
Chapter 8

Resolution In
First-Order Logic

8.1 Introduction

In this chapter, the resolution method presented in Chapter 4 for propositional
logic is extended to first-order logic without equality. The point of departure
is the Skolem-Herbrand-Gödel theorem (theorem 7.6.1). Recall that this the-
orem says that a sentence A is unsatisfiable iff some compound instance C of
the Skolem form B of A is unsatisfiable. This suggests the following procedure
for checking unsatisfiability:

Enumerate the compound instances of B systematically one by one,
testing each time a new compound instance C is generated, whether C is
unsatisfiable.

If we are considering a first-order language without equality, there are
algorithms for testing whether a quantifier-free formula is valid (for example,
the search procedure) and, if B is unsatisfiable, this will be eventually discov-
ered. Indeed, the search procedure halts for every compound instance, and
for some compound instance C, ¬C will be found valid.

If the logic contains equality, the situation is more complex. This is
because the search procedure does not necessarily halt for quantifier-free for-
mulae that are not valid. Hence, it is possible that the procedure for checking
unsatisfiability will run forever even if B is unsatisfiable, because the search
procedure can run forever for some compound instance that is not unsatisfi-
able. We can fix the problem as follows:

376



8.1 Introduction 377

Interleave the generation of compound instances with the process of
checking whether a compound instance is unsatisfiable, proceeding by rounds.
A round consists in running the search procedure a fixed number of steps for
each compound instance being tested, and then generating a new compound
instance. The process is repeated with the new set of compound instances.
In this fashion, at the end of each round, we have made progress in checking
the unsatisfiability of all the activated compound instances, but we have also
made progress in the number of compound instances being considered.

Needless to say, such a method is horribly inefficient. Actually, it is
possible to design an algorithm for testing the unsatisfiability of a quantifier-
free formula with equality by extending the congruence closure method of
Oppen and Nelson (Nelson and Oppen, 1980). This extension is presented in
Chapter 10.

In the case of a language without equality, any algorithm for deciding
the unsatisfiability of a quantifier-free formula can be used. However, the
choice of such an algorithm is constrained by the need for efficiency. Several
methods have been proposed. The search procedure can be used, but this is
probably the least efficient choice. If the compound instances C are in CNF,
the resolution method of Chapter 4 is a possible candidate. Another method
called the method of matings has also been proposed by Andrews (Andrews,
1981).

In this chapter, we are going to explore the method using resolution.
Such a method is called ground resolution, because it is applied to quantifier-
free clauses with no variables.

From the point of view of efficiency, there is an undesirable feature,
which is the need for systematically generating compound instances. Unfor-
tunately, there is no hope that the process of finding a refutation can be purely
mechanical. Indeed, by Church’s theorem (mentioned in the remark after the
proof of theorem 5.5.1), there is no algorithm for deciding the unsatisfiability
(validity) of a formula.

There is a way of avoiding the systematic generation of compound in-
stances due to J. A. Robinson (Robinson, 1965). The idea is not to generate
compound instances at all, but instead to generalize the resolution method so
that it applies directly to the clauses in B, as opposed to the (ground) clauses
in the compound instance C. The completeness of this method was shown by
Robinson. The method is to show that every ground refutation can be lifted
to a refutation operating on the original clauses, as opposed to the closed (or
ground) substitution instances. In order to perform this lifting operation the
process of unification must be introduced. We shall define these concepts in
the following sections.

It is also possible to extend the resolution method to first-order lan-
guages with equality using the paramodulation method due to Robinson and
Wos (Robinson and Wos, 1969, Loveland, 1978), but the completeness proof is



378 8/Resolution In First-Order Logic

rather delicate. Hence, we will restrict our attention to first-order languages
without equality, and refer the interested reader to Loveland, 1978, for an
exposition of paramodulation.

As in Chapter 4, the resolution method for first-order logic (without
equality) is applied to special conjunctions of formulae called clauses. Hence,
it is necessary to convert a sentence A into a sentence A′ in clause form, such
that A is unsatisfiable iff A′ is unsatisfiable. The conversion process is defined
below.

8.2 Formulae in Clause Form

First, we define the notion of a formula in clause form.

Definition 8.2.1 As in the propositional case, a literal is either an atomic
formula B, or the negation ¬B of an atomic formula. Given a literal L, its
conjugate L is defined such that, if L = B then L = ¬B, else if L = ¬B
then L = B. A sentence A is in clause form iff it is a conjunction of (prenex)
sentences of the form ∀x1...∀xmC, where C is a disjunction of literals, and the
sets of bound variables {x1, ..., xm} are disjoint for any two distinct clauses.
Each sentence ∀x1...∀xmC is called a clause. If a clause in A has no quantifiers
and does not contain any variables, we say that it is a ground clause.

For simplicity of notation, the universal quantifiers are usually omitted
in writing clauses.

Lemma 8.2.1 For every (rectified) sentence A, a sentence B ′ in clause form
such that A is valid iff B′ is unsatisfiable can be constructed.

Proof : Given a sentence A, first B = ¬A is converted to B1 in NNF
using lemma 6.4.1. Then B1 is converted to B2 in Skolem normal form using
the method of definition 7.6.2. Next, by lemma 7.2.1, B2 is converted to B3 in
prenex form. Next, the matrix of B3 is converted to conjunctive normal form
using theorem 3.4.2, yielding B4. In this step, theorem 3.4.2 is applicable
because the matrix is quantifier free. Finally, the quantifiers are distributed
over each conjunct using the valid formula ∀x(A ∧ B) ≡ ∀xA ∧ ∀xB, and
renamed apart using lemma 5.3.4.

Let the resulting sentence be called B′. The resulting formula B′ is a
conjunction of clauses.

By lemma 6.4.1, B is unsatisfiable iff B1 is. By lemma 7.6.3, B1 is
unsatisfiable iff B2 is. By lemma 7.2.1, B2 is unsatisfiable iff B3 is. By theorem
3.4.2 and lemma 5.3.7, B3 is unsatisfiable iff B4 is. Finally, by lemma 5.3.4
and lemma 5.3.7, B4 is unsatisfiable iff B′ is. Hence, B is unsatisfiable iff
B′ is. Since A is valid iff B = ¬A is unsatisfiable, then A is valid iff B ′ is
unsatisfiable.



8.3 Ground Resolution 379

EXAMPLE 8.2.1

Let
A = ¬∃y∀z(P (z, y) ≡ ¬∃x(P (z, x) ∧ P (x, z))).

First, we negate A and eliminate ≡. We obtain the sentence

∃y∀z[(¬P (z, y) ∨ ¬∃x(P (z, x) ∧ P (x, z)))∧

(∃x(P (z, x) ∧ P (x, z)) ∨ P (z, y))].

Next, we put in this formula in NNF:

∃y∀z[(¬P (z, y) ∨ ∀x(¬P (z, x) ∨ ¬P (x, z)))∧

(∃x(P (z, x) ∧ P (x, z)) ∨ P (z, y))].

Next, we eliminate existential quantifiers, by the introduction of Skolem
symbols:

∀z[(¬P (z, a) ∨ ∀x(¬P (z, x) ∨ ¬P (x, z)))∧

((P (z, f(z)) ∧ P (f(z), z)) ∨ P (z, a))].

We now put in prenex form:

∀z∀x[(¬P (z, a) ∨ (¬P (z, x) ∨ ¬P (x, z)))∧

((P (z, f(z)) ∧ P (f(z), z)) ∨ P (z, a))].

We put in CNF by distributing ∧ over ∨:

∀z∀x[(¬P (z, a) ∨ ¬P (z, x) ∨ ¬P (x, z))∧

(P (z, f(z)) ∨ P (z, a)) ∧ (P (f(z), z)) ∨ P (z, a))].

Omitting universal quantifiers, we have the following three clauses:

C1 = (¬P (z1, a) ∨ ¬P (z1, x) ∨ ¬P (x, z1)),

C2 = (P (z2, f(z2)) ∨ P (z2, a)) and

C3 = (P (f(z3), z3) ∨ P (z3, a)).

We will now show that we can prove that B = ¬A is unsatisfiable, by
instantiating C1, C2, C3 to ground clauses and use the resolution method of
Chapter 4.

8.3 Ground Resolution

The ground resolution method is the resolution method applied to sets of
ground clauses.



380 8/Resolution In First-Order Logic

EXAMPLE 8.3.1

Consider the following ground clauses obtained by substitution from C1,
C2 and C3:

G1 = (¬P (a, a)) (from C1, substituting a for x and z1)

G2 = (P (a, f(a)) ∨ P (a, a)) (from C2, substituting a for z2)

G3 = (P (f(a), a)) ∨ P (a, a)) (from C3, substituting a for z3).

G4 = (¬P (f(a), a) ∨ ¬P (a, f(a))) (from C1, substituting f(a)

for z1 and a for x).

The following is a refutation by (ground) resolution of the set of ground
clauses G1, G2, G3, G4.

G2 G1 G3 G4

{P (a, f(a))} {P (f(a), a)}

{¬P (a, f(a))}

We have the following useful result.

Lemma 8.3.1 (Completeness of ground resolution) The ground resolution
method is complete for ground clauses.

Proof : Observe that the systems G′ and GCNF ′ are complete for
quantifier-free formulae of a first-order language without equality. Hence,
by theorem 4.3.1, the resolution method is also complete for sets of ground
clauses.

However, note that this is not the case for quantifier-free formulae with
equality, due to the need for equality axioms and for inessential cuts, in order
to retain completeness.

Since we have shown that a conjunction of ground instances of the clauses
C1, C2, C3 of example 8.2.1 is unsatisfiable, by the Skolem-Herbrand-Gödel
theorem, the sentence A of example 8.2.1 is valid.

Summarizing the above, we have a method for finding whether a sen-
tence B is unsatisfiable known as ground resolution. This method consists in
converting the sentence B into a set of clauses B ′, instantiating these clauses
to ground clauses, and applying the ground resolution method.

By the completeness of resolution for propositional logic (theorem 4.3.1),
and the Skolem-Herbrand-Gödel theorem (actually the corollary to theorem
7.6.1 suffices, since the clauses are in CNF, and so in NNF), this method is
complete.



8.4 Unification and the Unification Algorithm 381

However, we were lucky to find so easily the ground clauses G1, G2, G3

and G4. In general, all one can do is enumerate ground instances one by one,
testing for the unsatisfiabiliy of the current set of ground clauses each time.
This can be a very costly process, both in terms of time and space.

8.4 Unification and the Unification Algorithm

The fundamental concept that allows the lifting of the ground resolution
method to the first-order case is that of a most general unifier.

8.4.1 Unifiers and Most General Unifiers

We have already mentioned that Robinson has generalized ground resolution
to arbitrary clauses, so that the systematic generation of ground clauses is
unnecessary.

The new ingredient in this new form of resolution is that in forming the
resolvent, one is allowed to apply substitutions to the parent clauses.

For example, to obtain {P (a, f(a))} from

C1 = (¬P (z1, a) ∨ ¬P (z1, x) ∨ ¬P (x, z1)) and

C2 = (P (z2, f(z2)) ∨ P (z2, a)),

first we substitute a for z1, a for x, and a for z2, obtaining

G1 = (¬P (a, a)) and G2 = (P (a, f(a)) ∨ P (a, a)),

and then we resolve on the literal P (a, a).

Note that the two sets of literals {P (z1, a), P (z1, x), P (x, z1)} and {P (z2,
a)} obtained by dropping the negation sign in C1 have been “unified” by the
substitution (a/x, a/z1, a/z2).

In general, given two clauses B and C whose variables are disjoint, given
a substitution σ having as support the union of the sets of variables in B and
C, if σ(B) and σ(C) contain a literal Q and its conjugate, there must be a
subset {B1, ..., Bm} of the sets of literals of B, and a subset {C1, ..., Cn} of
the set of literals in C such that

σ(B1) = ... = σ(Bm) = σ(C1) = ... = σ(Cn).

We say that σ is a unifier for the set of literals {B1, ..., Bm, C1, ..., Cn}. Robin-
son showed that there is an algorithm called the unification algorithm, for
deciding whether a set of literals is unifiable, and if so, the algorithm yields
what is called a most general unifier (Robinson, 1965). We will now explain
these concepts in detail.



382 8/Resolution In First-Order Logic

Definition 8.4.1 Given a substitution σ, let D(σ) = {x | σ(x) &= x} denote
the support of σ, and let I(σ) =

⋃
x∈D(σ) FV (σ(x)). Given two substitutions

σ and θ, their composition denoted σ◦θ is the substitution σ◦ θ̂ (recall that θ̂ is
the unique homomorphic extension of θ). It is easily shown that the substitu-

tion σ◦θ is the restriction of σ̂◦ θ̂ to V. If σ has support {x1, ..., xm} and σ(xi)
= si for i = 1, ...,m, we also denote the substitution σ by (s1/x1, ..., sm/xm).

The notions of a unifier and a most general unifier are defined for ar-
bitrary trees over a ranked alphabet (see Subsection 2.2.6). Since terms and
atomic formulae have an obvious representation as trees (rigorously, since they
are freely generated, we could define a bijection recursively), it is perfectly
suitable to deal with trees, and in fact, this is intuitively more appealing due
to the graphical nature of trees.

Definition 8.4.2 Given a ranked alphabet Σ, given any set S = {t1, ..., tn}
of finite Σ-trees, we say that a substitution σ is a unifier of S iff

σ(t1) = ... = σ(tn).

We say that a substitution σ is a most general unifier of S iff it is a unifier of
S, the support of σ is a subset of the set of variables occurring in the set S,
and for any other unifier σ′ of S, there is a substitution θ such that

σ′ = σ ◦ θ.

The tree t = σ(t1) = ... = σ(tn) is called a most common instance of t1,...,tn.

EXAMPLE 8.4.1

(i) Let t1 = f(x, g(y)) and t2 = f(g(u), g(z)). The substitution (g(u)/x,
y/z) is a most general unifier yielding the most common instance f(g(u),
g(y)).

(ii) However, t1 = f(x, g(y)) and t2 = f(g(u), h(z)) are not unifiable
since this requires g = h.

(iii) A slightly more devious case of non unifiability is the following:

Let t1 = f(x, g(x), x) and t2 = f(g(u), g(g(z)), z). To unify these two
trees, we must have x = g(u) = z. But we also need g(x) = g(g(z)),
that is, x = g(z). This implies z = g(z), which is impossible for finite
trees.

This last example suggest that unifying trees is similar to solving systems
of equations by variable elimination, and there is indeed such an analogy. This
analogy is explicated in Gorn, 1984. First, we show that we can reduce the
problem of unifying any set of trees to the problem of unifying two trees.

Lemma 8.4.1 Let t1,...,tm be any m trees, and let # be a symbol of rank
m not occurring in any of these trees. A substitution σ is a unifier for the set
{t1, ..., tm} iff σ is a unifier for the set {#(t1, ..., tm),#(t1, ..., t1)}.



8.4 Unification and the Unification Algorithm 383

Proof : Since a substitution σ is a homomorphism (see definition 7.5.3),

σ(#(t1, ..., tm)) = #(σ(t1), ..., σ(tm)) and

σ(#(t1, ..., t1)) = #(σ(t1), ..., σ(t1)).

Hence,

σ(#(t1, ..., tm)) = σ(#(t1, ..., t1)) iff

#(σ(t1), ..., σ(tm)) = #(σ(t1), ..., σ(t1)) iff

σ(t1) = σ(t1), σ(t2) = σ(t1), ..., σ(tm) = σ(t1) iff

σ(t1) = ... = σ(tm).

Before showing that if a set of trees is unifiable then it has a most general
unifier, we note that most general unifiers are essentially unique when they
exist. Lemma 8.4.2 holds even if the support of mgu’s is not a subset of
FV (S).

Lemma 8.4.2 If a set of trees S is unifiable and σ and θ are any two most
general unifiers for S, then there exists a substitution ρ such that θ = σ ◦ ρ,
ρ is a bijection between I(σ) ∪ (D(θ)−D(σ)) and I(θ) ∪ (D(σ)−D(θ)), and
D(ρ) = I(σ) ∪ (D(θ) − D(σ)) and ρ(x) is a variable for every x ∈ D(ρ).

Proof : First, note that a bijective substitution must be a bijective re-
naming of variables. Let f |A denote the restriction of a function f to A.
If ρ is bijective, there is a substitution ρ′ such that (ρ ◦ ρ′)|D(ρ) = Id and
(ρ′ ◦ ρ)|D(ρ′) = Id. But then, if ρ(x) is not a variable for some x in the sup-
port of ρ, ρ(x) is a constant or a tree t of depth ≥ 1. Since (ρ ◦ ρ′)|D(ρ) = Id,
we have ρ′(t) = x. Since a substitution is a homomorphism, if t is a con-
stant c, ρ′(c) = c &= x, and otherwise ρ′(t) has depth at least 1, and so
ρ′(t) &= x. Hence, ρ(x) must be a variable for every x (and similarly for ρ′).
A reasoning similar to the above also shows that for any two substitutions
σ and ρ, if σ = σ ◦ ρ, then ρ is the identity on I(σ). But then, if both σ
and θ are most general unifiers, there exist σ′ and θ′ such that θ = σ ◦ θ′ and
σ = θ◦σ′. Thus, D(σ′) = I(θ)∪(D(σ)−D(θ)), D(θ′) = I(σ)∪(D(θ)−D(σ)),
θ = θ ◦ (σ′ ◦ θ′), and σ = σ ◦ (θ′ ◦ σ′). We claim that (σ′ ◦ θ′)|D(σ′) = Id, and
(θ′ ◦ σ′)|D(θ′) = Id. We prove that (σ′ ◦ θ′)|D(σ′) = Id, the other case being
similar. For x ∈ I(θ), σ′ ◦θ′(x) = x follows from above. For x ∈ D(σ)−D(θ),
then x = θ(x) = θ′(σ(x)), and so, σ(x) = y, and θ′(y) = x, for some variable
y. Also, σ(x) = y = σ′(θ(x)) = σ′(x). Hence, σ′ ◦ θ′(x) = x. Since D(θ′) and
D(σ′) are finite, θ′ is a bijection between D(θ′) and D(σ′). Letting ρ = θ′,
the lemma holds.

We shall now present a version of Robinson’s unification algorithm.

8.4.2 The Unification Algorithm

In view of lemma 8.4.1, we restrict our attention to pairs of trees. The main
idea of the unification algorithm is to find how two trees “disagree,” and try



384 8/Resolution In First-Order Logic

to force them to agree by substituting trees for variables, if possible. There
are two types of disagreements:

(1) Fatal disagreements, which are of two kinds:

(i) For some tree address u both in dom(t1) and dom(t2), the labels
t1(u) and t2(u) are not variables and t1(u) &= t2(u). This is illus-
trated by case (ii) in example 8.4.1;

(ii) For some tree address u in both dom(t1) and dom(t2), t1(u) is
a variable say x, and the subtree t2/u rooted at u in t2 is not
a variable and x occurs in t2/u (or the symmetric case in which
t2(u) is a variable and t1/u isn’t). This is illustrated in case (iii)
of example 8.4.1.

(2) Repairable disagreements: For some tree address u both in dom(t1) and
dom(t2), t1(u) is a variable and the subtree t2/u rooted at u in t2 does
not contain the variable t1(u).

In case (1), unification is impossible (although if we allowed infinite trees,
disagreements of type (1)(ii) could be fixed; see Gorn, 1984). In case (2), we
force “local agreement” by substituting the subtree t2/u for all occurrences of
the variable x in both t1 and t2.

It is rather clear that we need a systematic method for finding disagree-
ments in trees. Depending on the representation chosen for trees, the method
will vary. In most presentations of unification, it is usually assumed that
trees are represented as parenthesized expressions, and that the two strings
are scanned from left to right until a disagreement is found. However, an
actual method for doing so is usually not given explicitly. We believe that in
order to give a clearer description of the unification algorithm, it is better to
be more explicit about the method for finding disagreements, and that it is
also better not to be tied to any string representation of trees. Hence, we will
give a recursive algorithm inspired from J. A. Robinson’s original algorithm,
in which trees are defined in terms of tree domains (as in Section 2.2), and the
disagreements are discovered by performing two parallel top-down traversals
of the trees t1 and t2.

The type of traversal that we shall be using is a recursive traversal in
which the root is visited first, and then, from left to right, the subtrees of the
root are recursively visited (this kind of traversal is called a preorder traversal ,
see Knuth, 1968, Vol. 1). We define some useful functions on trees. (The
reader is advised to review the definitions concerning trees given in Section
2.2.)

Definition 8.4.3 For any tree t, for any tree address u ∈ dom(t):

leaf(u) = true iff u is a leaf;

variable(t(u)) = true iff t(u) is a variable;

left(u) = if leaf(u) then nil else u1;

right(ui) = if u(i + 1) ∈ dom(t) then u(i + 1) else nil.



8.4 Unification and the Unification Algorithm 385

We also assume that we have a function dosubstitution(t, σ), where t is
a tree and σ is a substitution.

Definition 8.4.4 (A unification algorithm) The formal parameters of the
algorithm unification are the two input trees t1 and t2, an output flag indicat-
ing whether the two trees are unifiable or not (unifiable), and a most general
unifier (unifier) (if it exists).

The main program unification calls the recursive procedure unify , which
performs the unification recursively and needs procedure test-and-substitute
to repair disagreements found, as in case (2) discussed above. The variables
tree1 and tree2 denote trees (of type tree), and the variables node, newnode
are tree addresses (of type treereference). The variable unifier is used to
build a most general unifier (if any), and the variable newpair is used to form
a new substitution component (of the form (t/x), where t is a tree and x
is a variable). The function compose is simply function composition, where
compose(unifier, newpair) is the result of composing unifier and newpair,
in this order. The variables tree1, tree2, and node are global variables to
the procedure unification. Whenever a new disageement is resolved in test-
and-substitute, we also apply the substitution newpair to tree1 and tree2 to
remove the disagreement. This step is not really necessary, since at any time,
dosubstitution(t1, unifier) = tree1 and dosubstitution(t2, unifier) = tree2,
but it simplifies the algorithm.

Procedure to Unify Two Trees t1 and t2

procedure unification(t1, t2 : tree; var unifiable : boolean;
var unifier : substitution);

var node : treereference; tree1, tree2 : tree;

procedure test-and-substitute(var node : treereference;
var tree1, tree2 : tree;
var unifier : substitution; var unifiable : boolean);

var newpair : substitution;

{This procedure tests whether the variable tree1(node) belongs
to the subtree of tree2 rooted at node. If it does, the
unification fails. Otherwise, a new substitution newpair
consisting of the subtree tree2/node and the variable
tree1(node) is formed, the current unifier is composed with
newpair, and the new pair is added to the unifier.
To simplify the algorithm, we also apply newpair to tree1
and tree2 to remove the disagreement}

begin
{test whether the variable tree1(node) belongs to the
subtree tree2/node, known in the literature as “occur check”}



386 8/Resolution In First-Order Logic

if tree1(node) ∈ tree2/node then
unifiable := false

else

{create a new substitution pair consisting of the
subtree tree2/node at address node, and the
variable tree1(node) at node in tree1}

newpair := ((tree2/node)/tree1(node));

{compose the current partial unifier with
the new pair newpair}

unifier := compose(unifier, newpair);

{updates the two trees so that they now agree on
the subtrees at node}

tree1 := dosubstitution(tree1, newpair);
tree2 := dosubstitution(tree2, newpair)

endif
end test-and-substitute;

procedure unify(var node : treereference;
var unifiable : boolean; var unifier : substitution);

var newnode : treereference;

{Procedure unify recursively unifies the subtree
of tree1 at node and the subtree of tree2 at node}

begin
if tree1(node) <> tree2(node) then
{the labels of tree1(node) and tree2(node) disagree}
if variable(tree1(node)) or variable(tree2(node)) then
{one of the two labels is a variable}
if variable(tree1(node)) then

test-and-substitute(node, tree1, tree2, unifier, unifiable)
else

test-and-substitute(node, tree2, tree1, unifier, unifiable)
endif

else
{the labels of tree1(node) and tree2(node)
disagree and are not variables}
unifiable := false

endif
endif;



8.4 Unification and the Unification Algorithm 387

{At this point, if unifiable = true, the labels at node
agree. We recursively unify the immediate subtrees of node
in tree1 and tree2 from left to right, if node is not a leaf}

if (left(node) <> nil) and unifiable then
newnode := left(node);
while (newnode <> nil) and unifiable do

unify(newnode, unifiable, unifier);
if unifiable then

newnode := right(newnode)
endif

endwhile
endif

end unify ;

Body of Procedure Unification

begin
tree1 := t1;
tree2 := t2;
unifiable := true;
unifier := nil; {empty unification}
node := e; {start from the root}
unify(node, unifiable, unifier)

end unification

Note that if successful, the algorithm could also return the tree tree1
(or tree2), which is a most common form of t1 and t2. As presented, the
algorithm performs a single parallel traversal, but we also have the cost of the
occur check in test-and-substitute, and the cost of the substitutions. Let us
illustrate how the algorithm works.

EXAMPLE 8.4.2

Let t1 = f(x, f(x, y)) and t2 = f(g(y), f(g(a), z)), which are represented
as trees as follows:

Tree t1

f
↙ ↘

x f
↙ ↘

x y



388 8/Resolution In First-Order Logic

Tree t2

f
↙ ↘

g f
↓ ↙ ↘
y g z

↓
a

Initially, tree1 = t1, tree2 = t2 and node = e. The first disagreement
is found for node = 1. We form newpair = (g(y)/x), and unifier =
newpair. After applying newpair to tree1 and tree2, we have:

Tree tree1

f
↙ ↘

g f
↓ ↙ ↘
y g y

↓
y

Tree tree2

f
↙ ↘

g f
↓ ↙ ↘
y g z

↓
a

The next disagreement is found for node = 211. We find that newpair =
(a/y), and compose unifier = (g(y)/x) with newpair, obtaining (g(a)/
x, a/y). After applying newpair to tree1 and tree2, we have:

Tree tree1

f
↙ ↘

g f
↓ ↙ ↘
a g a

↓
a



8.4 Unification and the Unification Algorithm 389

Tree tree2

f
↙ ↘

g f
↓ ↙ ↘
a g z

↓
a

The last disagreement occurs for node = 22. We form newpair = (a/z),
and compose unifier with newpair, obtaining

unifier = (g(a)/x, a/y, a/z).

The algorithm stops successfully with the most general unifier (g(a)/x,
a/y, a/z), and the trees are unified to the last value of tree1.

In order to prove the correctness of the unification algorithm, the fol-
lowing lemma will be needed.

Lemma 8.4.3 Let # be any constant. Given any two trees f(s1, ..., sn) and
f(t1, ..., tn) the following properties hold:

(a) For any i, 1 ≤ i ≤ n, if σ is a most general unifier for the trees

f(s1, ..., si−1,#, ...,#) and f(t1, ..., ti−1,#, ...,#), then

f(s1, ..., si,#, ...,#) and f(t1, ..., ti,#, ...,#) are unifiable iff

σ(f(s1, ..., si,#, ...,#)) and σ(f(t1, ..., ti,#, ...,#)) are unifiable.

(b) For any i, 1 ≤ i ≤ n, if σ is a most general unifier for the trees
f(s1, ..., si−1,#, ...,#) and f(t1, ..., ti−1,#, ...,#), and θ is a most general uni-
fier for the trees σ(si) and σ(ti), then σ ◦ θ is a most general unifier for the
trees f(s1, ..., si,#, ...,#) and f(t1, ..., ti,#, ...,#).

Proof : (a) The case i = 1 is trivial. Clearly, if σ is a most general uni-
fier for the trees f(s1, ..., si−1,#, ...,#) and f(t1, ..., ti−1,#, ...,#) and if the
trees σ(f(s1, ..., si,#, ...,#)) and σ(f(t1, ..., ti,#, ...,#)) are unifiable, then
f(s1, ..., si,#, ...,#) and f(t1, ..., ti,#, ...,#) are unifiable.

We now prove the other direction. Let θ be a unifier for

f(s1, ..., si,#, ...,#) and f(t1, ..., ti,#, ...,#).

Then,
θ(s1) = θ(t1), ..., θ(si) = θ(ti).



390 8/Resolution In First-Order Logic

Hence, θ is a unifier for

f(s1, ..., si−1,#, ...,#) and f(t1, ..., ti−1,#, ...,#).

Since σ is a most general unifier, there is some θ′ such that θ = σ ◦ θ′. Then,

θ′(σ(f(s1, ..., si,#, ...,#))) = θ(f(s1, ..., si,#, ...,#))

= θ(f(t1, ..., ti,#, ...,#)) = θ′(σ(f(t1, ..., ti,#, ...,#))),

which shows that θ′ unifies

σ(f(s1, ..., si,#, ...,#)) and σ(f(t1, ..., ti,#, ...,#)).

(b) Again, the case i = 1 is trivial. Otherwise, clearly,

σ(s1) = σ(t1), ..., σ(si−1) = σ(ti−1) and θ(σ(si)) = θ(σ(ti))

implies that σ ◦ θ is a unifier of

f(s1, ..., si,#, ...,#) and f(t1, ..., ti,#, ...,#).

If λ unifies f(s1, ..., si,#, ...,#) and f(t1, ..., ti,#, ...,#), then

λ(s1) = λ(t1), ..., λ(si) = λ(ti).

Hence, λ unifies

f(s1, ..., si−1,#, ...,#) and f(t1, ..., ti−1,#, ...,#).

Since σ is a most general unifier of these two trees, there is some σ′ such that
λ = σ ◦ σ′. But then, since λ(si) = λ(ti), we have σ′(σ(si)) = σ′(σ(ti)), and
since θ is a most general unifier of σ(si) and σ(ti), there is some θ′ such that
σ′ = θ ◦ θ′. Hence,

λ = σ ◦ (θ ◦ θ′) = (σ ◦ θ) ◦ θ′,

which proves that σ ◦ θ is a most general unifier of f(s1, ..., si,#, ...,#) and
f(t1, ..., ti,#, ...,#).

We will now prove the correctness of the unification algorithm.

Theorem 8.4.1 (Correctness of the unification algorithm) (i) Given any
two finite trees t1 and t2, the unification algorithm always halts. It halts with
output unifiable = true iff t1 and t2 are unifiable.

(ii) If t1 and t2 are unifiable, then they have a most general unifier and
the output of procedure unify is a most general unifier.

Proof : Clearly, the procedure test-and-substitute always terminates, and
we only have to prove the termination of the unify procedure. The difficulty



8.4 Unification and the Unification Algorithm 391

in proving termination is that the trees tree1 and tree2 may grow. However,
this can only happen if test-and-substitute is called, and in that case, since
unifiable is not false iff the variable x = tree1(node) does not belong to
t = tree2/node, after the substitution of t for all occurrences of x in both
tree1 and tree2, the variable x has been completely eliminated from both
tree1 and tree2. This suggests to try a proof by induction over the well-
founded lexicographic ordering << defined such that, for all pairs (m, t) and
(m′, t′), where m, m′ are natural numbers and t, t′ are finite trees,

(m, t) << (m′, t′) iff either m < m′,

or m = m′ and t is a proper subtree of t′.

We shall actually prove the input-output correctness assertion stated
below for the procedure unify.

Let s0 and t0 be two given finite trees, σ a substitution such that none
of the variables in the support of σ is in σ(s0) or σ(t0), u any tree address
in both dom(σ(s0)) and dom(σ(t0)), and let s = σ(s0)/u and t = σ(t0)/u.
Let tree10, tree20, node0, unifiable0 and unifier0 be the input values of
the variables tree1, tree2, unifiable, and unifier, and tree1′, tree2′, node′

unifiable′ and unifier′ be their output value (if any). Also, let m0 be the
sum of the number of variables in σ(s0) and σ(t0), and m′ the sum of the
number of variables in tree1′ and tree2′.

Correctness assertion:

If tree10 = σ(s0), tree20 = σ(t0), node0 = u,

unifiable0 = true and unifier0 = σ, then

the following holds:

(1) The procedure unify always terminates;

(2) unifiable′ = true iff s and t are unifiable and, if unifiable′ = true,
then unifier′ = σ ◦ θ, where θ is a most general unifier of s and t, tree1′ =
unifier′(s0), tree2′ = unifier′(t0), and no variable in the support of unifier′

occurs in tree1′ or tree2′.

(3) If tree1′ &= σ(s0) or tree2′ &= σ(t0) then m′ < m0, else m′ = m0.

Proof of assertion: We proceed by complete induction on (m, s), where
m is the sum of the number of variables in tree1 and tree2 and s is the subtree
tree1/node.

(i) Assume that s is a constant and t is not a variable, the case in
which t is a constant being similar. Then u is a leaf node in σ(s0). If t &= s,
the comparison of tree1(node) and tree2(node) fails, and unifiable is set to
false. The procedure terminates with failure. If s = t, since u is a leaf node
in σ(s0) and σ(t0), the procedure terminates with success, tree1′ = σ(s0),



392 8/Resolution In First-Order Logic

tree2′ = σ(t0), and unifier′ = σ. Hence the assertion holds with the identity
substitution for θ.

(ii) Assume that s is a variable say x, the case in which t is a variable
being similar. Then u is a leaf node in σ(s0). If t = s, this case reduces
to case (i). Otherwise, t &= x and the occur check is performed in test-and-
substitute. If x occurs in t, then unifiable is set to false, and the procedure
terminates. In this case, it is clear that x and t are not unifiable, and the
assertion holds. Otherwise, the substitution θ = (t/x) is created, unifier′ =
σ ◦ θ, and tree1′ = θ(σ(s0)) = unifier′(s0), tree2′ = θ(σ(t0)) = unifier′(t0).
Clearly, θ is a most general unifier of x and t, and since x does not occur in
t, since no variable in the support of σ occurs in σ(s0) or σ(t0), no variable
in the support of unifier′ occurs in tree1′ = θ(σ(s0)) or tree2′ = θ(σ(s0)).
Since the variable x does not occur in tree1′ and tree2′, (3) also holds. Hence,
the assertion holds.

(iii) Both s and t have depth ≥ 1. Assume that s = f(s1, ..., sm) and
t = f ′(t1, ..., tn). If f &= f ′, the test tree1(node) = tree2(node) fails, and
unify halts with failure. Clearly, s and t are not unifiable, and the claim
holds. Otherwise, s = f(s1, ..., sn) and t = f(t1, ..., tn).

We shall prove the following claim by induction:

Claim: (1) For every i, 1 ≤ i ≤ n + 1, the first i − 1 recursive calls
in the while loop in unify halt with success iff f(s1, ..., si−1,#, ...,#) and
f(t1, ..., ti−1,#, ...,#) are unifiable, and otherwise one of the calls halts with
failure;

(2) If the first i− 1 recursive calls halt with success, the input values at
the end of the (i − 1)-th iteration are:

nodei = ui, unifiablei = true, unifieri = σ ◦ θi−1,

where θi−1 is a most general unifier for the trees f(s1, ..., si−1,#, ...,#) and
f(t1, ..., ti−1,#, ...,#), (with θ0 = Id, the identity substitution),

tree1i = unifieri(s0), tree2i = unifieri(t0),

and no variable in the support of unifieri occurs in tree1i or tree2i.

(3) If tree1i &= tree10 or tree2i &= tree20, if mi is the sum of the number
of variables in tree1i and tree2i, then mi < m0.

Proof of claim: For i = 1, the claim holds because before entering the
while loop for the first time,

tree11 = s0, tree21 = t0, node1 = u1,

unifier1 = σ, unifiable1 = true.

Now, for the induction step. We only need to consider the case where
the first i − 1 recursive calls were successful. If we have tree1i = tree10 and



8.4 Unification and the Unification Algorithm 393

tree2i = tree20, then we can apply the induction hypothesis for the assertion
to the address ui, since tree10/ui is a proper subtree of tree10/u. Otherwise,
mi < m0, and we can also also apply the induction hypothesis for the assertion
to address ui. Note that

tree1i/u = θi−1(f(s1, ..., si, ..., sn)) and

tree2i/u = θi−1(f(t1, ..., ti, ..., sn)), since

unifieri = σ ◦ θi−1.

By lemma 8.4.3(a), since θi−1 is a most general unifier for the trees

f(s1, ..., si−1,#, ...,#) and f(t1, ..., ti−1,#, ...,#), then

f(s1, ..., si,#, ...,#) and f(t1, ..., ti,#, ...,#) are unifiable, iff

θi−1(f(s1, ..., si,#, ...,#)) and θi−1f((t1, ..., ti,#, ...,#)) are unifiable.

Hence, unify halts with success for this call for address ui, iff

f(s1, ..., si,#, ...,#) and f(t1, ..., ti,#, ...,#) are unifiable.

Otherwise, unify halts with failure. This proves part (1) of the claim.

By part (2) of the assertion, the output value of the variable unifier is
of the form unifieri ◦ λi, where λi is a most general unifier for θi−1(si) and
θi−1(ti) (the subtrees at ui), and since θi−1 is a most general unifier for

f(s1, ..., si−1,#, ...,#) and f(t1, ..., ti−1,#, ...,#),

λi is a most general unifier for

θi−1(f(s1, ..., si,#, ...,#)) and θi−1f((t1, ..., ti,#, ...,#)).

By lemma 8.4.3(b), θi−1 ◦ λi is a most general unifier for

f(s1, ..., si,#, ...,#) and f(t1, ..., ti,#, ...,#).

Letting
θi = θi−1 ◦ λi,

it is easily seen that part (2) of the claim is satisfied. By part (3) of the
assertion, part (3) of the claim also holds.

This concludes the proof of the claim.

For i = n + 1, we see that all the recursive calls in the while loop halt
successfully iff s and t are unifiable, and if s and t are unifiable, when the loop
is exited, we have

unifiern+1 = σ ◦ θn,



394 8/Resolution In First-Order Logic

where θn is a most general unifier of s and t,

tree1n+1 = unifiern+1(s0), tree2n+1 = unifiern+1(t0),

and part (3) of the assertion also holds. This concludes the proof of the
assertion.

But now, we can apply the assertion to the input trees t1 and t2, with
u = e, and σ the identity substitution. The correctness assertion says that
unify always halts, and if it halts with success, the output variable unifier
is a most general unifier for t1 and t2. This concludes the correctness proof.

The subject of unification is the object of current research because fast
unification is crucial for the efficiency of programming logic systems such
as PROLOG. Some fast unification algorithms have been published such as
Paterson and Wegman, 1978; Martelli and Montanari, 1982; and Huet, 1976.
For a survey on unification, see the article by Siekmann in Shostak, 1984a.
Huet, 1976, also contains a thorough study of unification, including higher-
order unification.

PROBLEMS

8.4.1. Convert the following formulae to clause form:

∀y(∃x(P (y, x) ∨ ¬Q(y, x)) ∧ ∃x(¬P (x, y) ∨ Q(x, y)))

∀x(∃yP (x, y) ∧ ¬Q(y, x)) ∨ (∀y∃z(R(x, y, z) ∧ ¬Q(y, z)))

¬(∀x∃yP (x, y) ⊃ (∀y∃z¬Q(x, z) ∧ ∀y¬∀zR(y, z)))

∀x∃y∀z(∃w(Q(x,w) ∨ R(x, y)) ≡ ¬∃w¬∃u(Q(x,w) ∧ ¬R(x, u)))

8.4.2. Apply the unification algorithm to the following clauses:

{P (x, y), P (y, f(z))}

{P (a, y, f(y)), P (z, z, u)}

{P (x, g(x)), P (y, y)}

{P (x, g(x), y), P (z, u, g(u))}

{P (g(x), y), P (y, y), P (u, f(w))}

8.4.3. Let S and T be two finite sets of terms such that the set of variables
occurring in S is disjoint from the set of variables occurring in T .
Prove that if S ∪ T is unifiable, σS is a most general unifier of S, σT

is a most general unifier of T , and σS,T is a most general unifier of
σS(S) ∪ σT (T ), then

σS ◦ σT ◦ σS,T



8.5 The Resolution Method for First-Order Logic 395

is a most general unifier of S ∪ T .

8.4.4. Show that the most general unifier of the following two trees contains
a tree with 2n−1 occurrences of the variable x1:

f(g(x1, x1), g(x2, x2), ..., g(xn−1, xn−1)) and

f(x2, x3, ..., xn)

∗ 8.4.5. Define the relation ≤ on terms as follows: Given any two terms t1,
t2,

t1 ≤ t2 iff there is a substitution σ such that t2 = σ(t1).

Define the relation ∼= such that

t1 ∼= t2 iff t1 ≤ t2 and t2 ≤ t1.

(a) Prove that ≤ is reflexive and transitive and that ∼= is an equiva-
lence relation.

(b) Prove that t1 ∼= t2 iff there is a bijective renaming of variables ρ
such that t1 = ρ(t2). Show that the relation ≤ induces a partial order-
ing on the set of equivalence classes of terms modulo the equivalence
relation ∼=.

(c) Prove that two terms have a least upper bound iff they have a
most general unifier (use a separating substitution, see Section 8.5).

(d) Prove that any two terms always have a greatest lower bound.

Remark : The structure of the set of equivalence classes of terms mod-
ulo ∼= under the partial ordering ≤ has been studied extensively in
Huet, 1976. Huet has shown that this set is well founded, that every
subset has a greatest lower bound, and that every bounded subset
has a least upper bound.

8.5 The Resolution Method for First-Order Logic

Recall that we are considering first-order languages without equality. Also,
recall that even though we usually omit quantifiers, clauses are universally
quantified sentences. We extend the definition of a resolvent given in definition
4.3.2 to arbitrary clauses using the notion of a most general unifier.

8.5.1 Definition of the Method

First, we define the concept of a separating pair of substitutions.



396 8/Resolution In First-Order Logic

Definition 8.5.1 Given two clauses A and A′, a separating pair of substi-
tutions is a pair of substitutions ρ and ρ′ such that:

ρ has support FV (A), ρ′ has support FV (A′), for every variable x in A,
ρ(x) is a variable, for every variable y in A′, ρ′(y) is a variable, ρ and ρ′ are
bijections, and the range of ρ and the range of ρ′ are disjoint.

Given a set S of literals, we say that S is positive if all literals in S are
atomic formulae, and we say that S is negative if all literals in S are negations
of atomic formulae. If a set S is positive or negative, we say that the literals in
S are of the same sign. Given a set of literals S = {A1, ..., Am}, the conjugate
of S is defined as the set

S = {A1, ..., Am}

of conjugates of literals in S. If S is a positive set of literals we let |S| = S,
and if S is a negative set of literals, we let |S| = S.

Definition 8.5.2 Given two clauses A and B, a clause C is a resolvent of
A and B iff the following holds:

(i) There is a subset A′ = {A1, ..., Am} ⊆ A of literals all of the same
sign, a subset B′ = {B1, ..., Bn} ⊆ B of literals all of the opposite sign of the
set A′, and a separating pair of substitutions (ρ, ρ′) such that the set

|ρ(A′) ∪ ρ′(B′)|

is unifiable;

(ii) For some most general unifier σ of the set

|ρ(A′) ∪ ρ′(B′)|,

we have
C = σ(ρ(A − A′) ∪ ρ′(B − B′)).

EXAMPLE 8.5.1

Let
A = {¬P (z, a),¬P (z, x),¬P (x, z)} and

B = {P (z, f(z)), P (z, a)}.

Let

A′ = {¬P (z, a),¬P (z, x)} and B′ = {P (z, a)},

ρ = (z1/z), ρ′ = (z2/z).

Then,
|ρ(A′) ∪ ρ′(B′)| = {P (z1, a), P (z1, x), P (z2, a)}



8.5 The Resolution Method for First-Order Logic 397

is unifiable,
σ = (z1/z2, a/x)

is a most general unifier, and

C = {¬P (a, z1), P (z1, f(z1))}

is a resolvent of A and B.

If we take A′ = A, B′ = {P (z, a)},

|ρ(A′) ∪ ρ′(B′)| = {P (z1, a), P (z1, x), P (x, z1), P (z2, a)}

is also unifiable,
σ = (a/z1, a/z2, a/x)

is the most general unifier, and

C = {P (a, f(a))}

is a resolvent.

Hence, two clauses may have several resolvents.

The generalization of definition 4.3.3 of a resolution DAG to the first-
order case is now obvious.

Definition 8.5.3 Given a set S = {C1, ..., Cn} of first-order clauses, a res-
olution DAG for S is any finite set

G = {(t1, R1), ..., (tm, Rm)}

of distinct DAGs labeled in the following way:

(1) The leaf nodes of each underlying tree ti are labeled with clauses in
S.

(2) For every DAG (ti, Ri), every nonleaf node u in ti is labeled with
some triple (C, (ρ, ρ′), σ), where C is a clause, (ρ, ρ′) is a separating pair of
substitutions, σ is a substitution and the following holds:

For every nonleaf node u in ti, u has exactly two successors u1 and u2,
and if u1 is labeled with a clause C1 and u2 is labeled with a clause C2 (not
necessarily distinct from C1), then u is labeled with the triple (C, (ρ, ρ′), σ),
where (ρ, ρ′) is a separating pair of substitutions for C1 and C2 and C is the
resolvent of C1 and C2 obtained with the most general unifier σ.

A resolution DAG is a resolution refutation iff it consists of a single DAG
(t, R) whose root is labeled with the empty clause. The nodes of a DAG that
are not leaves are also called resolution steps.



398 8/Resolution In First-Order Logic

We will often use a simplified form of the above definition by dropping
(ρ, ρ′) and σ from the interior nodes, and consider that nodes are labeled with
clauses. This has the effect that it is not always obvious how a resolvent is
obtained.

EXAMPLE 8.5.2

Consider the following clauses:

C1 = {¬P (z1, a),¬P (z1, x),¬P (x, z1)},

C2 = {P (z2, f(z2)), P (z2, a)} and

C3 = {P (f(z3), z3), P (z3, a)}.

The following is a resolution refutation:

C2 C1 C3

({P (a, f(a))}, (Id, Id),
(a/z1, a/z2, a/x))

({P (f(a), a)}, (Id, Id),
(a/z1, a/x, a/z3))

({¬P (a, f(a))}, (Id, Id), (f(a)/z1, a/x))

( , (Id, Id), Id)

8.5.2 Soundness of the Resolution Method

In order to prove the soundness of the resolution method, we prove the fol-
lowing lemma, analogous to lemma 4.3.1.

Lemma 8.5.1 Given two clauses A and B, let C = σ(ρ(A − A′) ∪ ρ′(B −
B′)) be any resolvent of A and B, for some subset A′ ⊆ A of literals of A,
subset B′ ⊆ B of literals of B, separating pair of substitutions (ρ, ρ′), with
ρ = (z1/x1, ..., zm/xm), ρ′ = (zm+1/y1, ..., zm+n/yn) and most general unifier
σ = (t1/u1, ..., tk/uk), where {u1, ..., uk} is a subset of {z1, ..., zm+n}. Also,
let {v1, ..., vp} = FV (C). Then,

|= (∀x1...∀xmA ∧ ∀y1...∀ynB) ⊃ ∀v1...∀vpC.

Proof : We show that we can constuct a G-proof for

(∀x1...∀xmA ∧ ∀y1...∀ynB) → ∀v1...∀vpC.



8.5 The Resolution Method for First-Order Logic 399

Note that {z1, ..., zm+n} − {u1, ..., uk} is a subset of {v1, ..., vp}. First, we
perform p ∀ : right steps using p entirely new variables w1,...,wp. Let

σ′ = σ ◦ (w1/v1, ..., wp/vp) = (t′1/z1, ..., t
′
m+n/zm+n),

be the substitution obtained by composing σ and the substitution replacing
each occurrence of the variable vi by the variable wi. Then, note that the
support of σ′ is disjoint from the set {w1, ..., wp}, which means that for every
tree t,

σ′(t) = t[t′1/z1]...[t
′
m+n/zm+n]

(the order being irrelevant). At this point, we have the sequent

(∀x1...∀xmA ∧ ∀y1...∀ynB) → σ′(ρ(A − A′)), σ′(ρ′(B − B′)).

Then apply the ∧ : left rule, obtaining

∀x1...∀xmA,∀y1...∀ynB → σ′(ρ(A − A′)), σ′(ρ′(B − B′)).

At this point, we apply m+n ∀ : left rules as follows: If ρ(xi) is some variable
uj , do the substitution t′j/xi, else ρ(xi) is some variable vj not in {u1, .., uk},
do the substitution wj/vj .

If ρ′(yi) is some variable uj , do the substitution t′j/yi, else ρ′(yj) is some
variable vj not in {u1, ..., uk}, do the substitution wj/vj .

It is easy to verify that at the end of these steps, we have the sequent

(σ′(ρ(A − A′)), Q), (σ′(ρ′(B − B′)), Q) → σ′(ρ(A − A′)), σ′(ρ′(B − B′))

where Q = σ′(ρ(A′)) and Q = σ′(ρ′(B′)) are conjugate literals, because σ is
a most general unifier of the set |ρ(A′) ∪ ρ′(B′)|.

Hence, we have a quantifier-free sequent of the form

(A1 ∨ Q), (A2 ∨ ¬Q) → A1, A2,

and we conclude that this sequent is valid using the proof of lemma 4.3.1.

As a consequence, we obtain the soundness of the resolution method.

Lemma 8.5.2 (Soundness of resolution without equality) If a set of clauses
has a resolution refutation DAG, then S is unsatisfiable.

Proof : The proof is identical to the proof of lemma 4.3.2, but using
lemma 8.5.1, as opposed to lemma 4.3.1.



400 8/Resolution In First-Order Logic

8.5.3 Completeness of the Resolution Method

In order to prove the completeness of the resolution method for first-order
languages without equality, we shall prove the following lifting lemma.

Lemma 8.5.3 (Lifting lemma) Let A and B be two clauses, σ1 and σ2 two
substitutions such that σ1(A) and σ2(B) are ground, and assume that D is a
resolvent of the ground clauses σ1(A) and σ2(B). Then, there is a resolvent
C of A and B and a substitution θ such that D = θ(C).

Proof : First, let (ρ, ρ′) be a separating pair of substitutions for A and
B. Since ρ and ρ′ are bijections they have inverses ρ−1 and ρ

′−1. Let σ be
the substitution formed by the union of ρ−1 ◦ σ1 and ρ

′−1 ◦ σ2, which is well
defined, since the supports of ρ−1 and ρ

′−1 are disjoint. It is clear that

σ(ρ(A)) = σ1(A) and σ(ρ′(B)) = σ2(B).

Hence, we can work with ρ(A) and ρ′(B), whose sets of variables are disjoint.
If D is a resolvent of the clauses σ1(A) and σ2(B), there is a ground literal Q
such that σ(ρ(A)) contains Q and σ(ρ′(B)) contains its conjugate. Assume
that Q is positive, the case in which Q is negative being similar. Then, there
must exist subsets A′ = {A1, ..., Am} of A and B′ = {¬B1, ...,¬Bn} of B,
such that

σ(ρ(A1)) = ... = σ(ρ(Am)) = σ(ρ′(B1)) = ..., σ(ρ′(Bn)) = Q,

and σ is a unifier of ρ(A′)∪ ρ′(B′). By theorem 8.4.1, there is a most general
unifier λ and a substitution θ such that

σ = λ ◦ θ.

Let C be the resolvent

C = λ(ρ(A − A′) ∪ ρ′(B − B′)).

Clearly,
D = (σ(ρ(A)) − {Q}) ∪ (σ(ρ′(B)) − {¬Q})

= (σ(ρ(A − A′)) ∪ σ(ρ′(B − B′)))

= θ(λ(ρ(A − A′) ∪ ρ′(B − B′))) = θ(C).

Using the above lemma, we can now prove the following lemma which
shows that resolution DAGs of ground instances of clauses can be lifted to
resolution DAGs using the original clauses.

Lemma 8.5.4 (Lifting lemma for resolution refutations) Let S be a finite
set of clauses, and Sg be a set of ground instances of S, so that every clause in



8.5 The Resolution Method for First-Order Logic 401

Sg is of the form σi(Ci) for some clause Ci in S and some ground substitution
σi.

For any resolution DAG Hg for Sg, there is a resolution DAG H for S,
such that the DAG Hg is a homomorphic image of the DAG H in the following
sense:

There is a function F : H → Hg from the set of nodes of H to the set of
nodes of Hg, such that, for every node u in H, if u1 and u2 are the immediate
descendants of u, then F (u1) and F (u2) are the immediate descendants of
F (u), and if the clause C (not necessarily in Sg) is the label of u, then F (u)
is labeled by the clause θ(C), where θ is some ground substitution.

Proof : We prove the lemma by induction on the underlying tree of Hg.

(i) If Hg has a single resolution step, we have clauses σ1(A), σ2(B) and
their resolvent D. By lemma 8.5.3, there exists a resolvent C of A and B
and a substitution θ such that θ(C) = D. Note that it is possible that A and
B are distinct, but σ1(A) and σ2(B) are not. In the first case, we have the
following DAGs:

DAG Hg

σ1(A) = σ2(B)

D

DAG H

A B

C

The homomorphism F is such that F (e) = e, F (1) = 1 and F (2) = 1.

In the second case, σ1(A) &= σ2(B), but we could have A = B. Whether
or not A = B, we create the following DAG H with three distinct nodes, so
that the homomorphism is well defined:

DAG Hg

σ1(A) σ2(B)

D

DAG H

A B

C

The homomorphism F is the identity on nodes.

(ii) If Hg has more than one resolution step, it is of the form either

(ii)(a)

DAG Hg

G1 G2

A′ B′

D



402 8/Resolution In First-Order Logic

where A′ and B′ are distinct, or of the form

(ii)(b)

DAG Hg

G1

A′ = B′

D

if A′ = B′.

(a) In the first case, by the induction hypothesis, there are DAGs H1

and H2 and homomorphisms F1 : H1 → G1 and F2 : H2 → G2, where H1 is
rooted with some formula A and H2 is rooted with some formula B, and for
some ground substitutions θ1 and θ2, we have, A′ = θ1(A) and B′ = θ2(B).
By lemma 8.5.3, there is a resolvent C of A and B and a substitution θ such
that θ(C) = D. We can construct H as the DAG obtained by making C as
the root, and even if A = B, by creating two distinct nodes 1 and 2, with 1
labeled A and 2 labeled B:

DAG H

H1 H2

A B

C

The homomorphism F : H → Hg is defined such that F (e) = e, F (1) =
1, F (2) = 2, and it behaves like F1 on H1 and like F2 on H2. The root clause
C is mapped to θ(C) = D.

(b) In the second case, by the induction hypothesis, there is a DAG H1

rooted with some formula A and a homomorphism F1 : H1 → G1, and for
some ground substitution θ1, we have A′ = θ1(A). By lemma 8.5.3, there is
a resolvent C of A with itself, and a substitution θ such that θ(C) = D. It is
clear that we can form H so that C is a root node with two edges connected to
A, and F is the homomorphism such that F (e) = e, F (1) = 1, and F behaves
like F1 on H1.

DAG H

H1

A

C

The clause C is mapped onto D = θ(C). This concludes the proof.



8.5 The Resolution Method for First-Order Logic 403

EXAMPLE 8.5.3

The following shows a lifting of the ground resolution of example 8.3.1
for the clauses:

C1 = {¬P (z1, a),¬P (z1, x),¬P (x, z1)}

C2 = {P (z2, f(z2)), P (z2, a)}

C3 = {P (f(z3), z3), P (z3, a)}.

Recall that the ground instances are

G1 = {¬P (a, a)}

G2 = {P (a, f(a)), P (a, a)}

G3 = {P (f(a), a), P (a, a)}

G4 = {¬P (f(a), a),¬P (a, f(a))},

and the substitutions are

σ1 = (a/z2)

σ2 = (a/z1, a/x)

σ3 = (a/z3)

σ4 = (f(a)/z1, a/x).

Ground resolution-refutation Hg

for the set of ground clauses G1, G2, G3, G4

G2 G1 G3 G4

{P (a, f(a))} {P (f(a), a)}

{¬P (a, f(a))}

Lifting H of the above resolution refutation
for the clauses C1, C2, C3

C2 C1 C3 C1

{P (a, f(a))} {P (f(a), a)}

{¬P (a, f(a))}

The homomorphism is the identity on the nodes, and the substitutions
are, (a/z2) for node 11 labeled C2, (a/z1, a/x) for node 12 labeled C1,



404 8/Resolution In First-Order Logic

(a/z3) for node 212 labeled C3, and (f(a)/z1, a/x) for node 22 labeled
C1.

Note that this DAG is not as concise as the DAG of example 8.5.1. This
is because is has been designed so that there is a homomorphism from
H to Hg.

As a consequence of the lifting theorem, we obtain the completeness of
resolution.

Theorem 8.5.1 (Completeness of resolution, without equality) If a finite
set S of clauses is unsatisfiable, then there is a resolution refutation for S.

Proof : By the Skolem-Herbrand-Gödel theorem (theorem 7.6.1, or its
corollary), S is unsatisfiable iff a conjunction Sg of ground substitution in-
stances of clauses in S is unsatisfiable. By the completeness of ground reso-
lution (lemma 8.3.1), there is a ground resolution refutation Hg for Sg. By
lemma 8.5.4, this resolution refutation can be lifted to a resolution refutation
H for S. This concludes the proof.

Actually, we can also prove the following type of Herbrand theorem for
the resolution method, using the constructive nature of lemma 7.6.2.

Theorem 8.5.2 (A Herbrand-like theorem for resolution) Consider a first-
order language without equality. Given any prenex sentence A whose matrix
is in CNF, if A → is LK-provable, then a resolution refutation of the clause
form of A can be obtained constructively.

Proof : By lemma 7.6.2, a compound instance C of the Skolem form B
of A can be obtained constructively. Observe that the Skolem form B of A is
in fact a clause form of A, since A is in CNF. But C is in fact a conjunction of
ground instances of the clauses in the clause form of A. Since ¬C is provable,
the search procedure will give a proof that can be converted to a GCNF ′-
proof. Since theorem 4.3.1 is constructive, we obtain a ground resolution
refutation Hg. By the lifting lemma 8.5.4, a resolution refutation H can
be constructively obtained for Sg. Hence, we have shown that a resolution
refutation for the clause form of A can be constructively obtained from an
LK-proof of A → .

It is likely that theorem 8.5.2 has a converse, but we do not have a proof
of such a result. A simpler result is to prove the converse of lemma 8.5.4,
the lifting theorem. This would provide another proof of the soundness of
resolution. It is indeed possible to show that given any resolution refutation H
of a set S of clauses, a resolution refutation Hg for a certain set Sg of ground
instances of S can be constructed. However, the homomorphism property
does not hold directly, and one has to exercise care in the construction. The
interested reader should consult the problems.

It should be noted that a Herbrand-like theorem for the resolution
method and a certain Hilbert system has been proved by Joyner in his Ph.D



PROBLEMS 405

thesis (Joyner, 1974). However, these considerations are somewhat beyond
the scope of this text, and we will not pursue this matter any further.

PROBLEMS

8.5.1. Give separating pairs of substitutions for the following clauses:

{P (x, y, f(z))}, {P (y, z, f(z))}

{P (x, y), P (y, z)}, {Q(y, z), P (z, f(y))}

{P (x, g(x))}, {P (x, g(x))}

8.5.2. Find all resolvents of the following pairs of clauses:

{P (x, y), P (y, z)}, {¬P (u, f(u))}

{P (x, x),¬R(x, f(x))}, {R(x, y), Q(y, z)}

{P (x, y),¬P (x, x), Q(x, f(x), z)}, {¬Q(f(x), x, z), P (x, z)}

{P (x, f(x), z), P (u,w,w)}, {¬P (x, y, z),¬P (z, z, z)}

8.5.3. Establish the unsatisfiability of each of the following formulae using
the resolution method.

(∀x∃yP (x, y) ∧ ∃x∀y¬P (x, y))

(∀x∃y∃z(L(x, y) ∧ L(y, z) ∧ Q(y) ∧ R(z) ∧ (P (z) ≡ R(x)))∧

∀x∀y∀z((L(x, y) ∧ L(y, z)) ⊃ L(x, z)) ∧ ∃x∀y¬(P (y) ∧ L(x, y)))

8.5.4. Consider the following formulae asserting that a binary relation is
symmetric, transitive, and total:

S1 : ∀x∀y(P (x, y) ⊃ P (y, x))

S2 : ∀x∀y∀z((P (x, y) ∧ P (y, z)) ⊃ P (x, z))

S3 : ∀x∃yP (x, y)

Prove by resolution that

S1 ∧ S2 ∧ S3 ⊃ ∀xP (x, x).

In other words, if P is symmetric, transitive and total, then P is
reflexive.

8.5.5. Complete the details of the proof of lemma 8.5.1.



406 8/Resolution In First-Order Logic

∗ 8.5.6. (a) Prove that given a resolution refutation H of a set S of clauses, a
resolution refutation Hg for a certain set Sg of ground instances of S
can be constructed.

Apply the above construction to the following refutation:

{¬P (a), Q(a)} {P (x)} {¬P (f(a)),¬Q(a)}

{Q(a)} {¬Q(a)}

(b) Using (a), give another proof of the soundness of the resolution
method.

∗ 8.5.7. As in the propositional case, another way of presenting the resolution
method is as follows. Given a (finite) set S of clauses, let

R(S) = S ∪ {C | C is a resolvent of two clauses in S}.

Also, let
R0(S) = S,

Rn+1(S) = R(Rn(S)), (n ≥ 0), and let

R∗(S) =
⋃

n≥0

Rn(S).

(a) Prove that S is unsatisfiable if and only if R∗(S) is unsatisfiable.

(b) Prove that if S is finite, there is some n ≥ 0 such that

R∗(S) = Rn(S).

(c) Prove that there is a resolution refutation for S if and only if the
empty clause is in R∗(S).

(d) Prove that S is unsatisfiable if and only if belongs to R∗(S).

8.5.8. Prove that the resolution method is still complete if the resolution
rule is restricted to clauses that are not tautologies (that is, clauses
not containing both A and ¬A for some atomic formula A).

∗ 8.5.9. We say that a clause C1 subsumes a clause C2 if there is a substitution
σ such that σ(C1) is a subset of C2. In the version of the resolution
method described in problem 8.5.7, let

R1(S) = R(S) − {C | C is subsumed by some clause in R(S)}.

Let R0
1 = S,

Rn+1
1 (S) = R1(R

n
1 (S)) and

R∗
1(S) =

⋃

n≥0

Rn
1 (S).



8.6 A Glimpse at Paramodulation 407

Prove that S is unsatisfiable if and only if belongs to R∗
1(S).

8.5.10. The resolution method described in problem 8.5.7 can be modified
by introducing the concept of factoring. Given a clause C, if C ′ is
any subset of C and C ′ is unifiable, the clause σ(C) where σ is a
most general unifier of C ′ is a factor of C. The factoring rule is the
rule that allows any factor of a clause to be added to R(S). Consider
the simplification of the resolution rule in which a resolvent of two
clauses A and B is obtained by resolving sets A′ and B′ consisting
of a single literal. This restricted version of the resolution rule is
sometimes called binary resolution.

(a) Show that binary resolution together with the factoring rule is
complete.

(b) Show that the factoring rule can be restricted to sets C ′ consisting
of a pair of literals.

(c) Show that binary resolution alone is not complete.

8.5.11. Prove that the resolution method is also complete for infinite sets of
clauses.

8.5.12. Write a computer program implementing the resolution method.

8.6 A Glimpse at Paramodulation

As we have noted earlier, equality causes complications in automatic the-
orem proving. Several methods for handling equality with the resolution
method have been proposed, including the paramodulation method (Robin-
son and Wos, 1969), and the E-resolution method (Morris, 1969; Anderson,
1970). Due to the lack of space, we will only define the paramodulation rule,
but we will not give a full treatment of this method.

In order to define the paramodulation rule, it is convenient to assume
that the factoring rule is added to the resolution method. Given a clause
A, if A′ is any subset of A and A′ is unifiable, the clause σ(A) where σ is a
most general unifier of A′ is a factor of A. Using the factoring rule, it is easy
to see that the resolution rule can be simplified, so that a resolvent of two
clauses A and B is obtained by resolving sets A′ and B′ consisting of a single
literal. This restricted version of the resolution rule is sometimes called binary
resolution (this is a poor choice of terminology since both this restricted rule
and the general resolution rule take two clauses as arguments, but yet, it is
used in the literature!). It can be shown that binary resolution alone is not
complete, but it is easy to show that it is complete together with the factoring
rule (see problem 8.5.10).

The paramodulation rule is a rule that treats an equation s
.
= t as a (two

way) rewrite rule, and allows the replacement of a subterm r unifiable with



408 8/Resolution In First-Order Logic

s (or t) in an atomic formula Q, by the other side of the equation, modulo
substitution by a most general unifier.

More precisely, let
A = ((s

.
= t) ∨ C)

be a clause containing the equation s
.
= t, and

B = (Q ∨ D)

be another clause containing some literal Q (of the form Pt1...tn or ¬Pt1...tn,
for some predicate symbol P of rank n, possibly the equality symbol

.
=, in

which case n = 2), and assume that for some tree address u in Q, the subterm
r = Q/u is unifiable with s (or that r is unifiable with t). If σ is a most
general unifier of s and r, then the clause

σ(C ∨ Q[u ← t] ∨ D)

(or σ(C ∨Q[u ← s]∨D), if r and t are unifiable) is a paramodulant of A and
B. (Recall from Subsection 2.2.5, that Q[u ← t] (or Q[u ← s]) is the result of
replacing the subtree at address u in Q by t (or s)).

EXAMPLE 8.6.1

Let

A = {f(x, h(y))
.
= g(x, y), P (x)}, B = {Q(h(f(h(x), h(a))))}.

Then
{Q(h(g(h(z), h(a)))), P (h(z))}

is a paramodulant of A and B, in which the replacement is performed
in B at address 11.

EXAMPLE 8.6.2

Let
A = {f(g(x), x)

.
= h(a)}, B = {f(x, y)

.
= h(y)}.

Then,
{h(z)

.
= h(a)}

is a paramodulant of A and B, in which the replacement is performed
in A at address e.

It can be shown that the resolution method using the (binary) resolution
rule, the factoring rule, and the paramodulation rule, is complete for any finite
set S of clauses, provided that the reflexity axiom and the functional reflexivity
axioms are added to S. The reflexivity axiom is the clause

{x
.
= x},



Notes and Suggestions for Further Reading 409

and the functional reflexivity axioms are the clauses

{f(x1, ..., xn)
.
= f(x1, ..., xn)},

for each function symbol f occurring in S, of any rank n > 0.

The proof that this method is complete is more involved than the proof
for the case of a first-language without equality, partly because the lifting
lemma does not extend directly. It can also be shown that paramodulation is
complete without the functional reflexivity axioms, but this is much harder.
For details, the reader is referred to Loveland, 1978.

Notes and Suggestions for Further Reading

The resolution method has been studied extensively, and there are many re-
finements of this method. Some of the refinements are still complete for all
clauses (linear resolution, model elimination), others are more efficient but
only complete for special kinds of clauses (unit or input resolution). For a
detailed exposition of these methods, the reader is referred to Loveland, 1978;
Robinson, 1979, and to the collection of original papers compiled in Siekmann
and Wrightson, 1983. One should also consult Boyer and Moore, 1979, for
advanced techniques in automatic theorem proving, induction in particular.
For a more introductory approach, the reader may consult Bundy, 1983, and
Kowalski, 1979.

The resolution method has also been extended to higher-order logic by
Andrews. The interested reader should consult Andrews, 1971; Pietrzykowski,
1973; and Huet, 1973.


