J. LOGIC PROGRAMMING: to appear 1

CONSTRAINT LOGIC PROGRAMMING: A SURVEY

JOXAN JAFFAR and MICHAEL J. MAHER

> Constraint Logic Programming (CLP) is a merger of two declarative para-
digms: constraint solving and logic programming. Though a relatively new
field, CLP has progressed in several quite different directions. In particu-
lar, the early fundamental concepts have been adapted to better serve in
different areas of applications. In this survey of CLP, a primary goal is to
give a systematic description of the major trends in terms of common fun-
damental concepts. The three main parts cover the theory, implementation
issues and programming for applications. <

1. Introduction

Constraint Logic Programming (CLP) began as a natural merger of two declarative
paradigms: constraint solving and logic programming. This combination helps
make CLP programs both expressive and flexible, and in some cases, more efficient
than other kinds of programs. Though a relatively new field, CLP has progressed in
several and quite different directions. In particular, the early fundamental concepts
have been adapted to better serve in different areas of applications. In this survey
of CLP, a primary goal is to give a systematic description of the major trends in
terms of common fundamental concepts.

Consider first an example program in order to identify some crucial CLP con-
cepts. The program below defines the relation sumto(n, 1+ 2+ - - -+ n) for natural
numbers n.

sumto(0, 0).
sumto(N, S) :- N >= 1, N <= S, sumto(N - 1, S - N).

The query S <= 3, sumto(N, S) gives rise to three answers (N = 0,5 = 0),

Address correspondence to Joxan Jaffar and Michael Maher, IBM Thomas J. Watson Research
Center, PO Box 704, Yorktown Heights, NY 10598, USA. Email: {joxan,mjm}@watson.ibm.com

FINAL DRAFT: Comments, especially about errors, are solicited.

(N =1,§=1), and (N = 2,5 = 3), and terminates. The computation sequence
of states for the third answer, for example, is

S < 3, sumto(N, S).

SS?),NINl,SISl,NlZ1,N1§Sl,
sumto(Ny — 1,81 — Ny).

SS 3,NIN1,5251,N1 Z].,Nl SSl,
N1 —1=N;,85 — Ny =8;,N2>1,N; < 8s,
sumto(Nz — 1,83 — N2).

SS?),NINl,SISl,NlZ].,NlSSl,
Ni—1=N;3,8 — N1 =83, Ny > 1,N; < Sa,
N2—1:0,52—N2:0.

The constraints in the final state imply the answer N = 2, § = 3. Termination is
reasoned as follows. Any infinite computation must use only the second program
rule for state transitions. This means that its first three states must be as shown
above, and its fourth state must be

S§3,N:N1,S:,S’1,N122,N1§51,
N1 —1=N;,85 — N1 =53,N,>1,N; <85,
Ny —1=N3,5 — Nz = 83,N3 > 1,N3 < Ss,

sumto(...)

We note now that this contains an unsatisfiable set of constraints, and in CLP, no
further reductions are allowed.
This example shows the following key features in CLP:

Constraints are used to specify the query as well as the answers.

During execution, new variables and constraints are created.

The collection of constraints in every state is tested as a whole for satisfia-
bility before execution proceeds further.

In summary, constraints are: used for input/output, dynamically generated, and
globally tested in order to control execution.

1.1. Constraint Languages

Considerable work on constraint programming languages preceded logic program-
ming and constraint logic programming. We now briefly survey some important
works, with a view toward the following features. Are constraints used for in-
put/output? Can new variables and/or constraints be dynamically generated? Are
constraints used for control? What is the constraint solving algorithm, and to what
extent is it complete? What follows is adapted from the survey in [188].
SKETCHPAD [246] was perhaps the earliest work that one could classify as a
constraint language. It was in fact an interactive drawing system, allowing the user
to build geometric objects from language primitives and certain constraints. The

constraints are static, and were solved by local propagation and relaxation tech-
niques. (See chapter 2 in [165] for an introduction to these and related techniques.)
Subsequent related work was THINGLAB [32] whose language took an object-
oriented flavor. While local propagation and relaxation were also used to deal with
the essentially static constraints, the system considered constraint solving in two
different phases. When a graphical object is manipulated, a plan was generated
for quickly re-solving the appropriate constraints for changed part of the object.
This plan was then repeatedly executed while the manipulation continued. Works
following the THINGLAB tradition included the Filters Project [81] and Animus
[80]. Another graphical system, this one focusing on geometrical layout, was JUNO
[196]. The constraints were constructed, as in THINGLAB, by text or graphical
primitives, and the geometric object could be manipulated. A difference from the
abovementioned works is that constraint solving was performed numerically using
a Newton-Raphson solver.

Another collection of early works arose from MIT, motivated by applications in
electrical circuit analysis and synthesis, gave rise to languages for general problem
solving. In the CONSTRAINTS language [240], variables and constraints are static,
and constraint solving was limited to using local propagation. An extension of this
work [241] provided a more sophisticated environment for constraint programming,
including explanation facilities. Some other related systems, EL/ARS [238] and
SYN [142], used the constraint solver MACSYMA [186] to avoid the restrictions of
local propagation. It was noted at this period [241] that there was a conceptual
correspondence between the constraint techniques and logic programming.

The REF-ARF system [89] was also designed for problem solving. One compo-
nent, REF, was essentially a procedural language, but with nondeterminism because
of constraints used in conditional statements. The constraints are static. They are
in fact linear integer constraints, and all variables are bounded above and below.
The constraint solver ARF used backtracking.

The Bertrand system [165] was designed as a meta-language for the building
of constraint solvers. It is itself a constraint language, based on term rewriting.
Constraints are dynamic here, and are used in control. All constructs of the lan-
guage are based on augmented rewrite rules, and the programmer adds rules for
the specific constraint solving algorithm to be implemented.

Post-CLP, there have been a number of works which are able to deal with dy-
namic constraints. The language 2LP [170] is described to be a CLP language with
a C-like syntax for representing and solving combinatorial problems. Obtaining
parallel execution is one of the main objectives of this work. The commercial lan-
guage CHARME, also based on a procedural framework, arose from the work on
CHIP (by essentially omitting the logic programming part of CHIP). The subse-
quent work ILOG, which is also commercial, is a library of constraint algorithms
designed to work with C++ programs. Using a procedural language as a basis, [92]
introduced Constraint Imperative Programming which has explicit constraints in
the usual way, and also a new kind of constraints obtained by considering variable
assignments such as ¢ = =z + 1 as time-stamped. Such assignments are treatable
as constraints of the form z; = z;41 + 1. Finally, we mention Constraint Func-
tional Programming [70] whose goal is the amalgamation of the ideas of functional
programming found in the HOPE language with constraints.

There is work on languages and systems which are not generally regarded as
constraint languages, but are nevertheless related to CLP languages. The develop-

ment of symbolic algebra systems such as MACSYMA [186] concentrated on the
solving of difficult algebraic problems. The programming language aspects are less
developed. Languages for linear programming [152] provide little more than a prim-
itive documentation facility for the array of coefficients which is input into a linear
programming module.

In parallel with the development of these constraint languages, much work was
done on the modelling of combinatorial problems as Constraint Satisfaction Prob-
lems (CSPs) and the development of techniques for solving such problems. The
work was generally independent of any host language. (A possible exception is
ALICE [164] which provided a wide variety of primitives to implement different
search techniques.) One important development was the definition and study of
several notions of consistency. This work had a significant influence on the later
development of the CLP language CHIP. We refer the reader to [253] for an intro-
duction to the basic techniques and results concerning CSPs. Finally, we mention
the survey [41] which deals not just with constraint programming languages, but
constraint-based programming techniques.

1.2. Logic Programming

Next we consider conventional logic programming (LP), and argue by example that
the power of CLP cannot be obtained by making simple changes to LP systems.
The question at hand is whether predicates in a logic program can be meaningfully
regarded as constraints. That is, is a predicate with the same declarative semantics
as a constraint a sufficient implementation of the constraint as per CLP? Consider,
for example, the logic program

add(0, N, N).
add(s(N), M, s(K)) :— add(N, M, K).

where natural numbers n are represented by s(s(---(0)--)) with n occurrences of
s. Clearly, the meaning of the predicate add(n,m, k) coincides with the relation
n+m = k. However, the query add(N, M, K), add(N, M, s(K)), which is clearly
unsatisfiable, runs forever in a conventional LP system. The important point here
is that a global test for the satisfiability of the two add constraints is not done by
the underlying LP machinery.

In this example, the problem is that the add predicate is not invoked with a
representation of the add constraints collected so far, and neither does it return such
a representation (after having dealt with one more constraint). More concretely,
the second subgoal of the query above is not given a representation of the fact that
N+ M=K.

A partial solution to this problem is the use of a delay mechanism. Roughly, the
idea is that invocation of the predicate is delayed until its arguments are sufficiently
instantiated. For example, if invocation of add is systematically delayed until its
first argument is instantiated, then add behaves as in CLP when the first argument
is ground. Thus the query N = s(s(--- s(0)---)), add(N, M, K), add(N, M,
s(K)) fails as desired. However, the original query add(N, M, K), add(N, M,
s(K)) will be delayed forever.

A total solution could, in principle, be obtained by simply adding two extra
arguments to the predicate. One would be used for the input representation, and

one for the output. This would mean that each time a constraint is dealt with,
a representation of the entire set of constraints accumulated must be manipulated
and a new representation constructed. But this is tantamount to a meta-level
implementation of CLP in LP. Furthermore, this approach raises new challenges to
efficient implementation.

Since LP is an instance of CLP, in which constraints are equations over terms,
its solver also requires a representation of accumulated constraints. It happens,
however, that there is no need for an explicit representation, such as the extra
arguments discussed above. This is because the accumulated constraints can be
represented by an mgu, and this, of course, is globally available via a simple binding
mechanism.

1.3. CLP Languages

Viewing the subject rather broadly, constraint logic programming can be said to
involve the incorporation of constraints and constraint “solving” methods in a logic-
based language. This characterization suggests the possibility of many interesting
languages, based on different constraints and different logics. However, to this
point, work on CLP has almost exclusively been devoted to languages based on
Horn clauses!. We now briefly describe these languages, concentrating on those
that have received substantial development effort.

Prolog can be said to be a CLP language where the constraints are equations
over the algebra of terms (also called the algebra of finite trees, or the Herbrand
domain). The equations are implicit in the use of unification?. Almost every lan-
guage we discuss incorporates Prolog-like terms in addition to other terms and
constraints, so we will not discuss this aspect further. Prolog II [59] employs equa-
tions and disequations (#) over rational trees (an extension of the finite trees of
Prolog to cyclic structures). It was the first logic language explicitly described as
using constraints [61].

CLP(R) [133] has linear arithmetic constraints and computes over the real num-
bers. Nonlinear constraints are ignored (delayed) until they become effectively
linear. CHIP [76] and Prolog III [64] compute over several domains. Both compute
over Boolean domains: Prolog III over the well-known 2-valued Boolean algebra
and CHIP over a larger Boolean algebra that contains symbolic values. Both CHIP
and Prolog III perform linear arithmetic over the rational numbers. Separately
(domains cannot be mixed) CHIP also performs linear arithmetic over bounded
subsets of the integers (known as “finite domains”). Prolog III also computes over
a domain of strings. There are now several languages which compute over finite
domains in the manner of CHIP, including c1p(FD)[75], Echidna [103] and Flang
[181]. cc(FD) [116] is essentially a second-generation CHIP system.

LOGIN [7], and LIFE [9] compute over an order-sorted domain of feature trees.
This domain provides a limited notion of object (in the object-oriented sense). The
languages support a term syntax which is not first-order, although every term can be
interpreted through first-order constraints. Unlike other CLP languages/domains,

1We note, however, some work combining constraints and resolution in first-order automated
theorem-proving [242, 44].

2The language Absys [82], which was very similar to Prolog, used equations explicitly, making
it more obviously a CLP language.

Prolog-like trees are essentially part of this domain, instead of being built on top
of the domain. CIL [192] computes over a domain similar to feature trees.

BNR-Prolog [198] computes over three domains: the 2-valued Boolean algebra,
finite domains, and arithmetic over the real numbers. In contrast to other CLP
languages over arithmetic domains it computes solutions numerically, instead of
symbolically. Trilogy [256, 257] computes over strings, integers and real numbers.
Although its syntax is closer to that of C, 2LP [170] can be considered to be a
CLP language permitting only a subset of Horn clauses. It computes with linear
constraints over integers and real numbers.

CAL [4] computes over two domains: the real numbers, where constraints are
equations between polynomials and a Boolean algebra with symbolic values, where
equality between Boolean formulas expresses equivalence in the algebra. Instead
of delaying non-linear constraints, CAL makes partial use of these constraints dur-
ing computation. In the experimental system RISC-CLP(Real) [120] non-linear
constraints are fully involved in the computation.

L, [189] and EIf [200] are derived from A-Prolog [190] and compute over the
values of closed typed lambda expressions. These languages are not based on Horn
clauses (they include a universal quantifier) and were not originally described as
CLP languages. However it is argued in [187] that their operational behavior is
best understood as the behavior of a CLP language. An earlier language, Le Fun
[8], also computed over this domain, and can be viewed as a CLP language with a
weak constraint solver.

1.4. Synopsis

The remainder of this paper is organized into three main parts. In part one we
provide a formal framework for CLP. Particular attention will be paid to opera-
tional semantics and operational models. As we have seen in examples, it is the
operational interpretation of constraints, rather than the declarative interpretation,
which distinguishes CLP from LP. In part two algorithm and data structure con-
siderations are discussed. A crucial property of any CLP implementation is that
its constraint handling algorithms are incremental. In this light we review several
important solvers and their algorithms for the satisfiability, entailment, and delay-
ing of constraints. We will also discuss the requirements of an inference engine for
CLP. In part three we consider CLP applications. In particular, we discuss two
rather different programming paradigms, one suited for the modelling of complex
problems, and one for the solution of combinatorial problems.

In this survey we concentrate on the issues raised by the introduction of con-
straints to LP. Consequently we will ignore, or pass over quickly, those issues inher-
ent in LP. We assume the reader is somewhat familiar with LP and basic first-order
logic. Appropriate background can be obtained from [168] for LP and [223] for logic.
For introductory papers on constraint logic programming and CLP languages we
refer the reader to [63, 65, 156, 94]. For further reading on CLP we suggest other
surveys [58, 109, 110], some collections of papers [20, 143, 111], and some books
[107, 214]. More generally, papers on CLP appear in various journals and confer-
ence proceedings devoted to computational logic, constraint processing or symbolic
computation.

1.5. Notation and Terminology

This paper will (hopefully) keep to the following conventions. Upper case letters
generally denote collections of objects, while lower case letters generally denote
individual objects. wu,v,w, z,y, z will denote variables, s,¢ will denote terms, p, ¢
will denote predicate symbols, f, g will denote function symbols, a will denote a
constant, a,b, h will denote atoms, A will denote a collection of atoms, 8, will
denote substitutions, ¢ will denote a constraint, C,S will denote collections of
constraints, 7 will denote a rule, P, Q will denote programs, G will denote a goal,
D will denote a structure, D will denote its set of elements, and d will denote an
element of D. These symbols may be subscripted or have an over-tilde. & denotes
a sequence of distinct variables z1,z3,...,z, for an appropriate n. § denotes a
sequence of (not necessarily distinct) terms sq, s2, . . ., s, for an appropriate n. § = i
abbreviates s =t1 Asg =t3 A---As, =t,. _z ¢ denotes the existential closure
of the formula ¢ ezcept for the variables #, which remain unquantified. 3 ¢ denotes
the full existential closure of the formula ¢.

A signature defines a set of function and predicate symbols and associates an arity
with each symbol®. If T is a signature, a X-structure D consists of a set D and an
assignment of functions and relations on D to the symbols of 3 which respects the
arities of the symbols. A first-order X-formula is built from variables, function and
predicate symbols of 3, the logical connectives A, V, =, «—, —, < and quantifiers over
variables 3,V in the usual way [223]. A formula is closed if all variable occurrences
in the formula are within the scope of a quantifier over the variable. A X-theory
is a collection of closed X-formulas. A model of a X-theory T is a X-structure D
such that all formulas of T' evaluate to ¢rue under the interpretation provided by
D. A D-model of a theory T is a model of T extending D (this requires that the
signature of D be contained in the signature of T'). We write T,D |= ¢ to denote
that the formula ¢ is valid in all D-models of T

In this paper, the set of function and predicate symbols defined in the constraint
domain is denoted by ¥ and the set of predicate symbols definable by a program
is denoted by II. A primitive constraint has the form p(¢1,...,t,), where t1,...,%,
are terms and p € X is a predicate symbol. Every constraint is a (first-order)
formula built from primitive constraints. The class of constraints will vary, but we
will generally consider only a subset of formulas to be constraints. An atom has
the form p(t1,...,t,), where ¢1,...,t, are terms and p € Il. A CLP program is a
collection of rules of the form a «— b1,...,b, where a is an atom and the b;’s are
atoms or constraints. a is called the head of the rule and b1,...,b, is called the
body. Sometimes we represent the rule by a «— ¢, B, where c is the conjunction of
constraints in the body and B is the collection of atoms in the body, and sometimes
we represent the rule by a «— B, where B is the collection of atoms and constraints
in the body. In one subsection we will also consider programs with negated atoms
in the body. A goal (or gquery) G is a conjunction of constraints and atoms. A fact
is a rule @ «— ¢ where ¢ is a constraint. Finally, we will identify conjunction and
multiset union.

To simplify the exposition we assume that the rules are in a standard form,
where all arguments in atoms are variables and each variable occurs in at most one

3In a many-sorted language this would include associating a sort with each argument and the
result of each symbol. However, we will not discuss such details in this survey.

atom. This involves no loss of generality since a rule such as p(¢1,t2) — C, g(s1, s2)
can be replaced by the equivalent rule p(z1,#2) «— z1 = t1,%2 = t2,y1 = 81,Y2 =
s2, C, q(y1,y2). We also assume that all rules defining the same predicate have the
same head and that no two rules have any other variables in common (this is simply
a matter of renaming variables). However in examples we relax these restrictions.

Programs will be presented in teletype font, and will generally follow the Ed-
inburgh syntax. In particular, program variables begin with an upper-case letter,
[Head|Tail] denotes a list with head Head and tail Tail, and [] denotes an empty
list. In one variation from this standard we allow subscripts on program variables,
to improve readability.

Part 1
The Semantics of CLP Languages

Many languages based on definite clauses have quite similar semantics. The crucial
insight of the CLP Scheme [129, 128] and the earlier scheme of [130, 131] was
that a logic-based programming language, its operational semantics, its declarative
semantics and the relationships between these semantics could all be parameterized
by a choice of domain of computation and constraints. The resulting scheme defines
the class of languages CLP(X) obtained by instantiating the parameter X

We take the view that the parameter X' stands for a 4-tuple (3, D, £, 7). Here T
is a signature, D is a X-structure, L is a class of X-formulas, and 7 is a first-order X-
theory. Intuitively, 2 determines the predefined predicate and function symbols and
their arities, D is the structure over which computation is to be performed, £ is the
class of constraints which can be expressed, and 7 is an axiomatization of (some)
properties of D. In the following section we define some important relationships
between the elements of the 4-tuple, and give some examples of constraint domains.

We then give declarative and operational semantics for CLP programs, para-
meterized by AX'. The declarative semantics are quite similar to the corresponding
semantics of logic programs, and we cover them quickly. There are many variations
of the resolution-based operational semantics, and we present the main ones. We
also present the main soundness and completeness results that relate the two styles
of semantics. Finally, we discuss some linguistic features that have been proposed
as extensions to the basic CLP language.

2. Constraint Domains

For any signature X, let D be a X-structure (the domain of computation) and £ be
a class of 3X-formulas (the constraints). We call the pair (D, £) a constraint domain.
In aslight abuse of notation we will sometimes denote the constraint domain by D.
We will make several assumptions, none of which is strictly necessary, to simplify
the exposition. We assume

e The terms and constraints in £ come from a first-order language®.

#Without this assumption, some of the results we cite are not applicable, since there can be
no appropriate first-order theory 7. The remaining assumptions can be omitted, at the expense

e The binary predicate symbol = is contained in ¥ and is interpreted as iden-
tity in D.5

e There are constraints in £ which are, respectively, identically true and iden-
tically false in D.

e The class of constraints £ is closed under variable renaming, conjunction
and existential quantification.

We will denote the smallest set of constraints which satisfies these assumptions
and contains all primitive constraints — the constraints generated by the primitive
constraints — by Lx. In general, £ may be strictly larger than Ly since, for example,
universal quantifiers or disjunction are permitted in £; it also may be smaller, as
in example 7 below. However we will usually take £ = L5. On occasion we will
consider an extension of X and £, to ©* and L* respectively, so that there is a
constant in X* for every element of D.

We now present some example constraint domains. In practice, these are not
always fully implemented, but we leave discussion of that until later. Most gen-
eral purpose CLP languages incorporate some arithmetic domain, including BNR-
Prolog [198], CAL [4], CHIP [76], CLP(R) [133], Prolog III [64], RISC-CLP(Real)
[120].

Ezample 2.1. Let X contain the constants 0 and 1, the binary function symbols +
and *, and the binary predicate symbols =, < and <. Let D be the set of real
numbers and let D interpret the symbols of X as usual (i.e. + is interpreted as
addition, etc). Let £ be the constraints generated by the primitive constraints.
Then R = (D, L) is the constraint domain of arithmetic over the real numbers. If
we omit from X the symbol * then the corresponding constraint domain Rr;, =
(D', L") is the constraint domain of linear arithmetic over the real numbers. If
the domain is further restricted to the rational numbers then we have a further
constraint domain Qpr;,. In constraints in Ry;, and Qpr;, we will write terms
such as 3 and bz as abbreviations for 14+ 141 and 24z + 2 + =+ z respectively®.
Thus dy bz +y < 3Az < y — 1 is a constraint in R, Rz, and Qr;,, whereas
z %z <y is a constraint only in ®. If we extend £’ to allow negated equations’
(we will use the symbol #) then the resulting constraint domains %fm and
Qfm permit constraints such as 2z + y < 0 A z # y. Finally, if we restrict X to
{0, 1, +, =} we obtain the constraint domain Rr1,;» g¢n, where the only constraints
are linear equations.

Rrin and Qr;, (and %fm and Qfm) are essentially the same constraint domain:
they have the same language of constraints and the two structures are elementarily
equivalent [223]. In particular, a constraint solver for one is also a constraint solver
for the other.

of a messier reformulation of definitions and results.

5This assumption is unnecessary when terms have a most general unifier in P, as occurs in
Prolog. Otherwise = is needed to express parameter passing.

8Other syntactic sugar, such as the unary and binary minus symbol —, are allowed. Rational
number coefficients can be used: all terms in the sugared constraint need only be multiplied by
an appropriate number to reduce the coefficients to integers.

"Sometimes called disequations.

Prolog and standard logic programming can be viewed as constraint logic pro-
gramming over the constraint domain of finite trees.

Example 2.2. Let ¥ contain a collection of constant and function symbols and
the binary predicate symbol =. Let D be the set of finite trees where: each
node of each tree is labelled by a constant or function symbol, the number of
children of each node is the arity of the label of the node, and the children are
ordered. Let D interpret the function symbols of X as tree constructors, where
each f € X of arity n maps n trees to a tree whose root is labelled by f and
whose subtrees are the arguments of the mapping. The primitive constraints
are equations between terms, and let £ be the constraints generated by these
primitive constraints. Then F7 = (D, £) is the Herbrand constraint domain, as
used in Prolog. Typical constraints are z = ¢g(y) and 3z z = f(z,2) Ay = g(2).
(It is unnecessary to write a quantifier in Prolog programs because all variables
that appear only in constraints are implicitly existentially quantified.)

It was pointed out in [60] that complete (i.e. always terminating) unification which
omits the occurs check solves equations over the rational trees.

Ezample 2.3. We take ¥ and £ as in example 2. D is the set of rational trees
(see [69] for a definition) and the function symbols are interpreted as tree con-
structors, as before. Then R7 = (D, L) is the constraint domain of rational
trees.

If we take the set of infinite trees instead of rational trees then we obtain a constraint
domain that is essentially the same as R7, in the same way that Rr;, and Qr;p
are essentially the same: they have the same language of constraints and the two
structures are elementarily equivalent [174].

The next domain contains objects similar to the previous domains, but has a
different signature and constraint language [12]%, which results in slightly different
expressive power. It can be viewed as the restriction of domains over which LO-
GIN [7] and LIFE [9] compute when all sorts are disjoint. The close relationship
between the constraints and -terms [5] is emphasized by a syntactic sugaring of
the constraints.

Ezample 2.4. Let ¥ = {=}US U F where S is a set of unary predicate symbols
(sorts) and F is a set of binary predicate symbols (features). Let D be the set of
(finite or infinite) trees where: each node of each tree is labelled by a sort, each
edge of each tree is labelled by a feature and no node has two outbound edges
with the same label. Such trees are called feature trees. Let D interpret each
sort s as the set of feature trees whose root is labelled by s, and interpret each
feature f as the set of pairs (¢1,t2) of feature trees such that ¢, is the subtree
of ¢; that is reached by the edge labelled by f. (If ¢; has no edge labelled by
f then there is no pair (%1,%2) in the set.) Thus features are essentially partial
functions. The domain of feature trees FEAT = (D, L£). A typical constraint is
wine(z) A Jy region(z, y) A rutherglen(y) A Jy color(z,y) A red(y), but there is

8 A variant of this domain, with a slightly different signature, is used in [235].

11

also a sugared syntax which would represent this constraint as z : wine[region =
rutherglen, color = red].

The next constraint domain takes strings as the basic objects. It is used in Prolog

11 [64].

Ezample 2.5. Let X contain the binary predicate symbol =, the binary function
symbol ., a constant A, and a number of other constants. D is the set of finite
strings of the constants. The symbol. isinterpreted in D as string concatenation
and A is interpreted as the empty string. £ is the set of constraints generated by
equations between terms. Then W& = (D, £) is the constraint domain of equa-
tions on strings, sometimes called the domain of word equations. An example
constraint is z.a = b.z.

The constraint domain of Boolean values and functions is used in BNR-Prolog [198],
CAL [4], CHIP [76] and Prolog III [64]. CAL and CHIP employ a more general

constraint domain, which includes symbolic Boolean values.

Ezample 2.6. Let ¥ contain the constants 0 and 1, the unary function symbol
-, the binary function symbols A,V,®, =, and the binary predicate symbol
=. Let D be the set {true, false} and let D interpret the symbols of ¥ as
the usual Boolean functions (i.e. A is interpreted as conjunction, & is exclu-
sive or, etc). Let £ be the constraints generated by the primitive constraints.
Then BOOL = (D, L) is the (two-valued) Boolean constraint domain. An ex-
ample constraint is =(z A y) = y. In a slight abuse of notation, we allow a
constraint ¢ = 1 to be written simply as ¢ so that, for example, =(z A y)®y
denotes the constraint —(z A y)Py = 1. For the more general constraint domain,
let ' = ¥ UA{ay,...,ai,...}, where the a; are constants. Let L’ be the con-
straints generated by the X~/ primitive constraints and let D’ be the free Boolean
algebra generated by {a1,...,a;,...}. Then BOOL, = (D', L,) is the Boolean
constraint domain with infinitely many symbolic values®. A constraint ¢(, @) is

satisfiable in BOOL, iff D |= 3EV§ ¢(Z, §).

The finite domains of CHIP are best viewed as having the integers as the underlying
structure, with a limitation on the language of constraints.

Ezample 2.7. Let D = Z and ¥ = {{€ [m, n]}m<n, +,=, #, <}. For every pair of
integers m and n, the interval constraint z € [m,n] denotes that m < z < n.
The other symbols in 3 have their usual meaning. Let £ be the constraints ¢
generated by the primitive constraints, restricted so that every variable in ¢ is
subject to an interval constraint. Then FD = (D, L) is the constraint domain
referred to as finite domains. (The domain of a variable z is the finite set of
values which satisfy all unary constraints involving #.) A typical constraint in

9Only finitely many constants are used in any one program, so it can be argued that a finite
Boolean algebra is a more appropriate domain of computation. However the two alternatives agree
on satisfiability and constraint entailment (although not if an expanded language of constraints
is permitted) and it is preferable to view the constraint domain as independent of the program.
Currently it is not clear whether the alternatives agree on other constraint operations.

12

FDisz e [L,5|Ay €0, Az #3Az+2y<5Az+y<9. The domain of z is
{1727475}'

There are several other constraint domains of interest that we cannot exemplify
here, for lack of space. They include pseudo-Boolean constraints (for example,
[26]), which are intermediate between Boolean and integer constraints, order-sorted
feature algebras [10], domains consisting of regular sets of strings [258], domains of
finite sets [79], domains of CLP(Fun(D)) which employ a function variable [117],
domains of functions expressed by A-expressions [190, 8, 189, 200, 187], etc.

It is also possible to form a constraint domain directly from objects and oper-
ations in an application, instead of more general-purpose domains such as those
above. This possibility has only been pursued in a limited form, where a general-
purpose domain is extended by the ad hoc addition of primitive constraints. For
example, in some uses of CHIP the finite domain is extended with a predicate sym-
bol element [77]. The relation element(z,l,t) expresses that ¢ is the #’th element
in the list I. We discuss such extensions further in Section 9.2

These constraint domains are expected to support (perhaps in a weakened form)
the following tests and operations on constraints, which have a major importance in
CLP languages. The first operation is the most important (it is almost obligatory),
while the others might not be used in some CLP languages.

The first is a test for consistency or satisfiability: D = Je.

The second is the implication (or entailment) of one constraint by another:
D |= co — c1. More generally, we may ask whether a disjunction of con-
straints is implied by a constraint: D |=co — /i, ¢;.

e The third is the projection of a constraint co onto variables & to obtain a
constraint ¢; such that D = ¢; «» 3_; co. It is always possible to take ¢; to
be 3_3; cg, but the aim is to compute the simplest ¢; with fewest quantifiers.
In general it is not possible to eliminate all uses of the existential quantifier.

e The fourth is the detection that, given a constraint ¢, there is only one
value that a variable z can take that is consistent with ¢. That is, D &
c(z,%) Ae(y,) — = = y or, equivalently, D |= IzVz,§ c(z,§) — z = z. We
say z is determined (or grounded) by c.

In Section 10 we will discuss problems and techniques which arise when imple-
menting these operations in a CLP system. However, we point out here that some
implementations of these operators — in particular, the test for satisfiability — are
incomplete. In some cases it has been argued [67, 66, 22] that although an algo-
rithm is incomplete with respect to the desired constraint domain, it is complete
with respect to another (artificially constructed) constraint domain.

We now turn to some properties of constraint domains which will be used later.
The first two — solution compactness and satisfaction completeness — were intro-
duced as part of the CLP Scheme.

Definition 2.1. Let d range over elements of D and c,c; range over constraints
in £, and let I be a possibly infinite index set. A constraint domain (D, £) is
solution compact [128, 129] if it satisfies the following conditions:

13

(SCy) Vd Hcitier st. D EVz z =d & N\ ;ci(z)

(502) Ve H{Ci}iej s.t. D ': V& —|c(£) — VieI cl(ﬁ)

Roughly speaking, SC; is satisfied iff every element d of D can be defined by a
(possibly infinite) conjunction of constraints, and SC; is satisfied iff the complement
of each constraint ¢ in £ can be described by a (possibly infinite) disjunction of
constraints.

The definition of SC; in [128] is not quite equivalent to the definition in [129] which
we paraphrase above; see [175]. It turns out that SC; is not necessary for the results
we present; we include it only for historical accuracy. There is no known natural
constraint domain for which SC; does not hold. There are, however, some artificial
constraint domains for which it fails.

Ezample 2.8. Let %zm denote the constraint domain obtained from Rr;, by
adding the unary primitive constraint # # w. The negation of this constraint
(i.e. ¢ = 7) cannot be represented as a disjunction of constraints in §Rzm Thus
%zm is not solution compact.

The theory 7 in the parameter of the CLP scheme is intended to axiomatize some
of the properties of D. We place some conditions on D and 7 to ensure that
T reflects D sufficiently. The first two conditions ensure that D and 7 agree on
satisfiability of constraints, while the addition of the third condition guarantees
that every unsatisfiability in D is also detected by 7. The theory 7 and these
conditions mainly play a role in the completeness results of Section 6.

Definition 2.2. For a given signature X, let (D, L) be a constraint domain with
signature %, and 7 be a X-theory. We say that D and 7 correspond on L if
e D is a model of 7, and
o for every constraint c€ £, D =3 cif T =3 e.
We say 7 is satisfaction complete with respect to L if for every constraint ¢ € £,

either 7T EJcor 7 = 3.

Satisfaction completeness is a weakening of the notion of a complete theory [223].
Thus, for example, the theory of the real closed fields [247] corresponds and is
satisfaction complete with respect to R since the domain is a model of this theory
and the theory is complete. Clark’s axiomatization of unification [55] defines a
satisfaction complete theory with respect to 77 which is not complete when there
are only finitely many function symbols [174].

The notion of independence of negative constraints plays a significant role in con-
straint logic programming!®. In [62], Colmerauer used independence of inequations
to simplify the test for satisfiability of equations and inequations on the rational

10Tt is also closely related to the model-theoretic properties that led to an interest in Horn
formulas [172, 121].

14

trees. (The independence of inequations states: if a conjunction of positive and neg-
ative equational constraints are inconsistent then one of the negative constraints
is inconsistent with the positive constraints.) Independence of negative constraints
has been investigated in greater generality in [163]. The property has been shown
to hold for several classes of constraints including equations on finite, rational and
infinite trees [161, 160, 174], linear real arithmetic constraints (where only equa-
tions may be negated) [162], sort and feature constraints on feature trees [12], and
infinite Boolean algebras with positive constraints [106], among others [163]. We
consider a restricted form of independence of negative constraints [177].

Definition 2.3. A constraint domain (D, £) has the Independence of Negated Con-
straints property if, for all constraints ¢, c1,...,¢n € L,

D':?Ic/\—'cl/\---/\—'cn iffDI:glc/\—'ciforizl,...,n.

The fact that £ is assumed to be closed under conjunction and existential quan-
tification is an important restriction in the above definition. For example, Colmer-
auer’s work is not applicable in this setting, since that dealt only with primitive
constraints. Neither are many of the other results cited above, at least not in their
full generality. However there are still several useful constraint domains known to
have this property, including the algebras of finite, rational and infinite trees with
equational constraints, when there are infinitely many function symbols [161, 174],
feature trees with infinitely many sorts and features [12], linear arithmetic equa-
tions over the rational or real numbers, and infinite Boolean algebras with positive
constraints [106].

Ezample 2.9. In the Herbrand constraint domain F7 with only two function
symbols, a constant a and a unary function f, it is easily seen that the fol-
lowing statements are true: F7 | Jz,y,z ¢ = f(y) A~y = a A~y = f(2);
FT E3z,yze = fly A~y =a; FT | Jz,y,z ¢ = f(y) A~y = f(2). This
is an example of the independence of inequations for 7. However, when we
consider the full class of constraints of 7 we have the following facts. The
statement F7 = Jz,y ¢ = f(y) A~y = a A—Jz y = f(z) is not true, since
every finite tree y is either the constant a or has the form f(z) for some fi-
nite tree z. On the other hand, both F7 |= Jz,y ¢ = f(y) A -y = a and
FT | 3z,y,z ¢ = f(y) A =3z y = f(z) are true. Thus, for these function
symbols — and it is easy to see how to extend this example to any finite set of
function symbols — the independence of negated constraints does not hold.

As is clear from [220], constraint domains (and constraints) are closely related to
the information systems (and their elements) used by Scott to present his domain
theory. Information systems codify notions of consistency and entailment among
elements, which can be interpreted as satisfiability and implication of constraints
on a single variable. Saraswat [217, 215] extended the notion of information system
to constraint systems'! (which allow many variables) and showed that some of the
motivating properties of information systems continue to hold.

1 although [215] does not treat consistency, only entailment.

15

Constraint systems (we will not give a formal definition here) can be viewed as
abstractions of constraint domains which eliminate consideration of a particular
structure D; the relation D = ¢; A -+ A ¢, — ¢ among constraints ¢, c1,...,¢,
is abstracted to the relation ¢1,...,¢, F ¢ (and the satisfiability relation D |=
3 ¢1 A+ Ac, among constraints can be abstracted to a set Con of all consistent
finite sets of constraints {c1,...,¢,} [220, 215]). Many of the essential semantic
details of a constraint domain are still present in the corresponding constraint
system, although properties such as solution compactness and independence of
negated constraints cannot be expressed without more detail than a constraint
system provides.

3. Logical Semantics

There are two common logical semantics of CLP programs over a constraint domain
(D, £). The first interprets a rule

p(i) <—b1,...,bn

as the logic formula
V&, p(8) Vb V.V aby

where Z U § is the set of all free variables in the rule. The collection of all such
formulas corresponding to rules of P gives a theory also denoted by P.

The second logical semantics associates a logic formula to each predicate in II.
If the set of all rules of P with p in the head is

p(:E) — B
p(Z) — B
p(3) < B,

then the formula associated with p is

VZ p(z) < i By
VvV 3§2 B
V' J4n Bn

where §; is the set of variables in B; except for variables in Z. If p does not occur
in the head of a rule of P then the formula is

Vi —p(%)

The collection of all such formulas is called the Clark completion of P, and is
denoted by P*.

A valuation is a mapping from variables to D, and the natural extension which
maps terms to D and formulas to closed £*-formulas. If X is a set of facts then
[X]p = {v(a) | (a — ¢) € X,D |= v(c)}. A D-interpretation of a formula is an

16

interpretation of the formula with the same domain as D and the same interpre-
tation for the symbols in 3 as D. It can be represented as a subset of Bp where
Bp = {p(cf) | p €1, de D*}. A D-model of a closed formula is a D-interpretation
which is a model of the formula.

Let 7 denote a satisfaction complete theory for (D, £). The usual logical seman-
tics are based on the D-models of P and the models of P*,7. The least D-model
of a formula @ under the subset ordering is denoted by Im(Q, D), and the great-
est is denoted by gm(Q,D). A solution to a query G is a valuation v such that
v(G) Clm(P, D).

4. Fixedpoint Semantics

The fixedpoint semantics we present are based on one-step consequence functions
TE and SE, and the closure operator [P] generated by T}?. The functions TI? and
[P] map over D-interpretations. The set of D-interpretations forms a complete
lattice under the subset ordering, and these functions are continuous on Bp.

TR(I) = {p(d) | p(&) —¢,b1,...,bpisaruleof Pya; €I, i=1,...,n,
v is a valuation on D such that
D Ev(), v(8) =d, and v(b;) = as, 1 =1,...,n}

[P] is the closure operator generated by TE. It represents a deductive closure based
on the rules of P. Let Id be the identity function, and define (f+g)(z) = f(z)Ug(z).
Then [P](I) is the least fixedpoint of TS +Id greater than I, and the least fixedpoint
of TE,;.

The function SE is defined on sets of facts, which form a complete lattice under
the subset ordering. We denote the closure operator generated from SB by (P)).
Both these functions are continuous.

So(I) ={p(&) —c| p(&) ¢, b1,...,byis arule of P,
a; —¢; €1, i=1,...,n, the rule and facts renamed apart,
D |:c<—>c’/\/\?:1ci/\ai =b;}

We denote the least fixedpoint of a function f by Ifp(f) and the greatest fixedpoint
by gfp(f). These fixedpoints exists for the functions of interest, since they are mo-
notonic functions on complete lattices. For a function f mapping D-interpretations
to D-interpretations, we define the upward and downward iteration of f as follows.

=0
f(f1e)
= Ua<ﬁ f1a if Bisalimit ordinal

— — —
Wy
+
=
[l

= Bp
f(fle)
= ﬂa<ﬁ fla if Bis alimit ordinal

R S

— e —
Wy o
+
=
[l

17

We can take as semantics [fp(SB) or Ifp(T5). The two functions involved are
related in the following way: [SE(I)]p = TE([I]p). Consequently [Ifp(SE)]p =
1fp(TE). 1fp(ST) corresponds to the s-semantics [87] for languages with constraints
[95]. Fixedpoint semantics based on sets of clauses [34] also extend easily to CLP
languages.

Based largely on the facts that the D-models of P are the fixedpoints of [P] and
the D-models of P* are the fixedpoints of TZ, we have the following connections
between the logical and fixedpoint semantics, just as in standard logic programming.

Proposition 4.1. Let P, P, P, be CLP programs and @ a set of facts over a con-
straint domain D with corresponding theory 7. Then:

TF 1w = 1fp(TF) = [Lfp(SE)lp = [P](0)

Im(P,D)=[{he—c| P D (h—c)llp=[{h—c| P, T (h—c)lp
Im(P*, D) = lm(P,D) = 1fp(TF)

gm(P*,D) = gfp(TF)

[PI([Qlp) = [PUQ](0) = Im(P U Q,D)

(PNQ)=(PUQ)©®) =1fp(SPuq)

D IZ P1 — Pg IH [[Pl]] = |IP2]]

We will need the following terminology later. P is said to be (D, £)-canonical iff
gfp(TJ?) = TE | w. Canonical logic programs, but not constraint logic programs,
were first studied by [136] who showed that every logic program is equivalent (wrt
the success and finite failure sets) to a canonical logic program. The proof here
was not constructive, but subsequently, [259] provided an algorithm to generate
the canonical logic program'?. Like many other kinds of results in traditional logic
programming, these results are likely to extend to CLP in a straightforward way.

5. Top-down Execution

The phrase “top-down execution” covers a multitude of operational models. We
will present a fairly general framework for operational semantics in which we can
describe the operational semantics of some major CLP systems.

We will present the operational semantics as a transition system on states: tuples
(4, C, S) where A is a multiset of atoms and constraints, and C and S are multisets
of constraints. The constraints C' and S are referred to as the constraint store and,
in implementations, are acted upon by a constraint solver. Intuitively, A is a
collection of as-yet-unseen atoms and constraints, C is the collection of constraints
which are playing an active role (or are awake), and S is a collection of constraints
playing a passive role (or are asleep). There is one other state, denoted by fail. To
express more details of an operational semantics, it can be necessary to represent
the collections of atoms and constraints more precisely. For example, to express
the left-to-right Prolog execution order we might use a sequence of atoms rather
than a multiset. However we will not be concerned with such details here.

12This proof was performed in the more general class of logic programs with negation.

18

We will assume as given a computation rule which selects a transition type and
an appropriate element of A (if necessary) for each state!®. The transition system
is also parameterized by a predicate consistent and a function in fer, which we will
discuss later. An initial goal G for execution is represented as a state by (G, 0, 0).

The transitions in the transition system are:

(AUa,C,S) >, (AUB,C,SU (a = h))

if @ is selected by the computation rule, a is an atom, A «— B is a rule of P, renamed
to new variables, and h and a have the same predicate symbol. The expression
a = h is an abbreviation for the conjunction of equations between corresponding
arguments of a and h. We say a is rewritten in this transition.

(AUa,C,S) >, fail

if a is selected by the computation rule, a is an atom and, for every rule h «— B of
P, h and a have different predicate symbols.

(AUc,C,S) —. (4,C,SUc)

if ¢ is selected by the computation rule and c is a constraint.

(A,C,8) —; (A,C",S")
if (C',8") =infer(C, S).

(4,C,S) —; (4,C,S)
if consistent(C).

(4,C,S) —; fail

if —consistent(C).

The —, transitions arise from resolution, —. transitions introduce constraints
into the constraint solver, —; transitions test whether the active constraints are
consistent, and —; transitions infer more active constraints (and perhaps modify
the passive constraints) from the current collection of constraints. We write — to
refer to a transition of arbitrary type.

The predicate consistent(C) expresses a test for consistency of C. Usually it
is defined by: consistent(C) iff D | 3 C, that is, a complete consistency test.
However systems may employ a conservative but incomplete (or partial) test: if
D |= 3 C then consistent(C) holds, but sometimes consistent(C) holds although
D |= =3 C. One example of such a system is CAL [4] which computes over the
domain of real numbers, but tests consistency over the domain of complex numbers.

The function infer(C, S) computes from the current sets of constraints a new set
of active constraints C’ and passive constraints S’. Generally it can be understood
as abstracting from S (or relaxing S) in the presence of C to obtain more active
constraints. These are added to C to form C’, and S is simplified to S’. We require

13 A computation rule is a convenient fiction that abstracts some of the behavior of a CLP
system. To be realistic, a computation rule should also depend on factors other than the state
(for example, the history of the computation). We ignore these possibilities for simplicity.

19

that D |= (CAS) « (C'AS'), so that information is neither lost nor “guessed” by
infer. The role that infer plays varies widely from system to system. In Prolog,
there are no passive constraints and we can define infer(C,S) = (CU S,0). In
CLP(R), non-linear constraints are passive, and in fer simply passes (the linearized
version of) a constraint from S to C’ when the constraint becomes linear in the
context of C, and deletes the constraint from S. For example, if S is z xy =
zAzxy =2and Cisz = 4 Az < 0 then infer(C,S) = (C',S’) where C' is
z=4ANz<0A4dy=zand &' isz*xy=2.

In a language like CHIP, in fer performs less obvious inferences. For example, if
Sisz=y+land Cis2<z <5A0<y<3theninfer(C,S) =(C’,S") where C’
is2<z<4A1<y<3and S =S5. (Note that we could also formulate the finite
domain constraint solving of CHIP as having no passive constraints, but having an
incomplete test for consistency. However the formulation we give seems to reflect
the systems more closely.) Similarly, in languages employing interval arithmetic
over the real numbers (such as BNR-Prolog) intervals are active constraints and
other constraints are passive. In this case, infer repeatedly computes smaller in-
tervals for each of the variables, based on the constraints in S, terminating when
no smaller interval can be derived (modulo the precision of the arithmetic). Exe-
cution of language constructs such as the cardinality operator [112], “constructive
disjunction” [116] and special-purpose constructs (for example, in [77, 2]) can also
be understood as —; transitions, where these constructs are viewed as part of the
language of constraints.

Generally, the active constraints are determined syntactically. As examples, in
Prolog all equations are active, in CLP(R) all linear constraints are active, on the
finite domains of CHIP all unary constraints (i.e. constraints on just one variable,
such as ¢ < 9 or z # 0) are active, and in the interval arithmetic of BNR-Prolog
only intervals are active.

The stronger the collection of active constraints, the earlier failure will be de-
tected, and the less searching is necessary. With this in mind, we might wish in fer
to be as strong as possible: for every active constraint ¢, if infer(C, S) = (C', 5')
and D | (CAS) — ¢, then D = C' — c. However, this is not always possible!®.
Even if it were possible, it is generally not preferred, since the computational cost
of a powerful infer function can be greater than the savings achieved by limiting
search.

A CLP system is determined by the constraint domain and a detailed operational
semantics. The latter involves a computation rule and definitions for consistent
and infer. We now define some significant properties of CLP systems. We distin-
guish the class of systems in which passive constraints play no role and the global
consistency test is complete. These systems correspond to the systems treated in

[128, 129].

Definition 5.1. Let —,;s=—,—;—s and —;=—.—;—;. We say that a CLP
system is quick-checking if its operational semantics can be described by —,;s and
— 5. A CLP system is progressive if, for every state with a nonempty collection
of atoms, every derivation from that state either fails, contains a —, transition

4 For example, in CLP(R), where linear constraints are active and nonlinear constraints are
passive, if § is y = z * = then we can take c to be y > 2kz — k2, for any k. There is no finite
collection C' of active constraints which implies all these constraints and is not stronger than S.

20

or contains a —. transition. A CLP system is ideal if it is quick-checking,
progressive, infer is defined by infer(C,S) = (C U S,0), and consistent(C)
holds iff D =3 C.

In a quick-checking system, inference of new active constraints is performed and a
test for consistency is made each time the collection of constraints in the constraint
solver is changed. Thus, within the limits of consistent and infer, it finds incon-
sistency as soon as possible. A progressive system will never infinitely ignore the
collection of atoms and constraints in the first part of a state during execution. All
major implemented CLP systems are quick-checking and progressive, but most are
not ideal.

A derivation is a sequence of transitions (41, C1, S1) — -+ - — (4;,C;, S;) — -~
A state which cannot be rewritten further is called a final state. A derivation is
successful if it is finite and the final state has the form (0, C,S). Let G be a
goal with free variables Z, which initiates a derivation and produces a final state
(0,C,S). Then 3_5 C A S is called the answer constraint of the derivation.

A derivation is failed if it is finite and the final state is fail. A derivation is fair
if it is failed or, for every ¢ and every a € A;, a is rewritten in a later transition. A
computation rule is fair if it gives rise only to fair derivations. A goal G is finitely
failed if, for any one fair computation rule, every derivation from G in an ideal CLP
system is failed. It can be shown that if a goal is finitely failed then every fair
derivation in an ideal CLP system is failed. A derivation flounders if it is finite and
the final state has the form (4, C, S) where A # 0.

The computation tree of a goal G for a program P in a CLP system is a tree
with nodes labelled by states and edges labelled by —,, —., —; or —; such that:
the root is labelled by (G, 0, 0); for every node, all outgoing edges have the same
label; if a node labelled by a state & has an outgoing edge labelled by —., —; or
—s then the node has exactly one child, and the state labelling that child can be
obtained from § via a transition —., —; or — respectively; if a node labelled by
a state § has an outgoing edge labelled by —, then the node has a child for each
rule in P, and the state labelling each child is the state obtained from & by the
—, transition for that rule; for each —, and —. edge, the corresponding transition
uses the atom or constraint selected by the computation rule.

Every branch of a computation tree is a derivation, and, given a computation
rule, every derivation following that rule is a branch of the corresponding computa-
tion tree. Different computation rules can give rise to computation trees of radically
different sizes. Existing CLP languages use computation rules based on the Prolog
left-to-right computation rule (which is not fair). We will discuss linguistic features
intended to improve on this rule in Section 9.1.

The problem of finding answers to a query can be seen as the problem of search-
ing a computation tree. Most CLP languages employ a depth-first search with
chronological backtracking, as in Prolog (although there have been suggestions to
use dependency-directed backtracking [71]). Since depth-first search is incomplete
on infinite trees, not all answers are computed. The depth-first search can be incor-
porated in the semantics in the same way as is done for Prolog (see, for example,
[18, 17]), but we will not go into details here. In Section 8 we will discuss a class of
CLP languages which use a top-down execution similar to the one outlined above,
but do not use backtracking.

21

Consider the transition
(4,C,S) —, (A,C',0)

where C’ is a set of equations in £* such that D = C' — (C A S) and, for every
variable ¢ occurring in C or S, C’ contains an equation z = d for some constant d.
Thus —, grounds all variables in the constraint solver. We also have the transitions

(4,C,S) —, fail

if no such C’ exists (i.e. C A S is unsatisfiable in D). A ground derivation is a
derivation composed of —,—, and —.—,.

We now define three sets that crystallize three aspects of the operational se-
mantics. The success set SS(P) collects the answer constraints to simple goals
p(&). The finite failure set F F(P) collects the set of simple goals which are finitely
failed. The ground finite failure set GFF(P) collects the set of grounded atoms,
all of whose fair ground derivations are failed.

SS(P) ={p(z) « ¢ | (p(2),0,0) —* (0,,c"), DEce—3_5 A}
FF(P) = {p() « c | for every fair derivation, (p(%),¢c,0) —* fail}.
GFF(P)={p(d) | for every fair ground derivation, (p(d),d,0) —* fail}.

6. Soundness and Completeness Results

We now present the main relationships between the declarative semantics and the
top-down operational semantics. To keep things simple, we consider only ideal CLP
systems. However many of the results hold much more generally. The soundness
results hold for any CLP system, because of restrictions we place on consistent and
infer. Completeness results for successful derivations require only that the CLP
system be progressive.

Theorem 6.1. Consider a program P in the CLP language determined by a 4-tuple
(2,D,L,T) where D and T correspond on L, and ezecuting on an ideal CLP
system. Then:

1. SS(P)=1fp(SE) and [SS(P)]p = Im(P, D).

2. If the goal G has a successful derivation with answer constraint ¢, then

PTEc—G.
3. Suppose T is satisfaction complete wrt £. If G has a finite computation tree,
with answer constraints ¢i1,...,¢,, then P*, 7T EG < c1 V---Vey,.

4. If P,T = ¢ — G then there are derivations for the goal G with answer
constraints cy,...,c, such that 7 = ¢ — \/I_, ¢. If, in addition, (D, £)
has independence of negated constraints then the result holds for n = 1 (i.e.
without disjunction).

5. Suppose T is satisfaction complete wrt £. If P*,7 =G <+ ¢1 V- -V, then
G has a computation tree with answer constraints ¢f, ..., c/, (and possibly
others) such that 7 E=c; V.- Ve, & V- V.

6. Suppose T is satisfaction complete wrt L.

The goal G is finitely failed for P iff P*, 7 | —-G.

22

7. gm(P*,D) = Bp — GFF(P).
Suppose (D, £) is solution compact. TE | w = Bp — [FF(P)]p.
9. Suppose (D, L) is solution compact.
P is (D, L)-canonical iff [FF(P)|p = [{h —c | P*,D E =(hAc)}]|p.

o]

Most of these results are from [128, 129], but there are also some from [95, 173, 177].
Results 8 and 9 of the above theorem (which are equivalent) are the only results,
of those listed above, which require solution compactness. In fact, the properties
shown are equivalent to SCs, the second condition of solution compactness [177];
as mentioned earlier, SC; is not needed. In soundness results (2, 3 and half of 6),
T can be replaced by D. If we omit our assumption of a first-order language of
constraints (see Section 2) then only results 1, 2, 3, 7, 8, 9 and the soundness half
of 6 (replacing 7 by D where necessary) continue to hold.

The strong form of completeness of successful derivations (result 4) [173] provides
an interesting departure from the conventional logic programming theory. It shows
that in CLP it is necessary, in general, to consider and combine several successful
derivations and their answers to establish that ¢ — G holds, whereas only one
successful derivation is necessary in standard logic programming. The other results
in this theorem are more direct liftings of results in the logic programming theory.

The CLP Scheme provides a framework in which the lifting of results from LP
to CLP is almost trivial. By replacing the Herbrand universe by an arbitrary con-
straint domain D, unifiability by constraint satisfaction, Clark’s equality theory
by a corresponding satisfaction-complete theory, etc., most results (and even their
proofs) lift from LP to CLP. The lifting is discussed in greater detail in [177]. Fur-
thermore, most operational aspects of LP (and Prolog) can be interpreted as logical
operations, and consequently these operations (although not their implementations)
also lift to CLP. One early example is matching, which is used in various LP sys-
tems (e.g. GHC, NU-Prolog) as a basis for affecting the computation rule; the
corresponding operation in CLP is constraint entailment [173].

The philosophy of the CLP Scheme [129] gives primacy to the structure D over
which computation is performed, and less prominence to the theory 7. We have
followed this approach. However, it is also possible to start with a satisfaction
complete theory 7 (see, for example [173]) without reference to a structure. We
can arbitrarily choose a model of 7 as the structure D and the same results ap-
ply. Another variation [118] considers a collection D of structures and defines
consistent(C) to hold iff for some structure D € D we have D = 3 C. Weaker
forms of the soundness and completeness of successful derivations apply in this case.

7. Bottom-Up Execution

Bottom-up execution has its main use in database applications. The set-at-a-time
processing limits the number of accesses to secondary storage in comparison to
tuple-at-a-time processing (as in top-down execution), and the simple semantics
gives great scope for query optimization.

Bottom-up execution is also formalized as a transition system. For every rule r
of the form h «— ¢, b1,...,b, in P and every set A of facts there is a transition

n
A~ AU{h — ' |a; «—c;,i=1,...,n are elements of 4,D = ¢’ <—>c/\/\ci/\bi =a;}
i=1

23

In brief, then, we have A ~» A U SP(A), for every set A and every rule r in P
(ST was defined in Section 4). An execution is a sequence of transitions. It is
fair if each rule is applied infinitely often. The limit of ground instances of sets
generated by fair executions is independent of the order in which transitions are
applied, and is regarded as the result of the bottom-up execution. If @) is an initial
set of facts and P is a program, and A4 is the result of a fair bottom-up execution
then A = SS(P UQ) = (P)(Q) and [PI([Qlp) = [4lp.

An execution @ = Xg ~ X1 ~+ --- X; ~» - - - terminates if, for some m and every
i >m, X; = X,,. We say P is finitary if for every finite initial set of facts @ and
every fair execution, there is a k such that [X;]p = [Xi]p for all ¢ > k. However,
execution can be non-terminating, even when the program is finitary and the initial
set is finite.

Ezample 7.1. Consider the following program P on the constraint domain Ry ;,:
p(X+1) «— p(X)
p(X) — X > 5
p(X) — X <5
Straightforward bottom-up computation gives {p(z) «— z > 5,p(z) — =z >
67p($) — Z 77"'}U{p(w) — S 57p($) — T S 67p(a:) — S 77"'}7 a'nd
does not terminate. We also have Ifp(T5) =TE 1 1= {p(d) | d € R}.

A necessary technique is to test whether a new fact is subsumed by the current set
of facts, and accumulate only unsubsumed facts. A fact p(&) «— ¢ is subsumed by
the facts p(2) « ¢;,4 = 1,...,n (with respect to (D, L)) if D E ¢ — \/i_; c;. The
transitions in the modified bottom-up execution model are

A~ AU reduce(SE(A), A)

where reduce(X,Y) eliminates from X all elements subsumed by Y. Under this
execution model every finitary program terminates on every finite initial set Q.

Unfortunately, checking subsumption is computationally expensive, in general.
If the constraint domain (D, £) does not satisfy the independence of negated con-
straints then the problem of showing that a new fact is not subsumed is at least
NP-hard (see [236] for the proof in one constraint domain). In constraint domains
with independence of negated constraints the problem is not so bad: the new fact
only needs to be checked against one fact at a time [177]. (Classical database
optimizations are also more difficult without independence of negated constraints
[149, 177].) A pragmatic approach to the problem of subsumption in R, is given
in [236]. Some work avoids the problem of subsumption by allowing only ground
facts in the database and intermediate computations.

Even with subsumption, there is still the problem that execution might not
terminate (for example, if P is not finitary). The approach of [144] is to restrict
the constraint domains D to those which only permit the computation of finitely
representable relations from finitely representable relations. This requirement is
slightly weaker than requiring that all programs are finitary, but it is not clear that
there is a practical difference. Regrettably, very few constraint domains satisfy this
condition, and those which do have limited expressive power.

The alternative is to take advantage of P and a specific query (or a class of
queries). A transformation technique such as magic templates [206] produces a

24

program P7¢ that is equivalent to P for the specific query. Other techniques
[146, 193, 237, 147] attempt to further limit execution by placing constraints at
appropriate points in the program. Analyses can be used to check that execution
of the resulting program terminates [151, 211, 35], although most work has ignored
the capability of using constraints in the answers.

Comparatively little work has been done on the nuts and bolts of implementing
bottom-up execution for CLP programs, with all the work addressing the constraint
domain Rp;n. [144] suggested the use of intervals, computed as the projection of a
collection of constraints, as the basis for indexing on constrained variables. Several
different data structures, originally developed for spatial databases or computa-
tional geometry, have been proposed as appropriate for indexing [144, 236, 36]. A
new data structure was presented in [145] which minimizes accesses to secondary
storage. A sort-join algorithm for joins on constrained variables is given in [36].
That paper also provides a query optimization methodology for conjunctive queries
that can balance the cost of constraint manipulation against the cost of traditional
database operations.

8. Concurrent Constraint Logic Programming

Concurrent programming languages are languages which allow the description of
collections of processes which may interact with each other. In concurrent con-
straint logic programming (CCLP) languages, communication and synchronization
are performed by asserting and testing for constraints. The operational semantics
of these languages are quite similar to the top-down execution described in Sec-
tion 5. However, the different context in which they are used results in a lesser
importance of the corresponding logical semantics.

For this discussion we will consider only the flat ask-tell CCLP languages, which
were defined in [213, 214] based on ideas from [173]. We further restrict our atten-
tion to languages with only committed-choice nondeterminism (sometimes called
don’t-care nondeterminism); more general languages will be discussed in Section 9.
For more details of CCLP languages, see [218, 30].

Just as Prolog can be viewed as a kind of CLP language, obtained by a particular
choice of constraint domain, so most concurrent logic languages can be viewed as
concurrent CLP languages!®.

A program rule takes the form

h —ask : tell | B

where h is an atom, B is a collection of atoms, and ask and tell are constraints.
Many treatments of concurrent constraint languages employ a language based on a
process algebra involving ask and tell primitives [214], but we use the syntax above
to emphasize the similarities to other CLP languages.

For the sake of brevity, we present a simpler transition system to describe the op-
erational semantics than the transition system in Section 5. However implemented
languages can make the same pragmatic compromises on testing consistency (and

15 Concurrent Prolog [221] is not an ask-tell language, but [213] shows how it can be fit inside
the CCLP framework.

25

implication) as reflected in that transition system. The states in this transition
system have the form (4, C) where A is a collection of atoms and C is a collection
of constraints. Any state can be an initial state. The transitions in the transition
system are:

(AUa,C) —, (AUB,CU(a = h)Uask Utell)

if h «— ask : tell | B is a rule of P renamed to new variables Z, h and a have the
same predicate symbol, D |=C — 3 a = hAask and D | 3 CAa=hAaskAtell.
Roughly speaking, a transition can occur with such a rule provided the accumulated
constraints imply the ask constraint and do not contradict the tell constraint. Some
languages use only the ask constraint for synchronization. It is shown in [29] that
such languages are strictly less expressive than ask-tell languages.

An operational semantics such as the above is not completely faithful to a real
execution of the language, since it is possible for two atoms to be rewritten si-
multaneously in an execution environment with concurrency. The above semantics
only allows rewritings to be interleaved. A “true concurrency” semantics, based on
graph-rewriting, is given in [191].

All ask-tell CCLP programs have the following monotonicity [216] or stability [96]
property: If (4,C) —, (4',C’) and D = C" — C’ then (4,C") —, (4/,C"). This
property provides for simple solutions to some problems in distributed computing
related to reliability. When looked at in a more general framework [96], stability
seems to be one advantage of CCLP languages over other languages; most programs
in conventional languages for concurrency are not stable. It is interesting to note
that a notion of global failure (as represented in Section 5 by the state fail) destroys
stability. Of course, there are also pragmatic reasons for wanting to avoid this
notion in a concurrent language. A framework which permits non-monotonic CCLP
languages is discussed in [27].

A program is determinate if every reachable state is determinate, where a state
is determinate if every selected atom gives rise to at most one —, transition. Con-
sequently, for every initial state, every fair derivation rewrites the same atoms
with the same rules, or every derivation fails. Thus non-failed derivations by de-
terminate programs from an initial state differ from each other only in the order
of rewriting (and the renaming of rules). Substantial parts of many programs are
determinate®. The interest in determinate programs arises from an elegant seman-
tics for such programs based upon closure operators [217]. For every collection
of atoms A, the semantics of A is given by the function P4(C) = I_5 C’ where
(A,C) =} (A',C"), & is the free variables of (4, C), and (4’,C’) is a final state.
This semantics is extended in [217] to a compositional and fully abstract semantics
of arbitrary programs. A semantics based on traces is given in [28].

For determinate programs we also have a clean application of the classical logical
semantics of a program [173]. If (4,C) —; (4',C') then P*D E AANC

Jd_z A’ AC' where is the free variables of (4, C). In cases where execution can be

18For the programs we consider, determinate programs can be characterized syntactically
by the following condition: for every pair of rules (renamed apart, except for identical heads)
h «— asky : telly | By and h — asky : telly | By in the program, we have D = —(aski AaskaAtelly)
or D = —(aski Aasky Atelly). In languages where procedures can be hidden (as in many process
algebra formulations) or there is a restriction on the initial states the class of determinate programs
is larger, but is not so easily characterized.

26

guaranteed not to suspend any atom indefinitely, the soundness and completeness
results for success and failure hold (see Section 6).

9. Linguistic Extensions

We discuss in this section some additional linguistic features for top-down CLP
languages.

9.1. Shrinking the Computation Tree

The aim of —; transitions is to extract as much information as is reasonable from
the passive constraints, so that the branching of —, transitions is reduced. There
are several other techniques, used or proposed, for achieving this result.

In [202] it is suggested that information can also be extracted from the atoms in
a state. The constraint extracted would be an approximation of the answers to the
atom. This operation can be expressed by an additional transition rule.

(AUa,C,S) —; (AUq,C,SUc)

where extract(a, C) = c. Here extract is a function satisfying P*,D |= (aAC) — .
The evaluation of extract, performed at run-time, involves an abstract (or approx-
imate) execution of {(a, C,0). For example, if P defines p with the facts p(1,2) and
p(3,4) then the constraint extracted by extract(p(z,y), §) might be y = z + 1.

A more widespread technique is to modify the order in which atoms are selected.
Most CLP systems employ the Prolog left-to-right computation rule. This improves
the “programmability” by providing a predictable flow of control. However, when
an appropriate flow of control is data-dependent or very complex (for example, in
combinatorial search problems) greater flexibility is required.

One solution to this problem is to incorporate a data-dependent computation
rule in the language. The Andorra principle [262] involves selecting determinate
atoms, if possible. (A determinate atom is an atom which only gives rise to one —,;;
transition.) A second approach is to allow the programmer to annotate parts of the
program (atoms, predicates, clauses, ...) to provide a more flexible computation
rule that is, nonetheless, programmed. This approach was pioneered in Prolog
IT [59] and MU-Prolog [195]. The automatic annotation of programs [194] brings
this approach closer to the first. A third approach is to introduce constructs from
concurrent logic programming into the language. There are basically two varieties
of this approach: guarded rules and guarded atoms. The former introduces a
committed-choice aspect into the language, whereas the latter is a variant of the
second approach. All these approaches originated for conventional logic programs,
but the ideas lift to constraint logic programs, and there are now several proposals
based on these ideas [137, 234, 11, 113, 116].

One potential problem with using guarded rules is that the completeness of the
operational semantics with respect to the logical semantics of the program can be
lost. This incompleteness was shown to be avoided in ALPS [173] (modulo infinitely
delayed atoms), but that work was heavily reliant on determinacy. Smolka [234]
discusses a language of guarded rules which extends ALPS and a methodology for
extending a predicate definition with new guarded rules such that completeness can

27

be retained, even though execution would involve indeterminate committed-choice.
The Andorra Kernel Language (AKL) [137] also combines the Andorra principle
with guarded rules. There the interest is in providing a language which subsumes
the expressive power of CCLP languages and CLP languages.

Guarded atoms and, more generally, guarded goals take the form ¢ — G where ¢
is a constraint'” and G is a goal. G is available for execution only when c is implied
by the current active constraints. We call ¢ the guard constraint and G the delayed
goal. Although the underlying mechanisms are very similar, guarded atoms and
guarded rules differ substantially as linguistic features, since guarded atoms can be
combined conjunctively whereas guards in guarded rules are combined disjunctively.

9.2. Complez Constraints

Several language constructs that can be said simply to be complex constraints have
been added to CLP languages. We can classify them as follows: those which im-
plement Boolean combinations of (generally simple) constraints and those which
describe an ad hoc, often application-specific, relation. Falling into the first cate-
gory are some implementations of constraint disjunction [116, 72] (sometimes called
“constructive disjunction”) and the cardinality operator [112]. Into the second cat-
egory fall the element constraint [77], and the cumulative constraint of [2], among
others. These constraints are already accounted for in the operational semantics
of Section 5, since they can be considered passive constraints in £. However, it
also can be useful to view them as additions to a better-known constraint domain
(indeed, this is how they arose).

The cardinality operator can be used to express any Boolean combination of
constraints. A use of this combinator has the form #(L, [c1, ..., ¢x], U), where the
¢; are constraints and L and U are variables. This use expresses that the number
of constraints ¢; that are true lies between the value of L and the value of U (lower
and upper bound respectively). By constraining L > 1 the combinator represents
the disjunction of the constraints; by constraining I/ = 0 the combinator represents
the conjunction of the negations of the constraints. The cardinality combinator
is implemented by testing whether the constraints are entailed by or inconsistent
with the constraint store, and comparing the numbers of entailed and inconsistent
constraints with the values of L and U. When L and U are not ground, the
cardinality constraint can produce a constraint on these variables. (For example,
after one constraint is found to be inconsistent U can be constrained by U < n—1.)

In constraint languages without disjunction, an intended disjunction ¢;(%)Vea()
must be represented by a pair of clauses

In a simple CLP language this representation forces a choice to be made (between
the two disjuncts). Constructive disjunction refers to the direct use of a disjunctive
constraint without immediately making a choice. Instead an active constraint is
computed which is a safe approximation to the disjunction in the context of the
current constraint store C. In the constraint domain FD, [116] suggests two possible

17We also permit the constraint ground(z).

28

approximations, one based on approximating each constraint CAc; using the domain
of each variable and the other (less accurately) approximating each constraint using
the interval constraints for each variable. The disjunctions of these approximations
is easily expressed as an active constraint. For linear arithmetic [72] suggests the use
of the convex hull of the regions defined by the two constraints as the approximation.
Note that the constructive disjunction behavior could be obtained from the clauses
for p using the methods of [202].

In the second category, we mention two constructs used with the finite domain
solver of CHIP. element(X, L,T) expresses that T is the X’th element in the list
L. Operationally, it allows constraints on either the index X or element T of the
list to be reflected by constraints on the other. For example, if X is constrained
so that X € {1,3,5} then element(X,[1,1,2,3,5,8],T) can constrain T so that
T € {1,2,5} and, similarly, if T is constrained so that T' € {1,3,5} then X is
constrained so that X € {1,2,4,5}. Declaratively, the cumulative constraint of
[2] expresses a collection of linear inequalities on its arguments. Several problems
that can be expressed as integer programming problems can be expressed with
cumulative. Operationally, it behaves somewhat differently from the way CHIP
would usually treat the inequalities.

9.3. User-Defined Constraints

Complex constraints are generally “built in” to the language. There are proposals
to extend CLP languages to allow the user to define new constraints, together with
inference rules specifying how the new constraints react with the constraint store.

A basic approach is to use guarded clauses. The new constraint predicate is
defined with guarded clauses, where the guards specify the cases in which the con-
straint is to be simplified, and the body is an equivalent conjunction of constraints.
Using ground(z) (or a similar construct) as a guard constraint, it is straightfor-
ward to implement local propagation (i.e. propagation of ground values). We give
an example of this use in Section 11.1, and [212] has other examples. Some more
general forms of propagation can also be expressed with guarded clauses.

The work [93] can be seen as an extension of this method. The new constraints
occur as predicates, and guarded rules (called constraint simplification rules) are
used to simplify the new constraints. However, the guarded rules may have two (or
more) atoms in the head. Execution matches the head with a collection of constraint
atoms in the goal and reduces to an equivalent conjunction of constraints. This
method appears able to express more powerful solving methods than the guarded
clauses. For example, transitivity of the user-defined constraint leq can be specified
by the rule

leq(X, Y), leq(Y, Z) ==> true | leq(X, Z).

whereas it is not clear how to express this in a one-atom-per-head guarded clause.
A drawback of having multiple atoms, however, is inefficiency. In particular, it is
not clear whether constraint simplification rules can produce incremental (in the
sense defined in Section 10.1) constraint solvers except in simple cases.

A different approach [115] proposes the introduction of “indexical” terms which
refer to aspects of the state of the constraint solver (thus providing a limited form

29

of reflection)'®. Constraints containing these terms are called indexical constraints,
and from these indexical constraints user-defined constraints are built. Specifically,
[115] discusses a language over finite domains which can access the current domain
and upper and lower bounds on the value of a variable using the indexical terms
dom(X), maz(X) and min(X) respectively. Indexical constraints have an opera-
tional semantics: each constraint defines a method of propagation. For example,
the constraint ¥ in 0..maz(X) continually enforces the upper bound of ¥ to be
less than or equal to the upper bound of X. This same behavior can be obtained
in a finite domain solver with the constraint ¥ < X, but the advantage of indexical
constraints is that there is greater control over propagation: with ¥ < X we also
propagate changes in the lower bound of Y to X, whereas we can avoid this with
indexical constraints. A discussion of an implementation of indexical constraints
is given in [75]. (One application of this work is a constraint solver for Boolean
constraints [56]; we describe this application in Section 13.5.)

9.4. Negation

Treatments of negation in logic programming lift readily to constraint logic pro-
gramming, with only minor adjustments necessary. Indeed many of the semantics
for programs with negation are essentially propositional, being based upon the col-
lection of ground instances of program rules. The perfect model [203, 14, 100],
well-founded model [101], stable model [102] and Fitting fixedpoint semantics [90],
to name but a few, fall into this category. The grounding of variables in CLP
rules by all elements of the domain (i.e. by all terms in £*) and the deletion of
all grounded rules whose constraints evaluate to false produces the desired propo-
sitional rules (see, for example, [176]).

Other declarative semantics, based on Clark’s completion P* of the program,
also extend to CLP!°. The counterpart of comp(P) [55, 168] is 7, P*, where 7 is
satisfaction complete. Interestingly, it is necessary to consider the complete theory
T of the domain if the equivalence of three-valued logical consequences of 7, P*
and consequences of finite iterations of Fitting’s ® operator (as shown by Kunen
[153]), continues to hold for CLP programs [244].

SLDNF-resolution and its variants are also relatively untouched by the lifting
to CLP programs, although, of course, they must use a consistency test instead of
unification. The other main modification is that groundness must be replaced by
the concept of a variable being determined by the current constraints (see Section
2). For example, a safe computation rule [168] may select a non-ground negated
atom provided all the variables in the atom are determined by the current collec-
tion of constraints. Similarly, the definition of an allowed rule [168] for a CLP
program requires that every variable either appear in a positive literal in the body
or be determined by the constraints in the body. With these modifications, various
soundness and completeness results for SLDNF-resolution and comp(P) extend eas-
ily to ideal CLP systems. An alternative implementation of negation, constructive
negation [51], has been expanded and applied to CLP programs by Stuckey [244],
who gave the first completeness result for this method.

18This approach has been called a “glass-box” approach.
19For example, the extension to allow arbitrary first-order formulas in the bodies of rules [169)].

30

9.5. Preferred Solutions

Often it is desirable to express an ordering (or preference) on solutions to a goal.
This can provide a basis for computing only the “best” solutions to the query.
One approach is to adapt the approach of mathematical programming (operations
research) and employ an objective function [107, 178]. An optimization primitive
is added to the language to compute the optimal value of the objective functionZ°.

CHIP and cc(FD) have such primitives, but they have a non-logical behavior.
Two recent papers [86, 183] discuss optimization primitives based upon the following
logical characterization:

m is the minimum value of f(Z) such that G(&) holds iff

3z (G(2) A f(&) = m) A =35 (G(9) A £(§) <m)

Optimization primitives can be implemented by a branch and bound approach,
pruning the computation tree of G based on the current minimum. A similar
behavior can be obtained through constructive negation, using the above logical
formulation [86, 183], although a special-purpose implementation is more efficient.
[183] gives a completeness result for such an implementation, based on Kunen’s
semantics for negation.

A second approach is to admit constraints which are not required to be satisfied
by a solution, but express a preference for solutions which do satisfy them. Such
constraints are sometimes called soft constraints. The most developed use of this ap-
proach is in hierarchical constraint logic programming (HCLP) [33, 263]. In HCLP,
soft constraints have different strengths and the constraints accumulated during a
derivation form a constraint hierarchy based on these strengths. There are many
possible ways to compare solutions using these constraint hierarchies [33, 178, 263],
different methods being suitable for different problems. The hierarchy dictates that
any number of weak constraints can be over-ruled by a stronger constraint. Thus,
for example, default behavior can be expressed in a program by weak constraints,
which will be over-ruled by stronger constraints when non-default behavior is re-
quired. The restriction to best solutions of a constraint hierarchy can be viewed as
a form of circumscription [219].

Each of the above approaches has some programming advantages over the other,
in certain applications, but both have problems as general-purpose methods. While
the first approach works well when there is a natural choice of objective function
suggested by the problem, in general there is no natural choice. The second ap-
proach provides a higher-level expression of preference but it cannot be so easily
“fine-tuned” and it can produce an exponential number of best answers if not used
carefully. The approaches have the advantages and disadvantages of explicit (re-
spectively, implicit) representations of preference. In the first approach, it can be
difficult to reflect intended preferences. In the second approach it is easier to reflect
intended preferences, but harder to detect inconsistency in these preferences. It is
also possible to “weight” soft constraints, which provides a combination of both
approaches.

20We discuss only minimization; maximization is similar.

31

Part 11
Implementation Issues

The main innovation required to implement a CLP system is clearly in the manipu-
lation of constraints. Thus the main focus in this part of the survey is on constraint
solver operations, described in the section below. The next section then considers
the problem of extending the LP inference engine to deal with constraints. Here
the discussion is not tied down to a particular constraint domain.

It is important to note that the algorithms and data structures in this part are
presented in view of their use in top-down systems and, in particular, systems with
backtracking. At the present, there is little experience in implementing bottom-up
CLP systems, and so we do not discuss them here. However, some of the algorithms
we discuss can be used, perhaps with modification, in bottom-up systems.

10. Algorithms for Constraint Solving

In view of the operational semantics presented in part I, there are several operations
involving constraints to be implemented. These include: a satisfiability test, to
implement consistent and infer; an entailment test, to implement guarded goals;
and the projection of the constraint store onto a set of variables, to compute the
answer constraint from a final state. The constraint solver must also be able to
undo the effects of adding constraints when the inference engine backtracks. In
this section we discuss the core efficiency issues in the implementation of these
operations.

10.1. Incrementality

According to the folklore of CLP, algorithms for CLP implementations must be
incremental in order to be practical. However this prescription is not totally sat-
isfactory, since the term incremental can be used in two different senses. On one
hand, incrementality is used to refer to the nature of the algorithm. That is, an
algorithm is incremental if it accumulates an internal state and a new input is
processed in combination with the internal state. Such algorithms are sometimes
called on-line algorithms. On the other hand, incrementality is sometimes used to
refer to the performance of the algorithm. This section serves to clarify the latter
notion of incrementality as a prelude to our discussion of algorithms in the following
subsections. We do not, however, offer a formal definition of incrementality.

We begin by abstracting away the inference engine from the operational seman-
tics, to leave simply the constraint solver and its operations. We consider the state
of the constraint solver to consist of the constraint store C, a collection of con-
straints G that are to be entailed, and some backtrack points. In the initial state,
denoted by (), there are no constraints nor backtrack points. The constraint solver
reacts to a sequence of operations, and results in (a) a new state, and (b) a response.

Recall that the operations in CLP languages are:

e augment C with ¢ to obtain a new store, determine whether the new store
is satisfiable, and if so, determine which constraints in G are implied by the
new store;

32

add a new constraint to G;
set a backtrack point (and associate with it the current state of the system);
backtrack to the previous backtrack point (i.e. return the state of the system
to that associated with the backtrack point);

e project C onto a fixed set of variables.

Only the first and last of these operations can produce a response from the con-
straint solver.

Consider the application of a sequence of operations oy, ...,0r on a state A; denote
the updated state by F(A, 01...0x), and the sequence of responses to the operations
by G(o1...0r). In what follows we shall be concerned with the average cost of
computing F and G. Using standard definitions, this cost is parameterized by the
distribution of (sequences of) operations (see, for example, [255]). We use average
cost assuming the true distribution, the distribution that reflects what occurs in
practice. Even though this distribution is almost always not known, we often have
some hypotheses about it. For example, one can identify typical and often occurring
operation sequences and hence can approximate the true distribution accordingly.
The informal definitions below therefore are intended to be a guide, as opposed to
a formal tool for cost analysis.

For an expression exp(d) denoting a function of &, define AV [exp(5)] to be the
average value of ezp(8), over all sequences of operations &. Note that the definition
of average here is also dependent on the distribution of the 6. For example, let
cost(8) denote the cost of computing F((,) by some algorithm, for each fixed
sequence 8. Then AV[cost(8)] denotes the average cost of computing F(@), 8) over
all 6.

Let A be shorthand for F(@,01...0r-1). Let A denote an algorithm which
applies a sequence of operations on the initial state, giving the same response as
does the constraint solver, but not necessarily computing the new state. That is, A
is the batch (or off-line) version of our constraint solver. In what follows we discuss
what it means for an algorithm to be incremental relative to some algorithm A.
Intuitively A represents the best available batch algorithm for the operations.

At one extreme, we consider that an algorithm for F and G is “non-incremental”
relative to A if the average cost of applying an extra operation o to A is no better
than the cost of the straightforward approach using A on o3 ...0. We express this
as

AV [cost(A,o0r)] > AV [costy(o1...0r)].
At the other extreme, we consider that an algorithm for F and G is “perfectly

incremental”, relative to A, if its cost is no worse than that of A. In other words,
no cost is incurred for the incremental nature of the algorithm. We express this as

AV [cost((),01...0k_1) + cost(A,or)] < AV [costg(o1...0r)].

In general, any algorithm lies somewhere in between these two extremes. For ex-
ample, it will not be perfectly incremental as indicated by the cost formula above,
but instead we have

AV [cost((),01...0k—1) + cost(A,or)] = AV [costa(o;...or)]+extra_cost(or...ox)

33

where the additional term eztra_cost(o; ...or) denotes the extra cost incurred by
the on-line algorithm over the best batch algorithm. Therefore, one possible “defin-
ition” of an incremental algorithm, good enough for use in a CLP system, is simply
that its extra_cost factor is negligible.

In what follows, we shall tacitly bear in mind this expression to obtain a rough
definition of incrementality?!. Although we have defined incrementality for a col-
lection of operations, we will review the operations individually, and discuss incre-
mentality in isolation. This can sometimes be an oversimplification; for example,
[180] has shown that the standard unification problem does not remain linear when
backtracking is considered. In general, however, it is simply too complex, in a
survey article, to do otherwise.

10.2. Satisfiability (Non-incremental)

We consider first the basic problem of determining satisfiability of constraints in-
dependent of the requirement for incrementality. As we will see in the brief tour
below of our sample domains, the dominant criteria used by system implementers
is not the worst-case time complexity of the algorithm.

For the domain F7, linear time algorithms are known [199], and for R7, the
best known algorithms are almost linear time [126]. Even so, most Prolog systems
implement an algorithm for the latter?? because the best-case complexity of unifi-
cation in F7 is also linear, whereas it is often the case that unification in R7 can
be done without inspecting all parts of the terms being unified. Hence in practice
Prolog systems are really implementations of CLP(R7) rather than CLP(F7).
In fact, many Prolog systems choose to use straightforward algorithms which are
slower, in the worst case, than these almost linear time algorithms. The reason for
this choice (of algorithms which are quadratic time or slower in the worst case) is
the belief that these algorithms are faster on average [13].

For the arithmetic domain of Rr;nEgn, the most straightforward algorithm is
based on Gaussian elimination, and this has quadratic worst-case complexity. For
the more general domain Ry;,, polynomial time algorithms are also known [141],
but these algorithms are not used in practical CLP systems. Instead, the Sim-
plex algorithm (see eg. [54]), despite its exponential time worst case complexity
[148], is used as a basis for the algorithm. However, since the Simplex algorithm
works over non-negative numbers and non-strict inequalities, it must be extended
for use in CLP systems. While such an extension is straightforward in principle,
implementations must be carefully engineered to avoid significant overhead. The
main differences between the Simplex-based solvers in CLP systems is in the spe-
cific realization of this basic algorithm. For example, the CLP(R) system uses a
floating-point representation of numbers, whereas the solvers of CHIP and Prolog
IIT use exact precision rational number arithmetic. As another example, in the
CLP(R) system a major design decision was to separately deal with equations and

21 There are similar notions found in the (non-CLP) literature; see the bibliography [207].

22This is often realized simply by omitting the “occur-check” operation from a standard unifi-
cation algorithm for 77 . Some Prolog systems perform such an omission naively, and thus obtain
an incomplete algorithm which may not terminate in certain cases. These cases are considered
pathological and hence are ignored. Other systems guarantee termination at slightly higher cost,
but enjoy the new feature of cyclic data structures.

34

inequalities, enjoying a faster (Gaussian-elimination based) algorithm for equations,
but enduring a cost for communication between the two kinds of algorithms [133].
Some elements of the CHIP solver are described in [114]. Disequality constraints
can be handled using entailment of the corresponding equation (discussed in Section
10.4) since an independence of negative constraints holds [162].

For the domain of word equations W&, an algorithm is known [179] but no
efficient algorithm is known. In fact, the general problem, though easily provable
to be NP-hard, is not known to be in NP. The most efficient algorithm known still
has the basic structure of the Makanin algorithm but uses a far better bound for
termination [150]. Systems using word equations, Prolog III for example, thus resort
to partial constraint solving using a standard delay technique on the lengths of word
variables. Rajasekar’s “string logic programs” [204] also uses a partial solution of
word equations. First, solutions are found for equations over the lengths of the
word variables appearing in the constraint; only then is the word equation solved.

As with word equations, the satisfiability problem in finite domains such as 7D
is almost always NP-hard. Partial constraint solving is once again required, and
here is a typical approach. Attach to each variable z a data structure representing
dom(z), its current possible values?®. Clearly dom(z) should be a superset of the
projection space w.r.t. z. Define min(z) and maz(z) to be the smallest and largest
numbers in dom(z) respectively. Now, assume that every constraint is written in so
that each inequality is of the form =z < y or z < y, each disequality is of the form
z # y, and each equation is of the form z = n, ¢ =y, ¢ = y + z, where z,y, z are
variables and n a number. Clearly every constraint in FD can be rewritten into a
conjunction of these constraints.

The algorithm considers one constraint at a time and has two main phases.
First, it performs an action which is determined by the form of the constraint: (a)
for constraints ¢ < y, ensure that min(z) < maz(y) by modifying dom(z) and/or
dom(y) appropriately?®. (b) for z < y, ensure that min(z) < maz(y); (c) for
z # y, consider three subcases: if dom(z)Ndom(y) = @ then the constraint reduces
to true; otherwise, if dom(z) = {n}, then remove n from dom(y) (and similarly for
the case when dom(y) is a singleton?®); otherwise, nothing more need be done; (d)
for # = n, simple make dom(z) = {n}; (e) for z = y, make dom(z) = dom(y) =
dom(z) Ndom(y); (f) for # = y + 2z, ensure that maz(z) > min(y) + min(z) and
min(z) < maz(y)+maz(z). If at any time during steps (a) through (f) the domain
of a variable becomes empty, then unsatisfiability has been detected. The second
phase of this algorithm is that for each z such that dom(z) that is changed by some
action in steps (a) through (f), all constraints (but the current one that gave rise
to this action) that contain z are re-considered for further action. Termination is,
of course, assured simply because the domains are finite.

In the domain of Boolean algebra BOOL, there are a variety of techniques for
testing satisfiability. Since the problem is NP-complete, none of these can be ex-
pected to perform efficiently over all constraints. An early technique, pioneered by

23The choice of such a data structure should depend on the size of the finite domains. For
example, with small domains a characteristic vector is appropriate.

24In this case, simply remove from dom(z) all elements bigger than maz(y), and remove from
dom(y) all elements smaller than min(z). We omit the details of similar operationsin the following
discussion.

251f both are singletons, clearly the constraint reduces to either true or false.

35

Davis and Putnam, is based upon variable elimination. The essential idea reduces a
normal form representation into two smaller problems, each with one less variable.
Binary decision diagrams [38] provide an efficient representation. One of the two
Boolean solvers of CHIP, for example, uses variable elimination and these diagrams.
A related technique is based on enumeration and propagation. The constraints are
expressed as a conjunction of simple constraints and then local propagation simpli-
fies the conjunction after each enumeration step. See [56], for example. The method
used in Prolog III [21] is a modification of SL-resolution whose main element is the
elimination of redundant expressions. Another technique comes from Operations
Research. Here the boolean formula is restated in arithmetic form, with variables
constrained to be 0 and 1. Then standard techniques for integer programming,
for example cutting-planes, can be used. See [53] for a further discussion of this
technique. This technique has not been used in CLP systems. A more recent de-
velopment is the adaptation of Buchberger’s Groebner basis algorithm to Boolean
algebras [210], which is used in CAL. Finally, there is the class of algorithms which
perform boolean unification; see the survey [185] for example. Here satisfiability
testing is only part of the problem addressed, and hence we will discuss these algo-
rithms in the next section.

The satisfiability problem for feature trees is essentially the same as the satisfi-
ability problem for rational trees, provided that the number of features that may
occur is bounded by a known constant [12]. (Generally this bounding constant can
be determined at compile-time.) Two different sort constraints on the same variable
clash in the same way that different function symbols on terms in R7 clash. An
equation between two feature tree variables (of the same sort) induces equations
between all the subtrees determined by the features of the variables, in the same
way as occurs in R7. The main difference is that some sorts or features may be

undetermined (roughly, unbound) in FEAT.

10.3. Satisfiability (Incremental)

As alluded to above, it is crucial that the algorithm that determines the satisfiability
of a tentatively new constraint store be incremental. For example, a linear-time
algorithm for a satisfiability problem is often as good as one can get. Consider a
sequence of constraints ¢y, - - -, ¢ of approximately equal size N. A naive application
of this linear-time algorithm to decide ¢;, then ¢; A cg, ---, and finally ¢; A--- A
¢ could incur a cost proportional to Nk?, on average. In contrast, a perfectly
incremental algorithm as discussed in Section 10.1 has a cost of O(N'k), on average.

In practice, most algorithms represent constraints in some kind of solved form,
a format in which the satisfiability of the constraints is evident. Thus the satis-
fiability problem is essentially that of reducibility into solved form. For example,
standard unification algorithms for F7 represent constraints by (one variant of)
its mgu, that is, in the form z1 = #1(§), -, zn = tx(§) where each ¢;(§) denotes
a term structure containing variables from §, and no variable z; appears in §.
Similarly, linear equations in Rzinmen are often represented in parametric form
z1 = le1(§), - -, @n = len(§) where each le;(§) denotes a linear expression contain-
ing variables from ¢, and no variable z; appears in §. In both these examples, call
the z; eliminable variables, and the y; parameiric variables. For linear inequalities
in Rr;n, the Simplex algorithm represents the constraints in an n X m matrix form
AZ = B where A contains an n X n identity submatrix, defining the basis vari-

36

ables, and all numbers in the column vector B are nonnegative. For domains based
on a unitary equality theory [224], the standard representation is the mgu, as in
the case of 77 (which corresponds to the most elementary equality theory). Word
equations over W&, however, are associated with an infinitary theory, and thus a
unification algorithm for these equations [127] may not terminate. A solved form
for word equations, or any closed form solution for that matter, is not known.

The first two kinds of solved form above are also examples of solution forms, that
is, a format in which the set of all solutions of the constraints is evident. Here, any
instance of the variables § determines values for & and thus gives one solution. The
set of all such instances gives the set of all solutions. The Simplex format, however,
is not in solution form: each choice of basis variables depicts just one particular
solution.

An important property of solution forms (and sometimes of just solved forms)
is that they define a convenient representation of the projection of the solution
space with respect to any set of variables. More specifically, each variable can be
equated with a substitution expression containing only parametric variables, that
is, variables whose projections are the entire space. This property, in turn, aids
incrementality as we now show via our sample domains.

In each of the following examples, let C be a (satisfiable) constraint in solved form
and let ¢ be the new constraint at hand. For 77, the substitution expression for a
variable z is simply z if z is not eliminable; otherwise it is the expression equated
to z in the solved form C. This mapping is generalized to terms in the obvious way.
Similarly we can define a mapping of linear expressions by replacing the eliminable
variables therein with their substitution expressions, and then collecting like terms.
For the domain R, in which case C is in Simplex form, the substitution expression
for a variable z is simply z if is not basic; otherwise it is the expression obtain
by writing the (unique) equation in C containing z with z as the subject. Once
again, this mapping can be generalized to any linear expression in an obvious way.
In summary, a solution form defines a mapping € which can be used to map any
expression t into an equivalent form ¢0 which is free of eliminable variables.

The basic step of a satisfiability algorithm using a solution form is essentially
this.

Algorithm 10.1. Given C, (a) Replace the newly considered constraint ¢ by c@ where
6 is the substitution defined by C. (b) Then write cf into equations of the form
z = ..., and this involves choosing the © and rearranging terms. Unsatisfiability is
detected at this stage. (c) If the previous step succeeds, use the new equations to
substitute out all occurrences of z in C. (d) Finally, simply add the new equations
to C, to obtain a solution form for C Ac.
Note that the nonappearance of eliminable variables in substitution expressions is
needed in (b), to ensure that the new equations themselves are in solved form, and
in (c), to ensure that C augmented with the new equations remains in solution
form.

The belief that this methodology leads to an incremental algorithm is based upon
believing that the cost of dealing with ¢ is more closely related to the size of ¢
(which is small on average) than that of C' (which is very large on average). This,
in turn, is based upon believing that

e the substitution expressions for the eliminable variables in ¢, which largely

37

determine the size of c, often have a size that is independent of the size of
C, and

e the number of occurrences of the new eliminable variable z in C, which
largely determines the cost of substituting out z in C, is small in comparison
to the size of C.

The domain F7 provides a particularly good example of a solved form for which the
basic algorithm 10.1 is incremental. Consider a standard implementation in which
there is only one location for each variable, and all references to z are implemented
by pointers. Given C in solved form, and given a new constraint c, there is really
nothing to do to obtain cf since the eliminable (or in this case, bound) variables
in ¢ are already pointers to their substitution expressions. Now if ¢f is satisfiable
and we obtain the new equations z = ..., then just one pointer setting of = to its
substitution expression is required, and we are done. In other words, the cost of
this pointer-based algorithm is focussed on determining the satisfiability of ¢8 and
extracting the new equations; in contrast, step (c) of global substitution using the
new equations incurs no cost.

For RrinEgn, the size of cf can be large, even though the finally obtain equations
may not be. For example, if C' contained just z; = u—v, 23 = v—w, 3 = w—u, and
c were y = ©1 + 3 + 3, then cf is as big as C. Upon rearrangement, however, the
finally obtained new equation is simply y = 0. Next, the substitution phase using
the new equation also can enlarge the equations in C (even if temporarily), and
rearrangement is needed in each equation substituted upon. In general, however,
the beliefs above hold in practice, and the algorithm behaves incrementally.

We next consider the domain R7 whose universally used solved form (due to
[60]) is like that of F7 with one important change: constraints are represented in
the form zy = t1,---, ¢, = t,, where each ¢; is an arbitrary term structure. Thus this
solved form differs from that of 77 in that the #; can contain the variables z;, and
hence algorithm 1 is not directly applicable. It is easy to show that a constraint is
satisfiable iff it has such a solved form, and further, the solved form is fairly explicit
representation of the set of all solutions (though not as explicit as the solution
forms for F7 or Rpinggn). A straightforward satisfiability algorithm [60] is roughly
as follows. Let z stand for a variable, and s and ¢ stand for non-variable terms.
Now perform the following rewrite rules until none are applicable. (a) discard each
z = z; (b) for any # = y, replace = by y throughout; (c) replace t = z by = = ¢;
(d) replace f(s1,--+,8n) = f(t1, " +,tn), n > 0, by n equations s; = ¢;, 1 < i < n;
(e) replace f(...) = g(...) by false (and thus the entire collection of constraints is
unsatisfiable); (f) replace every pair of equations ¢ = ¢1,z = t2, and say ¢; is not
bigger than t3, by £ = ¢1,¢; = t3. Termination needs to be argued, but we will leave
the details to [60].

We now discuss algorithms which do not fit exactly with Algorithm 1, but which
employ a solved form. Consider first the Simplex algorithm for the domain ;.
The basic step of one pivoting operation within this algorithm is essentially the same
as Algorithm 1. The arguments for incrementality for Algorithm 1 thus apply. The
main difference from Algorithm 1 is that, in general, several pivoting operations are
required to produce the final solved form. However, empirical evidence from CLP
systems has shown that often the number of pivoting operations is small [133].

In the Boolean domain, Boolean unification algorithms [185], conform to the
structure of Algorithm 1. One unification algorithm is essentially due to Boole, and

38

we borrow the following presentation from [109]. Without loss of generality, assume
the constraints are of the form ¢(z1,---,%,) = 0 where the z; are the variables in
t. Assuming n > 2, rewrite ¢ = 0 into the form

g(“’la Tty a’n—l) Nzn D h(l'la Tt mn—l) =0
so that the problem for ¢ = 0 can be reduced to that of

—g(z1, "y Tn-1) AR(1, Tpo1) =0

which contains one less variable. If this equation is satisfiable, then the “assignment”

Ty — h(a:la . '7wn—1) S¥) _'g(wla o '7wn—1) A Yn

where y,, is a new variable, describes all the possible solutions for z,,. This reduction
clearly can be repeatedly applied until we are left with the straightforward problem
of deciding the satisfiability of equations of the form ¢t A z & w = 0 where ¢ and «
are ground. The unifier desired is given simply by collecting (and substituting out
all assigned variables in) the assignments, such as that for z,, above.

The key efficiency problem here is, of course, that the variable elimination process
gives rise to larger expressions, an increase which is exponential in the number of
eliminated variables, in the worst case. So even though this algorithm satisfies
the structure of Algorithm 1, it does not satisfy our assumption about the size of
expressions obtained after substitution, and hence our general argument for incre-
mentality does not apply here. Despite this, and the fact that Boole’s work dates
far back, this method is still used, for example in CHIP [45].

Another unification algorithm is due to Lowenhein, and we adapt the presenta-
tion of [185] here. Let f(z1,:--,z,) = 0 be the equation considered. Let & denote
a solution. The unifier is then simply given by

=% V@A ¥%Va),l<i<n

where the y; are new variables. The basic efficiency problem is of course to determine
a. The obtained unifiers are only slightly larger than f, in contrast to Boole’s
method. Thus Lowenhein’s method provides a way of extending a constructive
satisfiability test into a satisfiability test which has an incremental form. However,
this method is not, to our knowledge, used in CLP languages.

Other algorithms for testing the satisfiability of Boolean constraints are con-
siderably different from Algorithm 1. The Groebner Basis algorithm produces a
basis for the space of Boolean constraints implied by the constraint store. It is a
solved form but not a solution form. The remaining algorithms mentioned in the
previous subsection do not have a solved form. The algorithm used in Prolog III
retains the set of literals implied to be true by the constraints, but the normal
form does not guarantee solvability: that must be tested beforehand. Enumeration
algorithms have the same behavior: they exhibit a solution, and may retain some
further information, but they do not compute a solved form.

In the domain of feature trees FEAT equations occur only between variables.
Thus Algorithm 1 does not address the whole problem. Existing algorithms [12, 235]
employ a solved form in which all implied equations between variables are explicit
and there are no clashes of sort. Such solved forms are, in fact, solution forms. The

39

implied equations are found by congruence closure, treating the features as (partial)
functions, analogously to rule (d) in the algorithm for R7.

In summary for this subsection, an important property for algorithms to decide
satisfiability is that they have good average case behavior. More important, and
even crucially so, is that the algorithm is incremental. Toward this goal, a common
technique is to use a solved form representation for satisfiable constraints.

10.4. Entailment

Given satisfiable C, guard constraints G such that no constraint therein is entailed
by C, and a new constraint ¢, the problem at hand is to determine the subset G; of
G of constraints entailed by C' A ¢. We will also consider the problem of detecting
groundness which is not, strictly speaking, an entailment problem. However, it is
essentially the same as the problem of detecting groundness to a specific value,
which is an entailment problem. In what follows the distinction is unimportant.

We next present a rule-of-thumb to determine whether an entailment algorithm
is incremental in the sense discussed earlier. The important factor is not the num-
ber of constraints entailed after a change in the store, but instead, the number of
constraints not entailed. That is, the algorithm must be able to ignore the latter
constraints so that the costs incurred depend only on the number of entailed con-
straints, as opposed to the total number of guard constraints. As in the case of
incremental satisfiability, the property of incremental entailment is a crucial one
for the implementation of practical CLP systems.

We now briefly discuss modifications to some of the previously discussed algo-
rithms for satisfiability, which provide for incremental entailment.

Consider the domain F7 and suppose G contains only guard constraints of the
form x = ¢ where ¢ is some ground term?®. Add to a standard implementation of
a unification algorithm an index structure mapping variables z to just those guard
constraints in G which involve z. (See [46] for a detailed description.) Now add to
the process of constructing a solved form a check for groundness when variables are
bound (and this is easily detectable). This gives rise to an incremental algorithm
because the only guard constraints that are inspected are those z = ¢ for which =
has just become ground, and not the entire collection G.

Just as with satisfiability, testing entailment is essentially the same over the
domains R7 and FEAT. Four recent works have addressed this problem, all in the
context of a CLP system, but with slightly differing constraint domains. We will
discuss them all in terms of R7. With some modifications, these works can also
apply to F7.

In [235, 12] a theoretical foundation is built. [235] then proposes a concrete
algorithm, very roughly as follows: the to-be-entailed constraint ¢ is added to the
constraint store C. The satisfiability tester has the capability of detecting whether
c is entailed by or inconsistent with C. If neither is detected then ¢/, essentially a
simplified form of ¢, is stored and the effect of adding ¢ to C is undone. Every time
a constraint is added to C that affects ¢’ this entailment test is repeated (with ¢’
instead of ¢).

26 As mentioned above, this discussion will essentially apply to guard constraints of the form
ground(z).

40

The algorithm of [201] has some similarities to the previous algorithm, but avoids
the necessity of undoing operations. Instead, operations that might affect C' are
delayed and/or performed on a special data-structure separate from C. Strong
incrementality is claimed: if we replace average-case complexity by worst-case com-
plexity, the algorithm satisfies our criterion for perfect incrementality.

[205] goes beyond the problem of entailing equations to give an algorithm for
entailment when both equations and disequations (#) are considered constraints.
This algorithm has a rather different basis than those discussed above; it involves
memoization of pairs of terms (entailments and disequations) and the use of a
reduction of disequation entailment to several equation entailments.

For RrinEgn, and let G contain arbitrary equations e. Add to the algorithm
which constructs the solved form a representation of each such equation e in which
all eliminable variables are substituted out. Note, however, that even though these
equations are stored with the other equations in the constraint store, they are
considered as a distinct collection, and they play no direct role in the question of
satisfiability of the current store. For example, a constraint store containing z =
z+3,y = 242 would cause the guard equation y+ 2z = 4 to be represented as z = 1.
It is easy to show that a guard equation e is entailed iff its representation reduces
to the trivial form 0 = 0, and similarly, the equation is refuted if its representation
is of the form 0 = n where n is a nonzero number. (In our example, the guard
equation is entailed or refuted just in case z becomes ground.) In order to have
incrementality we must argue that the substitution operation is often applied only
to very few of the guard constraints. This is tantamount to the second assumption
made to argue the incrementality of Algorithm 1. Hence we believe our algorithm
is incremental.

We move now to the domain Rp;,, but allow only equations in the guard con-
straints G. Here we can proceed as in the above discussion for R1;ngen to obtain
an incremental algorithm, but we will have the further requirement that the con-
straint store contains all implicit equalities?” explicitly represented as equations. It
is then still easy to show that the entailment of a guard equation e need be checked
only when the representation of e is trivial. The argument for incrementality given
above for R1inmqn essentially holds here, provided that the cost of computing im-
plicit equalities is sufficiently low.

There are two main works on the detection of implicit equalities in CLP systems
over Rrin. In [243], the existence of implicit equalities is detected by the appearance
of an equation of a special kind in the Simplex tableau at the end of the satisfiability
checking process. Such an equation indicates some of the implicit equalities, but
more pivoting (which, in turn, can give rise to more special equations) is generally
required to find all of them. An important characteristic of this algorithm is that
the extra cost incurred is proportional to the number of implicit equalities. This
method is used in CLP(R) and Prolog III. CHIP uses a method based on [114]. In
this method, a solved form which is more restrictive than the usual Simplex solved
form is used. An equation in this form does not contribute to any implicit equality,
and a whole tableau in this solved form implies that there are no implicit equalities.
The basic idea is then to maintain the constraints in the solved form and when a
new constraint is encountered, the search for implicit equalities can be first limited

27These are equalities which are entailed by the store because of the presence of inequalities.
For example, the constraint store z + y < 3,z + y > 3 entails the implicit equality z + y = 3.

41

to variables in the new constraint. One added feature of this solved form is that
directly accomodates strict inequalities and disequations.

Next consider still the domain Ry;,, but now allow inequalities to be in G. Here
it is not clear how to represent a guard inequality, say # > 5, in such a way that its
entailment or refutation is detectable by some simple format in its representation.
Using the Simplex tableau format as a solved form as discussed above, and using
the same intuition as in the discussion of guard equations, we could substitute
out z in z > b in case z is basic. However, it is not clear to which format(s) we
should limit the resulting expression in order to avoid explicitly checking whether
z > 5 is entailed?®. Thus an incremental algorithm for checking the entailment of
inequalities is yet to be found.

For BOOL there seems to be a similar problem in detecting the entailment
of Boolean constraints. However, in the case of groundness entailment some of the
algorithms we have previously discussed are potentially incremental. The Prolog III
algorithm, in fact, is designed with the detection of groundness as a criterion. The
algorithm represents explicitly all variables that are grounded by the constraints.
The Groebner basis algorithm will also contain in its basis an explicit representation
of grounded variables. Finally, for the unification algorithms, the issue is clearly
the form of the unifier. If the unifier is in fully simplified form then every ground
variable will be associated to a ground value.

In summary for this subsection, the problem of detecting entailment is not limited
just to the cost of determining if a particular constraint is entailed. Incrementality
is crucial, and this property can be defined roughly as limiting the cost to depend on
the number of guard constraints affected by each change to the store. In particular,
dealing (even briefly) with the entire collection of guard constraints each time the
store changes is unacceptable.

Below, in Section 11.1, an issue related to entailment is taken up. Here we have
focussed on how to adapt the underlying satisfiability algorithm to be incremental
for determining entailment. There we will consider the generic problem, independent
of the constraint domain, of managing delayed goals which awake when certain
constraints become entailed.

10.5. Projection

The problem at hand is to obtain a useful representation of the projection of con-
straints C w.r.t. a given set of variables. More formally, the problem is: given
target variables & and constraints C(&, §) involving variables from & and §, express
3§ C(Z,) in the most usable form. While we cannot define usability formally, it
typically means both conciseness and readability. An important area of use in the
output phase of a CLP system: the desired output from running a goal is the pro-
jection of the answer constraints with respect to the goal variables. Here it is often
useful to have only the target variables output (though, depending on the domain,
this is not always possible). For example, the output of 2 = z+ 1,y = z + 2 w.r.t.
to z and y should be z = y — 1 or some rearrangement of this, but it should not
involve any other variable. Another area of use is in meta-programming where a de-
scription of the current store may be wanted for further manipulation. For example,

28 And this can of course be done, perhaps even efficiently, but the crucial point is, once again,
that we cannot afford to do this every time the store changes.

42

projecting Rr;, constraints onto a single variable z can show if z is bounded, and
if so, this bound can be used in the program. Projection also provides the logical
basis for eliminating variables from the accumulated set of constraints, once it is
known that they will not be referred to again.

There are few general principles that guide the design of projection algorithms
across the various constraint domains. The primary reason is, of course, that these
algorithms have to be intimately related to the domain at hand. We therefore will
simply resort to briefly mentioning existing approaches for some of our sample
domains.

The projection problem is particularly simple for the domain F7: the result of
projection is # = 0 where 6 is the substitution obtained from the solved form
of C. Now, we have described above that this solved form is simply the mgu of
C, that is, equations whose r.h.s. does not contain any variable on the l.h.s. . For
example, z = f(y),y = f(z) would have the solved form z = f(f(2)),y = f(2).
However, the equations z = f(y),y = f(z) are more efficiently stored internally
as they are (and this is done in actual implementations). The solved form for =z
therefore is obtained only when needed (during unification for example) by fully
dereferencing y in the term f(y). A direct representation of the projection of C on
a variable z, as required in a printout for example, can be exponential in the size
of C. This happens, for example, if C is of the form =z = f(z1, 1), 1 = f(z2, z2),

-+, T, = f(a,a) because 0 would contain 2"*! occurrences of the constant a. A
solution would be to present the several equations equivalent to z = z6, such as
the n + 1 equations in this example. This however is a less explicit representation
of the projection; for example, it would not always be obvious if a variable were
ground.

Projection in the domain R7 can be done by simply presenting those equations
whose Lh.s. is a target variable and, recursively, all equations whose 1.h.s. appears
in anything already presented. Such a straightforward presentation is in general
not the most compact. For example, the equation z = f(f(z,), f(z,z)) is best
presented as ¢ = f(z,z). In general, the problem of finding the most compact
representation is roughly equivalent to the problem of minimizing states in a finite
state automaton [60].

For Rrinmen the problem is only slightly more complicated. Recall that equa-
tions are maintained in parametric form, with eliminable and parametric variables.
A relatively simple algorithm can be obtained by using a form of Gaussian elimi-
nation, and is informally described in Figure 1. It assumes there is some ordering
on variables, and ensures that lower priority variables are represented in terms of
higher priority variables. This ordering is arbitrary, except for the fact that the
target variables should be of higher priority than other variables. We remark that
a crucial point for efficiency is that the main loop in Figure 1 iterates n times, and
this number (the number of target variables) is often far smaller than the total
number of variables in the system. More details on this algorithm can be found in
[132].

For Rp;yn, there is a relatively simple projection algorithm. Assume all inequalities
are written in a standard form ... < 0. Let Cj (C;) denote the subset of constraints
C in which z has only positive (negative) coefficients. Let C2 denote those inequal-
ities in C not containing = at all. We can now describe an algorithm, due to Fourier
[91], which eliminates a variable z from a given C. If constraints ¢ and ¢’ have a
positive and a negative coeflicient of z, we can define elim;(c,c’) to be a linear

43

let z1,...,z, be the target variables;
for (i=1;i<mji=i+1) {
if (z;is a parameter) continue;
let e denote the equation z; = r.h.s.(:z:i) at hand,
if ('r.h.s.(:z:i) contains a variable z of lower priority than :z:i) {
choose the z of lowest priority;
rewrite the equation e into the form z = ¢;
if (z is a target variable) mark the equation e as final,
substitute ¢ for z in the other equations ; T
} else mark the equation e as final;

}

return all final equations;

Figure 1. Projection Algorithm for Linear Equations

combination of ¢ and ¢/, which does not contain z.2° A Fourier step eliminates z
from a set of constraints C by computing F,,(C) = {elimy(c,c') :c € CF,c' € C; }.
It is easy to show that 3zC « F,(C). Clearly repeated applications of F' eliminat-
ing all non-target variables result in an equivalent set of constraints in which the
only variables (if any) are target variables.

The main problem with this algorithm, is that the worst-case size of F,(C),
is O(N?) where N is the number of constraints in C. (It is in fact precisely
ICO + (|ICF| x |CS|) — (|CF| + |CS]).) In principle, the number of constraints
needed to describe C using inequalities over variables var(C) — {z} is far larger
than the number of inequalities in C. In practice, however, the Fourier step gen-
erates many redundant constraints3®. See [159] for discussion on such redundancy.
Work by Cernikov [48] proposed tests on the generated constraints to detect and
eliminate some redundant constraints. The output module of the CLP(R) system
[132] furthered these ideas, as did Imbert [125]. (Imbert [124] also considered the
more general problem in which there are disequations.) All these redundancy elim-
ination methods are correct in the following sense: if {C;}i=1,2,... is the sequence of
constraints generated during the elimination of variables zi,---,z; from C, then
C; «— dz1...z; C, for every 1.

The survey [52] contains further perspectives on the Fourier variable elimination
techique. It also contains a discussion on how the essential technique of Fourier can
be adapted to perform projection in other domains such as linear integer constraints
and the boolean domain.

We finish here by mentioning the non-Fourier algorithms of [123, 158]. In some
circumstances, especially when the matrix representing the constraints is dense, the
algorithm of [123] can be far more efficient. It is, however, believed that typical CLP
programs produce sparse matrices. The algorithm of [158] has the advantageous
property that it can produce an approximation of the projection if the size of the

29 Obtained, for example, by multiplying ¢ by 1/m and ¢’ by (—1/m'), where m and m' are
the coefficients of z in ¢ and ¢’ respectively, and then adding the resulting equations together.
30A constraint ¢ € C' is redundant in C if C « C — {c}.

44

projection is unmanageably large.

10.6. Backtracking

The issue here is to restore the state of the constraint solver to a previous state
(or, at least, an equivalent state). The most common technique, following Prolog, is
the trailing of constraints when they are modified by the constraint solver and the
restoration of these constraints upon backtracking. In Prolog, constraints are equa-
tions between terms, represented internally as bindings of variables. Since variables
are implemented as pointers to their bound values®!, backtracking can be facili-
tated by the simple mechanism of an untagged trail [261, 6]. This identifies the set
of variables which have been bound since the last choice point. Upon backtracking,
these variables are simply reset to become unbound. Thus in Prolog, the only in-
formation to be trailed is which variables have just become bound, and untrailing
simply unbinds these variables.

For CLP in general, it is necessary to record changes to constraints. While in
Prolog a variable’s expression simply becomes more and more instantiated during
(forward) execution, in CLP, an expression may be completely changed from its
original form. In Rr;nmen, for example, a variable £ may have an original linear
form and subsequently another. Assuming that a choice point is encountered just
before the change in z, the original linear form needs to be trailed in case of back-
tracking. This kind of requirement in fact holds in all our sample domains with
the exception of 77 and R7. Thus we have our first requirement on our trailing
mechanism: the trail is a value trail, that is, each variable is trailed together with
its associated expression. (Strictly speaking, we need to trail constraints rather
than the expression a variable is associated to. However, constraints are typically
represented internally as an association between a variable and an expression.)

Now, the trailing of expressions is in general far more costly than the trailing of
the variables alone. For this reason, it is often useful to avoid trailing when there is
no choice point between the time a variable changes value from one expression to
another. A standard technique facilitating this involves the use of {ime stamps: a
variable is always time stamped with the time that it last changed value, and every
choice point is also time stamped when created. Now just before a variable’s value
is to be changed, its time stamp n is compared with the time stamp m of the most
recent choice point, and if n > m, clearly no trailing is needed®?.

Next consider the use of a cross-reference table for solved forms, such as those
discussed for the arithmetic domains, which use parametric variables. This is an
index structure which maps each parametric variable to a list of its occurrences in
the solved form. Such a structure is particularly useful, and can even be crucial
for efficiency, in the process of substituting out a parametric variable (step (c) in
algorithm 10.1). However, its use adds to the backtracking problem. A straight-
forward approach is to simply trail the entries in this table (according to time
stamps). However, since these entries are in general quite large, and since the cross
reference table is redundant from a semantic point of view, a useful approach is
to reconstruct the table upon backtracking. The details of such reconstruction are

31Recall that this means that eliminable variables are not explicitly dereferenced in the r.h.s.
of the equations in the solved form.
32In Prolog, one can think of the stack position of a variable as the time stamp.

45

straightforward but tedious, and hence are omitted here; see [133] for the case of
the CLP(R) system. A final remark: this reconstruction approach has the added
advantage of incurring cost only when backtracking actually takes place.

In summary, backtracking in CLP is substantially more complex than in Prolog.
Some useful concepts to be added to the Prolog machinery are as follows: a value
trail (and, in practice, a tagged trail as well because most systems will accommodate
variables of different types, for example, the functor and arithmetic variables in
CLP(R)); time stamps, to avoid repeated trailing for a variable during the lifetime
of the same choice point; and finally, reconstruction of cross-references, rather than
trailing.

11. Inference Engine

This section deals with extensions to the basic inference engine for logic program-
ming needed because of constraints. What follows contains two main sections. In
the first, we consider the problem of an incremental algorithm to manage a col-
lection of delayed goals and constraints. This problem, discussed independently of
the particular constraint domain at hand, reduces to the problem of determining
which of a given set of guard constraints (cf Section 9) are affected as a result of
change to the constraint store. The next section discusses extensions to the WAM,
in both the design of instruction set as well as to the main elements of the runtime
structure. Finally, we give a brief discussion of work on parallel implementations.

11.1. Delaying/Wakeup of Goals and Constraints

The problem at hand is to determine when a delayed goal is to be woken or when
a passive constraint becomes active. The criteria for such an event is given by
a guard constraint, that is, awaken the goal or activate the constraint when the
guard constraint is entailed by the store33. In what follows, we use shall use the
term delayed constraint to be synonymous with passive constraint to emphasize the
similarities with delayed goals.

The underlying implementation issue, as far as the constraint solver is concerned,
is how to efficiently process just those guard constraints that are affected as a
result of a new input constraint®* Specifically, to achieve incrementality, the cost of
processing a change to the current collection of guard constraints should be related
to the guard constraints affected by the change, and not to all the guard constraints.
The following two items seem necessary to achieve this end.

First is a representation of what further constraints are needed so that a given
guard constraint is entailed. For example, consider the delayed CLP(R) constraint
pow(z,y, z) (meaning z = y?) which in general awaits the grounding of two of
the three variables z, y, z. In constrast, the constraint pow(1,y, z), only awaits the
grounding of y (to a nonzero number) or z (to 1). In general, a delayed constraint is
awoken by not one but a conjunction of several input constraints. When a subset of

33For guarded clauses, the problem is extended to determining which clause is to be chosen.

34However, significant changes to the inference engine is needed to handle delayed goals and
guarded clauses. But these issues are the same as those faced by extending logic programming
systems to implement delayed goals and/or guarded clauses (see, for example, [250]).

46

pow(#,$2,$3) @@1, pow($1,$2,#)

$3=#
#<>0,#<>1

pow($1,$2,$3)

Figure 2. Wakeup system for pow/3

such input constraints has already been encountered, the runtime structure should
relate the delayed constraint to (the disjunction of) just the remaining kinds of
constraints which will awaken it.

Second, we require some index structure which allows immediate access to just
the guard constraints affected as the result of a new input constraint. The main
challenge is how to maintain such a structure in the presence of backtracking. For
example, if changes to the structure were trailed using some adaptation of Prolog
techniques [261], then a cost proportional to the number of entries can be incurred
even though no guard constraints are affected.

The following material is a condensation of [134].

11.1.1. Wakeup Systems For the purposes of this section, we will describe an
instance of a constraint in the form p($1, - - -, $,,) AC where p is the n-ary constraint
symbol at hand, $,---,8$, are distinguished variables used as templates for the
arguments of p, and C is a constraint (which determines the values of $1,---,$,).

A wakeup degree represents a subset of the p constraints, and a wakeup system
consists of a set of wakeup degrees, and further, these degrees are organized into
an automaton where transitions between degrees are labelled by constraints called
wakeup conditions®®. Intuitively, a transition occurs when a wakeup condition be-
comes entailed by the store. There is a distinguished degree called woken which
represents active p constraints. We proceed now with an example.

Consider the CLP(R) constraint pow(z, y, z) and see figure 2. A wakeup degree
may be specified by means of constraints containing $1,---,8s (for describing the
three arguments) and some meta-constants #, #1, #2, - - - (for describing unspecified
values). Thus, for example, $3 = # specifies that the second argument is ground.

35These are templates for the guard constraints.

T=¢$

47

Such a meta-language can also be used to specify the wakeup conditions. Thus, for
example, the wakeup condition $3 = #, # <> 0,# <> 1 attached to the bottom-
most degree in figure 2 represents a transition of a constraint pow($1, $2,9$3) A C,
where C does not ground $2, into pow($1, $2, $3) AC Ac, where C' Ac does ground $,
into a number different from 0 and 1. The wakeup condition $5 = 1 which represents
a transition to the degree woken, represents the fact that pow($1, 1, $3) is an active
constraint (equivalent to $; = 1). Similarly, $5 = 1 represents the transition to the
active constraint $; = $5. Note that there is no wakeup condition $; = 0 because
pow($1,0,9%3) (which is equivalent to ($1 = 0A$3 #0)V ($1 = 1 A %3 = 0)) is not
active.

In general, there will be certain requirements on the structure of such an au-
tomaton to ensure that it does in fact define a mapping from p constraints into
wakeup degrees, and that this mapping satisfies certain properties like: it defines
a partition, it maps only active constraints into woken, it is consistent with the
wakeup conditions specifying the transitions, etc. A starting point will be a formal-
ization of meta-language used. These formal aspects are beyond the scope of this
survey.

In summary, wakeup systems are an intuitive way to specify the organization
of guard constraints. The wakeup degrees represent the various different cases of a
delayed constraint which should be treated differently for efficiency reasons. Asso-
ciated with each degree is a number of wakeup conditions which specify when an
input constraint changes the degree of a delayed constraint. What is intended is that
the wakeup conditions represent all the situations in which the constraint solver can
efficiently update its knowledge about what further constraints are needed to wake
the delayed constraint.

Before embarking on the runtime structure to implement delayed constraints
such as pow, we amplify the abovementioned point about the similarities between
delayed constraints and guarded clauses. Consider the guarded clause program:

pow(X,Y,Z) :- Y=1 | X=1.

pow(X,Y,Z) :- ground(X), X#0, ground(Y), Y#1 | Z=log(X)/log(Y).
pow(X,Y,Z) :- ground(X), X#0, ground(Z) | Y=vX.

pow(X,Y,Z) :- ground(Y), Y#1, ground(Z) | X=YZ.

pow(X,Y,Z) :- X=0 | Y=0, Z#0.

pow(X,Y,Z) :- Z=0 | X=1.

pow(X,Y,Z) :- Z=1 | X=Y.

This program could be compiled into the wakeup system in Figure 2, where the
three intermediate nodes reflect subexpressions in the guards that might be entailed
without the entire guard being entailed. (More precisely, several woken nodes would
be used, one for each clause body.) Thus wakeup systems express a central part of
the implementation of (flat) guarded clauses. Since a guarded atom can be viewed as
a one-clause guarded clause program for an anonymous predicate, wakeup systems
are also applicable to implementing these constructs.

11.1.2. Runtime Structure Here we present an implementational framework in
the context of a given wakeup system. There are three major operations with de-
layed goals or delayed constraints which correspond to the actions of delaying,
awakening and backtracking:

48

1. adding a goal or delayed constraint to the current collection;

2. awakening a delayed goal or delayed constraint as the result of inputting a
new (active) constraint, and

3. restoring the entire runtime structure to a previous state, that is, restor-
ing the collection of delayed goals and delayed constraints to some earlier
collection, and restoring all auxiliary structures accordingly.

In what follows, we concentrate on delayed constraints; as mentioned above, the
constraint solver operations to handle delayed goals and guarded clauses are essen-
tially the same.

The first of our two major structures is a stack containing the delayed constraints.
Thus implementing operation 1 simply requires a push operation. Additionally,
the stack contains constraints which are newer forms of constraints deeper in the
stack. For example, if the constraint pow(z, y, z) were in the stack, and if the input
constraint y = 3 were encountered, then the new constraint pow(z,3,z) would
be pushed, together with a pointer from the latter to the former. In general, the
collection of delayed constraints contained in the system is described by the sub-
collection of stacked constraints which have no inbound pointers.

Now consider operation 2. In order to implement this efficiently, it is necessary
to have some access structure mapping an entailed constraint to just those delayed
constraints affected. Since there are in general an infinite number of possible en-
tailed constraints, a finite classification of them is required. A guard constraint, or
simply guard for short, is an instance of a wakeup condition obtained by renam-
ing the distinguished argument variables $; into runtime variables. It is used as a
template for describing the collection of entailed constraints (its instances) which
affect the same sub-collection of delayed constraints. For example, suppose that the
only delayed constraint is pow(5, y, z) whose degree is pow(#, $2, $3) with wakeup
conditions $5 = # and $3 = #. Then only two guards need be considered: y = #
and z = #.

We now specify an index structure which maps a delayed constraint into a doubly
linked list of occurence nodes. Each node contains a pointer to a stack element con-
taining a delayed constraint®®. Corresponding to each occurrence node is a reverse
pointer from the stack element to the occurrence node. Call the list associated with
a delayed constraint DW a DW-list, and call each node in the list a DW-occurrence
node.

Initially the access structure is empty. The following specifies what is done for
the basic operations:

Delay Push the constraint C onto the stack, and for each wakeup condition asso-
ciated with (the degree of) C, create the corresponding guard and DW-list.
All occurrence nodes here are pointed to C.

Process Entailment Say z = 5 is now entailed. Find all guards which are implied
by z = 5. If there are none, we are done. Otherwise, for each DW-list
L corresponding to each of these conditions, and for each constraint C =
p(...)AC' pointed to in L, (a) delete all occurrence nodes pointing to C (using
the reverse pointers), push the new delayed constraint C" = p(...)AC'Az =5

36 The total number of occurrence nodes is generally larger than the number of delayed con-
straints.

49

- = z=#
= y=F #<>0
x=0 y=1 #<>0 #<>1 z=0 z=1 #<>1
pOW(y,X,y) < %%HO <——->$
pow(X,y,z) - .,Y)<_>$ <_>O<—>O<—>O<—>O

Figure 3. The index structure

with a (downward) pointer to C, and finally, (c) construct the new DW-lists
corresponding to C”' as defined above for the delay operation.

Backtrack Restoring the stack during backtracking is easy because it only re-

quires a series of pops. Restoring the list structure, however, is not so
straightforward because no trailing/saving of the changes was performed.
In more detail, the operation of backtracking is the following: (a) pop the
stack, and let C denote the constraint just popped. (b) Delete all occurrence
nodes pointed to by C. If there is no pointer from C (and so it was a con-
straint that was newly delayed) to another constraint deeper in the stack,
then nothing more need be done. (¢) If there is a pointer from C to another
constraint C’ (and so C is the reduced form of C’), then perform the mod-
ifications to the access structure as though C’ were being pushed onto the
stack. These modifications, described above, involve computing the guards
pertinent to C’, inserting occurrence nodes, and setting up reverse pointers.
Note that the index structure obtained in backtracking may not be struc-
turally the same as that of the previous state. What is important, however,
is that it depicts the same logical structure as that of the previous state.

Figure 3 illustrates the entire runtime structure after the two constraints pow(z, y, z)

and pow(y, z,y) are stored, in this order. Figure 4 illustrates the structure after a

new input constraint makes z = 5 entailed.

In summary, a stack is used to store delayed constraints and their reduced forms.

An access structure maps a finite number of guards to lists of delayed constraints.
The constraint solver is assumed to identify those conditions which are entailed.
The cost of one primitive operation on delayed constraints (delaying a constraint,
upgrading the degree of one delayed constraint, including awakening the constraint,
and undoing the delay/upgrade of one constraint) is bounded by the (fixed) size

50

pOW(5,y,Z)
y=#

x=0 y:]_ #<>1 z=0 z=1

pOW(y!51y) l i i l
pOW(y,X,y) <_>§ ﬁ—l—@H

pow(X,y,z) - & 0<s——a0

Figure 4. The index structure after z = 5 is entailed

of the underlying wakeup system. The total cost of an operation (delaying a new
constraint, processing an entailed constraint, backtracking) on delayed constraints
is proportional to the number of the delayed constraints affected by the operation.

11.2. Abstract Machine

This section discusses some major issues in the design of an abstract machine for
the execution of CLP programs. The primary focus here will be on the design of the
instruction set, with emphasis on the interaction between their use and information
obtained from a potential program analyzer. Some elements of the runtime structure
will also be mentioned.

In general, the essential features of the parts of an abstract machine dealing
with constraints will differ greatly over CLP languages using different constraint
domains. This is exemplified in the literature on CLP(R) [135], CHIP [3], and
CLP(FD) [75]. The following presentation, though based on one work [135], con-
tains material that is relevant to abstract machines for many CLP languages.

We begin by arguing that an abstract machine is the right approach in the first
place. Abstract machines have been used for implementing programming languages
for many reasons. Portability is one: only an implementation of the abstract ma-
chine needs to be made available on each platform. Another is simply convenience:
it is easier to write a native code compiler if the task is first reduced to compiling
for an abstract machine that is semantically closer to the source language. The best
abstract machines sit at just the right point on the spectrum between the concep-
tual clarity of the high-level source language and the details of the target machine.
In doing so they can often be used to express programs in exactly the right form for
tackling the efficiency issues of a source language. For example, the Warren Abstract
Machine [261, 6] revolutionized the execution of Prolog, since translating programs

Z=#
#<>0
#<>1

l

51

to the WAM exposed many opportunities for optimization that were not apparent
at the source level. The benefit from designing an appropriate abstract machine for
a given source language can be so great that even executing the abstract instruc-
tion code by interpretation can lead to surprisingly efficient implementations of a
language. Many commercial Prolog systems compile to WAM-like code. Certainly
more efficiency can be obtained from native code compilation, but the step that
made Prolog usable was that of compiling to the WAM.

While the WAM made Prolog practical, global analysis shows the potential of
making another major leap. For example, [248] and [208] used fairly efficient ana-
lyzers to generate high quality native code. Based on certain examples, they showed
that the code quality was comparable to that obtained from a C compiler. In the
case of CLP, the opportunities for obtaining valuable information from analysis are
even greater than in Prolog. This is because the constraint solving step is in general
far more involved than the unification step.

11.2.1. Instructions Next we consider the design of an abstract machine instruc-
tion set, in addition to the basic instruction set of the WAM. While the examples
presented will be for CLP(R), the discussions are made for CLP systems in general.
More details on this material can obtained from the theses [188, 266].

Our first requirement is a basic instruction for invoking the constraint solver.
The format can be of the form

solve_rxzx X1 X2 ... X,

where zzz indicates the kind of constraint and the X; denotes the arguments. Typi-
cally these arguments are, as in the WAM, stack locations or registers. For example,
in CLP(R), there are instructions of the form initpf n and addpf n, X, where n
is a number and X a (solver) variable. The former initializes a parametric form to
contain just the number n. The latter adds an entry of the form n * pf(X) to the
parametric form being stored in an accumulator, where pf(X) is the parametric
form for X in the store. Thus the accumulator in general stores an expression ezp
of the form n + ni*X; + -+ 4+ ng*Xg. Then, the instruction solve_eqO tests for
the consistency of ezp = 0 in conjunction with the store. If consistent, the solver
adds the equation to the store; otherwise, backtracking occurs. There are similar
instructions for inequalities.

There are important special kinds of constraints that justify making specialized
versions of this basic instruction. While there are clearly many kinds of special cases,
some specific to certain constraint domains, there are three cases which stand out:

1. the constraint is to be added to the store, but no satisfiability check is needed;

2. the constraint need not be added, but its satisfiability in conjunction with
the store needs to be checked;

3. the constraint needs to be added and satisfiability needs to be checked, but
the constraint is never used later.

To exemplify the special case 1, consider adding the constraint 5+ X — Y = 0
to the store. Suppose that ¥ = Z + 3.14 is already in the store, and that X is a
new variable. A direct compilation results in the following. Note that the rightmost
column depicts the current state of the accumulator.

52

initpf 5 accumulator : b

addpf 1, X accumulator : 5+ X

addpf -1, Y accumulator : 1.86 + X — 7
solve_eq0 solve :1.86+ X —Z7 =0

A better compilation can be obtained by using a specialized instruction solve no_fail _eq

X which adds the equation X = ezp to the store, where exp is the expression in
the accumulator. The main difference here with solve_eq0 is that no satisfiability
check is performed. For the above example, we now can have

initpf -5 accumulator : —b
addpf -1, Y accumulator : —1.86 + Z
solveno fail eq X add: X = —-1.86+ 7

In summary for this special case, for CLP systems in general, we often encounter
constraints which can be organized into a form such that its consistency with the
store is obvious. This typically happens when a new variable appears in an equa-
tion, for example, and new variables are often created in CLP systems. Thus the
instructions of the form solve no fail zzz are justified.

Next consider the special case 2, and the following example CLP(R) program.

sum(0, 0).
sum(N, X) :-
N >= 1,

N1 =N-1,
X1 =X - N,

sum(N1, X1).

Of concern to us here are constraints that, if added to the store, can be shown to
become redundant as a result of future additions to the store. This notion of future
redundancy was first described in [138]. Now if we execute the goal sum(N, X) using
the second rule above, we obtain the subgoal

7- N> 1, Nl =N -1, X1 = X - N, sum(N1, X1).

Continuing the execution, we now have two choices: choosing the first rule we
obtain the new constraint N1 = 0, and choosing the second rule we obtain the
constraint N1 > 1 (among others). In each case the original constraint N > 1 is
made redundant. The main point of this example is that the constraint N > 1
in the second rule should be implemented simply as a test, and not added to the
constraint store. We hence define the new class of instructions solve no_add _zzz.

This example shows that future redundant constraints do occur in CLP systems.
However, one apparent difficulty with this special case is the problem of detecting its
occurrence. We will mention relevant work on program analysis below. Meanwhile,
we remark that experiments using CLP(R) have shown that this special case leads
to the most substantial efficiency gains compared to the other two kinds of special
cases discussed in this section [188, 266].

Finally consider special case 3. Of concern here are constraints which are neither
entailed by the store as in case 1 nor are eventually made redundant as in case 2,
but which are required to be added to the store, and checked for consistency. What
makes these constraints special is that after they have been added to the store (and

53

the store is recomputed into its new internal form), their variables appear in those
parts of the store that are never again referred to. Consider the sum program once
again. The following sequence of constraints arise from executing the goal sum(7,
X):

(1) X1 = X-7
(2) X' = (X-7)-6
(3) X1 = (X-7)—6)—5

Upon encountering the second equation X1’ = X1—6 and simplifying into (2), note
that the variable X1 will never be referred to in future. Hence equation (1) can be
deleted. Similarly, upon encountering the third equation X1 = X1’ —5 and simpli-
fying into (3), the variable X1’ will never be referred to in future and so (2) can be
deleted. In short, only one equation involving X need be stored at any point in the
computation. We hence add the class of instructions of the form add_and delete
X which informs the solver that after considering the constraint associated to X, it
may delete all structures associated to X. In CLP(R), the corresponding instruc-
tion is addpf_and delete n, X, the obvious variant of the previously described
instruction addpf n, X. Compiling this sum example gives

(1) init_pf -7
addpf 1, X
solve no_fail_eq X1

(2) init_pf -6
addpf_and._delete 1, X1
solve no fail_eq X1’

(3) init_pf -5
addpf_and._delete 1, X1’
solveno fail_eq X1

Note that a different set of instructions is required for the first equation from that
required for the remaining equations. Hence the first iteration needs to be unrolled
to produce the most efficient code. The main challenge for this special case is, as in
special case 2, the detection of the special constraints. We now address this issue.

11.2.2. Techniques for CLP Program Analysis The kinds of program analysis
required to utilize the specialized instructions include those techniques developed
for Prolog, most prominently, detecting special cases of unification and determin-
istic predicates. Algorithms for such analysis have become familiar; see [73, 74]
for example. See [98], for example, for a description of how to extend the general
techniques of abstract interpretation applicable in LP to CLP. Our considerations
above, however, require rather specific kinds of analyses.

Detecting redundant variables and future redundant constraints can in fact be
done without dataflow analysis. One simple method involves unfolding the predi-
cate definition (and typically once is enough), and then, in the case of detecting
redundant variables, simply inspecting where variables occur last in the unfolded
definitions. For detecting a future redundant constraint, the essential step is de-
termining whether the constraints in an unfolded predicate definition imply the
constraint being analyzed.

54

An early work describing these kinds of optimizations is [138], and some further
discussion can also be found in [135]. The latter first described the abstract ma-
chine CLAM for CLP(R), and the former first defined and examined the problem
of our special case 2, that of detecting and exploiting the existence of future redun-
dant constraints in CLP(R). More recently, [171] reported new algorithms for the
problem of special case 3, that of detecting redundant variables in CLP(R). The
work [182] describes, in a more general setting, a collection of techniques (entitled
refinement, removal and reordering) for optimization in CLP systems. See also [184]
for an overview of the status of CLP(R) optimization and [188, 266] for detailed
empirical results.

Despite the potential of optimization as reported in these works, the lack of (full)
implementations leaves open the practicality of using these and other sophisticated
optimization techniques for CLP systems in general.

11.2.8. Runtime Structure A CLP abstract machine requires the same basic
runtime support as the WAM. Some data structures needed are a routine extension
of those for the WAM — the usual register, stack, heap and trail organization.
The main new structures pertain to the solver. Variables involved in constraints
typically have a solver identifier, which is used to refer to that variable’s location
in the solver data structures.

The modifications to the basic WAM architecture typically would be:

o Solver identifiers
It is often necessary to have a way to index from a variable to the constraints
it is involved in. Since the WAM structure provides stack locations for the
dynamically created variables, it remains just to have a tag and value struc-
ture to respectively (a) identify the variable as a solver variable, and (b)
access the constraint(s) associated with this variable. Note that the basic
unification algorithm, assuming functors are used in the constraint system,
needs to be augmented to deal with this new type.

o Tagged trail
As mentioned in Section 10.6, the trail in the WAM merely consists of a
stack of addresses to be reset on backtracking. In CLP systems in general,
the trail is also used to store changes to constraints. Hence a tagged value
trail is required. The tags specify what operation is to be reversed, and the
value component, if present, contains any old data to be restored.

o Time-stamped data structures
Time stamps have been briefly discussed in Section 10.6. The basic idea
here is that the data structure representing a constraint may go through
several changes without there being a new choice point encountered during
this activity. Clearly only one state of the structure need be trailed for each
choice point.

e Constraint accumulator
A constraint is typically built up using a basic instruction repeatedly, for
example, the addpf instruction in CLP(R). During this process, the par-
tially constructed constraint is represented in an accumulator. One of the
solve instructions then passes the constraint to the solver. We can think of
this linear form accumulator as a generalization of the accumulator in classi-
cal computer architectures, accumulating a partially constructed constraint

55

instead of a number.

11.8. Parallel Implementations

We briefly outline the main works involving CLP and parallelism. The opportunities
for parallelism in CLP languages are those that arise, and have already been ad-
dressed, in the logic programming context (such as or-parallelism, and-parallelism,
stream-parallelism), and those that arise because of the presence of a potentially
computationally costly constraint solver.

The first work in this area [108] was an experimental implementation of an or-
parallel for a CLP language with domain FD. That approach has been pursued
with the development of the ElipSys system [254], which is the most developed of
the parallel implementations of CLP languages.

Atay [15, 16] presents the or-parallelization of 2LP, a language that computes
with linear inequalities over reals and integers, but in which rules do not have
local variables®”. Another work deals with the or-parallel implementation of a CLP
language over FD on massively parallel SIMD computers [252]. However the basis
for the parallelism is not the nondeterministic choice of rules, as in conventional
LP or-parallelism, but the nondeterministic choice of values for a variable.

Work on and-parallelism in logic programming depends heavily on notions of
independence of atoms in a goal. [99] addresses this notion in a CLP context,
and identify notions of independence for constraint solvers which must hold if the
advantages of and-parallelism in LP are to be fully realized in CLP languages.
However, there has not, to our knowledge, been any attempt to produce an and-
parallel implementation of a CLP language.

Two works address both stream-parallelism and parallelism in constraint solving.
GDCC [249] is a committed-choice language that can be crudely characterized as a
committed-choice version of CAL. It uses constraints over domains of finite trees,
Booleans, real numbers and integers. [249] mainly discusses the parallelization of the
Groebner basis algorithms, which are the core of the solvers for the real number and
Boolean constraint domains, and a parallel branch-and-bound method that is used
in the integer solver. Leung [166] addresses the incorporation of constraint solving
in both a committed-choice language and a language based on the Andorra model
of computation. He presents distributed solvers for finite domains, the Boolean
domain and linear inequalities over the reals. The finite domain solver is based on
[108], the solver for the reals parallelizes the Simplex algorithm, and the Boolean
solver parallelizes the unification algorithm of [45].

Finally, [43, 42] reports the design and initial implementation of CLP(R) with
an execution model in which the inference engine and constraint solver compute
concurrently and asynchronously. One of the issues addressed is backtracking, which
is difficult when the engine and solver are so loosely coupled.

37We say that a variable in a rule is local if it appears in the body of the rule, but not in the
head.

56

Part III
Programming and Applications

In this final part, we discuss the practical use of CLP languages. The format here
is essentially a selected list of successful applications across a variety of problem
domains. Each application is given an overview, with emphasis on the particular
programming paradigm and CLP features used.

It seems useful to classify CLP applications broadly into two classes. In one class,
the essential CLP technique is to use constraints and rules to obtain a transparent
representation of the (relationships underlying the) problem. Here the constraints
also provide a powerful query language. The other class caters for the many prob-
lems which can be solved by enumeration algorithms, the combinatorial search
problems. Here the LP aspect of CLP is useful for providing the enumeration facil-
ity while constraints serve to keep the search space manageable.

12. Modelling of Complex Problems

We consider here the use of CLP as a specification language: constraints allow
the declarative interpretation of basic relationships, and rules combine these for
complex relationships.

12.1. Analysis and Synthesis of Analog Circuits

This presentation is adapted from [104], an early application of CLP(R). Briefly, the
general methodology for representing properties of circuits are that constraints at a
base level describe the relationship between variables corresponding to a subsystem,
such as Ohm’s law, and constraints at a higher level describe the interaction between
these subsystems, such as Kirchoff’s law.

Consider the following program fragment defining the procedure circuit(N, V,
I) which specifies that, across an electrical network N, the potential difference and
current are V and I respectively. The network is specified in an obvious way by a
term containing the functors resistor, series and parallel. In this program,
the first rule states the required voltage-current relationship for a resistor, and the

57

remaining rules combine such relationships in a network of resistors.

circuit(resistor(R), V, I) :- V =1 * R.
circuit(series(N1, N2), V, I) :-

I =11,

I=12,

V= V1 + V2,

circuit(Ni1, vi1, I1),

circuit(N2, V2, I2).
circuit(parallel(N1, N2), V, I) :-

V=Vi, V=2,

I=1I1+ 12,

circuit(N1, vi1, I1),

circuit (N2, V2, I2).

For example, the query
?- circuit(series(series(resistor(R),resistor(R)),resistor(R)),V,5)

asks for the voltage value if a current value of 5 is flowing through a network
containing just three identical resistors in series. (The answer isR = 0.0666667%V.)
Additional rules can be added for other devices. For example, the piece-wise linear
model of a diode described by the voltage-current relationship

10V + 1000 if V < —100
I=1{ 0.001v if —100<V <0.6
100V —60 ifV > 0.6

is captured by the rules:

circuit(diode, V, 10 * V + 1000) :- V < -100.
circuit(diode, V, 0.0001 * V) :— -100 <=V, V <= 0.6.
circuit(diode, V, 100 * V - 60) :- V > 0.6.

This basic idea can be extended to model AC networks. For example, suppose we
wish to reason about an RLC network in steady-state. First, we dispense with
complex numbers by representing X +iY as a CLP(R) term c(X, Y), and use:

c_equal(c(Re, Im), c(Re, Im)).
c_,add(c(Rel, Im1), c(Re2, Im2), c(Rel + Re2, Iml + Im2)).
camult(c(Rel, Im1), c(Re2, Im2), c(Re3, Im3)) :-

Re3 = Rel * Re2 - Iml * Im2,

Im3 = Rel * Im2 + Re2 * Imil.

to implement the basic complex arithmetic operations of equality, addition and
multiplication.

Now consider the following procedure circuit(N, V, I, W) which is like its
namesake above except that the voltage and current values are now complex num-
bers, and the new parameter W, a real number, is the angular frequency. It is note-
worthy that this significant extension of the previous program fragment for circuit

58

has been obtained so easily.

circuit(resistor(R), V, I, W) :— cmult(V, I, c(R, 0)).
circuit(inductor(L), V, I, W) :— cmult(V, I, c(0, W *x L)).

circuit(capacitor(C), V, I, W) :- cmult(V, I, c(0, -1 / (W * C))).

circuit(series(N1, N2), V, I, W) :-
c_equal(I, I1), c_equal(I, I2),
c_add(V, V1, V2),
circuit(Ni, v1, I1, W),
circuit (N2, V2, I2, W).
circuit(parallel(N1, N2), V, I, W) :-
c_equal(V, V1), c_equal(V, V2),
c_add(I, I1, I2),
V=Vi, V=2,
I=1I1+ 12,
circuit(N1, V1, I1, W),
circuit (N2, V2, I2, W).

We close this example application by mentioning that the work in [104] not only
contains further explanation of the above technique, but also addresses other prob-
lems such as the synthesis of networks and digital signal flow. Not only does the
CLP approach provide a concise framework for modelling circuits (previously done
in a more ad-hoc manner), but it also provides additionality functionality because
relationships, as opposed to values, are reasoned about. Evidence that this approach
can be practical was given; for example, the modelling can be executed at the rate
of about a hundred circuit components per second on a RS6000 workstation.

12.2. Options Trading Analysis

Options are contracts whose value is contingent upon the value of some underlying
asset. The most common type of option are those on company shares. A call option
gives the holder the right to buy a fixed number of shares at a fixed ezercise price
until a certain maturity/expiration date. Conversely, a put option gives the holder
the right to sell at a fixed price. The option itself may be bought or sold. For
example, consider a call option costing $800 which gives the right to purchase 100
shares at $50 per share within some period of time. This call option can be sold at
the current market price, or exercised at a cost of $5000. Now if the price of the
share is $60, then the option may be exercised to obtain a profit of $10 per share;
taking the price of the option into account, the net gain is $200. After the specified
period, the call option, if not exercised, becomes worthless. Figure 5 shows payoff
diagrams which are a simple model of the relationship between the value of a call
option and the share price. Sell options have similar diagrams. Note that ¢ denotes
the cost of the option and x the exercise price.

Options can be combined in arbitrary ways to form artificial financial instru-
ments. This allows one to tailor risk and return in flexible ways. For example, the
butterfly strategy in figure b consists of buying two calls, one at a lower strike price
x and one at a higher price z and selling two calls at the middle strike price y. This
makes a profit if the share stays around the middle strike price and limits the loss
if the movement is large.

59

Payof f Payof f Payof f

X St ock St ock

Price X Price

Buy aCal Sell aCall Butterfly

Figure 5. Payoff Diagrams

The following presentation is due to Yap [266], based in his work using CLP(R).
This material appeared in [157], and the subsequently implemented OTAS system
is described in [122]. There are several main reasons why CLP, and CLP(R) in
particular, are suitable for reasoning about option trading: there are complex trad-
ing strategies used which are usually formulated as rules; there is a combinatorial
aspect to the problem as there are many ways of combining options; a combination
of symbolic and numeric computation is involved; there are well developed math-
ematical valuation models and constraints on the relationships involved in option
pricing, and finally, flexible “what-if” type analysis is required.

A simple mathematical model of valuing options, and other financial instruments
such as stocks and bonds, is with linear piecewise functions. Let the heavyside
function h and the ramp function r be defined as follows:

h(:c,y):{o ifz>y and T(w,y):{o ifz>y

1 otherwise y—x otherwise

The payoff function for call and put options can now be described by the following
matrix product which creates a linear piecewise function:

(
payoﬁ: [h17 h27 T1, T2] X gb
1,
(

where s is the share price, b; is either the strike price or 0, and h; and 7; are
multipliers of the heavyside and ramp functions. In the following program, the
variables S, X, R respectively denote the stock price, the exercise price and the

St ock
Price

60

interest rate.

h(X, Y, Z) :(-Y <X, Z=0.

h(X, Y, Z) (- Y >= X, Z = 1.

r(X, ¥, Z) :-Y <X, Z=0.

r(X, Y, Z) :-Y> X, Z=Y - X.

value(Type, Buyor Sell, S, C, P, R, X, B, Payoff) :-
sign(Buy_or_Sell, Sign),
data(Type, S, C, P, R, X, B, B1, B2, H1, H2, R1, R2),
h(B1, S, T1), h(B2, S, T2), r(B1, S, T3), r(B2, S, T4),
Payoff = Sign*(H1*T1 + H2*T2 + R1%T3 + R2%T4).

The parameters for the piecewise functions can be expressed symbolically in the
following tables, implemented simply as CLP facts.

sign(buy, -1).

sign(sell, 1).

data(stock, S, C, P, R, X, B, 0, O, S*R, 0, -1, 0).
data(call, S, C, P, R, X, B, 0, X, C¥R, 0, 0, —-1).
data(put, S, C, P, R, X, B, 0, X, P¥R-X, 0, 1, -1).
data(bond, S, C, P, R, X, B, O, O, B¥R, 0, 0, 0).

This program forms the basis for evaluating option combinations. The following
direct query evaluates the sale of a call option that expires in-the-money>8,

?7-Call = 5, X = 50, R = 1.05, S = 60,
value(call, sell, S, Call, _, R, X, _, Payoff).

giving the answer, Payoff = -4.75. More general queries make use of the ability
to reason with inequalities. We can ask for what share price does the value exceed

5,

?7- Payoff > 5, C = 5, X = 50, R = 1.05, S = 60,
value(call, sell, S, C, _, R, X, _, Payoff).

The answer constraints returned®® illustrates the piecewise nature of the model,

Payoff = 5.25, S < 50;
Payoff = 556.256 - 5, 50 <= S, S <= 50.25.

More complex combinations can be constructed by composing them out of the base
financial instruments and linking them together with constraints. For example, the

38That is, when the strike price is less than the share price.
39We will use ;' to separate different sets of answer constraints in the output.

61

following is a combination of two calls and two puts,

?-R = 0.1, Payoff = Payoffl + Payoff2 + Payoff3 + Payoff4,

P1 = 10, K1 = 20, value(put, sell, S, _, P1, R, K1, _, Payoffl),
P2 = 18, K2 = 40, value(put, buy, S, _, P2, R, K2, _, Payoff2),
C3 = 18, K3 = 60, value(call, buy, S, C3, _, R, K3, _, Payoff3),

C4 = 18, K4 = 60, value(call, sell, S, C4, _, R, K4, _, Payoff4).

The answer obtained illustrates how combinations of options can be tailored to
produce a custom linear piecewise payoff function.

Payoff = 5.7, S < 20;

Payoff = 256.7 - S, 20 <= S, S < 40;
Payoff = -14.3, 40 <= S, S < 60;
Payoff = S - 74.3, 60 <= S, S < 80;
Payoff = 5.7, 80 <= S.

The above is just a brief overview of the core ideas behind the work in [157].
Amongst the important aspects that are omitted are consideration of option pricing
models, and details of implementing the decision support system OTAS [122]. As in
the circuit modelling application described above, the advantages of using CLP(R)
here are that the program is concise and that the query language is expressive.

12.3. Temporal Reasoning

It is natural and common to model time as an arithmetic domain, and indeed we
do this in everyday life. Depending upon the application, a discrete representation
(such as the integers) or a continuous representation (such as the reals) may be
appropriate, and varying amounts of the arithmetic signature are needed (for ex-
ample, we might use only the ordering, or use only a successor function). In this
brief discussion we assume that time is linearly ordered, although this is not a
universally accepted choice [84].

Temporal logic [84] is often used as a language for expressing time-related con-
cepts. Temporal logic adds to standard first-order logic such constructs as next
(meaning, roughly, “in the next time instant”*?), always (meaning “in every future
time instant”), and sometime (meaning “in some future time instant”). The lan-
guage Templog [1] was designed based on a Horn-like subset of temporal logic in
which the meaning of function symbols does not vary with time, but the meaning
of predicate symbols does. It was shown in [39] that the operational behavior of
Templog could be mimicked by a CLP language via the following natural transla-
tion: every predicate receives another argument, representing time. Then, at time
t, next is represented by t' = ¢ + 1, and the future (for always and sometime) is
represented by ¢’ > ¢. In later work [40], Brzoska has presented a more powerful
temporal logic language which also can be viewed as, and implemented through, a
CLP language.

Often we wish to manipulate the time parameter more directly than is possible in
conventional temporal logic. For example, we may wish to express durations as well
as times. We can do this if we include + in the signature of our domain modelling

40We assume that time is modelled by the integers.

62

time. This is used in applications to scheduling, among others, as discussed in
section 13.

The use of simple constraint domains to model time has been explored exten-
sively in the context of temporal databases. In this situation, an item of data might
incorporate the time interval for which it is valid. Simple domains have been con-
sidered because of over-riding requirements for quick and terminating execution of
queries, as discussed in section 7. Furthermore, often the restriction is made that
only one or two arguments in a tuple are time-valued, with the other arguments
taking constant values. [19] surveys work in this area using an integer model of
time.

13. Combinatorial Search Problems

CLP offers an easy realization of enumeration algorithms for the solving of com-
binatorial problems. Given decision variables z1,-- -, z,, one uses a CLP program
schema of the form

solve(X1, ... , Xn) :-
constraints(X1, ... , Xn),
enumerate(X1, ... , Xn).

to implement a “constrain-and-generate” enumeration strategy (also called implicit
enumeration), as opposed to naive enumerate-and-test strategy, to curtail the search
space. We refer to the basic text [107], chapter 2, for further introductory material
to this CLP approach.

The above schema is used to represent the set of all solutions to the constraints.
Often one desires an optimal solution according to some criteria, say the solu-
tion ay,---,an to z1,- -, z, that minimizes some given function cost(z1,-- -, zx).
The simplest strategy to obtain this solution is simply to obtain and check each
and every solution of solve. An easy improvement is obtained by augmenting the
search with a branch-and-bound strategy. Briefly, the cost of the best solution en-
countered so far is stored and the continuing search is constrained to find only
new solutions of better cost. More concretely, CLP systems typically provide predi-
cates such as minimize(solve(X1, ... , Xn, Cost), BestCost) (and similarly
maximize(...)) where solve(X1, ... , Xn, Cost) serves to obtain one solution
as explained above, with cost Cost, and BestCost is a number representing the
cost of the best solution found so far. (Initially, this number can be any sufficiently
large number.) It is assumed here that the procedure solve(X1, ... , Xn, Cost)
maintains a lower bound for a variable Cost, which is computed as the values of the
decision variables are determined. The minimize procedure then essentially behaves
as a repeated invocation of the goal 7- Cost < BestCost, solve(X1, ... , Xn,
Cost). In general, the choice of a suitable cost function can be difficult. Finally, we
refer the reader to the text [107] (section 4.5.1) for more a detailed explanation of
how branch-and-bound is used in CLP systems.

The constraint domain at hand is discrete and typically finite (since the enumer-
ation must cover all candidate values for the sequence z1,---,z,), and therefore
constraint solving is almost always NP-hard. This in turn restricts implementa-
tions to the use of partial solvers, that is, not all constraints will be considered
active. Recall that partial solvers are, however, required to be conservative in the

63

sense that whenever unsatisfiability is reported, the tested constraints are indeed
unsatisfiable.
In general, the primary efficiency issues are:

e How complete is the constraint solver? In general, there is tradeoff between
the larger cost of a more complete solver and the smaller search space that
such a solver can give rise to.

e What constraints to use to model the problem? A special case of this is-
sue concerns the use of redundant constraints, that is, constraints that do
not change the meaning of the constraint store. In general, redundant con-
straints will slow down a CLP system with a complete solver. With partial
solvers, however, redundant constraints may be useful to the solver in case
the equivalent information in the constraint store is not active.

e In which order do we choose the decision variables for enumeration? And
should such order be dynamically determined?

e In which order do we enumerate the values for a given decision variable?
And should such order be dynamically determined?

In this section, we will outline a number of CLP applications in specific combina-
torial problem areas. In each subsection below, unless otherwise specified, we shall
assume that the underlying constraint system is based on the integers.

18.1. Cutting Stock

The following describes a two-dimensional cutting stock problem pertaining to fur-
niture manufacturing, an early application of CHIP [77]. We are given a sawing
machine which cuts a board of wood into a number of different sized shelves. The
machine is able to cut in several configurations, each of which determines the num-
ber of each kind of shelf, and some amount of wood wasted. Let there be N different
kinds of shelves, and M different configurations. Let S;;, 1 <:< M, 1< 73 <N,
denote the number of shelves j cut in configuration 2. Let W;, 1 < i < M, denote
the wastage in configuration i. Let R;, 1 < ¢ < N denote the number of shelves 2
required. The problem now can be stated as finding the configurations such that
the required number of shelves are obtained and the wastage minimized.

In [77], there were 6 kinds of shelves, 72 configurations, and the number of
boards to be cut was fixed at 4. Two solutions were then presented, which we now
paraphrase.

Let X;, 1 <12 < 72, denote the number of boards cut according to configuration .
Thus X3 +- - -+ X72 = 4. The requirements on the number of shelves are expressed
via the constraints X; * Sy ; + --- 4+ Xz * Syz5, for 1 < 7 < N. The objective
function, to be minimized, is X7 *Wi+- - -4 X72% Wya. The straightforward program
representation of all this is given below. The enumerate procedure has the range
{1,2,3,4}. Note that solve is run repeatedly in the search for the solution of lowest
Cost.

solve(Xy, ... , X79, Cost) :-
X1+ ... + X790 = 4,
Xy ¥ S31 + ... + Xy2 ¥ Sya1 >= Ry,

Xy ¥ S12 + ... + Xy3 ¥ Sya2 >= Ro,

64

Xy * S36 + ... + X732 *¥ Sra26 >= Re,

Cost = Xy * Wy + ... + Xyg * Wyo,
enumerate(X;, ... , X72).

The second solution uses the special CHIP constraint element, described above in
section 9.2. Recall that element(X, List, E) expresses that the X** element of
List is E. In this second approach to the problem, the variables X;, 1 < i < 4,
denote the configurations chosen. Thus 1 < X; < 72. Let T;;, 1 <1< 4,1 <5 <6,
denote the number of shelves j in configuration i. Let Cost;, 1 < 2 < 4, denote
the wastage in configuration X;. Thus the required shelves are obtained by the
constraints 717 ; 4+ ---+ Ty ; > R; where 1 < 5 < 6, and the total cost is simply
Costy + -+ Costy.

In program below, the constraints X; < X; < X3 < X4 serve to eliminate con-
sideration of symmetrical solutions. The following group of 24 element constraints
serve to compute the T; ; variables in terms of the (given) S; ; values and the (com-
puted) X; values. The next group of 4 element constraints computes the Cost;
variables in terms of the (given) W; variables. The enumerate procedure has the
range {1,2,---,72}. Once again, solve is run repeatedly here in the search for the
lowest Cost.

solve(Xy, ... , Xz, Cost) :-
X1 <= X9, X9 <= X3, X3 <= X4,
element(Xy, [S1;, ... , Sr2;1, T1,;), % (1<j<6)
element (X, [Sz;, ... , Sva;1, Ta;),
element (X3, [Saj;, ... , Sva;1, Ta;),
element (X4, [Saj, ... , Sr2;1, Taj),
element(X;, [W;, ... Wyal, Costy),
element (X, [Wy, ... Wpel, Costs),
element (X3, [W;, ... Wyel, Costs),
element(Xq, [Wy, ... Wyal, Costy),
Ty,; + Ta; + Ts; + Taj >= Ry, “(1<5<6)

Cost = Cost; + Costy; + Costz + Costy,
enumerate(X;, X2, X3, X4).

The second program has advantages over the first. Apart from a smaller search space
(approximately 107 in comparison with 10*3), it was able to avoid encountering
symmetrical solutions. The timings given in [77] showed that the second program
ran much faster. This comparison exemplifies the abovementioned fact that the way
a problem is modelled can greatly affect efficiency.

13.2. DNA Sequencing

We consider a simplified version of the problem of restriction site mapping (RSM).
Briefly, a DNA sequence is a finite string over the letters {4, C, G, T}, and a restric-
tion enzyme partitions a DNA sequence into certain fragments. The problem is then
to reconstruct the original DN A sequence from the fragments and other information
obtained through experiments. In what follows, we consider an abstraction of this
problem which deals only with the lengths of fragments, instead of the fragments
themselves.

65

Consider the use of two enzymes. Let the first enzyme partition the DNA se-
quence into Ay, - - -, Ay and the second into By, - - -, Bys. Now, a simultaneous use of
the two enzymes also produces a partition Dy, .+, Dg corresponding to combining
the previous two partitions. That is,

Vidyj: Ay---A;=D1---Dj and Vidj : By ---B; = Dy --- D;, and conversely,
Vjdi:(Dy---Dj =Ay---A;)V(D1---Dj = By--- B;).

Let a; denote the length of A4;; similarly foE b; and_‘di. Let a; denote the subsequence
(a1,--+,a;), 1 <14 < N. Similarly define b; and d;. The problem at hand now can
be stated as: given the multisets @ = {a1,---,an}, b = {b1,---,by} and d =

{d1,---,dk}, construct the sequences &y = (a1, --,an), b = (b1, -, bm) and
dg = (d1,-"",dKk).
Our basic algorithm generates d;,ds, - - - in order and extends the partitions for

a and gusing the following invariant property which can be obtained from the
problem definition above. Either

e d is aligned with a;, that is,d1 +---+dr =a1+---+ a4, or
o dj is aligned with b; (but not with a;,*!) that is, d1 +---+dg = by +---+b;.

In the program below, the main procedure solve takes as input three lists repre-
senting @,b and d in the first three arguments, and outputs in the remaining three
arguments. Enumeration is done by choosing, at each recursive step of the rsm
procedure, one of two cases mentioned above. Hence the two rules for rsm. Note
that the three middle arguments of rsm maintains the length of the subsequences
found so far, and in all calls, either 1enA = lenD < lenB or lenB = lenD < lenA
holds; the procedure choose_initial chooses the first fragment, and makes the
first call to rsm with this invariant holding. Finally, the procedure choose deletes
some element from the given list and returns the resultant list. Note that one more
rule for rsm is needed in case the A and B fragments do align anywhere except at
the extreme ends; we have omitted this possibility for simplicity.

solve(A, B, D, [AFrag|MapA]l, [BFrag|MapB], [DFrag|MapD]) :-
choose_initial(A, B, D, AFrag, BFrag, DFrag, A2, B2, D2),
rsm(A2, B2, D2, AFrag, BFrag, DFrag, MapA, MapB, MapD).
rsm(A, B, D, LendA, LenB, LenD, MapA, MapB, MapD) :-
empty(A), empty(B), empty(D),
MapA = [1, MapB = [1, MapD = [].
rsm(A, B, D, LendA, LenB, LenD, [Ai|MapA], MapB, [Dk|MapD]) :-
LenA = LenD, LenA < LenB
Dk <= LenB - LendA, Ai >= Dk,
choose(Dk, D, D2),
choose(Ai, A, A2),
rsm(A2, B, D2, LenA + Ai, LenB, LenD + Dk, MapA, MapB, MapD).
rsm(A, B, D, LenA, LenB, LenD, MapA, [Bj|MapB], [Dk|MapD]) :-
LenB = LenD, LenB < LenA

41 For simplicity we assume that we never have all three partitions aligned except at the
beginning and at the end.

66

Dk <= LenA - LenB, Bj >= Dk,

choose(Dk, D, D2),

choose(Bj, B, B2),

rsm(A, B2, D2, LenA, LenB + Bj, LenD + Dk, MapA, MapB, MapD).

This application of CLP is due to Yap [264, 265] and it is important to note that the
above program is a considerable simplification of Yap’s program. A major omission
is the consideration of errors in the fragment lengths (because these lengths are
obtained from experimentation). A major point in Yap’s approach is that it gives
a robust and uniform treatment of the experimental errors inherent in the data
as compared with many of the approaches in the literature. Furthermore, [265]
shows how the simple two enzyme problem can be extended to a number of other
problem variations. Because a map solution is just a set of answer constraints
returned by the algorithm, it is easy to combine this with other maps, compare
maps, verify maps, etc. This kind of flexibility is important as the computational
problem of just computing a consistent map is intractable and hence when dealing
with any substantial amount of data would have to take into account data from
many varieties of mapping experiments as well as other information specific to the
molecule in question.

18.8. Scheduling

In this class of problems, we are given a number of tasks, and for each task, a
task duration. Each task also requires other resources to be performed, and there
are constraints on precedences of task performance, and on resource usage. The
problem is to schedule the tasks so that the resources are most efficiently used (for
example, perform the tasks so that all are done as soon as possible).

Consider now a basic job-shop scheduling problem in which is given a number m
of machines, 7 sequences of tasks, the task durations and the machine assigned to
each task. The precedence constraints are that the tasks in each sequence (called
a job) are performed in the sequence order. The resource constraints are that each
machine performs at most one task at any given time.

In the program below, precedences sets up the precedence constraints for one
job, and is called with two equally long lists. The first contains the task variables,
whose values are the start times. The second list contains the durations of the tasks.
Thus precedences is called once for each job. The procedure resources is called
repeatedly, once for each pair of tasks T; and Ty which must performed without
overlapping; their durations are given by D; and Ds.

precedences([T;, Ty | Taill, [D;, Dy | Tail2]) :-
T, + Dy <= Ts,
precedences(Tail, Tail2).

precedences([1, [1).

resources(Ty, Dy, Tz, D3) :— Ty + Dy <= T,.
resources(Ty, Dy, Tz, D3) :— Ty + Dy <= Tj.

A simple way to proceed is to fix an ordering of the tasks performed on each ma-
chine. This corresponds to choosing one of the two resources rules for each pair

67

of tasks assigned to the same machine. This forms the basis of the enumerate pro-
cedure below. Once an ordering of tasks is fixed, it is a simple matter to determine
the best start times for each task.

This can be done in the manner indicated in the solve procedure below. An
important efficiency point is that by choosing a precedence between two tasks, the
new constraints created by the use of resources, in conjunction with the precedence
constraints, can reduce the number of possible choices for the remaining pairs.
We assume that the procedure define cost defines Cost in such a way that, in
conjunction with other constraints, it provides a conservative lower bound of the
real cost of the schedule determined so far. Its precise definition, omitted here, can
be obtained in a similar way as in the second program of the cutting-stock example
above.

solve(Ty, Tg, ... , T,, Cost) :-—
precedences(...), % one per job
precedences(...),
define cost(T;, T3, ... , T,, Cost),
enumerate(T;, Ty, ... , Tn),
generate start times(Ty, Tz, ... , Tn).
enumerate(T;, Ty, ... , Tp) :-
resources(...), % one per pair of tasks assigned to same machine
resources(...).

Finally, this solve procedure can be repeatedly run, within a branch-and-bound
framework (with a special minimize predicate mechanism as explained above) to
obtain the best solution over all possible orderings.

In this presentation of the program we have chosen to simply list all calls to
precedences in the procedure solve, to focus on the important procedures in
the program. A real program would use an auxilliary predicate to iterate over the
jobs and generate the calls to precedences. Similarly, enumerate would iterate
to generate calls to resources. Thus the program would be independent of the
number of jobs or the pattern in which tasks are assigned to machines. Similar
comments apply to other programs in this section.

There are variations and specializations of CLP approaches to this problem. Sec-
tion 5.4.2 of [107] and section 2 of [78], on which this presentation is based, further
discuss the problem and how particular features of CHIP can be useful. Another
CHIP approach, but this time to a specific and practical scheduling problem is
reported in [50]. In [2], the focus is on a new feature of CHIP and how it can be
used to obtain an optimal solution to a particular 10 jobs and 10 machine problem,
which remained open until recently.

Real scheduling problems can involve more kinds of constraints than just those
mentioned above. For example, one could require that there is at most a certain time
elapsed between the completion of one task and the commencement of another. See
[260] for a more complete discussion of the CLP approach to the general scheduling
problem.

68

18.4. Chemical Hypothetical Reasoning

This Prolog III application, described in some detail in [139], uses both arithmetic
and boolean constraints. The problem at hand is that of elucidating chemical-
reaction pathways, and we quote [139]: given an instantiation of the (two-reagent)
reaction schema A+ B ~ T+ P; + - - -+ Py, determine the pathway, that is, the set
of constituent reaction steps, as well as other molecules (or species) formed during
the reaction.

The reaction step considered in [139] contains at most two reactant molecules,
and at most two product molecules, and so can be described in the form R; +
R; —> Py + P; where Ry, Ry, P1, P; are (possibly empty) molecular formulas. The
problem then is to determine, given an overall reaction, a collection of basic steps or
pathway which explain the overall reaction. For example, given Cy HgN + C H30 ~»
Ci17H18Ny + H30, the following is a pathway which explains the reaction.

CrH9gN — H,0 + CgHgN
CgHoN + CgHgN — C16H1gN;
CgHoN + C16H18Ny — C17H13Ny + CrHgN

Here CgHgN and Ci16H18N5 are the previously unidentified species.

The program imposes constraints to express requirements for a chemical reaction
and to exclude uninteresting reactions. In addition to the constraints on the number
of molecules, there are two other constraints on reaction steps: for each chemical
element, the number of reactant atoms equals the number of product atoms (i.e.
the step is chemically balanced), and no molecular formula appears in both sides of
a step.

There are also constraints on the pathway. Let the reaction schema under con-
sideration be A+ B~ T+ P; +---+ P;. Then

e All pathway species must be formable from the two reagents 4 and B.

e Neither A nor B alone is sufficient to form the target product T'. Here boolean
variables are used to express the dependency relation “can be formed from”.
For each pathway step R;, Ry — P;, P, we state the boolean constraint
a1 Aas =—> a3z Aagq where a1, az, asz, as are boolean variables associated with
R1, Ry, P1, Py respectively. The constraint expresses that both P; and P,
can be formed if both R; and R, can be formed. Let I3 denote the boolean
formulas thus constructed over all the steps in a pathway. Then expressing
that species R does not, by itself, produce species P is tantamount to the
satisfiability of the boolean constraint 5 A —-(ag = ap), where ag and ap
are the boolean variables associated with R and P respectively. Since we
have two original reagents, we will need two sets of boolean variables and
two sets of dependency constraints, to avoid any interference between the
two conditions.

e There is a notion of pathway consistency which is defined to be the satisfi-
ability of a certain arithmetic formula constructed from the occurrences of
species in the pathway. Essentially this formula is a conjunction of formulas
n1 + n2 = nsz + ng, for each pathway step R; + R — P; + P,, where
ni,---,ng are the arithmetic variables of R1, Ry, P;, P, respectively.

e Finally,in the ultimate output of the program, no two pathways are identical,
nor become identical under transformations such as permuting the reactants
or products within a step, or switching the reactants and products in a step.

69

The program representation of a molecular formula is as a list of numbers, each
of which specifies the number of atoms of a certain chemical element. We shall
assume that there are only four chemical elements of interest in our presentation,
and hence a molecular formula is a 4-tuple. A species is also represented by a 4-
tuple (n,q,b, f) where n is an arithmetic variable (to be used in the formulation
of the arithmetic formula mentioned above), a and b are boolean variables (to be
used in expressing the formation dependencies), and f is the species formula. A
step Ry + Ry — Py + P, is represented by a 4-tuple (1, 72, p1, p2) containing the
identifiers of the representations of R1, Ro, P; and Ps.

The listing below is simplified and translated version of the Prolog III program
in [139]. In the main procedure solve, the first argument is a list of fixed size, say n,
in which each element is a species template. The first three templates are given, and
these represent the two initial reagents R;, Ry and final target 7. Similarly, Steps
is a list of fixed size, say m, in which each element is a step template. Thus n and
m are parameters to the program. The undefined procedure formula of obtains
the species formula from a species, that is, it projects onto the last element of the
given 4-tuple. Similarly, arith var_of, bool_var_a of and bool_var b_of project
onto the first, second and third arguments respectively.

The procedure no_duplicates asserts constraints which prevent duplicate species
and steps, and it also prevents symmetrical solutions; we omit the details. Calls to
the procedure formation dependencies generate the formation dependencies. The
procedure both reagents needed imposes two constraints, one for each reagent,
that, in conjunction with the formation dependencies, assert that R; (respectively
R;) alone cannot produce T'. Finally, enumerate _species is self-explanatory.

solve([R;, Ry, T | Species], Steps) :-

no duplicates(...),

balanced step(...), % for each step in Steps

pathway step_consistency(...), % for each step in Steps
formation dependencies(...), % for each step in Steps
both reagents needed(R;, Rz, T),

enumerate species(...).

balanced step(Ry, Ry, Py, P2) :-
formula_of(R;, (Ci, Hy, N1, 01)), formulaof(Ry, (Cy, Hp, Na, 02)),
formula_of(P;, (Cz, Hs, Nz, 03)), formulaof(Py, (Cq, Ha, Ng, 04)),
Ci1 + C3 = C3 + Cq4,
Hy + Hy = Hz + Hg,
Ny + Ng = N3 + Ng,
0; + 0O = 03 + 04.
pathway_step_consistency(R;, Ry, Py, P2) :-—
arith_var_of(R;, N;), arith_var of(R;, N3),
arith_var of(P;, Ni3), arith_var of(P;, Ng),
N; + Ny = N3 + Ng.
formation dependencies(R;, Ry, Py, P3) :-
bool_var_a of(Ry, A1), bool_var b of(R;, Bi),
bool_var_a of(R;, A3), bool_var b of(Ry, By),
bool_var_a of(P;, Asz), bool_var b of(P;, Ba),
bool_var_a of(P;, Az), bool_var b of(Py, Bs),
Ay N Ay — A3 A A4,

By A By =— B3z A Bs.

both reagents needed(Ry, Rz, T) :-—
bool_var_a of(R;, A1), bool_var b of(R;, Bi),
bool_var_a of(Ry, A3), bool_var b of(Ry, By),
bool_var_a of (T, Az), bool_var b_of(T, Bi),
- (R = T),
- (R2 = T).

18.5. Propositional Solver

As mentioned above in the discussion about the boolean constraint domain, one
approach to solving boolean equations is to use clp(FD), representing the input
formulas in a straightforward way using variables constrained to be 0 or 1. See
section 3.3.2 of [225] and [56] for example. What follows is from [56].

Assuming, without losing generality, that the input is a conjunction of equations
of the form Z =X AY,Z =X VY or X = Y, the basic algorithm is simply to
represent each equation

Z =X AY bythe FD constraints Z=XxY
Z<X<ZxY+1-Y
Z<Y<ZxX+1-X
Z=XVY by Z=X4Y-XxY
Zx(1-Y)<X<Z
Zx(1-X)<X<Z
X =-Y by X=1-Y
Y=1-X

The following is a c1p(FD) program fragment which realizes these representations.
What is not shown is a procedure which takes the input equation and calls the
and, or and not procedures appropriately, and an enumeration procedure (over the
values 0 and 1) for all variables. In this program val(X) delays execution of an FD
constraint containing it until X is ground, at which time val(X) denotes the value
of X. The meaning of min(X) and maz(X) are, respectively, the current lower and
upper bounds on X maintained by the constraint solver, as discussed in Section
9.3. A constraint X in s..t expresses that s and ¢ are, respectively, lower and upper
bounds for X.

and(X, Y, Z) :-
Z in min(X)*min(Y) .. max(X)#*max(Y),
X in min(Z) .. max(Z)*max(Y) + 1 - min(Y),
Y in min(Z) .. max(Z)*max(X) + 1 - min(X).
or(X, Y, Z) :-
Z in min(X) + min(Y) - min(X)*min(Y) .. max(X) + max(Y) - max(X)#*max(Y),
X in min(Z)*(1 - max(Y)) .. max(Z),
Y in min(Z)*(1 - max(X)) .. max(Z).
not(X, Y) :-
X in 1 - val(Y),
Y in 1 - val(X).

71

We conclude here by mentioning the authors’ claim that this approach has great
efficiency. In particular, it is several times faster than each of two boolean solvers
deployed in CHIP, and some special-purpose stand-alone solvers.

14. Further Applications

The applications discussed in the previous two sections are but a sample of CLP ap-
plications. Here we briefly mention some others to indicate the breadth of problems
that have been addressed using CLP languages and techniques.

We have exemplified the use of CLP to model analog circuits above. A con-
siderable amount of work has also been done on digital circuits, in particular, on
verification [226, 228, 231, 232], diagnosis [229], synthesis [230] and test-pattern
generation [227]. Much of these works used the CHIP system. See also [88] for a
description of a large application. In civil engineering, [155] used CLP(R) for the
analysis and partial synthesis of truss structures. As with electrical circuits, the
constraints implement physical modelling and are used to verify truss and support
components, as well as to generate spatial configurations. There is also work in me-
chanical engineering; [239] used CLP(R) to design gear boxes, and [245] combined
techniques from qualitative physics and CLP(R) to design mechanical systems from
behaviour specifications. In general, engineering applications such as these use CLP
to specify a hierarchical composition of complex systems and for rule-based reason-
ing.

Another important application area for CLP is finance. We mentioned the OTAS
work above. Some further work is [119] which also deals with option valuations, and
[23, 24, 37] which deal with financial planning. These financial applications have
tended to take the form of expert systems involving sophisticated mathematical
models.

There have been various proposals for including certainty measures and proba-
bilities in logic programs to provide some built-in evidential reasoning that can be
useful when writing expert systems. Original proposals [222, 83] intended Prolog
as the underlying language, but it is clear that CLP languages provide for more
flexible execution of such expert systems.

The Applause Project [167] has developed applications that use the ElipSys
system — a parallel implementation of a CLP language — for manufacturing planning,
tourist advice, molecular biology, and environment monitoring and control.

Finally, we mention work on applying CLP languages to: music [251], car se-
quencing [109], aircraft traffic control [57], building visual language parsers [105],
a warehousing problem [25], safety analysis [68], frequency assignment for cellu-
lar telephones [47], timetabling [31], floor planning [140], spacecraft attitude con-
trol [233], interoperability of fibre optic communications equipment [49], interest
rate risk management in banking [97], failure mode and effect analysis of complex
systems [97], development of digitally controlled analog systems [197], testing of
telecommunication protocols [154], causal graph management [209], factory sched-
uling [85], etc. The Applause Project [167] has developed applications that use the
ElipSys system for manufacturing planning, tourist advice, molecular biology, and
environment monitoring and control.

72

Acknowledgements

We would like to thank the following people for their comments on drafts of this
paper and/or help in other ways: M. Bruynooghe, N. Heintze, P. van Hentenryck,
A. Herold, J-L. Lassez, S. Michaylov, C. Palamidessi, K. Shuerman, P. Stuckey, M.
Wallace, R. Yap. We also thank the anonymous referees for their careful reading
and helpful comments.

REFERENCES

1. M. Abadi & Z. Manna, Temporal Logic Programming, Journal of Symbolic Com-
putation, 8, 277-295, 1989.

2. A. Aggoun & N. Beldiceanu, Extending CHIP to Solve Complex Scheduling and
Packing Problems, In Journées Francophones De Programmation Logique, Lille,
France, 1992.

3. A. Aggoun & N. Beldiceanu, Overview of the CHIP Compiler System, in: Con-
straint Logic Programming: Selected Research, F. Benhamou and A. Colmerauer
(Eds.), MIT Press, 421-435, 1993.

4. A. Aiba, K. Sakai, Y. Sato, D. Hawley & R. Hasegawa, Constraint Logic Pro-
gramming Language CAL, Proc. International Conference on Fifth Generation
Computer Systems 1988, 263-276, 1988.

5. H. Ait-Kaci, An Algebraic Semantics Approach to the Effective Resolution of
Type Equations, Theoretical Computer Science 45, 293-351, 1986.

6. H. Ait-Kaci, Warren’s Abstract Machine: A Tutorial Reconstruction, MIT Press,
1991.

7. H. Ait-Kaci & R. Nasr, LOGIN: A Logic Programming Language with Built-in
Inheritance, Journal of Logic Programming 3, 185-215, 1986.

8. H. Ait-Kaci, P. Lincoln & R. Nasr, Le Fun: Logic Equations and Functions, Proc.
Symposium on Logic Programming, 17-23, 1987.

9. H. Ait-Kaci & A. Podelski, Towards a Meaning of LIFE, Journal of Logic Pro-
grammang, 16, 195-234, 1993.

10. H. Ait-Kaci & A. Podelski, Entailment and Disentailment of Order-Sorted Fea-
ture Constraints, manuscript, 1993.

11. H. Ait-Kaci & A. Podelski, A General Residuation Framework, manuscript, 1993.

12. H. Ait-Kaci, A. Podelski & G. Smolka, A Feature-based Constraint System for
Logic Programming with Entailment, Theoretical Computer Science, to appear.
Also in: Proc. International Conference on Fifth Generation Computer Systems
1992, Vol. 2, 1992, 1012-1021.

13. L. Albert, R. Casas & F. Fages, Average-case Analysis of Unification Algorithms,
Theoretical Computer Science 113, 3-34, 1993.

14. K. Apt, H. Blair & A. Walker, Towards a Theory of Declarative Knowledge, in:
Foundations of Deductive Databases and Logic Programming, J. Minker (Ed),
Morgan Kaufmann, 89-148, 1988.

15. C. Atay, A Parallelization of the Constraint Logic Programming Language 2LP,
Ph.D. thesis, City University of New York, 1992.

16. C. Atay, K. McAloon & C. Tretkoff, 2LP: A Highly Parallel Constraint Logic
Programming Language, Proc. 6th. SIAM Conf. on Parallel Processing for Sci-
entific Computing, 1993.

17. R. Barbuti, M. Codish, R. Giacobazzi & M.J. Maher, Oracle Semantics for Pro-
log, Proc. 8rd Conference on Algebraic and Logic Programming, LNCS 632, 100-
115, 1992.

18. M. Baudinet, Proving Termination Properties of Prolog: A Semantic Approach,

Proc. 8rd. Symp. Logic in Computer Science, 334-347, 1988.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

73

M. Baudinet, J. Chomicki & P. Wolper, Temporal Deductive Databases, in Tem-
poral Databases: Theory, Design and Implementation, A. Tansel, J. Clifford, S.
Gadia, S. Jajodia, A. Segev and R. Snodgrass (Eds), Benjamin/Cummings, 1993.
F. Benhamou & A. Colmerauer (Eds.), Constraint Logic Programming: Selected
Research, MIT Press, 1993.

F. Benhamou, Boolean Algorithms in PROLOG III, in: Constraint Logic Pro-
gramming: Selected Research, F. Benhamou and A. Colmerauer (Eds.), MIT
Press, 307-325, 1993.

F. Benhamou & J-L. Massat, Boolean Pseudo-equations in Constraint Logic
Programming, Proc. 10th International Conference on Logic Programming, 517—
531, 1993.

F. Berthier, A Financial Model using Qualitative and Quantitative Knowledge,
Proceeedings of the International Symposium on Computational Intelligence 89,
Milano, 1-9, September 1989.

F. Berthier, Solving Financial Decision Problems with CHIP, Proceeedings of the
2nd Conference on Economics and Artificial Intelligence - CECIOA 2, Paris,
233-238, June 1990.

R. Bisdorff & S. Laurent, Industrial Disposing Problem Solved in CHIP, Proc.
10th International Conference on Logic Programming, 831, 1993.

A. Bockmayr, Logic Programming with Pseudo-Boolean Constraints, in: Con-
straint Logic Programming: Selected Research, F. Benhamou and A. Colmerauer
(Eds.), MIT Press, 327-350, 1993.

F. de Boer, J. Kok, C. Palamidessi & J. Rutten, Non-monotonic Concurrent
Constraint Programming, Proc. International Logic Programming Symposium,
315-334, 1993.

F.S. de Boer & C. Palamidessi, A Fully Abstract Model for Concurrent Con-
straint Programming, Proc. of TAPSOFT/CAAP, LNCS 493, 296-319, 1991.
F.S. de Boer & C. Palamidessi, Embedding as a Tool for Language Comparison,
Information and Computation, to appear.

F.S. de Boer & C. Palamidessi, From Concurrent Logic Programming to Con-
current Constraint Programming, in: Advances in Logic Programming Theory,
Oxford University Press, to appear.

P. Boizumault, Y. Delon & L. Peridy, Solving a real life exams problem using
CHIP, Proc. International Logic Programming Symposium, 661, 1993.

A. Borning, The Programming Language Aspects of ThingLab, a Constraint—
Oriented Simulation Laboratory, ACM Transactions on Programming Languages
and Systems, 3(4), 252-387, October 1981.

A . Borning, M.J. Maher, A. Martindale & M. Wilson, Constraint Hierarchies and
Logic Programming, Proc. 6th International Conference on Logic Programming,
149-164, 1989. Fuller version as Technical Report 88-11-10, Computer Science
Department, University of Washington, 1988.

A. Bossi, M. Gabbrielli, G. Levi & M.C. Meo, Contributions to the Semantics of
Open Logic Programs, Proc. Int. Conf. on Fifth Generation Computer Systems,
570-580, 1992.

A. Brodsky & Y. Sagiv, Inference of Inequality Constraints in Logic Programs,
Proc. ACM Symp. on Principles of Database Systemns, 1991.

A . Brodsky, J. Jaffar & M. Maher, Toward Practical Constraint Databases, Proc.
19th International Conference on Very Large Data Bases, 567-580, 1993.

J.M. Broek & H.A .M. Daniels, Application of CLP to Asset and Liability Man-
agement in Banks, Computer Science in Economics and Management, 4(2), 107-
116, May 1991.

R. Bryant, Graph Based Algorithms for Boolean Function Manipulation, /EEE
Transactions on Computers 35, 677-691, 1986.

74

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.
55.

56.

57.

58.

59.

60.

61.

C. Brzoska, Temporal Logic Programming and its Relation to Constraint Logic
Programming, Proc. International Logic Programming Symposium, 661-677,
1991.

C. Brzoska, Temporal Logic Programming with Bounded Universal Modality
Goals, Proc. 10th International Conference on Logic Programming, 239-256,
1993.

J. Burg, C. Hughes, J. Moshell & S.D. Lang, Constraint-based Programming: A
Survey, Technical Report IST-TR-90-16, Dept. of Computer Science, University
of Central Florida, 1990.

J. Burg, Parallel Execution Models and Algorithms for Constraint Logic Pro-
gramming over a Real-number Domain, Ph.D. thesis, Dept. of Computer Science,
University of Central Florida, 1992.

J. Burg, C. Hughes & S.D. Lang, Parallel Execution of CLP-® Programs, Tech-
nical Report TR-CS-92-20, University of Central Florida, 1992.

H-J. Biirckert, A Resolution Principle for Clauses with Constraints, Proc. CADE-
10, LNCS 449, 178-192, 1990.

W. Biittner & H. Simonis, Embedding Boolean Expressions into Logic Program-
ming, Journal of Symbolic Computation, 4, 191-205, 1987.

M. Carlsson, Freeze, Indexing and other Implementation Issues in the WAM,
Proc. 4th International Conference on Logic Programming, 40-58, 1987.

M. Carlsson & M. Grindal, Automatic Frequency Assignment for Cellular Tele-
phones Using Constraint Satisfaction Techniques, Proc. 10th International Con-
ference on Logic Programmaing, 647-665, 1993.

S.N. Cernikov, Contraction of Finite Systems of Linear Inequalities (In Russ-
ian), Doklady Akademiia Nauk SSSR, Vol. 152, No. 5, 1075-1078, 1963. (English
translation in Soviet Mathematics Doklady, Vol. 4, No. 5, 1520-1524, 1963.)

R. Chadra, O. Cockings & S. Narain, Interoperability Analysis by Symbolic
Simulation, Proc. JICSLP Workshop on Constraint Logic Programming, 55-58,
1992.

A. Chamard, F. Decés & A. Fischler, Applying CHIP to a Complex Scheduling
Problem, draft manuscript, Dassualt Aviation, Department of Artificial Intelli-
gence, 1992.

D. Chan, Constructive Negation based on Completed Database, Proc. 5th Inter-
national Conference on Logic Programming, 111-125, 1988.

V. Chandru, Variable Elimination in Linear Constraints, The Computer Journal,
36(5), 463-472, 1993.

V. Chandru & J.N. Hooker, Extended Horn Sets in Propositional Logic, Journal
of the ACM, 38, 205-221, 1991.

V. Chvatal, Linear Programming, W.H. Freeman and Co., New York, 1983.
K.L. Clark, Negation as Failure, in Logic and Databases, H. Gallaire and J.
Minker (Eds.), Plenum Press, New York, 293-322, 1978.

P. Codognet & D. Diaz, Boolean Constraint Solving using ¢1p(FD), Proc. Inter-
national Logic Programming Symposium, 525-539, 1993.

P. Codognet, F. Fages, J. Jourdan, R. Lissajoux & T. Sola, On the Design of
Meta(F) and its Applications in Air Traffic Control, Proc. JICSLP Workshop on
Constraint Logic Programming, 28-35, 1992.

J. Cohen, Constraint Logic Programming Languages, CACM, 33, 52-68, July
1990.

A. Colmerauer, Prolog-IT Manuel de Reference et Modele Theorique, Groupe
Intelligence Artificelle, U. d’Aix-Marseille IT, 1982.

A. Colmerauer, Prolog and Infinite Trees, in Logic Programming, K.L. Clark and
S-A. Tarnlund (Eds), Academic Press, New York, 231-251, 1982.

A. Colmerauer, Prolog in 10 Figures, Proc. 8th International Joint Conference

62.

63.
64.

65.
66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

7.

78.

79.

80.

81.

82.

83.

75

on Artificial Intelligence, 487-499, 1983.

A. Colmerauer, Equations and Inequations on Finite and Infinite Trees, Proc.
2nd. Int. Conf. on Fifth Generation Computer Systems, Tokyo, 85—-99, 1984.

A. Colmerauer, Opening the Prolog III Universe, BYTE Magazine, August 1987.
A. Colmerauer, Prolog IIT Reference and Users Manual, Version 1.1, PrologIA,
Marseilles, 1990.

A. Colmerauer, An Introduction to Prolog III, CACM, 33, 69-90, July 1990.

A. Colmerauer, Naive Solving of Non-linear Constraints, in: Constraint Logic
Programming: Selected Research, F. Benhamou and A. Colmerauer (Eds.), MIT
Press, 89-112, 1993.

A. Colmerauer, invited talk at Workshop on the Principles & Practice of Con-
straint Programming, Newport, RI, April 1993.

M-M. Corsini & A Rauzy, Safety Analysis by means of Fault Trees: an Appli-
cation for Open Boolean Solvers, Proc. 10th International Conference on Logic
Programming, 834, 1993.

B. Courcelle, Fundamental Properties of Infinite Trees, Theoretical Computer
Science, 25(2), 95-169, March 1983.

J. Darlington and Y-K. Guo, A New Perspective on Integrating Functions and
Logic Languages, Proceedings of the 8rd International Conference on Fifth Gen-
eration Computer Systems, Tokyo, 682-693, 1992.

B. De Backer & H. Beringer, Intelligent Backtracking for CLP Languages, An Ap-
plication to CLP(R), Proc. International Logic Programming Symposium, 405—
419, 1991.

B. De Backer & H. Beringer, A CLP Language Handling Disjunctions of Linear
Constraints, Proc. 10th International Conference on Logic Programming, 550—
563, 1993.

S. K. Debray, Static Inference of Modes and Data Dependencies in Logic Pro-
grams, ACM Transactions on Programming Languages and Systems 11 (3), 418-
450, 1989.

S. K. Debray & D.S. Warren, Functional Computations in Logic Programs, ACM
Transactions on Programming Languages and Systems 11 (3), 451-481, 1989.
D. Diaz & P. Codognet, A Minimal Extension of the WAM for ¢1p(FD), Proc.
10th International Conference on Logic Programming, 774-790, 1993.

M. Dincbas, P. Van Hentenryck, H. Simonis, & A. Aggoun, The Constraint Logic
Programming Language CHIP, Proceedings of the 2nd. International Conference
on Fifth Generation Computer Systems, 249-264, 1988.

M. Dincbas, H. Simonis & P. van Hentenryck, Solving a Cutting-stock Problem
in CLP, Proceedings 5" International Conference on Logic Programming, MIT
Press, 1988.

M. Dincbas, H. Simonis & P. Van Hentenryck, Solving Large Combinatorial
Problems in Logic Programming, Journal of Logic Programming 8 (1&2), 75-93,
1990.

A. Dovier & G. Rossi, Embedding Extensional Finite Sets in CLP, Proc. Inter-
national Logic Programming Symposium, 540-556, 1993.

R. Duisburg, Constraint-based Animation: Temporal Constraints in the Animus
System, Technical Report CR-86-37, Tektronix Laboratories, August 1986.

R. Ege, D. Maier & A. Borning, The Filter Browser: Defining Interfaces Graphi-
cally, Proc. of the European Conf. on Object-Oriented Programming, Paris, 155—
165, 1987.

E. Elcock, Absys: The First Logic Programming Language — A Retrospective
and Commentary, Journal of Logic Programming, 9, 1-17, 1990.

M. van Emden, Quantitative Deduction and its Fixpoint Theory, Journal of
Logic Programmang, 37-53, 1986.

76

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

E. Emerson, Temporal and Modal Logic, in: Handbook of Theoretical Computer
Science, Vol. B, Chapter 16, 995-1072, 1990.

O. Evans, Factory Scheduling using Finite Domains, in: Logic Programming in
Action, LNCS 636, Springer-Verlag, 45-53, 1992.

F. Fages, On the Semantics of Optimization Predicates in CLP Languages, Proc.
13th Conf. on Foundations of Software Technology and Theoretical Computer
Science, 1993.

M. Falaschi, G. Levi, M. Martelli & C. Palamidessi, Declarative Modelling of
the Operational Behavior of Logic Languages, Theoretical Computer Science 69,
289-318, 1989.

T. Filkorn, R. Schmid, E. Tidén & P. Warkentin, Experiences from a Large
Industrial Circuit Design Application, Proc. International Logic Programming
Symposium, 581-595, 1991.

R.E. Fikes, REF-ARF: A system for solving problems stated as procedures,
Artificial Intelligence 1, 27-120, 1970.

M. Fitting, A Kripke-Kleene Semantics for Logic Programs, Journal of Logic
Programming, 4, 295-312, 1985.

J-B.J. Fourier. Reported in: Analyse des travaux de I’Acadamie Royale des Sci-
ences, pendant ’annee 1824, Partie mathematique, Histoire de [’Academie Royale
des Sciences de I'Institut de France, Vol. 7, xlvii-lv, 1827. (Partial English trans-
lation in: D.A. Kohler. Translation of a Report by Fourier on his work on Linear
Inequalities. Opsearch, Vol. 10, 38-42, 1973)

B.N. Freeman-Benson, Constraint Imperative Programming, PhD thesis, De-
partment of Computer Science and Engineering, University of Washington, 1991.
T. Friwirth, Constraint Simplification Rules, Technical Report ECRC-92-18,
ECRC, 1992.

T. Friwirth, A. Herold, V. Kiichenhoff, T. Le Provost, P. Lim, M. Wallace, Con-
straint Logic Programming — An Informal Introduction, in: Logic Programming
in Action, LNCS 636, Springer-Verlag, 3-35, 1992.

M. Gabbrielli & G. Levi, Modeling Answer Constraints in Constraint Logic Pro-
grams, Proc. 8th International Conference on Logic Programming, 238-252, 1991.
H. Gaifman, M.J. Maher & E. Shapiro, Replay, Recovery, Replication and Snap-
shots of Nondeterministic Concurrent Programs, Proc. 10th. ACM Symposium
on Principles of Distributed Computation, 1991.

P-J. Gailly, W. Krautter, C. Bisiére & S. Bescos, The Prince project and its
Applications, in: Logic Programming in Action, LNCS 636, Springer-Verlag, 54—
63, 1992.

M. Garcia de la Banda & M. Hermenegildo, A Practical Approach to the Global
Analysis of Constraint Logic Programs, Proc. International Logic Programming
Symposium, 437-455, 1993.

M. Garcia de la Banda, M. Hermenegildo & K. Marriott, Independence in
Constraint Logic Programs, Proc. International Logic Programming Symposium,
130-146, 1993.

A. van Gelder, Negation as Failure Using Tight Derivations for General Logic
Programs, in: Foundations of Deductive Databases and Logic Programming, J.
Minker (Ed), Morgan Kaufmann, 149-176, 1988.

A. van Gelder, K. Ross & J.S. Schlipf, Unfounded Sets and Well-Founded Se-
mantics for General Logic Programs, Journal of the ACM, 38, 620-650, 1991.
M. Gelfond & V. Lifschitz, The Stable Model Semantics for Logic Programming,
Proc. 5th International Conference on Logic Programming, 1070-1080, 1988.
W. Havens, S. Sidebottom, G. Sidebottom, J. Jones & R. Ovans, Echidna: A
Constraint Logic Programming Shell, Proc. Pacific Rim International Confer-
ence on Artificial Intelligence, 1992.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

77

N. Heintze, S. Michaylov & P.J. Stuckey, CLP(R) and Some Electrical Engineer-
ing Problems, Journal of Automated Reasoning 9, 231-260, 1992.

R. Helm, K. Marriott & M. Odersky, Building Visual Language Parsers, Proc.
CHI, 1991.

R. Helm, K. Marriott & M. Odersky, Constraint-based Query Optimization for
Spatial Databases, Proc. 10th ACM Symp. on Principles of Database Systemns,
181-191, 1991.

P. van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press,
1989.

P. van Hentenryck, Parallel Constraint Satisfaction in Logic Programming: Pre-
liminary Results of CHIP within PEPSys, Proc. 6th International Conference on
Logic Programmang, 1656-180, 1989.

P. van Hentenryck, Constraint Logic Programming, The Knowledge Engineering
Review 6, 151-194, 1991.

P. van Hentenryck, Constraint Satisfaction using Constraint Logic Programming,
Artificial Intelligence 58, 113-159, 1992.

P. van Hentenryck (Ed), Special Issue on Constraint Logic Programming, Journal
of Logic Programming, 16, 3&4, 1993.

P. van Hentenryck & Y. Deville, The Cardinality Operator: A New Logical Con-
nective and its Application to Constraint Logic Programming, Proc. Interna-
tional Conference on Logic Programming, 745-759, 1991.

P. van Hentenryck & Y. Deville, Operational Semantics of Constraint Logic
Programming over Finite Domains, Proc. Symp. on Programming Language Im-
plementation and Logic Programming, LNCS 528, 395-406, 1991.

P. van Hentenryck & T. Graf, Standard Forms for Rational Linear Arithmetics
in Constraint Logic Programming, Annals of Mathematics and Artificial Intelli-
gence 5, 303-319, 1992.

P. van Hentenryck, V. Saraswat & Y. Deville, Constraint Processing in cc(F D),
manuscript, 1991.

P. van Hentenryck, V. Saraswat & Y. Deville, Design, Implementations and Eval-
uation of the Constraint Language cc(F D), Technical Report CS-93-02, Brown
University, 1993.

T. Hickey, Functional Constraints in CLP Languages, in: Constraint Logic Pro-
gramming: Selected Research, F. Benhamou and A. Colmerauer (Eds.), MIT
Press, 355-381, 1993.

M. Hoéhfeld & G. Smolka, Definite Relations over Constraint Languages, LILOG
Report 53, IBM Deutschland, 1988.

D. Homiak, A CLP System for Solving Partial Differential Equations with Ap-
plications to Options Valuation, Masters Project, DePaul University, 1991.

H. Hong, RISC-CLP(Real): Logic Programming with Non-linear Constraints
over the Reals, in: Constraint Logic Programming: Selected Research, F. Ben-
hamou and A. Colmerauer (Eds.), MIT Press, 133-159, 1993.

A. Horn, On Sentences Which are True of Direct Unions of Algebras, Journal of
Symbolic Logic, 16, 14-21, 1951.

T. Huynh & C. Lassez, A CLP(R) Options Trading Analysis System, Proceedings
5th International Conference on Logic Programming, 5969, 1988.

T. Huynh, C. Lassez & J-L. Lassez. Practical Issues on the Projection of Poly-
hedral Sets. Annals of Mathematics and Artificial Intelligence 6, 295-315, 1992.
J-L. Imbert, Variable Elimination for Disequations in Generalized Linear Con-
straint Systems, The Computer Journal 36, 473-777, 1993.

J-L. Imbert, Fourier’s Elimination: which to choose? Proc. 1st Workshop on
Principles and Practice of Constraint Programming, Newport, 119-131, April
1993.

78

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

J. Jaffar, Efficient Unification over Infinite Terms, New Generation Computing,
2, 207-219, 1984.

J. Jaffar, Minimal and Complete Word Unification, Journal of the ACM, 37(1),
47-85, 1990.

J. Jaffar & J-L. Lassez, Constraint Logic Programming, Technical Report 86/73,
Department of Computer Science, Monash University, 1986.

J. Jaffar & J-L. Lassez, Constraint Logic Programming, Proc. 14th ACM Sympo-
stum on Principles of Programming Languages, Munich (January 1987), 111-119.
J. Jaffar, J-L. Lassez & M.J. Maher, A Theory of Complete Logic Programs with
Equality, Journal of Logic Programming 1, 211-223, 1984.

J. Jaffar, J-L. Lassez & M.J. Maher, A Logic Programming Language Scheme,
in: Logic Programming: Relations, Functions and Equations, D. DeGroot and G.
Lindstrom (Eds), Prentice-Hall, 441-467, 1986.

J. Jaffar, M.J. Maher, P.J. Stuckey & R.H.C. Yap, Projecting CLP(®) Con-
straints, New Generation Computing, 11, 449-469, 1993.

J. Jaffar, S. Michaylov, P. Stuckey & R. Yap, The CLP(R) Language and System,
ACM Transactions on Programming Languages, 14(3), 339-395, 1992.

J. Jaffar, S. Michaylov & R. Yap, A Methodology for Managing Hard Constraints
in CLP Systems, Proc. ACM-SIGPLAN Conference on Programming Language
Design and Implementation, 306-316, 1991.

J. Jaffar, S. Michaylov, P. Stuckey & R.H.C. Yap, An Abstract Machine for
CLP(R), Proceedings ACM-SIGPLAN Conference on Programming Language
Design and Implementation, 128-139, 1992.

J. Jaffar and P. Stuckey, Canonical Logic Programs, Journal of Logic Program-
ming 3, 143-155, 1986.

S. Janson & S. Haridi, Programming Paradigms of the Andorra Kernel Language,
Proc. International Logic Programming Symposium, 167-183, 1991.

N. Jorgensen, K. Marriott & S. Michaylov, Some Global Compile-time Opti-
mizations for CLP(R), Proceedings 1991 International Logic Programming Sym-
posium, 420-434, 1991.

J. Jourdan & R.E. Valdés-Pérez, Constraint Logic Programming Applied to Hy-
pothetical Reasoning in Chemistry, Proceedings North American Conference on
Logic Programming, 154-172, 1990. (Page 161 should follow page 166.)

K. Kanchanasut & C. Sumetphong, Floor Planning Applications in CLP(R),
Proc. JICSLP Workshop on Constraint Logic Programming, 36—44, 1992.

L.G. Khachian, A polynomial algorithm in linear programming, Soviet Math.
Dokl., 20(1), 191-194, 1979.

J. de Kleer and G.J. Sussman, Propagation of Constraints Applied to Circuit
Synthesis, Circuit Theory and Applications 8, 127-144, 1980.

P. Kanellakis, J-L. Lassez & V. Saraswat (Eds), Principles and Practice of Con-
straint Programming, MIT Press, to appear.

P. Kanellakis, G. Kuper & P. Revesz, Constraint Query Languages, Journal of
Computer and System Sciences, to appear. Preliminary version appeared in Proc.
9th ACM Symp. on Principles of Database Systems, 299-313, 1990.

P. Kanellakis, S. Ramaswamy, D.E. Vengroff & J.S. Vitter, Indexing for Data
Models with Constraints and Classes, Proc. ACM Symp. on Principles of Data-
base Systemns, 1993.

D. Kemp, K. Ramarchanarao, I. Balbin & K. Meenakshi, Propagating Con-
straints in Recursive Deductive Databases, Proc. North American Conference
on Logic Programming, 981-998, 1989.

D. Kemp & P. Stuckey, Analysis based Constraint Query Optimization, Proc.
10th International Conference on Logic Programming, 666—682, 1993.

V. Klee & G.J. Minty, How good is the Simplex algorithm?, in: Inequalities-III,

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

79

O. Sisha (Ed), Academic Press, New York, 159-175, 1972

A. Klug, On Conjunctive Queries Containing Inequalities, Journal of the ACM
35, 1, 146-160, 1988.

A Koscielski & L. Pacholski, Complexity of Unification in Free Groups and Free
Semigroups, Proc. 81st Symp. on Foundations of Computer Science, 824-829,
1990.

R. Krishnamurthy, R. Ramakrishnan & O. Shmueli, A Framework for Testing
Safety and Effective Computability of Extended Datalog, Proc. ACM Symp. on
Management of Data, 154-163, 1988.

C.A.C. Kuip, Algebraic Languages for Mathematical Programming, European
Journal of Operations Research 67, 256-51, 1993.

K. Kunen, Negation in Logic Programming, Journal of Logic Programming, 4,
289-308, 1987.

D. Ladret & M. Rueher, Contribution of Logic Programming to support Telecom-
munications Protocol Tests, Proc. 10th International Conference on Logic Pro-
grammang, 845—846, 1993.

S. Lakmazaheri & W. Rasdorf, Constraint Logic Programming for the Analysis
and Partial Synthesis of Truss Structures, Artificial Intelligence for Engineering
Design, Analysis, and Manufacturing 3(3), 157-173, 1989.

C. Lassez, Constraint Logic Programming: a Tutorial, in BYTE Magazine, Au-
gust 1987.

C. Lassez, K. McAloon & R. Yap, Constraint Logic Programming and Options
Trading, [EEE Ezpert 2(3), Special Issue on Financial Software, August 1987,
42-50.

C. Lassez & J-L. Lassez, Quantifier Elimination for Conjunctions of Linear Con-
straints via a Convex Hull Algorithm, in: Symbolic and Numeric Computation
for Artificial Intelligence, B. Donald, D. Kapur and J.L. Mundy (Eds), Academic
Press, to appear. Also, IBM Research Report RC16779, T.J. Watson Research
Center, 1991.

J-L. Lassez, T. Huynh & K. McAloon, Simplifcation and Elimination of Redun-
dant Linear Arithmetic Constraints, Proc. North American Conference on Logic
Programming, Cleveland, 35-51, 1989.

J-L. Lassez, M. Maher & K.G. Marriott, Unification Revisited, in: Foundations
of Deductive Databases and Logic Programming, J. Minker (Ed), Morgan Kauf-
mann, 587-625, 1988.

J-L. Lassez & K.G. Marriott, Explicit Representation of Terms Defined by
Counter Examples, Journal of Automated Reasoning, 3, 301-317, 1987.

J-L. Lassez & K. McAloon, A Canonical Form for Generalized Linear Con-
straints, Journal of Symbolic Computation, to appear.

J-L. Lassez & K. McAloon, A Constraint Sequent Calculus, Proc. of Symp. on
Logic in Computer Science, 5262, 1990.

J-L. Lauriere, A Language and a Program for Stating and Solving Combinatorial
Problems, Artificial Intelligence 10, 29-127, 1978.

W. Leler, Constraint Programming Languages: Their Specification and Genera-
tion, Addison-Wesley, 1988.

H.F. Leung, Distributed Constraint Logic Programming, Vol. 41, World-Scientific
Series in Computer Science, World-Scientific, 1993.

Liang-Liang et.al., APPLAUSE: Applications Using the ElypSys Parallel CLP
System, Proc. 10th International Conference on Logic Programming, 847—848,
1993.

J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag, Second Edi-
tion, 1987.

J.W. Lloyd & R.W. Topor, Making Prolog More Expressive, Journal of Logic

80

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

Programming, 1, 93-109, 1984.

K. McAloon & C. Tretkoff, 2LP: A Logic Programming and Linear Programming
System, Brooklyn College Computer Science Technical Report No 1989-21, 1989.
A. McDonald, P. Stuckey & R. Yap, Redundancy of Variables in CLP(R), Proc.
International Logic Programming Symposium, 75-93, 1993.

J. McKinsey, The Decision Problem for Some Classes of Sentences Without
Quantifiers, Journal of Symbolic Logic, 8, 61-76, 1943.

M.J. Maher, Logic Semantics for a Class of Committed-Choice Programs, Proc.
4th International Conference on Logic Programming, 858—876, 1987.

M.J. Maher, Complete Axiomatizations of the Algebras of Finite, Rational and
Infinite Trees, Proc. 8rd. Symp. Logic in Computer Science, 348—357, 1988. Full
version: IBM Research Report, T.J. Watson Research Center.

M.J. Maher, A CLP View of Logic Programming, Proc. Conf. on Algebraic and
Logic Programming, LNCS 632, 364-383, 1992.

M.J. Maher, A Transformation System for Deductive Database Modules with
Perfect Model Semantics, Theoretical Computer Science 110, 377-403, 1993.
M.J. Maher, A Logic Programming View of CLP, Proc. 10th International Con-
ference on Logic Programming, 737-753, 1993. Full version: IBM Research Re-
port, T.J. Watson Research Center.

M.J. Maher & P.J. Stuckey, Expanding Query Power in CLP Languages, Proc.
North American Conference on Logic Programming, 1989, 20-36.

G.S. Makanin, The Problem of Solvability of Equations in a Free Semigroup,
Math. USSR Sbornik 32(2), 129-198, 1977. (English translation, AMS 1979).
H. Mannila & E. Ukkonen, On the Complexity of Unification Sequences, Proc.
3rd International Conference on Logic Programming, 122-133, 1986.

A. Mantsivoda, Flang and its Implementation, Proc. Symp. on Programming
Language Implementation and Logic Programming, LNCS 714, 151-166, 1993.
K.G. Marriott & P.J. Stuckey, The 3 R’s of optimizing constraint logic pro-
grams: Refinement, removal and reordering, Proc. 20th ACM Symp. Principles
of Programmaing Languages, 334-344, 1993.

K.G. Marriott & P.J. Stuckey, Semantics of CLP Programs with Optimization,
Technical Report, University of Melbourne, 1993.

K. Marriott, H. Sgndergaard, P.J. Stuckey, R.H.C. Yap, Optimising Compilation
for CLP(R), Proc. Australian Computer Science Conf., 1994.

U. Martin & T. Nipkow, Boolean Unification - The Story So Far, Journal of
Symbolic Computation, 7, 275-293, 1989.

MathLab, MACSYMA Reference Manual, The MathLab Group, Laboratory for
Computer Science, MIT, 1983.

S Michaylov & F. Pfenning, Higher-Order Logic Programming as Constraint
Logic Programming, Ist. Workshop on Principles and Practice of Constraint
Programming, 1993.

S. Michaylov, Design and Implementation of Practical Constraint Logic Pro-
gramming Systems, Ph.D. Thesis, Carnegie Mellon University, Report CMU-
(CS-92-16, August 1992.

D. Miller, A Logic Programming Language with Lambda-abstraction, Function
Variables, and Simple Unification, in Eztensions of Logic Programming: Inter-
national Workshop, Springer-Verlag LNCS 475, 253-281, 1991.

D. Miller & G. Nadathur, Higher-Order Logic Programming, Proc. 3rd Interna-
tional Conference on Logic Programming, 448—462, 1986.

U. Montanari & F. Rossi, Graph Rewriting for a Partial Ordering Semantics of
Concurrent Constraint Programming, Theoretical Computer Science 109, 225—
256, 1993.

K. Mukai, Anadic Tuples in Prolog, Technical Report TR-239, ICOT, Tokyo,

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.
211.

212.

213.

214.

215.

81

1987.

1.S. Mumick, S.J. Finkelstein, H. Pirahesh & R. Ramakrishnan, Magic Condi-
tions, Proc. 9th ACM Symp. on Principles of Database Systems, 314-330, 1990.
L. Naish, Automating Control for Logic Programs, Journal of Logic Program-
ming, 2, 167-183, 1985.

L. Naish, Negation and Control in PROLOG, Lecture Notes in Computer Science
238, Springer-Verlag, 1986.

G. Nelson, JUNO, A Constraint Based Graphics System, Computer Graphics
19(3), 235-243, 1985.

A. Nerode & W. Kohn, Hybrid Systems and Constraint Logic Programming,
Proc. 10th International Conference on Logic Programming, 18—-24, 1993.

W. Older & F. Benhamou, Programming in CLP(BNR), 1st. Workshop on Prin-
ciples and Practice of Constraint Programming, 1993.

M.S. Paterson & M.N. Wegman, Linear Unification, Journal of Computer and
System Sciences 16, 158-167, 1978.

F. Pfenning, Logic Programming in the LF Logical Framework, in: Logical
Frameworks, G. Huet and G. Plotkin (Eds), Cambridge University Press, 149-
181, 1991.

A. Podelski & P. van Roy, The Beauty and the Beast Algorithm: Testing Entail-
ment and Disentailment Incrementally, draft manuscript, 1993.

T. Le Provost & M. Wallace, Generalized Constraint Propagation over the CLP
Scheme, Journal of Logic Programming, 16, 319-359, 1993.

T. Przymusinski, On the Declarative Semantics of Deductive Databases and
Logic Programs, in: Foundations of Deductive Databases and Logic Programming,
J. Minker (Ed), Morgan Kaufmann, 193-216, 1988.

A. Rajasekar, String Logic Programs, draft manuscript, Dept. of Computer Sci-
ence, Univ. of Kentucky, 1993.

V. Ramachandran & P. van Hentenryck, Incremental Algorithms for Constraint
Solving and Entailment over Rational Trees, Proc. 18th Conf. on Foundations
of Software Technology and Theoretical Computer Science, 1993.

R. Ramakrishnan, Magic Templates: A Spellbinding Approach to Logic Pro-
grams, Journal of Logic Programmaing, 11, 189-216, 1991.

G. Ramalingam & T. Reps, A Categorized Bibliography on Incremental Compu-
tation, Proc. 17th ACM Symp. on Principles of Programming Languages, 502—
510, 1993.

P. van Roy & A.M. Despain, The Benefits of Global Dataflow Analysis for an
Optimizing Prolog Compiler, Proceedings 1990 North American Conference on
Logic Programmang, 501-515, 1990.

M. Rueher, A First Exploration of ProloglII’s Capabilities, Software—Practice
and Ezperience 23, 177-200, 1993.

K. Sakai, Y. Sato & S. Menju, Boolean Groebner Bases, to appear.

Y. Sagiv & M. Vardi, Safety of Datalog Queries over Infinite Databases, Proc.
ACM Symp. on Principles of Database Systems, 160-171, 1989.

V. Saraswat, CP as a General-purpose Constraint-language, Proc. AAAI-87,
1987.

V. Saraswat, A Somewhat Logical Formulation of CLP Synchronization Prim-
itives, Proc. 5th International Conference Symposium on Logic Programming,
1298-1314, 1988.

V. Saraswat, Concurrent Constraint Programming Languages, Ph.D. thesis,
Carnegie-Mellon University, 1989. Revised version appears as Concurrent Con-
straint Programming, MIT Press, 1993.

V. Saraswat, The Category of Constraint Systems is Cartesian-Closed, Proc.
Symp. on Logic in Computer Science, 341-345, 1992.

82

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

V. Saraswat, D. Weinbaum, K. Kahn, & E. Shapiro, Detecting Stable Proper-
ties of Networks in Concurrent Logic Programming Languages, Proc. 7th. ACM
Symp. Principles of Distributed Computing, 210-222, 1988.

V. Saraswat, M. Rinard & P. Panangaden, Semantic Foundation of Concurrent
Constraint Programming, Proc. 18th ACM Symp. on Principles of Programming
Languages, 333-352, 1991.

V. Saraswat, A Retrospective Look at Concurrent Logic Programming, in prepa-
ration.

K. Satoh & A. Aiba, Computing Soft Constraints by Hierarchical Constraint
Logic Programming, Journal of Information Processing, 7, 1993, to appear.

D. Scott, Domains for denotational semantics, Proc. ICALP, 777 LNCS 140,
1982.

E. Shapiro, A Subset of Concurrent Prolog and its Interpreter, Technical Report
(CS83-06, Dept of Applied Mathematics, Weizmann Institute of Science, 1983.
E. Shapiro, Logic Programs with Uncertainties: A Tool for Implementing Expert
Systems, Proc. 8th. IJCAI 529-532, 1983.

J.R. Shoenfield, Mathematical Logic, Addison-Wesley, 1967.

J. Siekmann, Unification Theory, Journal of Symbolic Computation, T, 207-274,
1989.

H. Simonis & M. Dincbas, Propositional Calculus Problems in CHIP, in: Con-
straint Logic Programming: Selected Research, F. Benhamou and A. Colmerauer
(Eds.), MIT Press, 269-285, 1993.

H. Simonis, Formal Verification of Multipliers, Proceedings of the IFIP
TC10/WG10.2/WG10.5 Workshop on Applied Formal Methods for Correct
VLSI Design, Leuven, Belgium, November 1989.

H. Simonis, Test Generation using the Constraint Logic Programming language
CHIP, Proc. 6th International Conference on Logic Programming, 1989.

H. Simonis & M. Dincbas, Using an extended prolog for digital circuit design,
IEEE International Workshop on AI Applications to CAD Systems for Electron-
tcs, Munich, W.Germany, 165-188, October 1987.

H. Simonis & M. Dincbas, Using Logic Programming for Fault Diagnosis in Dig-
ital Circuits, German Workshop on Artificial Intelligence (GWAI-87), Geseke,
W. Germany, 139-148, September 1987.

H. Simonis & T. Graf, Technology Mapping in CHIP, Technical Report TR-LP-
44, ECRC, Munich, 1990.

H. Simonis, H. N. Nguyen & M. Dincbas, Verification of digital circuits using
CHIP, Proceedings of the IFIP WG 10.2 International Working Conference on
the Fusion of Hardware Design and Verification, Glasgow, Scotland, July 1988.
H. Simonis & T. Le Provost, Circuit verification in chip: Benchmark results.
Proceedings of the IFIP TC10/WG10.2/WG10.5 Workshop on Applied Formal
Methods for Correct VLSI Design, Leuven, Belgium, 125-129, November 1989.
R. Skuppin & T. Buckle, CLP and Spacecraft Attitude Control, Proc. JICSLP
Workshop on Constraint Logic Programming, 45-54, 1992.

G. Smolka, Residuation and Guarded Rules for Constraint Logic Programming,
in: Constraint Logic Programming: Selected Research, F. Benhamou and A.
Colmerauer (Eds.), MIT Press, 405-419, 1993.

G. Smolka & R. Treinen, Records for Logic Programming, Journal of Logic Pro-
gramming, to appear. Also in: Proceedings of the Joint International Conference
and Symposium on Logic Programming, 240-254, 1992.

D. Srivastava, Subsumption and Indexing in Constraint Query Languages with
Linear Arithmetic Constraints, Annals of Mathematics and Artificial Intelligence
8, 315-343, 1993.

D. Srivastava & R. Ramakrishnan, Pushing Constraint Selections, Journal of

238.

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.
254.

255.

256.

257.

258.

259.

83

Logic Programmaing, 16, 361-414, 1993.

R.M. Stallman & G.J. Sussman, Forward Reasoning and Dependency Directed
Backtracking in a System for Computer Aided Circuit Analysis, Artificial Intel-
ligence 9, 135-196, 1977.

T. Sthanusubramonian, A Transformational Approach to Configuration Design,
Master’s thesis, Engineering Design Research Center, Carnegie Mellon Univer-
sity, 1991.

G. Steele & G.J. Sussman, CONSTRAINTS - A Language for Expressing Almost
Hierarchical Descriptions, Artificial Intelligence 14(1), 1-39, 1980.

G.L. Steele, The Implementation and Definition of a Computer Programming
Language Based on Constraints, Ph.D. Dissertation (MIT-AI TR 595), Dept. of
Electrical Engineering and Computer Science, M.I.T. 1980.

M. Stickel, Automated Deduction by Theory Resolution, Journal of Automated
Reasoning 1, 333-355, 1984.

P.J. Stuckey, Incremental Linear Constraint Solving and Detection of Implicit
Equalities, ORSA Journal of Computing, 3, 269-274, 1991.

P. Stuckey, Constructive Negation for Constraint Logic Programming, Proc.
Logic in Computer Science Conference, 328-339, 1991.

D. Subramanian & C-S. Wang, Kinematic synthesis with configuration spaces,
Proc. Qualitative Reasoning 1993, D. Weld (ed), 228-239, 1993.

I. Sutherland, A Man-Machine Graphical Communication System, PhD thesis,
Massachusetts Institute of Technology, January 1963.

A. Tarski, A Decision Method for Elementary Algebra and Geometry, University
of California Press, 1951.

A. Taylor, LIPS on a MIPS: Results from a Prolog Compiler for a RISC, Pro-
ceedings 7Tth International Conference on Logic Programming, 174-185, 1990.

S. Terasaki, D.J. Hawley, H. Sawada, K. Satoh, S. Menju, T. Kawagishi, N.
Iwayama & A. Aiba, Parallel Constraint Logic Programming Language GDCC
and its Parallel Constraint Solvers, Proc. International Conference on Fifth Gen-
eration Computer Systems 1992, Volume I, 330-346, 1992.

E. Tick, The Deevolution of Concurrent Logic Programming Languages, draft
manuscript, 1993.

J.C. Tobias, II, Knowledge Representation in the Harmony intelligent tutoring
system, Master’s thesis, Department of Computer Science, University of Califor-
nia at Los Angeles, 1988.

B.M. Tong & H.F. Leung, Concurrent Constraint Logic Programming on Mas-
sively Parallel SIMD Computers, Proc. International Logic Programming Sym-
posium, 388-402, 1993.

E. Tsang, Foundations of Constraint Satisfaction, Academic Press, 1993.

A. Véron, K. Schuerman, M. Reeve & L.L. Li, Why and How in the ElipSys
OR-parallel CLP system, Proc. Conf. on Parallel Architectures and Languages
Europe, 291-303, 1993.

J.S. Vitter & Ph. Flajolet, Average-case Analysis of Algorithms and Data Struc-
tures, Handbook of Theoretical Computer Science, Vol. A, Elsevier Science Pub-
lishers, Amsterdam, 431-524, 1990.

P. Voda, The Constraint Language Trilogy: Semantics and Computations, Tech-
nical Report, Complete Logic Systems, 1988.

P. Voda, Types of Trilogy, Proc. 5th International Conference on Logic Program-
ming, 580-589, 1988.

C. Walinsky, C LP(Xx): Constraint Logic Programming with Regular Sets, Proc.
6th International Conference on Logic Programming, 181-196, 1989.

M. Wallace, A Computable Semantics for General Logic Programs, Journal of
Logic Programmang 6, 269-297, 1989.

84

260.

261.

262.

263.

264.

265.

266.

M. Wallace, Applying Constraints for Scheduling, in: Constraint Programming,
B. Mayoh, E. Tyugu and J. Penjaam (Eds), NATO Advanced Science Institute
Series, Springer-Verlag, 1994.

D.H.D. Warren, An Abstract PROLOG Instruction Set, Technical note 309, AI
Center, SRI International, Menlo Park (October 1983).

D.H.D. Warren, The Andorra Principle, presented at the Gigalips Workshop,
1987.

M. Wilson & A. Borning, Hierarchical Constraint Logic Programming, Journal
of Logic Programming, 16, 277-318, 1993.

Roland Yap, Restriction Site Mapping in CLP(R), Proceedings 8" International
Conference on Logic Programming, MIT Press, June 1991, 521-534.

Roland Yap, A Constraint Logic Programming Framework for Constructing
DNA Restriction Maps, Artificial Intelligence in Medicine, 5, 447-464, 1993.
Roland Yap, Contributions to CLP(R), Ph.D. thesis, Department of Computer
Science, Monash University, January 1994 (expected).

