a case distinction according to the form of C. Let C be of the form $D \cap E$. The application of the $\text{R}\cap$ rule generates two axioms $a : D$ and $a : E$. By induction hypothesis, from these two axioms, at most $||D||$ and $||E||$ axioms may be generated, respectively. Hence, from $a : D \cap E$, at most $||D|| + ||E|| + 2 = ||D \cap E||$ new axioms may be generated. The remaining
cases $D \sqcup E$, $\exists f.C$, and $\forall f.C$ are analogous. Because of the simplifying assumptions made, universal quantification over features does not need a special treatment.

Claim (ii) of the above list follows from the next Lemma which concludes the termination proof for sat.

Lemma 13. For any input A_0, the recursion depth of sat is bounded by $||A_0||$.

Proof: The role depth of a concept C is the maximum nesting depth of exists and value restrictions in C. The role depth of an ABox A is the maximum role depth of all concepts occurring in A. As an immediate consequence of the way in which the input ABoxes of recursive calls are constructed, we have that the role depth of the arguments ABoxes strictly decreases with recursion depth (note that rule application performed by *feature-complete* cannot increase the role depth). It follows that the role depth of the initial ABox A_0 is an upper bound for the recursion depth, and, by definition of $|| \cdot ||$, this number is clearly smaller than $||A_0||$.

The proof of Lemma 10 is now complete. The Lemma plays a central rôle in the proof of the following proposition.

Proposition 14. The sat algorithm is sound, complete and terminates on any input.

Proof: By definition of nondeterministic algorithms, the application of the sat algorithm to an ABox A_0 gives the result *consistent* iff there is a run of sat on A_0 which returns *consistent*. As shown in parts 2 and 3 of Lemma 10, a sat run defines a model for the corresponding ABox A_0 if and only if the run returns *consistent*. First assume that there is a run of sat which returns *consistent*. By part 1 of Lemma 10, there also exists a model for A_0. Now assume that all runs of sat return *inconsistent*. In this case, it follows from part 1 of Lemma 10 that A_0 cannot have a model since there is a run for every combination of nondeterministic choices that can be made during rule application.

5E.g., the concept $\exists R.C \sqcup \forall S.(D \sqcup \exists R.C)$ has role depth 2.
Having proved its correctness, the complexity of the \texttt{sat} algorithm can now be analyzed. Since the most important results have already been established, this can be done straightforwardly.

Proposition 15. For any input \mathcal{A}_0, \texttt{sat} can be executed in space polynomial in $||\mathcal{A}_0||$, provided that this also holds for the function \texttt{satisfiable}.

Proof: \texttt{Sat} is a recursive function. Let us first analyze the maximum size of arguments that are passed to \texttt{sat} in recursion calls. The argument to \texttt{sat} is an ABox which contains axioms of the form $a : C$ for a single object a. Since no new concepts are generated during rule application, there can be at most as many axioms of this form per single object as there are distinct concepts and subconcepts appearing in \mathcal{A}_0. Considering the definition of $||:\|$¹, it is easy to see that this number can be at most $||\mathcal{A}_0||$. Furthermore, the size of any axiom is at most $||\mathcal{A}_0||$. It follows that the maximum size of arguments given in a recursion call is $||\mathcal{A}_0||^2$. Using \texttt{feature-complete}, the argument ABox is extended by new axioms. Combining the argument size just obtained with Lemma 12, we find that the maximum size of ABoxes constructed during recursion calls is $||\mathcal{A}_0||^4 + ||\mathcal{A}_0||^2$. Lemma 13 gives us that the recursion depth is bounded by $||\mathcal{A}_0||$, and, hence, \texttt{sat} can be executed in $||\mathcal{A}_0||^5 + ||\mathcal{A}_0||^3$ space. \hfill \blacksquare

4.2 The ABox-cons Algorithm

In this section, the correctness of the \texttt{ABox-cons} algorithm will be established and its complexity analyzed. \texttt{ABox-cons} reduces ABox consistency to concept satisfiability as follows. It performs preprocessing on \mathcal{A}, then constructs a set of “reduction concepts” and finally calls \texttt{sat} once for each concept in this set.

We start with proving the correctness. First, a basic notion is introduced. An ABox \mathcal{A} that was completed by rule application through the \texttt{preprocess} function is called \texttt{preprocessing complete}. If \mathcal{A}_p is preprocessing complete and $\mathcal{A} \subseteq \mathcal{A}_p$, then \mathcal{A}_p is a \texttt{preprocessing completion} of \mathcal{A}.

Proposition 16. The \texttt{ABox-cons} Algorithm is sound, complete, and terminates on any input.

Proof: Since \texttt{preprocess} applies the nondeterministic completion rule RL, there may be more than one preprocessing completion for a given ABox \mathcal{A}.

24
By definition of nondeterministic algorithms, the \texttt{ABox-cons} algorithm gives the result \emph{consistent} for an ABox \(\mathcal{A}_0 \) iff one of the possible runs of \texttt{ABox-cons} on \(\mathcal{A}_0 \) returns \emph{consistent}. Hence, to prove the soundness and completeness of \texttt{ABox-cons}, it has to be shown that (i) an ABox \(\mathcal{A} \) has a model iff one of its preprocessing completions has a model and (ii) the reduction to concept satisfiability is sound and complete. This will be done in the following.

The next lemma establishes point (i). It is an immediate consequence of the local correctness of the completion rules (Lemma 10, part 1).

Lemma 17. Let \(\mathcal{A} \) be an ABox. \(\mathcal{A} \) has a model iff one the preprocessing completions \(\mathcal{A}_p \) of \(\mathcal{A} \) has a model.

Next, point (ii) is proved. In the “for” loop of \texttt{ABox-cons}, a concept \(C \) (reduction concepts of \(\mathcal{A}_p \)) is generated for each axiom of the form \(a: \exists R.D \) in \(\mathcal{A}_p \). These concepts are then one by one passed to the \texttt{sat} function. It needs to be shown that a preprocessing complete ABox has a model if and only if all of the reduction concepts have a model.

Proposition 18 (Soundness). Let \(\mathcal{I} \) be a model for a preprocessing complete ABox \(\mathcal{A}_p \). Then, all reduction concepts \(C_1, \ldots, C_n \) do also have a model.

\textbf{Proof:} \(C_i \) has the form \(C \sqcap D_1 \sqcap \ldots \sqcap D_k \) for \(1 \leq i \leq n \). This means that in \(\mathcal{A}_p \), there are axioms \(a: \exists R.C, a: \forall R.D_1, \ldots, a: \forall R.D_k \). By the semantics of the exists and value restriction, there exists a domain object \(x \in \Delta_{\mathcal{I}} \), such that \(x \in C^\mathcal{I} \) and \(x \in D_1^\mathcal{I}, \ldots, x \in D_k^\mathcal{I} \). \(\mathcal{I} \) is obviously an interpretation for \(C_i \) and we have \(x \in C_i^\mathcal{I} \). Hence, \(\mathcal{I} \) is a model for \(C_i \). \hfill \Box

Let \(C \) be a reduction concept. \(C \) is created because of the existence of a concept \(a: \exists R.D \) in \(\mathcal{A}_p \) and then passed to \texttt{sat} as part of an ABox \(\{ b: C \} \). The object \(b \) is called the \texttt{root object} of \(C \) and denoted by \texttt{robj}(\(C \)). The object \(a \) is denoted by \texttt{obj}(\(C \)) and the role \(R \) by \texttt{role}(\(C \)).

Proposition 19 (Completeness). Let \(\mathcal{A}_p \) be an ABox which is preprocessing complete and concrete domain satisfiable and does not contain a clash. If there are models \(\mathcal{I}_1, \ldots, \mathcal{I}_n \) for the reduction concepts \(C_1, \ldots, C_n \), then \(\mathcal{A}_p \) does also have a model.

\textbf{Proof:} The proposition will be proved by showing that from the preprocessing complete ABox \(\mathcal{A}_p \) together with the models \(\mathcal{I}_1, \ldots, \mathcal{I}_n \) for the reduction concepts \(C_1, \ldots, C_n \), a model \(\mathcal{I} \) for \(\mathcal{A}_p \) can be constructed. Without loss of
generality, it is assumed that $\Delta_{I_1} \cap \cdots \cap \Delta_{I_n} \cap \{a \in O_A \mid a \text{ used in } A_p\} = \emptyset$. If this is not the case, it can be achieved by consistently renaming the domain objects used in I_1, \ldots, I_n. The interpretation I is defined as follows.

- Δ_I is set to $\Delta_{I_1} \cup \cdots \cup \Delta_{I_n} \cup \{a \in O_A \mid a \text{ used in } A_p\}$.

- For atomic concepts A, $A^I := \bigcup_{i=1}^n A_{I_i} \cup \bigcup_{a \in A_p} a$.

- For roles \hat{R}, $\hat{R}^I := \bigcup_{i=1}^n \hat{R}_{i} \bigcup_{(C_i) \in \text{role}(C_i)} \{\text{coo}(C_i), \text{roo}(C_i)\} \cup \bigcup_{i=1}^n \hat{R}_{i} \cup \bigcup_{(0,0) \in A_p} \{0,0\}$.

- For features f, $f^I(a) := x$ iff $\exists i \in \{1, \ldots, n\} : f^I(a) := x$ or $(0, x) : f \in A_p$.

- For object names $a \in O_A$ used in A_p, $a^I := a$.

Since A_p is concrete domain satisfiable, there is a mapping δ from O_D to Δ_D such that $\bigwedge_{(x_1, \ldots, x_n) \in A_p} \delta(x_1), \ldots, \delta(x_n) \in P_D$ is true in D. x^I is set to $\delta(x)$.

It remains to prove that I is a model of A_p. First consider axioms from A_p which are of the form $a : \exists \hat{R}. C$ (where \hat{R} is a role): By definition of ABox-cons, there is a reduction concept C_i with root object b, such that $(a^I, b^I) \in \hat{R}^I$. Since I_i is a model for $b : C_i$, by construction of I we have $b^I \in C^I$.

Now consider axioms of the form $a : \forall \hat{R}. C$ (with \hat{R} role). If there is also an axiom $a : \forall \hat{R}. D$ in A_p, then there is a reduction concept C_i with root object b, such that $(a^I, b^I) \in \hat{R}^I$. By construction of the reduction concepts and of I, we have $b^I \in D^I$. For each axiom $(a, b) : \hat{R}$ in A_p, RrVC has been applied. Since there is no primitive clash in A_p, b is in C^I.

To show that the remaining axioms in A_p are also satisfied by I, an inductive proof over the size of the axioms, which is identical to the one employed in Lemma 10, part 3, can be used.

To complete the proof of Proposition 16, termination of ABox-cons has to be proven. This is part of the following Proposition which also treats the space requirements of ABox-cons.

Proposition 20. Started on an $\text{ABox } A$, ABox-cons terminates and needs space polynomial in $|A|$, provided that the the function satisfiable? can also be executed in polynomial space.
Proof: It was already proven that the sat algorithm terminates and can be executed in polynomial space if the function satisfiable? can be executed in polynomial space (Propositions 14 and 15). Thus, it remains to show that the preprocess function terminates and that for any ABox \mathcal{A}, the size $||\mathcal{A}'||$ of $\mathcal{A}' := \text{preprocess}(\mathcal{A})$ is polynomial in $||\mathcal{A}||$. For this proof, it is crucial that the preprocess function is identical to the feature-complete function except that preprocess does also apply the RrVC rule. It will be shown that the presence of this additional rule yields only “slightly” more axioms. In the following, objects are called old if they are used in \mathcal{A} and new if they are used in \mathcal{A}' but not in \mathcal{A}.

Consider applications of the RrVC rule performed by preprocess. It is an immediate consequence of the following two observations that the number of RrVC applications is bounded by $||\mathcal{A}||^2$:

- If RrVC is applied to axioms $a : \forall \vec{R}. C$ and $(a, b) : \vec{R}$, then b is an old object. This is the case since preprocess does not apply Rr\existsC, and, hence, no new axioms of the form $(a, b) : \vec{R}$, where \vec{R} is a role, are generated. Furthermore, there are at most $||\mathcal{A}||$ old objects.

- RrVC creates only axioms of the form $b : C$, which are not already part of the ABox. For any object b, there may exist at most one axiom $b : C$ per concept C used in \mathcal{A} (including all subconcepts). The number of (sub)concepts in \mathcal{A} is bounded by $||\mathcal{A}||$, and, hence, there can be at most $||\mathcal{A}||$ axioms of the form $b : C$ per object b.

The size of each axiom $a : C$ is again bounded by $||\mathcal{A}||$. It follows that the total size of axioms added by RrVC applications performed by preprocess is bounded by $||\mathcal{A}||^3$.

Second, consider the application of all other rules. These are exactly the rules applied by feature-complete. Together with the upper bound for the number of RrVC applications, this immediately gives us termination. If feature-complete is applied to an ABox \mathcal{A}, then the size of the resulting ABox is bounded by $||\mathcal{A}||^2 + ||\mathcal{A}||$ (Lemma 12). To establish an upper bound for the size of the ABox \mathcal{A}' obtained from a call to preprocess, the additional axioms generated by RrVC need to be taken into account. It was just proved that the size of these axioms is at most $||\mathcal{A}||^3$. Thus, an upper bound for $||\mathcal{A}'||$ is given by the application of feature-complete to an ABox of size $||\mathcal{A}|| + ||\mathcal{A}||^3$. Summing up, $||\mathcal{A}'||$ is bounded by $||\mathcal{A}||^6 + ||\mathcal{A}||^3 + ||\mathcal{A}||^2 + ||\mathcal{A}||$.

\[\text{\begin{array}{c}
\end{array}} \]
4.3 PSPACE-Completeness

Using the results from the last two sections, proving PSPACE-completeness of $\mathcal{ALCF}(\mathcal{D})$ ABox consistency is straightforward.

Theorem 21. Provided that the satisfiability test of the concrete domain \mathcal{D} is in PSPACE, the following problems are PSPACE-complete:

1. Consistency of $\mathcal{ALCF}(\mathcal{D})$ ABoxes.
2. Consistency of $\mathcal{ALC}(\mathcal{D})$ and \mathcal{ALCF} ABoxes.
3. Satisfiability and subsumption of $\mathcal{ALCF}(\mathcal{D})$ concepts.
4. Satisfiability and subsumption of $\mathcal{ALC}(\mathcal{D})$ concepts.

Proof: First, point 1 is proven. In [31] it is proved that satisfiability for \mathcal{ALC} concepts is PSPACE-complete. Since \mathcal{ALC} is a proper subset of $\mathcal{ALCF}(\mathcal{D})$, deciding the consistency of $\mathcal{ALCF}(\mathcal{D})$ ABoxes is PSPACE-hard. It remains to be shown that it is also in PSPACE if the concrete domain satisfiability test is in PSPACE. But this directly follows from Proposition 20 together with the well-known fact that PSPACE $=$ NPSPACE [29].

Point 3 is a consequence of the observation that satisfiability as well as subsumption can be reduced to ABox consistency (see Section 2).

Points 1 and 2 hold since reasoning with \mathcal{ALC} is PSPACE-hard and \mathcal{ALC} is a proper subset of both $\mathcal{ALC}(\mathcal{D})$ and \mathcal{ALCF} which are in turn a proper subsets of $\mathcal{ALCF}(\mathcal{D})$.

The next corollary makes a statement about the complexity of reasoning with concrete domains for which the satisfiability test is not in PSPACE.

Corollary 22. Let the satisfiability test of the concrete domain \mathcal{D} be in a complexity class X with PSPACE $\subseteq X$. Then, subsumption, satisfiability and ABox consistency for the logics $\mathcal{ALC}(\mathcal{D})$ and $\mathcal{ALCF}(\mathcal{D})$ are in X.

The next section gives some examples of interesting concrete domains, for which the satisfiability check is in PSPACE.
5 Suitable Concrete Domains

In this section, some examples of concrete domains, for which the satisfiability test is in PSPACE, are given. This demonstrates that the results developed in the preceding sections are useful since there are in fact interesting concrete domains which allow to exploit the lower complexity bound found.

As proposed in [24], $\mathcal{ACF}(\mathcal{D})$ (and hence also $\mathcal{ACF}(\mathcal{D})$) can be used for temporal reasoning when instantiated with an appropriate concrete domain. Since different temporal ontologies can be used as a basis for temporal reasoning, the definition of various temporal concrete domains is possible. Allen’s interval algebra (see [3], [23]) provides an appropriate formalization if intervals are used as the basic temporal entity. This formalism employs a set of 13 base relations describing all possible relationships between two (time) intervals. These relations are known as Allen’s relations. In the following, a set of concrete domains supporting reasoning with Allen’s relations is defined.

Definition 23. Let (\mathcal{P}, \prec) be a linear, unbounded, and dense temporal structure, where \mathcal{P} is a set of time points and \prec is a strict linear order on \mathcal{P}. The concrete domain $\mathcal{I}(\mathcal{P}, \prec)$ is defined as follows. As the domain $\Delta_{\mathcal{I}(\mathcal{P}, \prec)}$, the set of time points \mathcal{P} is used. The set $\Phi_{\mathcal{I}(\mathcal{P}, \prec)}$ contains the following predicates (we will in the following omit the index (\mathcal{P}, \prec) for brevity):

- a unary predicate *is-rational* which yields true for every element in $\Delta_{\mathcal{I}}$; its negation *is-no-rational*; a predicate *inconsistent-relation* of arity 4 which is always false.

- for each of Allen’s 13 relations, a predicate of arity 4 (*basic predicates*). The predicates are defined by specifying relationships between interval endpoints as usual:

 \[
 (l_1, r_1, l_2, r_2) \in \text{equal}^\mathcal{I} \ \text{iff} \ l_1 - l_2 = 0 \land r_1 - r_2 = 0
 \]

 \[
 (l_1, r_1, l_2, r_2) \in \text{before}^\mathcal{I} \ \text{iff} \ l_2 - r_1 > 0
 \]

 \[
 (l_1, r_1, l_2, r_2) \in \text{after}^\mathcal{I} \ \text{iff} \ l_1 - r_2 > 0
 \]

 \[
 (l_1, r_1, l_2, r_2) \in \text{meets}^\mathcal{I} \ \text{iff} \ l_2 - r_1 = 0
 \]

 \[
 (l_1, r_1, l_2, r_2) \in \text{overlaps}^\mathcal{I} \ \text{iff} \ l_2 - l_1 > 0 \land r_1 - l_2 > 0 \land r_2 - r_1 > 0
 \]

 \[
 (l_1, r_1, l_2, r_2) \in \text{overlapped-by}^\mathcal{I} \ \text{iff} \ l_1 - l_2 > 0 \land r_2 - l_1 > 0 \land r_1 - r_2 > 0
 \]
\[(l_1, r_1, l_2, r_2) \in during^I \text{ iff } l_1 - l_2 > 0 \land r_2 - l_1 > 0 \land\]
\[r_1 - l_2 > 0 \land r_2 - r_1 > 0\]
\[(l_1, r_1, l_2, r_2) \in contains^I \text{ iff } l_2 - l_1 > 0 \land r_1 - l_2 > 0 \land\]
\[r_2 - l_1 > 0 \land r_1 - r_2 > 0\]
\[(l_1, r_1, l_2, r_2) \in starts^I \text{ iff } l_2 - l_1 = 0 \land r_2 - r_1 > 0\]
\[(l_1, r_1, l_2, r_2) \in started-by^I \text{ iff } l_2 - l_1 = 0 \land r_1 - r_2 > 0\]
\[(l_1, r_1, l_2, r_2) \in finishes^I \text{ iff } r_2 - r_1 = 0 \land l_1 - l_2 > 0\]
\[(l_1, r_1, l_2, r_2) \in finished-by^I \text{ iff } r_2 - r_1 = 0 \land l_2 - l_1 > 0\]

- for each distinct set \(\{R_1, \ldots, R_n\}\) of Allen’s relations, an additional predicate of arity 4 is defined (combined predicates). The predicate has the name \(R_1\cdots R_n\) and we have \((l_1, r_1, l_2, r_2) \in R_1\cdots R_n^I\) iff \((l_1, r_1, l_2, r_2) \in R_1^I\) or … or \((l_1, r_1, l_2, r_2) \in R_n^I\). In total, there are \(2^{13} - 14\) of these combined relations.

The four arguments of the predicates with arity 4 can be interpreted as two intervals: If \((i_1, i_2, i_3, i_4) \in meets^I\), then the two intervals \((i_1, i_2)\) and \((i_3, i_4)\) are meeting in the sense of Allen. As an example of combined predicates, please consider the predicate after-before-equal. A quadruple \((i_1, i_2, i_3, i_4)\) is in after-before-equal^I iff \((i_1, i_2, i_3, i_4) \in after^I\) or \((i_1, i_2, i_3, i_4) \in before^I\), or \((i_1, i_2, i_3, i_4) \in equal^I\). As an example of the modeling of temporal concepts using \(\mathcal{ALCF}(\mathcal{I})\), consider the following concepts:

\[
\text{Interval} \doteq \exists \text{start, end.} \leq\]
\[
\text{Project} \doteq \text{Interval} \sqcap\]
\[
\exists \text{planning.Planning} \sqcap \exists \text{realization.Realization} \sqcap\]
\[
\exists \text{planning} \circ \text{start, planning} \circ \text{end, start, end.starts} \sqcap\]
\[
\exists \text{realization} \circ \text{start, realization} \circ \text{end, start, end.ends} \sqcap\]
\[
\exists \text{planning} \circ \text{start, planning} \circ \text{end,}
\]
\[
\text{planning} \circ \text{start, planning} \circ \text{end,}
\]
\[
\text{realization} \circ \text{start, realization} \circ \text{end.ends}\]

The \(\text{Interval}\) concept describes the basic properties of an interval. The \(\text{Project}\) concept gives the formalization of a project on a very coarse level, where the concepts \(\text{Planning}\) and \(\text{Realization}\) are meant to be subconcepts of \(\text{Interval}\). Please refer to Figure 2 for a visualization of this concept.

To use \(\mathcal{I}\) as a concrete domain for \(\mathcal{ALCF}(\mathcal{D})\), the admissibility of \(\mathcal{I}\) has to be shown.
Proposition 24. The concrete domain \mathcal{I} is admissible.

Proof: It has to be shown that (i) $\Phi_{\mathcal{I}}$ is closed under negation and (ii) the satisfiability of finite conjunctions of predicates from \mathcal{I} is decidable.

(i) Allen’s relations are mutually exclusive and exhaustive, i.e. exactly one of Allen’s relations holds between any two intervals i_1 and i_2. Given this, it is easy to verify that $\Phi_{\mathcal{I}}$ is closed under negation: Let A be the set of Allen’s 13 base relations. For any predicate $R_1 \cdots R_n$ with $1 \leq n < 13$, we have that the negation of $R_1 \cdots R_n$ is $S_1 \cdots S_k$, where $\{S_1, \ldots, S_k\}$ is defined as $A \setminus \{R_1, \ldots, R_n\}$. The predicate $S_1 \cdots S_k$ is obviously in $\Phi_{\mathcal{I}}$. Note that the negation of the predicate representing the disjunctive combination of all 13 base relations is inconsistent-relation and vice versa.

(ii) Deciding the satisfiability of a finite conjunction of predicates from \mathcal{I} can be reduced to checking the satisfiability of a temporal constraint network. In the following, a decision procedure will be described and its complexity determined. A temporal constraint network (TCN) is defined as a set $\{tc_1(i_1^{(1)}, i_2^{(1)}), \ldots, tc_n(i_1^{(n)}, i_2^{(n)})\}$, where each tc_i is a disjunction $R_1^{(i)} \lor \cdots \lor R_{n_i}^{(i)}$ of Allen’s relations and the $i_j^{(i)}$ are interval variables. Let a finite conjunction $C = p_1(x_1^{(1)}, \ldots, x_n^{(1)}) \land \cdots \land p_k(x_1^{(k)}, \ldots, x_n^{(k)})$ of predicates from $\Phi_{\mathcal{I}}$ be given. Its satisfiability can be determined as follows:

- If, for any $i = 1, \ldots, k$, p_i is either is-no-rational or inconsistent-relation, then return unsatisfiable.

- For $i \in \{1, \ldots, k\}$, if $p_i = is-rational$, remove the i’th conjunct.
• Translate the remaining conjunction C' into a TCN N as follows: The set V of interval variables used in N is the set of pairs of variables $(x^{(i)}_i, x^{(i)}_j)$ used in C where either $i = 1$ and $j = 2$ or $i = 3$ and $j = 4$. For each conjunct $p_i(x^{(i)}_1, x^{(i)}_2, x^{(i)}_3, x^{(i)}_4)$ from C', do the following. The predicate p_i has the form $R_1 \cdots R_n$. Let i_1 denote the interval $(x^{(i)}_1, x^{(i)}_2)$ and i_2 denote the interval $(x^{(i)}_3, x^{(i)}_4)$.

1. If there is no constraint $tc(i_1, i_2)$ in N, then add $R_1 \lor \cdots \lor R_n(i_1, i_2)$ to N.

2. If there is already a constraint $tc(i_1, i_2)$ in N where $tc = R'_1 \lor \cdots \lor R'_m$, then let S be defined as $\{R'_1, \ldots, R'_m\} \cap \{R_1, \ldots, R_n\}$. If $S = \emptyset$, then return inconsistent. Otherwise, remove the existing constraint and add $S_1 \lor \cdots \lor S_l(i_1, i_2)$, where $\{S_1, \ldots, S_l\} = S$.

• For all pairs $(i_1, i_2) \in V$, for which there is no constraint $tc(i_1, i_2)$ in N, add a constraint $cov(i_1, i_2)$, where cov is the disjunction of all 13 base relations.

• Check the satisfiability of the TCN N and return the result.

Testing the satisfiability of temporal constraint networks of the given form is an NP-complete problem if the full set of relations is allowed [33]. Hence, \mathcal{I} is an admissible concrete domain and the standard reasoning problems for $\mathcal{ALCF}(\mathcal{I})$ are PSPACE-complete.

It is often desirable to have a combined formalism for both quantitative and qualitative temporal reasoning. Kautz and Ladkin [22] define a formalism that may be used as a concrete domain in this case. The formalism corresponds to an extension \mathcal{IM} of \mathcal{I}.

Definition 25. The concrete domain \mathcal{IM} is defined as follows. As the domain $\Delta_{\mathcal{IM}}$, the set of rational numbers \mathbb{Q} is used. The set $\Phi_{\mathcal{IM}}$ contains the following predicates:

• The predicates from $\Phi_{\mathcal{I}}$.

• For any rational numbers n as well as for ∞ and $-\infty$, two additional predicates as follows: $(i_1, i_2) <^\mathcal{I} n$ if $p_2 - p_1 < n$ and $(i_1, i_2) \leq^\mathcal{I} n$ if $p_2 - p_1 \leq n$.

32
With the additional predicates, constraints on interval durations and the distance of intervals can be formulated. Please note that “greater than” and “equal” relationships between interval endpoints may also be expressed using these predicates since negative distances are permitted. Absolute times can be handled by the introduction of a “dummy” interval which is taken to begin at time 0. See [26] for an alternative formalization of the integration of metric and qualitative information.

Proposition 26. The concrete domain \(\mathcal{I} \mathcal{M} \) is admissible.

Proof: It can easily be verified that \(\Phi_{\mathcal{I} \mathcal{M}} \) is closed under negation. In [12], networks of two-variable difference inequalities (DIN) are defined, which can be used to represent the qualitative predicates from \(\Phi_{\mathcal{I} \mathcal{M}} \) (those not present in \(\Phi_{\mathcal{T}} \)). Mixed qualitative and quantitative information can be represented by pairs of networks, where one network is a TCN containing the qualitative information and the other one a DIN representing the quantitative information. Kautz and Ladkin provide techniques for integrated reasoning over such pairs of networks [22]. For the satisfiability test of the concrete domain \(\mathcal{I} \mathcal{M} \), a reduction to the consistency of pairs of TCN and DIN networks can be used. The formal definition of DIN networks and the reduction itself are omitted since the reduction is a straightforward extension of the one given for the concrete domain \(\mathcal{I} \). In [22], it is proved that computing the so-called minimal network representation for a given pair of networks is an NP-complete task. Testing satisfiability of networks pairs, which corresponds to the \(\mathcal{I} \mathcal{M} \) concrete domain satisfiability check, can be proven to be an NP-complete task as follows: The given formalism properly subsumes Allen’s temporal networks which yields NP-hardness. Furthermore, in order to solve the satisfiability problem in nondeterministic polynomial time, a nondeterministic turing machine may “guess” a model for the network pair and check if it is valid. It follows that \(\mathcal{I} \mathcal{M} \) is admissible and that reasoning with \(\mathcal{ALCF}(\mathcal{I} \mathcal{M}) \) is a PSPACE-complete task.

Some comments about the temporal formalism realized by \(\mathcal{ALCF}(\mathcal{I}) \) are in order. We give a brief comparison to a temporal description logic defined by Artale and Franconi. In \(\mathcal{ALCF}(\mathcal{I}) \), the structure of time has to be modeled in the logic itself. This is called an internal representation of time as opposed to an external representation, where the structure of time is an integral part of the semantics [14]. The latter approach is taken in temporal logic and is also pursued by the description logic \(\mathcal{TLC-ALCF} \) [4]. \(\mathcal{TLC-ALCF} \) is a
temporal description logic for reasoning about eternal objects that have properties changing over time. Quite to the contrary, $\mathcal{ALCF}(I)$ most adequately supports reasoning about objects which have static properties but a unique temporal extension. Please note that neither $\mathcal{ALCF}(I)$ nor $\mathcal{TL-ALCF}$ allows universal quantification about Allen’s relations. See [16] for a description logic which is capable of doing this. Artale and Franconi [5] give an extensive overview over the various approaches to the definition of temporal description logics.

In the remainder of this section, we give a brief discussion of some more concrete domains. An important approach to qualitative spatial reasoning uses a set of 8 topological relations called RCC-8. These relations can be used to describe the relationships of two arbitrary regions in n-dimensional space (see [28] and [13]). A concrete domain S_2 for reasoning with the RCC-8 relations about regions in the plane can be defined exactly analogous to the definition of I. A formal definition can be found in [16]. The satisfiability test for this spatial concrete domain is also in NP.

A further source for concrete domains for which deciding satisfiability is in PSPACE are the areas of linear programming and constraint programming. Linear programming itself is a polynomial problem [32]. This means that linear equalities and inequalities over the rational numbers may be used as predicates of a concrete domain and that the complexity of reasoning with the combined language remains in PSPACE. If the integers are used instead of the rationals, techniques from integer programming can be employed for the concrete domain satisfiability test. In this case, the (concrete domain) satisfiability test is in NP [15, problem MP1], hence reasoning with the combined formalism is in PSPACE.

A concrete domain for which satisfiability is not in PSPACE is e.g. \mathcal{R} as defined in [6]. The domain of \mathcal{R} is the set of all real numbers while the predicates of this concrete domain are given by formulae built by first order means from equalities and inequalities between integer polynomials. It was proved that deciding the satisfiability of such expressions is an ExpSPACE-complete problem [25].

6 Conclusion

In this paper, the description logic $\mathcal{ALCF}(D)$ was introduced. $\mathcal{ALCF}(D)$ extends $\mathcal{ALC}(D)$ by feature agreement and disagreement and is hence a
conglomeration of the logics $\mathcal{ALC}(D)$ and \mathcal{ALCF}. Algorithms for deciding the satisfiability of $\mathcal{ALCF}(D)$ concepts and for deciding the consistency of $\mathcal{ALCF}(D)$ ABoxes were devised and it was shown that these algorithm are sound and complete and can be executed in polynomial space if this is also the case for the concrete domain satisfiability test. From this result, it was derived that the standard reasoning problems concerning concept subsumption, concept satisfiability and ABox consistency are PSPACE-complete for the description logics $\mathcal{ALC}(D)$ and $\mathcal{ALCF}(D)$ - provided that the concrete domain satisfiability test is in PSPACE. If the satisfiability test is in a higher complexity class X, then the mentioned problems are also in X. As an important contribution, the completion algorithm demonstrates how to split the concrete domain satisfiability check into chunks of polynomial size. This is a vital prerequisite for efficient implementations of languages incorporation concrete domains. Until now, all known algorithms required testing the satisfiability of a possibly exponential number of constraints.

Acknowledgments

I would like to thank Ulrike Sattler for stoicism and countless discussions and Franz Baader for enlightening discussions and helpful comments.

References

