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THE TABLEAU METHOD FOR TEMPORAL LOGIC:
AN OVERVIEW

Pierre WOLPER

Abstract: An overview of the tableau decision method for propositio-
nal temporal logic is presented. The method is described in detail for
linear time temporal logic. It is then discussed how it can be applied to
other variants of temporal logic like branching time temporal logic and
extensions of linear time temporal logic, Finally, applications of
temporal logics to computer science are reviewed.,

L. Introduction

Temporal logic (TL) has been studied as a branch of logic for
several decades. It was developed as a logical framework to formalize
reasoning about time, temporal relations such as **before™ or “*after:,
and related concepts such as tenses. TL is closely related to the modal
logic of necessity ((HC68]) which atlempts to formalize the notions of
possible and necessary truth. As temporal logic can in fact be viewed
as a special case of modal logic, its origins can also be traced to those
of that theory, Tableau decision procedures for temporal and modal
logic have been known for some time. An account of earlier work on
temporal logic can be found in either the book of Prior {[Pr67) or of
Rescher and Urquhart ((RU71]).

In [Pn77], it was suggested that temporal togic could be a useful tool
to formalize reasoning about the execution sequence of programs and
especially of concurrent programs. In that approach, the sequence of
states a machine goes through during a computation is viewed as the
temporal sequence of worlds described by TL. Since then, several
researchers have been using TL 1o state and prove propeities of
concurrenl programs (e.g. [GPSS80], [La$0], [OL80], [BP30],
[MP81], [CESS3], [MP83], [MW34]}, protocols (e.g. [HaB0], [HOB1],
[SM81}, [SM82], [Vo82], [SS82], [SMV83), [SPE84], and hardware
(e.g. [Bo82], [MOB1}, [HMMS3], [M083)).
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In this paper, we first define the propositional version of linear time
temporal logic. We then describe the tableau decision procedure for
PTL. We also review other variants of temporal logics and state
results about their decision problems. And finally, we discuss the use
of temporal logic in computer science.

2. Propositional Temporal Logic

We define here the propositional version of temporal logic (PTL).
We have chosen one of the most common versions appearing in the
computer science literature. In contrast to the temporal logics studied
in phitosophical logic it contains only temporal operators dealing with
the “*future’ and no operators concerning the **past’’,

Syntax: PTL formulas are built from \

e A set & of atomic propositions: p,, D2, Pa, ...

o Boolean connectives: A, —,

e Temporal operators: O (*‘next’’), & (“eventually™),
U (tuntil™).

The formation rules are:

e An atomic proposition p £ is a formula,
e If f; and f; are formulas, so are '

Sif2, =1, Ofr, Ofy, UL

We use [1 {"*always™) as an abbreviation for < —, We also use v
and o as the usual abbreviations, and parentheses to resolve ambi-
guities. '

Semantics: A structure for a PTL. formula (with set # of atomic
propositions) is a triple o = (S, N . ) where

e 5 is a finite or enumerable set of states.

® N: (§—35) is a total successor function that for each state
gives a unique next state,

® 7t: (S—2%) assigns truth values to the atomic propositions of
the language in each state, '
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For a structure o and a state s €5 we have

o, s)e=p  iff pem(s)

o, s)=fi AL I (W, 5)=f and (0,8 £,

(o, s} =—f iff not {o/,s)k=f

(o, 5V=0f iff {/,N()HEf
in the following definitions, we denote by N'(s) the i state in the
sequence

5, N(s), NIN(s), NIN(N(s))), ...
of successsors of a state s.

o, s)=Cf WM (3iz )il , N (5)) =)
W, s)=fiUf, HE iz 0)({, N (s))=f, A
ViO=sj<io, N) =)
Aninterpretation # = (o ,5,) for PTL consists of a structure o/ and
an initial state s, €5, We will say that an interpretation . = (o7, ;)
satisfies a formula fiff (o, s, ) =f. Since an interpretation # uniquely
determines a sequence

g = SO’ N(So), NZ(SO), Ns(so), an

we will often say ‘‘the sequence o satisfies a formula’” instead of *‘the
interpretation .# satisfies a formuia™. The satisfiability problem for
PTL is, given a formula f, to determine if there is some interpretation
that satisfies f(i.e., amadel of f). In the next section, we describe the
tableau method for the satisfiability problem of PTL.

Examples :
1} The formula

”

is satisfied by all sequences in which p is true in the first state.
2) The formula

Oip o04q)

is satisfied by all sequences where each state in which p is true is
followed by a state in which ¢ is true.
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3} The formula
Op 20(—g unry

is satisfied by all sequences where if p is true in a given state, then,
from the next state on, g is always false until the first state where r is
true. .
4) The formula

5p

is satisfied by all sequences in which g is true infinitely often.
5} The formula

Op A O—p

is not satisfied by any sequence.
6} The formuia b

Cp o(—pUp)

is satisfied by all sequences (it is valid).

3. The Tableau Method Jor PTI,

The tableau method for PTL is an extension of the tableau method
for propositional logic (see [Sm68]). Boolean connectives are handled
exaclly as for propositional logic and temporal connectives are
handled by decomposing them into a requirement on the “‘current
state™ and a requirement on ‘‘the rest of the sequence™. This
decomposition of the. temporal connectives makes the tableau into a
state by state search for a model of the formuia being considered. The
decomposition iules for the temporal operators are based on the
following identities -

Sf =voor (1}
UL = v, AOY, UL, (2)

Given that decomposing formulas using identities (1-2) does not make
them smaller, the tableay might be infinite. However, we will insure
that the tableay is finite by identifying the nodes of the tableau that are
labeled by the same set of lormulas. Note that in the tableau method
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for propositional logic this is not necessary as the tableau is always a
finite tree. Another difference is that oblaining a tableau with no
propositional inconsistencies for a formula f is not a guarantee that fis

satisfiable. Indeed, formulas of the form Ofyor(fy U S5} which we call

eventualities might not be satisfied. The prablem is that, for instance

for a formula Of, the tableau rule based on (1) will allow us to

continuously postpone the point at which f; is satisfied. This corres-
ponds to always choosing the O <f disjunct in (1), We will thus have

t0 add an extra step to the tableau method which will eliminate nodes

containing eventualities that are not satistiable.

More precisely, to test a PTL formula f for satisfiability, the tableau
method constructs a directed graph. Each node n of the graph is
labeled by a set of formulas T,. Initially, the graph contains exactly
one node, labeled by {f}. To describe the construction of the graph,
we distinguish between elementary and non-elementary formulas.
Elementary formulas are those whose main connective is O (we call
these O-formulas) or that are either atomic propositions. or negations
of atomic propositions. The construction of the graph proceeds by
using the lollowing decomposition rules which map each non-ele-
mentary formula f into a set & of sets S, of formutas f;:

- > {1

—Of - {0}

Y R A,

U ALY - ({~fib A}

Of > {{f1. {0 O

SOf o {{—f, -0 Of)
LUL > UALIALOG UAY

During the construction, to avoid decomposing the same formuli
twice, we will mark the formulas to which & decomposition rule has
been applied (we don’t simply discard them as we will need them
when checking if eventualities are satisfied). Once the graph is
constructed, we eliminate unsatisfiable nodes.

The graph construction proceeds as follows:

1) Start with a node labeled by {f} wheref'is the formula to be (ested.
We will call f the initial formula and the corresponding node the
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initial node. Then repeatedly apply steps 2) and 3). In these steps,
when we say “‘create a son of node 1 labeled by a set of formulas
T, we mean create a node if the graph does not already contain a
node labeled by T. If it does, we Jjust create an edge from » to the
already existing node.

2) If a node n labeled by T, contains an unmarked non-elementary
formula f and the tableau rule for f'is f— {S,}, then, for each §,,
create a son of n labeled by (T, - {/}) U S, U {f*} where f* is f
marked,

3) If a node # contains only elementary and marked formulas, then.
create a son of n labeled by the O-formulas =T, with their
outermost O removed.

A node containing only elementary or marked formulas will be called

astate. And, a node that is either the initial node or the immediate son

of a state will be called a pre-state. \

Given the form of the tableau rules, the formulas labeling the nodes
of the graph are subformulas or negations of subformulas of the initial
formula or such formulas preceded by O. The number of these
formulas is equal to 4/, where / is the length of the initial formula. The
number of nodes in the graph is then at most equal to the number of
sets of such formulas, that is 2¥.

At this point, to decide satisfiability, we have to eliminate the
unsatisfiable nodes of the graph. We repeatedly apply the following
three rules.

El: If a node contains both a proposition p and its negation —p,
eliminate that node.

E2; If all the successors of a node have been climinated, eliminate
that node.

E3: If a node which is a pre-state contains a formula of the form <f
or f; U f; that is not satisfiable (see below), eliminate that node.

To determine if a formula <f or J1 U f5 is satisfiable, one uses the/]

following rule:

FI: Aformula Of; or f; U £, is satisfiable in a pre-state, if there is a
path in the tableau leading from that pre-state to a node contaj-
ning the formula f;.

The decision procedure ends after aill unsatisfiable nodes have been
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eliminated. If the initial node has been eliminated, then the injtial
formula is unsatisfiable, if not it is satisfiable.

Example :

Consider the formula Tip A < —p. The tableau obtained for this
formula by the algorithm we have just described is the one appearing
in figure 1.

I {Op A& —p} pvf’—"-sf'“h”’

5 {Dp A <>-1p+:-]

Op, <O —p
Op A O —pr
340p%, O —p

p.OOp
Op A O—px : Op A & —px .
Opx, &—px s Cips , O —px | exlo®
p,00p p,O0p

T l—p OO —p

PR ' .

o 6 {Op, &—p}

~ Opw, < —p
p.COp
Upgs Omp] LipF, & —p
8 ip,00p A Y ip, o0p £
—p OO —p

Figtre 1
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In this tableau, the initial node is 1 ; the states are 4,5,8and 9; and
the pre-states are 1 and 6. Nodes 4 and 8, contain a proposition (p) and
its negation, they are thus unsatisfiable and are eliminated by rule E1.
Node 6 is a pre-state and contains an eventuality formula (< —p) that
is not satisfiable as there is no path leading from 6 to a node containing
—p (node 8 is eliminated). The other nodes are then eliminated by
rule E2 and the formula is found to be unsatisfiable. ,

It is easy to see that the decision procedure requires time and space
exponential in the length / of the initial formula. Actually, it is possible
to test a PTL formula for satisfiability using only polynomial space.
The satisfiability problem for PTL is in fact complete in PSPACE. For
a discussion of the complexity of PTL, see [SC82] and [WVS83]. The
correctness of the tableau method we have just described is establis-

hed by the following theorem: \

Theorem I: An PTL formula f is satisfiable iff the initial node of the
graph generated by the tableau decision procedure for that formula
is not eliminated.

Proof':

a) If the initial node is eliminated, then f is unsatisfiable. (Cow,p}(—rm&@)

| We prove by induction that if a node in the tableau labeled by

{f1,....fs} is eliminated, then {f,,....f.} is unsatisfiable.

v Case 1: The node was eliminated by rule EI. It thus contains 2
proposition and its negation and is unsatisfiable.

Case 2: The node is eliminated by rule E2 and is not a state. The sons
of that node were created using a tableau rule f — {S,}. It is easy to
check that for each of these tableau rules, £ is satisfiable if at least
one of the §; is satisfiable. As all the successor nodes have been
climinated, they all contain unsatisfiable sets of formulas and the
initial node contains the unsatisfiable formula f.

'/Case 3: The node is eliminated by rule E2 and is a state. Thus, the set
of all the O-formulas in the node is unsatisfiable and so is the set of
all formulas in the node.

Case 4: The node was eliminated by using rule E3. Hence, there is an
eventuality in the node that is not satisfiable on any path in the
tableau. As any model corresponds to some path in the tableau, the
eventuality is unsatisfiable and so is the set of all formulas in the
node.

hrcs.
feop, 3.4 (T

Ruch Ea‘{',' Dotauin! £
ch-lafikj .
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b) If the initial node is not eliminated, then f is satisfiable. (5‘3(-"?‘5]‘-’“'9?35:\)

To prove this, we have to show that if the initial node is not
eliminated, there is a model of the initial formula. First notice that
except for satistying evenualities, a path through the tableau starting
with the initial node defines a mode! of the initil formula. We thus
only have to show that we can construct a path through the tableau on
which all eventualities are satisfied. It can be done xs follows.

For each pre-state in the graph, unwind a path from that pre-state
such that all the eventualities it contains are satisfied on that path.
This is done by satisfying the eventualities one by one. If one of the
eventualities is selected, it is possible to find a path on which that
eventuality is satisfied and whose last node is a pre-state {(if not the
node would have been eliminated). Now, given the tableau rules, the
eventualities that are not satisfied will appear in the last node of that
path and hence the path can be extended (o satisfy 2 second
eventuality. By repeating this construction, one obtains a path on
which all eventualities are satisfied. Once all these paths are cons-
tructed, we link them together. The model obtatned has the following
form:

Sa—=2 8> 8— .., \ m

} me

- A complete axiomatization of PTL can be obtained from the tableau
method in the uguai way. The only point worthy of interest is the
axiom corresponding to the elmination rule E3. That axiom is
basically an induction axiom for the < operator. {Wo83] contains a
complete axiomatization of PTL and a proof of completeness.

-

4. Other Temporal Logics

Extensions of Linear Time Temporal Logic
8

A simple property like even (p}, meaning that p is true in every even
state of a sequence and might be true or false in odd states is not
expressible in the temporal logic we have discussed in the previous
section. This led to the definition of an extended temporal logic (ETL)
in [Wo83]. The extended temporal logic is based on the observation
that one can extend PTL with operators corresponding to arbitrary
right-linear grammars. The operators O, <, and U of PTL are in fact
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special cases of this more general class of operators. One of the
important features of ETL js that it also has a tableau decision
procedure similar to the one we have described for PTL (see [Wo83]j).
In[WVS83], several alternative definitions of ETL are considered and
their expressiveness and complexity are characterized.,

Quantified Temporal Logic

Another way to extend linear time propositional temporal logic is to
allow quantification of propositional variables. The resulting logic,
quantified propositional temporal logic (QPTL) is decidable, . but
unfortunately is of non-elementary complexity. The known decision
procedures are by reduction to Sn.S or by using automata theoretic
techniques ([Si83], [Wo82]). Interestingly, the expressiveness of

QPTL and of ETL is the same [WVS83].
\

Branching Time Temporal Logics

In the interpretations of linear time temporal logic, each state has
exactly one successor. That is the reason for the name ““linear time’’.
If one deals with a situation where there are several possible futures
(in computer science, thjs is the case if one deals with a non-determi-
nistic program), the **linear time”’ assumption no longer holds. This
led to the development of branching time temporal logics (BTL) that
are interpreted over structures where each state can have several
SUCCessors. ‘

Formulas of branching time temporal logic are similar to formulas of
linear time lemporal logic with the addition of path quantifiers. Path
quantifiers (V and 3) are used to specify to which paths the temporal
logic formula applies. For example, ¥ Op is true in a state, if on all
paths from that state there is a state -satisfying p. Depending on how
the path quantifiers and temporal logic formulas are allowed to
interact, one defines a variety of branching time temporal.logics.

One of the simplest of the branching time temporal logics is the logic
UB described in [BMPS 1]. In that logic, path quantifiers and temporal
Operators are required to always appear together. In other words, UB
can be viewed as PTL where each of the temporal operators O, O,
and U is replaced by two operators, YO and 30, ¥ < and 3 O, VU
and 3U. The logic UB also has a tablean decision procedure similar to
the one described here for PTL., though slightly more complicated as
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the logic is interpreted over branching rather than linear structures.
{/B also has a simple complete axiomatization. However, the com-
plexity of the decision problem for UB s EXPTIME rather than
PSPACE as it is for the linear time temporal logics. In [EHE2], one
can find a thorough description of tableau-like decision procedures for
branching time temporal logic.

At the other end of the spectrum s the logic CTL* described in
[EH83]. In CTL*, one allows path quantifiers to apply to arbitrary
tinear  time  temporal logic  formulias. For  instance
VILICp AqUOR) is a CTL* formula. CTL* is strictly more
expressive than UB. Also, it is possible to define several logics that
are in between CTL* and UB as far as expressiveness. [EH83]
discusses all these logics and compares their expressiveness. As far as
decision procedures, the tableau method that we presented here does
not extend naturally to CTL*. At this point the only decision procedu-
res that are known for CTL* are based on automata theoretic methods
and require time triply or quadruply exponential (see [ES84], [VW8§3]
and { VW84] for a description,of these decision procedures). No simple
complete axiomatization is known for CTL*, Also, no precise caracte-
rization of its complexity is known. The best lower bound obtained is
exponential, whereas the best upperbound is triply exponential.

Interval Temporal Logic

A variation of temporal logic that has appeared recently is interval
temporal logic. Interval temporal logic is a variant of linear time
temporal logic that allows explicit description of intervals. Two
variants are currently in existence. One described in [SMV83] was
developed as a more convenient higher level extension of PTL for the
specification and verification of protocols. Its formulas combine the
description of an interval and a temporal logic statement concerning
that interval. For instance the formula [/] Cp states that the first time
the interval / appears, it satisfies (1p (i.e., all its states satisfy p). It is
not more expressive than PTL and there is a translation from its
formulas to PTL formutas. This gives a decision procedure for the
logic though it is no more a tableau decision procedure closely linked
to the syntax of the logic [PI83]. This interval temporal logic has no
known simple complete axiomatization.

A second interval temporal logic is described in [HMMB83] and
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[Mo83]. It was designed with the description of hardware as a goal. In
this logic, all statements are about intervals. Its fundamental opera-
tions are O which here maps an interval into its tail (the same interval
with the first state removed) and concatenation of intervals (;). These
two simple constructs make it into a very powerful language. Unfor-
tunately, it is undecidable in the general case and, the only known
decidable subset is of non-elementary complexity (see {Mo83]).

Probabilistic Temporal Logic

Yet another variant of temporal logic is probabilistic temporal legic.
Its development has been motivated by the appearance of probabilis-
tic algorithms. As branching time temporal logic, probabilistic tempo-
ral logic is interpreted over structures in which states have more than
one successor. The difference is that a probability is associated with
cach transition. The formulas of the logic then state that a given linear
time temporal logic formula holds on a set of paths that has probabitity
one. Three different variants of probabilistic temporal logic are
described in [LS82]. For each of these a complete axiomatization is
given. In [K1.83} double exponential decision procedures are given for
these logics.

First Order Temporal Logic

Up to this point we have been talking about propsitional temporal
logics. However, first order temporal logics are often used when for
instance stating properties of programs. Unfortunately, though axio-
matizations for first order temporal logics have been proposed (e.g.,
[Ma81]}), they are nol complete.

5. Use of Temporal Logic in Computer Science

In the last few years, temporal logic has been used in several
different areas of computer science. The main ones are the following.

Stating and Proving Properties of Concurrent Programs

This was the initial motivation when temporal logic was introduced
to the computer science community in [Pn77]. When reasoning about
a concurrent program, it is not sufticient to deal with its input output
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behavior, one has to consider the entire computation sequence. As
temnporal logic is geared towards describing sequences, it appeared
well suited for this problem. o

In this approach, one views the execution sequence of a program as
the sequence of states TL describes and one can state properties of
that sequence. As TL formulas do not allow us to explicitely represent
the program, it has to be encoded in a set of statements that basically
represent the allowable transitions in each state. This approach has
been further developed in [MP81], and [MPg3].

Related methods for specifying and proving the correctness of
toncurrent programs are described in [OL82] and [La83). In {OL82] a
proof method called proof lattices was introduced.

A method to check that finite state programs satisfy some temporal
logic specifications was proposed in [CESB3]. The idea is that a finite
state program can be viewed as a structure over which temporal logic
formulas can be interpreted. The problem of checking that the
program satisfies a given temporal formula is then equivalent to the
problem of checking that the structure corresponding to that program
is 2 model of the formula. In [CES83], it was pointed out that if one
uses the branching time logic [/B, this problem is in polynominal time,
which leads to attractive algorithms. Similar ideas were developed in
[QS82].

Another application related to the one we are now describing is the
study of fairness conditions and properties. When several processes
are running concurrently, the outcome of executing the program can
depend on how ressources are allocated to the various processes. For
example, if ressources are allocated evenly to all processes, the
program might terminate whereas if one of the processes does not
receive any ressources the program might get blocked. This had led to

specifying fuirness conditions on the execution of concurrent pro-

grams. These fairness conditions require a somewhat even distribu-
tion of ressources among the various processes. A large number of
different conditions have been proposed. Temporal logic has appea-
red to be a useful tool for stating and reasoning about these conditions
(see [LPS81], [QS82b], and [Pn83]).
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Synthesis of Concurrent Programs

A direct use of the decision procedure we described in this paper
has been the synthesis of the synchronization part of concurrent
programs. If one assumes that the various parts of a concurrent
program only interact through a finite number of signals, then their
interaction can be specified in propositional temporal logic. Now, if
one applies the tableau decision procedure to this specification, one
obtains a graph that can be viewed as a program satisfying those
specifications. Indeed, all executions of the program (paths through
the graph) satisfy the specification (if one ensures that eventualities
are satisfied). This approach was developed in [Wo82] and [MW84]
using a linear time temporal logic and in [CE81] using a branching time
temporal logic. A more informal approach to synthesi\s from temporal
logic specifications appears in.[RKS80].

Specification and Correctitess of Protocols

Communication protocols are another area where temporal logic
has been applied. Protocols can often be hard to implement correctly
and analyse. This is due to the fact that they are often quite intricate
and can exhibit unexpected behaviors. This has led to a lot of interest
in formal methods to specify and reason about protocols. Among
these methods temporal logic has played an important role. Again it is
its ability to describe sequences (e.g., the sequence of communica-
tions a protocol performs) that has made it attractive for this applica-
tion (see [Hai80}, [HO81], [SMB8I], (SS82], [SMV§3], [SPE84)).

Hardware

The development of always larger integrated circuits has made the
need for tools to specify and reason about such circuits more and
more necessary. Several researchers have tried to apply temporal
logic to this problem ([Bo82], {[MOS81], [HMMS3|, [Mo83]). The
technique of model checking introduced in [CES83] for concurrent
programs was applied to circuits in [CM84].

AT&T Bell Labaratories
Murray Hill, NJ 07974
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COMPUTATION OF TEMPORAL OPERATORS

Max MICHEL

Abstract: This paper exhibits a strong correspondance between linear
temporal logic and sequential machines with infinite input. The
method is effective and modular. It enables us to synthetise processes
from (generalised) temporal logic formulae and solve logic problems
by algorithms applied to machines. It increases our understanding of
the way temporal operators work.

S

1) Introduction

Nowadays parallelism is modelled in quite different manners. In
Temporal Logic, presented by Pnueli [PNUJ, it is possible to express
the behaviours of paraliel programs and to make proofs; it is well
fitted to describe, for instance, termination, fairness, absence of
deadlocks.

Other people prefere to start from the solid ground of formal
language theory and wish to express the problems of concurrency in
terms of language and automata (Arnold, Nivat [A-N], [NIV]: they
talk of “‘process languages™ and it is then possible to express different
properties such as being normal or central),

There exists a connection between these two approaches: it is
known that some parts of linear temporal logic can be encoded into
second order monadic arithmetics ; and Biichi [BUC] gave a decision
procedure for this logic by establishing a correspondence between
formulae and finite state automata with infinite input. But the methods
and the produced automata were rather difficult to use and to
understand.

Our method explains more precisely the relationship between a
certain temporal logic and automata: as a matter of fact, from a
semantic point of view, the operators or the formulae of discrete
propositional linear temporal logic can be seen as automata with
outputs or nondeterministic sequential machines they tauke as input



