
The Completeness of Propositional Resolution
A Simple and Constructive Proof

Jean Gallier

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104, USA
jean@saul.cis.upenn.edu

September 25, 2006

Abstract. It is well known that the resolution method (for propositional logic) is complete.
However, completeness proofs found in the literature use an argument by contradiction
showing that if a set of clauses is unsatisfiable, then it must have a resolution refutation. As
a consequence, none of these proofs actually gives an algorithm for producing a resolution
refutation from an unsatisfiable set of clauses. In this note, we give a simple and constructive
proof of the completeness of propositional resolution which consists of an algorithm together
with a proof of its correctness.

1

1 Introduction

The resolution method for (propositional) logic due to J.A. Robinson [4] (1965) is well-known
to be a sound and complete procedure for checking the unsatisfiability of a set of clauses.
However, it appears that the completeness proofs that can be found in the literature (for
instance, Chang and Lee [1], Lewis and Papadimitriou [3], Robinson [5]) are existence proofs
that proceed by contradiction to show that if a set of clauses is unsatisfiable, then it must
have a resolution refutation because otherwise a satisfying assignment can be obtained.
In particular, none of these proofs yields (directly) an algorithm producing a resolution
refutation from an unsatisfiable set of clauses. In that sense, these proofs are nonconstructive.
In Gallier [2] (1986), we gave a completeness proof based on an algorithm for converting a
Gentzen-like proof (using sequents) into a resolution DAG (see Chapter 4). Such a method
is more constructive than the others but, we found later on that it is possible to give a simple
and constructive proof of the completeness of propositional resolution which consists of an
algorithm together with a proof of its correctness. This algorithm and its correctness are the
object of this note.

It should be noted that Judith Underwood gave other constructive proof procedures in
her Ph.D. thesis, notably for the intuitionistic propositional calculus [6].

2 Review of Propositional Resolution

Recall that a literal , L, is either a propositional letter, P , or the negation, ¬P , of a propo-
sitional letter. A clause is a finite set of literals, {L1, . . . , Lk}, interpreted as the disjunc-
tion L1 ∨ · · · ∨ Lk (when k = 0, this is the empty clause denoted). A set of clauses,
Γ = {C1, . . . , Cn}, is interpreted as the conjunction C1 ∧ · · · ∧ Cn. For short, we write
Γ = C1, . . . , Cn.

The resolution method (J.A. Robinson [4]) is a procedure for checking whether a set of
clauses, Γ, is unsatisfiable. The resolution method consists in building a certain kind of
labeled DAG whose leaves are labeled with clauses in Γ and whose interior nodes are labeled
according to the resolution rule. Given two clauses C = A∪{P} and C ′ = B∪{¬P} (where
P is a propositional letter, P /∈ A and ¬P /∈ B), the resolvent of C and C ′ is the clause

R = A ∪ B

obtained by cancelling out P and ¬P . A resolution DAG for Γ is a DAG whose leaves are
labeled with clauses from Γ and such that every interior node n has exactly two predecessors,
n1 and n2 so that n is labeled with the resolvent of the clauses labeling n1 and n2. In a
resolution step involving the nodes, n1, n2 and n, as above, we say that the two clauses C and
C ′ labeling the nodes n1 and n2 are the parent clauses of the resolvent clause, R, labeling
the node n. In a resolution DAG, D, a clause, C ′ is said to be a descendant of a clause, C,
iff there is a (directed) path from some node labeled with C to a node labeled with C ′. A
resolution refutation for Γ is a resolution DAG with a single root whose label is the empty

2

clause. (For more details on the resolution method, resolution DAGs, etc., one may consult
Gallier [2], Chapter 4, or any of the books cited in Section 1.)

Here is an example of a resolution refutation for the set of clauses

Γ = {{P,Q}, {P,¬Q}, {¬P,Q}, {¬P,¬Q}} :

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

3 Completeness of Propositional Resolution:
An Algorithm and its Correctness

Let Γ be a set of clauses. Thus, Γ is either the empty clause, , or it is a conjunction of
clauses, Γ = C1, . . . , Cn. We define the complexity , c(C), of a clause, C, as the number of
disjunction symbols in C; i.e., if C consists of a single literal (i.e., C = {L}, for some literal,
L), then c(C) = 0, else if C = {L1, . . . , Lm} (with m ≥ 2) where the Li’s are literals, then
c(C) = m − 1 (we also set c() = 0). If Γ is a conjunction of clauses, Γ = C1, . . . , Cn, then
we set

c(Γ) = c(C1) + · · · + c(Cn).

We now give a recursive algorithm, buildresol, for constructing a resolution DAG from
any set of clauses and then prove its correctness, namely, that if the input set of clauses is
unsatisfiable, then the output resolution DAG is a resolution refutation. This establishes the
completeness of propositional resolution constructively.

Our algorithm makes use of two functions, percolate, and graft.

1. The function percolate(D,A,L)

The inputs are: a resolution DAG, D, some selected leaf of D labeled with a clause, A,
and some literal, L. This function adds the literal L to the clause A to form the clause
A ∪ {L} and then “percolates” L down to the root of D. More precisely, we construct the
resolution DAG, D′, whose underlying unlabeled DAG is identical to D, as follows: Since
D and D′ have the same unlabeled DAG we refer to two nodes of D of D′ as corresponding
nodes if they are identical in the underlying unlabeled DAG. Consider any resolution step
of D. If both parent clauses are not descendants of the premise A, then the corresponding
resolution step of D′ is the same. If the parent clauses in D are C and C ′ where C ′ is a
descendant of the premise A (resp. C is a descendant of the premise A) and if R is the

3

resolvent ot C and C ′ in D, then the corresponding parent nodes in D′ are labeled with C
and C ′ ∪ {L} and their resolvent node with R ∪ {L} (resp. the corresponding parent nodes
in D′ are labeled with C ∪{L} and C ′ and their resolvent node wih R∪{L}). If both parent
clauses C and C ′ in D are descendant of the premise A, then the corresponding parent nodes
in D′ are labeled with C ∪ {L} and C ′ ∪ {L} and their resolvent node with R ∪ {L}.

Observe that if ∆ ∪ {A} is the set of premises of D, then Γ = ∆ ∪ {A ∪ {L}} is the set
of premises of percolate(D,A,L).

For example, if D is the resolution DAG shown below (in fact, a resolution refutation)

{P,Q} {¬P,Q} A = {¬Q}

{Q}

Figure 1: Resolution DAG D

then adding L = ¬P to A = {¬Q} in D yields the resolution DAG D′ produced by
percolate(D,A,L):

{P,Q} {¬P,Q} {¬P,¬Q}

{Q}

{¬P}

Figure 2: Resolution DAG D′ = percolate(D,A,L)

2. The function graft(D1, D2)

Its inputs are two resolution DAGs, D1 and D2, where the clause, C, labeling the root
of D1 is identical to one of the premises of D2. Then, this function combines D1 and D2

by connecting the links to the premise labeled C in D2 to the root of D1, also labeled C,
obtaining the resolution DAG graft(D1, D2).

For example, if D1 and D2 are the resolution refutation DAGs shown below

{P,Q} {¬P,Q} {¬P,¬Q}

{Q}

{¬P}

Figure 3: Resolution DAG D1

4

{P,Q} {P,¬Q} {¬P}

{P}

Figure 4: Resolution DAG D2

we obtain the resolution DAG

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

Figure 5: Resolution DAG graft(D1, D2)

where the edges coming from D2 are indicated with thicker lines. The algorithm buildresol
is shown below.

3. The algorithm buildresol(Γ)

The input to buildresol is a set of clauses, Γ.

function buildresol(Γ)

begin

if all clauses in Γ are literals then

if Γ contains complementary literals L and ¬L,

then return a resolution refutation with leaves L and ¬L

else abort

endif

else select any nonliteral clause, C, in Γ and select any literal, L, in C;

let C = A ∪ {L}; let Γ = ∆ ∪ {C};
D1 = buildresol(∆ ∪ {A}); D2 = buildresol(∆ ∪ {L}); D′

1 = percolate(D1, A, L);

if D′
1 is a resolution DAG

then return D′
1

else D = graft(D′
1, D2); return D

endif

endif

end

5

Finally, we prove the correctness of our recursive algorithm buildresol.

Theorem 3.1 For every conjunction of clauses, Γ, if Γ is unsatisfiable, then the algorithm
builresol outputs a resolution refutation for Γ. Therefore, propositional resolution is com-
plete.

Proof . We prove the correctness of the algorithm buildresol by induction on c(Γ). Let
Γ = C1, . . . , Cn. We may assume Γ '= , since the case Γ = is trivial. We proceed by
induction on c(Γ).

If c(Γ) = 0, then every clause, Ci, contains a single literal and if Γ is unsatisfiable, then
there must be two complementary clauses, Ci = {P} and Cj = {¬P}, in Γ. Thus, we
instantly get a resolution refutation by applying the resolution rule to {P} and {¬P}.

Otherwise, c(Γ) > 0, so there is some clause in Γ that contains at least two literals. Pick
any such clause, C, and pick any literal, L, in C. Write C = A∪ {L} with A '= and write
Γ =∆ , C (∆ can’t be empty since Γ is unsatisfiable). As Γ = ∆, A ∪ {L} is unsatisfiable,
both ∆, A and ∆, L must be unsatisfiable. However, observe that

c(∆, A) < c(Γ) and c(∆, L) < c(Γ).

Therefore, by the induction hypothesis, the algorithm buildresol produces two resolution
refutations, D1 and D2, with sets of premises ∆, A and ∆, L, respectively. Now, consider the
resolution DAG, D′

1 = percolate(D1, A, L), obtained from D1 by adding L to the clause A
and letting L percolate down to the root.

Observe that in D′
1, every clause that is a descendant of the premise A ∪ {L} is of the

form C ∪ {L}, where C is the corresponding clause in D1. Therefore, the root of the new
DAG D′

1 obtained from D1 is either labeled (this may happen when the other clause in a
resolution step involving a descendent of the clause A already contains L) or L. In the first
case, D′

1 is already a resolution refutation for Γ and we are done. In the second case, we can
combine D′

1 and D2 using graft(D′
1, D2) since the root of D′

1 is also labeled L, one of the
premises of D2. Clearly, we obtain a resolution refutation for Γ.

As an illustration of our algorithm, consider the set of clauses

Γ = {{P,Q}, {P,¬Q}, {¬P,Q}, {¬P,¬Q}}

as above and pick C = {¬P,¬Q}, L = ¬P and A = {¬Q}. After the two calls
buildresol(∆ ∪ {A}) and buildresol(∆ ∪ {L}), we get the resolution refutations D1:

{P,Q} {¬P,Q} {¬Q}

{Q}

Figure 6: Resolution DAG D1 = buildresol(∆ ∪ {A})

6

and D2:

{P,Q} {P,¬Q} {¬P}

{P}

Figure 7: Resolution DAG D2 = buildresol(∆ ∪ {L})

When we add L = ¬P to A = {¬Q} in D1, we get the resolution DAG
D′

1 = percolate(D1, A, L):

{P,Q} {¬P,Q} {¬P,¬Q}

{Q}

{¬P}

Figure 8: Resolution DAG D′
1 = percolate(D1, A, L)

Finally, we construct the resolution refutation D = graft(D′
1, D2):

{P,Q} {P,¬Q} {¬P,Q} {¬P,¬Q}

{P} {Q}

{¬P}

Figure 9: Resolution DAG D = graft(D′
1, D2)

where the edges coming from D2 are indicated with thicker lines.

Observe that the proof of Theorem 3.1 proves that if Γ is unsatisfiable, then our algorithm
succeeds no matter which clause containing at least two literals is chosen and no matter which
literal is picked in such a clause.

Furthermore, as pointed out by one of the referees, although the proof of completeness
is constructive in the sense that it shows an algorithm is correct, it does not explicitly use
constructive logic. Nevertheless the logical proof can be recovered from the algorithm and
it is constructive.

7

References

[1] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical Theorem
Proving. Academic Press, first edition, 1973.

[2] Jean H. Gallier. Logic For Computer Science. Wiley, first edition, 1986.

[3] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, first edition, 1981.

[4] J.A. Robinson. A machine oriented logic based on the resolution principle. J.ACM,
12(1):23–41, 1965.

[5] J.A. Robinson. Logic: Form and Function. North-Holland, first edition, 1979.

[6] Judith Underwood. The tableau algorithm for intuitionistic propositional calculus as a
constructive completeness proof. In Basin D., Fronhofer B., Hahnle R., Posegga J., and
Schwind C., editors, Second Workshop on Theorem Proving with Analytic Tableaux and
Related Methods, Marseille, France, pages 245–248. Max–Planck–Institut fur Informatik,
Saarbrucken, Germany, 1993.

8

