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Abstract

We present a set of graphical and combinatorial algorithms for de-
signing mazes based on images. The designer traces regions of
interest in an image and annotates the regions with style parame-
ters. They can optionally specify a solution path, which provides a
rough guide for laying out the maze’s actual solution. The system
uses novel extensions to well-known maze construction algorithms
to build mazes that approximate the tone of the source image, ex-
press the desired style in each region, and conform to the user’s
solution path.

CR Categories: I.3.m [Computing Methodologies]: Computer
Graphics—Miscellaneous J.5 [Computer Applications]: Arts and
Humanities
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1 Introduction

Mazes and labyrinths have enjoyed a long, venerable tradition in the
history of art and design. They have been used as pure visual art,
as architectural decoration, and as cultural and religious artifacts.
They are a frequent source of metaphor in art and in life. They
have been executed in media from pencil to topiary, and range in
size from tiny to more than twenty acres. Mazes have always been
popular as printed puzzles. Their popularity is also growing in level
design for computer games, and as walk-through puzzles in corn-
fields. Maze designer Adrian Fisher claims that we are currently
living in a golden age of mazes [Fisher 2006].

The different artistic or spiritual motivations behind the construc-
tion of mazes and labyrinths lead to a wide range of visual styles.
The eleven-circuit labyrinth on the floor of the Chartres cathedral is
abstract and geometric; its single long path is intended as a journey
of meditation and penitence. Other designs are delicate works of
representational art, line drawings that are simultaneously puzzles
and stylized depictions of real-world scenes. Figure 2(a) shows the
work of sixteenth century Paduan architect Francesco Segala [Kern
2000].

We are especially inspired by the work of Christopher Berg, a con-
temporary archaeologist-turned-maze designer. He draws stunning
mazes based on monuments and ancient wonders [Berg 2001], as
shown in Figure 2(b). On his website, Berg offers some insighful
observations on the construction of mazes [Berg 2005]. Of course,

Figure 1: An example of a maze created using the technique de-
scribed in this paper. The maze is based on a photograph of the Jia
Yu Guan pass of the Great Wall of China.

his analysis is intended for artists and does not translate directly
into a computer implementation.

We are interested in the problem of automatically synthesizing pic-
torial mazes from images. In particular we would like the computer
to handle the details of placing individual passages and walls, free-
ing the designer to make high level decisions about artistic intent,
style, texture, and layout. In this sense, mazes seem to overlap with
other problems in non-photorealistic depiction, most notably pen-
and-ink illustration [Winkenbach and Salesin 1994]. There, strokes
must simultaneously convey tone, texture, and form. We are faced
with the same issues, plus an additional topological challenge: the
spaces between the strokes must function as a maze.

In this paper, we present a set of graphical and combinatorial al-
gorithms that support the construction of mazes resembling user-
supplied images. We have also developed an interactive application
that lets a designer author a maze at a high level. An example pro-
duced with our system is shown in Figure 1.

In our system the designer manually partitions an image into a set
of regions and assigns style parameters to each region (Section 4).
They are also able to sketch a schematic layout for the maze’s solu-
tion path (Section 5). The final maze will contain intertwined pas-
sages in each region, connected together by breaking walls between
regions. Berg discusses a similar two-level approach to maze con-
struction, stating that at a high level the maze should be seen as a set
of areas connected by openings called “bottlenecks” [Berg 2005].

Our technique produces a maze that is drawn in the designer’s
choice of styles, has the connectivity suggested by the solution path,
and reproduces the tone of the original image (Section 6.1). We also
support a limited amount of foreshortening (Section 6.2) to help
convey perspective and shape.
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Figure 2: A sixteenth-century woodcut by Francesco Segala, and a
maze by Christopher Berg depicting an Assyrian winged bull.

2 Related work

There are many patterns in nature that resemble mazes, such as
coral and the folds of the brain’s cortex. Stevens [1974] shows sev-
eral examples, which he classifies as “meanders”. Given the right
parameters, Turk’s reaction-diffusion textures can produce maze-
like designs [Turk 1991], but the results are image-based and diffi-
cult to control in the context of this work. A cellular model similar
to Turk’s was proposed in the biophysical literature to simulate the
behaviour of cholesterol molecules [Huang and Feigenson 1999].

Programs for generating mazes are everywhere; there is no short-
age of programmers who demonstrate their skills with online maze
generators. Yet we can find very little research or professional de-
sign software that deals with maze generation. Even Berg draws
a skeleton of lines by hand, scans in the drawing, and adds in the
dead ends manually with a vector drawing tool.

Walter Pullen, an amateur maze designer, is the author of the fully-
featured program Daedalus [Pullen 2005]. His “Think Labyrinth”
website catalogues an enormous variety of maze styles and algo-
rithms for maze generation. It is the most comprehensive resource
we know of for computer-generated mazes. One other piece of soft-
ware we are aware of is Peatfield’s MazeCreator [Peatfield 2005].
This commercial tool can produce mazes resembling real-world im-
agery, but it does so in a naı̈ve way. Peatfield approximates the
image with a square grid, and constructs a maze in the grid. The
results lack the grace and appeal of the freeform designs by Segala
and Berg.

In 2004, the puzzle company Conceptis Limited introduced a re-
lated puzzle they call Maze-a-Pix [Conceptis Limited 2006]. Ini-
tially, a Maze-a-Pix resembles an ordinary rectangular maze. How-
ever, the cells that make up the solution path, when filled in, reveal
a hidden image. Interestingly, the design of Maze-a-Pix puzzles is
intractable (it is a variation of the Hamiltonian path problem).

Xu and Kaplan have recently demonstrated a technique for drawing
abstract geometric mazes based on arrangements of vortices [Xu
and Kaplan 2007]. A vortex is a common obfuscating device in
maze design in which multiple spiral arms converge on a common
centre. The goal of their work is not stylized depiction. Their mazes
are abstract and geometric, and although they include ideas for in-
creasing the appeal of their results, the overall aesthetic range is
limited. Their work is primarily an attempt to understand the no-

tion of difficulty in mazes by constructing hard-to-solve examples.

In the computer science literature, the most relevant previous work
is that of Singh and Pedersen [2006]. They present a geometric
attraction-repulsion model that evolves an initially simple shape
into an organic labyrinthine drawing. A set of spatially-varying pa-
rameters control features such as line density and anisotropy. Their
work is focused almost entirely on the construction of labyrinths
(single paths with no branches). They point out that their labyrinths
can be turned into mazes, but the results do not resemble human-
designed mazes. Still, their algorithm can play an important role
in maze construction (see Section 4.3). Kaplan and Bosch’s TSP
Art [2005] achieves a related visual style by finding a low-cost TSP
tour over the points in a stippled drawing. The “labyrinthine por-
traits” drawn manually by Morales [2006] are also strikingly simi-
lar.

3 Maze basics

The construction of simple mazes is a classic exercise in computer
programming. In this section, we review the traditional approaches
to automated maze construction. We also introduce terminology for
the geometric objects and data structures that will be used in the rest
of the paper.

We begin with a planar subdivision, an embedding of a planar graph
in which we can identify vertices, edges, and faces. We refer to this
subdivision as a grid and to its faces as cells. When two adjacent
cells intersect in a connected set of edges, we refer to the edges
collectively as a cell wall. We build a maze by erasing some of the
cell walls. When there is a path between any pair of cells that does
not cross a wall, the maze is connected. When each of these paths
is unique then the maze contains no cycles and is called perfect.
In this paper we consider only perfect mazes, though most of the
techniques apply equally well to mazes with cycles.

It is sometimes helpful to consider the dual of the grid, which we
call the cell graph. Every cell in the grid is a vertex in the cell
graph, and two vertices in the cell graph are connected by an edge
if their corresponding cells have a wall in common.

With the dual viewpoint, a perfect maze on a grid can easily be
seen to correspond to a spanning tree of its cell graph. Most
maze construction techniques are therefore nothing more than al-
gorithms for constructing random spanning trees. For example, a
standard approach described by Shivers [2005] is just Kruskal’s al-
gorithm [Cormen et al. 1992]. In Kruskal’s algorithm, we iterate
over the cell walls; a wall is deleted (or, equivalently, an edge in the
cell graph is added to a spanning tree) provided that doing so would
not create a cycle in the maze. Breaking a wall would create a cycle
if the cells on either side of the wall are already connected via a
path. Sets of connected cells are maintained using a union-find data
structure.

Pullen also shows how wall-breaking can be “biased”, so that some
walls are more likely to be broken than others. We can assign
weights to cell walls and visit them in increasing order of weight,
taking advantange of the fact that we are free in Kruskal’s algorithm
to visit walls in any order. Walls considered earlier are more likely
to be broken. For example, to bias maze construction in a rect-
angular grid to prefer vertical passages, we choose real numbers
0 < a < b < 1, assign horizontal walls weights chosen uniformly
from the interval [0,b], and vertical walls weights from [a,1]. Hor-
izontal walls are therefore more likely to be deleted first, leaving
behind more vertical passages. The amount of overlap between the
two intervals determines how strong the bias is. We use variations
on this technique in the textures of the following section.
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Figure 3: Excerpts from existing mazes showing the textures we
support in this work: a directional region (a), a spiral region (b),
a random region (c), and user-defined lines (d). All examples are
taken from Figure 2.

Our system is based on the idea of dividing an object up into pieces,
constructing a fragment of a maze in each piece, and connecting the
fragments together to form a complete maze. The designer traces
an outline over an image that defines the extent of the maze; we
call this outline the maze’s footprint. The designer then segments
the footprint into regions. We do not automate the segmentation,
but provide Intelligent Scissors [Mortensen and Barrett 1995] to
facilitate the drawing of boundaries.

4 Maze textures

The core means of artistic expression in our technique is the ability
to assign maze textures on a region-by-region basis. The range of
possible textures is unbounded; indeed, Singh and Pedersen [2006]
show how to interpolate continuously between parameters defin-
ing their styles. We limit ourselves to a few choices for a region’s
style, motivated by our survey of the artform (see Figure 3). We
concentrate on four textures: directional mazes, spiral mazes, ran-
dom mazes, and user-defined lines. Each texture is controlled by
specialized parameters.

A key requirement for our maze textures is the ability to control the
spacing between adjacent walls, because the local density of walls
can be used to depict tone. In this section we discuss how to achieve
a desired local spacing of walls in each maze texture; in Section 6.1
we then show how to reproduce the tone of the original image by
controlling the widths of the walls as well as their spacing.

A maze texture is a procedural grid generator. The grid produced
by the texture is then passed to the routing algorithm of Section 5
to be turned into a maze. The random texture of Section 4.3 is
an exception in that most of the appearance is generated in a post-
process after the maze is constructed.

4.1 Directional mazes

We would like to construct mazes with an overall anisotropy, so that
the maze’s walls tend to flow in a prescribed direction. A good ex-
ample of this sort of flow is Ostromoukhov’s work on facial engrav-
ing [Ostromoukhov 1999], though it would be difficult to achieve
local tone control with his warped square grids. We take inspiration
from the pen-and-ink work of Salisbury et al. [1997], where line
placement is guided by a user-defined vector field.

In our system, the designer draws any number of seed paths in a
given region, and the system infers a vector field using interpola-
tion from radial basis functions [Hays and Essa 2004]. We can
then see the line placement problem as equivalent to streamline vi-
sualization, for which several solutions have been suggested in the
graphics literature. We place streamlines according to the algorithm
of Jobard and Lefer [1997]. The desired distance between adjacent
streamlines is determined according to the tone of the underlying
image. We then place another set of streamlines, this time using a
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Figure 4: The construction of a directional maze. The vector field
is defined in (a). In (b), black lines show the streamlines following
the direction while blue lines show perpendicular streamlines. A
final maze is given in (c).

Figure 5: Example of concentric offset curves produced from a
shaded image of a teapot.

vector field perpendicular to the original. These two sets of stream-
lines together form a grid. We bias the routing algorithm so that
the walls that flow in the primary direction are considered later, and
therefore have a lower probability of being removed during maze
construction. Figure 4 illustrates the construction of a directional
maze.

4.2 Spiral and vortex mazes

As Xu and Kaplan point out, spirals and vortices are powerful ob-
fuscating devices in maze design [Xu and Kaplan 2007]. A vortex is
a kind of multi-armed spiral in which multiple paths meet at a cen-
tral junction. Their technique produces abstract, geometric mazes;
we would like to support more flexible spiral regions that can par-
ticipate in the stylized depiction of the source image.

While it may be possible to generate a spiral maze via a carefully
constructed vector field, we have obtained better results by gradu-
ally shrinking the region boundary inwards, marking off concentric
copies at regular intervals. We use an approach similar to Sethian’s
level set method [Sethian 1999]. We begin by placing seed points
at the pixels that contain the region boundary. We then displace the
seeds along image gradients towards the interior of the region. Each
seed moves by an amount inversely proportional to local image
tone. Periodically, we extract a contour from the current seed lo-
cations. This approach produces smoothly changing contours with
controlled spacing, as illustrated in Figure 5.

We then construct radial lines by sampling at regular intervals along
the concentric contours. Each sample is connected to the closest
sample on the next outer contour, resulting in a grid. We bias the
routing algorithm so that radial walls are more likely to be broken
than concentric walls. Figure 6 shows a spiral grid, and a maze
constructed from it.

Our concentric contours are in fact compatible with the vortex con-
struction technique of Xu and Kaplan. We make their technique
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Figure 6: The construction of a spiral maze. The underlying grid is
shown in (b), and one possible final maze in (c).

(a) (b) (c)

Figure 7: The construction of a random maze. Horizontal and ver-
tical lines form the grid in (a). A rectangular maze is constructed
in (b) from the grid. After 200 iterations of the relaxation algorithm
of Singh and Pedersen, we get the random maze pattern in (c).

available from our interface. It is occasionally useful, as it produces
vortices where most paths get close to the region’s centre.

4.3 Random mazes

There is no single correct way to define a “random” texture. We
would certainly expect it to be isotropic and, in the absence of tone
variation, evenly-spaced. Seeking inspiration in other work, we
note that Berg [2001] uses a coral-like random texture for rough,
natural shapes such as terrain and stones. This texture is reminis-
cent of reaction-diffusion patterns [Turk 1991], and reproduced by
the geometric attraction-repulsion algorithm of Singh and Peder-
sen [2006].

Our random maze texture is very simple. We build a grid by tak-
ing the intersection of a regular square grid with the region. We
then immediately build a maze using the algorithm of Section 5.
Afterwards, we randomize the square maze in a post-process by
passing it through Singh and Pedersen’s algorithm. The result is a
maze with the random appearance of their results, but with branch-
ing walls and maze structure. A simple example is presented in
Figure 7.

Note that because it is a post-process, the relaxation algorithm can
also be used to “loosen up” directional and spiral mazes to any de-
sired degree. Relaxation can help suppress occasional artifacts in
these other textures, such as passages that are too narrow.

4.4 User-defined lines

Some regions contain lines that should be drawn explicitly by the
designer. These regions do not contribute heavily to the structure
of the maze, but are important for depiction. We allow the user to
sketch lines that are preserved as-is in the final maze. In the results

in this paper, user-defined lines are used only for the face of the
discus thrower in Figure 14(c).

5 User-specified solution paths

The collection of textures in the previous section can already be
used to construct attractive mazes. Each texture fills a region with
a grid. We can simply take the union of all these grids and use any
standard maze algorithm to construct a random spanning tree of the
combined cell graph.

In practice, we would like to offer the designer more explicit control
over the routing of the solution path. The designer may wish to
place start and end locations very close to one another, but prevent
the system from linking them with a direct path. The solution path
may also be linked semantically with the maze. In a portrait, for
example, we may want the solution path to start in one eye and end
in the other (without going straight across the bridge of the nose).

We allow the designer to sketch an arbitrary planar tree called the
“solution tree” on top of the segmented maze footprint. The sim-
plest such tree would be a single meandering path connecting start
and end locations, but branches can be drawn to introduce prede-
termined dead ends. Examples of solution trees with and without
branches appear in Figure 12(b) and Figure 13(b). In this section,
we present an algorithm for building mazes that respect the layout
of a given solution tree. Note that the paths of the maze will not
necessarily follow the exact shape of the designer’s sketch; doing
so could lead to solutions that are too simple, or interfere with the
ability to depict textures. The tree will be reflected in the routing of
the paths within a region and the connectivity between the regions.

The restriction of the solution tree to a single region will consist
of a planar forest (a set of non-intersecting planar trees). Some of
the branches in the forest cross the region boundary. If we place a
planar subdivision in the region, we can then identify the cells S =
{s1, . . . ,sn} through which the branches pass just before reaching
the boundary. We open the boundary at these cells, yielding the
inter-region connectivity suggested by the solution tree. We are left
with the problem of breaking cell walls in the region’s grid so that
the resulting passages are connected according to the given planar
forest.

Given a planar forest in a region and the cells S as given above, let
us say that si and s j are co-routed if they belong to the same tree.
This equivalence relation partitions S into sets ∆1, . . . ,∆m. We can
now formalize the maze routing problem as follows: find a subgraph
of the region’s cell graph for which

(a) There is a passage from si to s j if and only if they are co-
routed;

(b) Every cell is connected to at least one si; and

(c) The subgraph contains no cycles.

A subgraph with these properties will yield a set of disjoint, inter-
twined sub-mazes that realize the correct routing within the region.

If we omit condition (b), and ask only that the si be connected cor-
rectly, we obtain what is known in computational geometry as the
vertex-disjoint subgraph problem. It frequently appears in the lit-
erature as a generalization of the vertex-disjoint path problem, the
special case in which |∆i| = 2 for all i. Algorithms for the path
problem typically solve the subgraph problem instead. Clearly, a
solution to the disjoint subgraph problem can easily be extended
into a solution to the maze routing problem by connecting any re-
maining cells to the subgraphs without introducing cycles.
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Figure 8: A demonstration of a maze with three non-interacting
paths, constructed using the algorithm of Section 5. The restriction
of the designer’s sketched solution tree to the region is shown in
(a), with points on the boundary labeled. In (b), the same labeling
is applied to the cells in the grid that contain the locations where
the trees meet the region boundary. The labeling is extended to the
entire boundary in (c), and a finished maze is shown in (d).

In general, the vertex-disjoint subgraph problem is intractable, even
for a planar graph [Karp 1975]. However, it can be solved effi-
ciently in the special case that all the si lie on a single face of a pla-
nar graph [Robertson and Seymour 1986]. (In our case, the single
face is the unbounded face corresponding to the region boundary.)
In particular, Suzuki et al. demonstrate a linear-time algorithm that
repeatedly connects vertices with paths along the outside of the pla-
nar graph and removes the path edges, leaving a simpler instance of
the same problem [Suzuki et al. 1990].

Although the efficiency of the linear-time algorithm is attractive,
it is unsuitable for constructing mazes. It is too greedy, in that it
constructs direct paths that hug the region boundary. In contrast,
we would like our maze passages to be as un-greedy as possible!
We should avoid these short circuits, and force the solver to enter
the depths of a region in order to traverse it. A greedy algorithm
can also interfere with maze textures, since we might want to prefer
breaking some walls over others.

We have developed our own algorithm that solves the maze routing
problem. It is essentially a variation of Kruskal’s algorithm that
respects condition (a) above. An example is shown in Figure 8. In
this example, the designer’s sketched solution produces a forest of
three trees in a region. We label the si with capital letters, where
co-routed cells are given the same label.

We might imagine that it would suffice to track, for each cell, the
label that “owns” it (if any). When considering whether to join two
cells with a path, we could check not only whether doing so would
introduce a cycle (as in Kruskal’s algorithm), but also whether it
would join cells owned by two different labels. This suggested ap-
proach is as efficient as Kruskal’s algorithm, and it certainly pre-

vents distinct labels from being connected. Unfortunately, as we
can see in Figure 8(b), it fails even for simple cases. There is noth-
ing preventing a C cell from being adjacent to a B cell, but any such
adjacency would choke off the A cells, preventing them from being
connected to each other.

Generally, two labels can never be permitted to get so close to one
another that the other labels are unable to navigate simultaneously
through the remaining gap. We can therefore extend Kruskal’s al-
gorithm by building a “minimum distance matrix”, a symmetric in-
teger matrix M with one row and column for each label. Entry Mαβ

records the minimum permitted path length between any α cell and
any β cell in the grid. (Note that paths in this case may include con-
secutive cells that share only a vertex, and not necessarily an edge).
Then, when deciding whether to break a wall, we iterate over every
pair of labels α and β and decide whether breaking that wall would
put an α cell too close to a β cell. We perform breadth-first searches
from the cells on either side of the wall and compute dα and dβ , the
minimum distances to any α cell and β cell. If dα + dβ < Mαβ , it
is illegal to break this wall.

We compute the minimum distance matrix by considering the cir-
cular sequence of labels around the region boundary. To compute
Mαβ , we find all sub-sequences of labels that start at one of α or
β and end at the other. Each sub-sequence defines some subset of
the labels that can be found between α and β on the boundary. The
intersection of these subsets tells us how many different labels must
be given space to move between α and β . We set Mα,β to be one
plus the size of this intersection.

There is one other complication with this algorithm. In Figure 8(b),
an A cell might still choke off the C cells by connecting to the
boundary between them. We avoid this possibility by propagating
the labels on the si to all cells on the region boundary. We choose
random division points between adjacent labels, which break the
boundary cells into contiguous groups. As shown in Figure 8(c),
we assign the cells in each group the label of the si in that group.

Our algorithm is roughly quadratic in the number of cells and the
number of distinct labels. In practice, it solves the maze routing
problem in a few seconds for regions containing thousands of cells.
Note that in practice, a region rarely has a large number of different
labels on its boundary.

Insofar as this approach is a variation on previous algorithms that
find vertex-disjoint subgraphs on a disc, we require that all routing
labels be placed on a region’s boundary. In particular, this implies
that our regions cannot contain holes if those holes are intersected
by the solution path, as we would then have labels on more than
one face in the cell graph. Robertson and Seymour [1986] show
how to solve the case of a region with a single hole (the “disjoint
subgraphs on a cylinder” problem). But in general, the complexity
of the problem is exponential in the number of holes. We avoid cre-
ating holes in our regions, which we do not find to be a significant
aesthetic constraint.

Although the algorithm is random, we have noticed that it still oc-
casionally produces undesirable short circuits, as described above.
We wish to avoid direct passages between consecutive si with the
same label α . We can do so by assigning a random cell on the
boundary between them a fresh label α ′. The newly labeled cell
will grow its own passages, disconnected from the rest of the maze.
We pick a wall on the frontier of the passages and open it, transfer-
ring ownership of the passages to α . See Figure 9 for an example.

We can use a similar process to increase the global complexity of
the maze. We place the fresh label at cells that share a section of the
boundary between two regions. In one region we connect the label’s
passages to another label, as before. We then open the boundary
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Figure 9: The elimination of a short circuit. The maze shown in (a)
fills the square, but the path through the square is too short to make
for a good puzzle. We introduce a fresh label between the two exits,
which produces the darkly shaded passage in (b). We open the new
passage at a random location (shown circled), creating a new maze
with a longer solution.

where the labeled cells meet, linking in the passages in the other re-
gion. The result is a new branch that wanders off to a dead end in an
adjacent region. In our system, we randomly introduce these extra
branches. They make it more difficult to comprehend the structure
of the maze via the openings between adjacent regions.

6 Additional effects

In order to further increase the range and visual appeal of our
mazes, we have implemented two additional effects: tone repro-
duction and foreshortening.

6.1 Tone reproduction

Because we are building mazes from continuous-tone images, we
would like to support some form of halftoning. Here we depart from
Berg’s clean line drawing style; he rarely uses more than one or
two line weights in a maze, and is more concerned with suggesting
form than tone. He does occasionally use multiple line weights in a
single maze, usually to indicate distance.

The textures of Section 4 are defined in such a way that line density
can be varied continuously across a region. Clearly, when placing
lines we could simply map local image tone to a range of spac-
ings. However, we must impose a minimal passage width in order
to make the maze solvable in practice. We can also vary tone by
adjusting line width, though again we should impose a minimum
width so that lines are clearly visible.

Let G denote the lightness at a given point in a region. Imagine
the simple case of covering the region with a set of horizontal lines.
We can control S, the spacing between the centres of the lines, and
W, their widths. The grey level approximated by given values of S
and W is (S−W )/S. Therefore, to match our target lightness G, we
obtain the relationship W = S(1−G).

From the considerations above, we define a minimum line width
Wmin and minimum passage width Pmin. We also define Smax, the
largest acceptable line spacing. Immediately, we see that the dark-
est tone we can reproduce occurs when S = Smax and S−W = Pmin,
giving lightness Gmin = Pmin/Smax. Similarly, the lightest available
tone is Gmax = (Smax −Wmin)/Smax.

We can now define a mapping from image lightness G to values of S
and W . Note that when both passage width and line width are mini-
mized, the resulting lines have lightness Pmin/(Pmin +Wmin). We set
a crossover value Gthresh to this lightness; for darker tones we will

(a)

(b)

(c)

Figure 10: A demonstration of varying both line width and passage
width to reproduce the continuous grey ramp of (a). The lines in (b)
are drawn with fixed width to show their spacing. When drawn with
varying thickness in (c), they capture the tone of the ramp.

(a) (b) (c)

Figure 11: A foreshortened directional maze. We cannot simply
create a directional maze with converging lines as in (a), because
the perpendicular vector field does not have the correct perspective.
In (b), the designer interactively rotates a normal estimator; the blue
rectangle shows the result of undoing the perspective transforma-
tion implied by that normal. A maze is constructed and re-projected
in (c).

thicken the walls, and for lighter tones we will widen the passages.
With a little algebra, we find that we should set S = Pmin/G′ and
W = Pmin(1−G′)/G′ when G′ ≤ Gthresh, and S = Wmin/(1−G′)
and W = Wmin when G′ > Gthresh. G′ is computed by mapping G
into the range [Gmin,Gmax].

As Figure 10 illustrates, this approach can approximate a wide
range of tones while still permitting lines to delineate a maze.

6.2 Foreshortening

Foreshortening is a powerful artistic tool for depicting shape and
perspective in line drawing. Nearly all of Berg’s mazes use some
form of foreshortening. Unfortunately, none of the textures defined
in this paper can support foreshortening directly. As shown in Fig-
ure 11(a), a vector field can be used to capture converging lines in
one direction, but the remaining lines are perpendicular to them in
the image plane, not in the imagined 3D space.

We provide a simple tool that can add some foreshortening to maze
regions. Inspired by the single view modeling system of Zhang et
al. [2001], the designer can interactively place normal vectors on
the image. The normal vectors are used to estimate a perspective
transformation. We apply the inverse of this transformation to the
region, build the maze, and map it back to the original region by
re-applying the transformation. The interactive tool and the result
are shown in Figure 11(b) and (c).



7 Implementation and results

Our system is implemented in C++, and outputs mazes in
Postscript. We use the CGAL library [CGAL Editorial Board 2006]
to store and manipulate regions and grids.

We have constructed a prototype user interface that lets the designer
load an image, trace regions, assign a texture to each region, set pa-
rameters specific to the textures, sketch a solution tree, and choose
start and end positions. Even for relatively complex images with
up to two dozen regions, the design process requires only a few
minutes of user interaction.

When the designer is satisfied with the settings, they can ask for a
finished maze to be produced. Maze generation is not intended to
be interactive. Still, final results are typically computed in a few
minutes, permitting iterative refinement without too much waiting.
We would like to experiment with a multithreaded approach, where
each region’s maze can be constructed in the background while the
designer is working on the other regions.

Some sample results are shown in Figures 1, 12, 13 and 14.

8 Conclusions and Future Work

We have described a system for designing mazes that are stylized
line drawings of images. Unlike previous work, we aim throughout
to achieve a balance between considerations of complexity and aes-
thetics. The system handles the difficult task of placing individual
lines while maintaining the constraints that make the final drawing a
perfect maze. The designer is left with the high-level creative tasks
of partitioning the image and deciding on the maze’s appearance.

One aspect of Berg’s mazes clearly missing in our work is his clear
depiction of surface detail using the lines of the maze. His lines
occasionally become faces or small decorative elements. To some
extent, the user-defined lines of Section 4.4 can handle this case,
though we would like to explore vision-based techniques for ex-
tracting salient curves from an image and placing them in the maze.

Berg’s lines also convey higher-level repeated textures. The As-
syrian Bull of Figure 2(b) exhibits textures on the wings and chest
that cannot arise naturally through any of the textures of Section 4.
Other mazes by Berg depict masonry, foliage and ornamentation in
similar ways. We would like to extend our system to include semi-
structured textures like these. An approach inspired by the “stroke
textures” of Winkenbach and Salesin [1994] could apply here.

The perfect mazes we construct here are but one possible maze
topology. It is also possible to construct mazes containing cycles,
or indeed mazes with no dead ends at all (“Braid mazes”, as Pullen
calls them). These mazes can defeat the usual “keep your left hand
on the wall” solving method by placing the start and end of the maze
next to different connected components of walls. Human designers
incorporate cycles freely, and they are a common (and frustrating)
feature of hedge mazes. Of course, any perfect maze can be given
cycles by breaking walls here and there, but it would be interesting
to develop new maze generation algorithms that account for cycles,
as well as guidelines for their effective use.

This paper has studied the problem of maze design from the per-
spective of non-photorealistic rendering. Having built our system as
a proposed solution to the problem, we can now step back and ask
about the quality of the puzzles it produces. Are they entertaining
as mazes? We have enjoyed solving our examples, but we know of
no concrete way to evaluate the effectiveness of a maze puzzle. We
are fascinated by the question of how to measure the difficulty of
a maze, which seems to depend on both its mathematical structure
and on human psychology [Xu and Kaplan 2007]. Any progress on

this question could help enhance our enjoyment of mazes and other
puzzles on paper, at a human scale, and on the computer screen.

Acknowledgments

This work benefitted greatly from the valuable feedback and en-
couragement of George Hart, Allison Klein, Morgan McGuire,
Karan Singh, and Michael Terry. Thanks also to Christopher Berg
for permission to reproduce his maze, and to Mark R. Saunders,
Leszek Scholz, Ronald Koster, and Claudio Pozas for permission
to develop mazes based on their images. This research was sup-
ported by NSERC.

References

BERG, C. 2001. Amazeing Art: Wonders of the Ancient World.
Harper Collins.

BERG, C., 2005. Amazeing art. http://www.amazeingart.com.

CGAL EDITORIAL BOARD. 2006. CGAL-3.2 User and Reference
Manual. http://www.cgal.org.

CONCEPTIS LIMITED, 2006. Conceptis puzzles.
http://www.conceptispuzzles.com.

CORMEN, T. H., LEIESERSON, C. E., AND RIVEST, R. L. 1992.
Introduction to Algorithms. MIT Press.

FISHER, A. 2006. The Amazing Book of Mazes. Harry N. Abrams,
Inc.

HAYS, J., AND ESSA, I. 2004. Image and video based painterly an-
imation. In NPAR ’04: Proceedings of the 3rd international sym-
posium on Non-photorealistic animation and rendering, ACM
Press, 113–120.

HUANG, J., AND FEIGENSON, G. W. 1999. A microscopic in-
teraction model of maximum solubility of cholesterol in lipid
bilayers. Biophysical Journal 76, 4, 2142–2157.

JOBARD, B., AND LEFER, W. 1997. Creating evenly-spaced
streamlines of arbitrary density. In Visualization in Scientific
Computing ’97. Proceedings of the Eurographics Workshop in
Boulogne-sur-Mer, France, Springer Verlag, 43–56.

KAPLAN, C. S., AND BOSCH, R. 2005. TSP art. In Bridges 2005:
Mathematical Connections in Art, Music and Science, 301–308.

KARP, R. M. 1975. On the computational complexity of combina-
torial problems. Networks, 5, 45–68.

KERN, H. 2000. Through the Labyrinth: designs and meanings
over 5000 years. Prestel.

MORALES, J. E., 2006. Virtual Mo.
http://www.virtualmo.com.

MORTENSEN, E. N., AND BARRETT, W. A. 1995. Intelligent
scissors for image composition. ACM Press, 191–198.

OSTROMOUKHOV, V. 1999. Digital facial engraving. In SIG-
GRAPH ’99: Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, 417–424.

PEATFIELD, G., 2005. Maze creator.
http://www.mazecreator.com/.

PEDERSEN, H., AND SINGH, K. 2006. Organic labyrinths and
mazes. In NPAR ’06: Proceedings of the 4th international sym-
posium on Non-photorealistic animation and rendering, ACM
Press, 79–86.



(a)

(b) (c)

Figure 12: A sample maze. The original photograph is shown in (a). In (b), the designer has partitioned the maze footprint into regions and
sketched a solution tree. Photograph by Leszek Scholz.

PULLEN, W. D., 2005. Think labyrinth.
http://www.astrolog.org/labyrnth/maze.htm.

ROBERTSON, N., AND SEYMOUR, P. D. 1986. Graph minors.
VI. disjoint paths across a disc. J. Comb. Theory Ser. B 41, 1,
115–138.

SALISBURY, M. P., WONG, M. T., HUGHES, J. F., AND
SALESIN, D. H. 1997. Orientable textures for image-based
pen-and-ink illustration. In SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and interactive
techniques, 401–406.

SETHIAN, J. A. 1999. Level Set Methods and Fast Marching Meth-
ods: Evolving Interfaces in Computational Geometry, Fluid Me-
chanics, Computer Vision, and Materials Science. Cambridge
University Press.

SHIVERS, O., 2005. Maze generation.
http://www.cc.gatech.edu/∼shivers/mazes.html.

STEVENS, P. S. 1974. Patterns in Nature. Little, Brown.

SUZUKI, H., AKAMA, T., AND NISHIZEKI, T. 1990. Finding
steiner forests in planar graphs. In SODA ’90: Proceedings of
the first annual ACM-SIAM symposium on Discrete algorithms,
Society for Industrial and Applied Mathematics, 444–453.

TURK, G. 1991. Generating textures on arbitrary surfaces using
reaction-diffusion. In SIGGRAPH ’91: Proceedings of the 18th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, 289–298.

WINKENBACH, G., AND SALESIN, D. H. 1994. Computer-
generated pen-and-ink illustration. In SIGGRAPH ’94: Proceed-
ings of the 21st annual conference on Computer graphics and
interactive techniques, ACM Press, 91–100.

XU, J., AND KAPLAN, C. S. 2007. Vortex maze construction.
Journal of Mathematics and the Arts 1, 1 (March), 7–20.

ZHANG, L., DUGAS-PHOCION, G., SAMSON, J., AND SEITZ, S.
2001. Single view modeling of free-form scenes. In Proc. of
CVPR, 2001, vol. 1, 990–997.

(a) (b)

Figure 13: A sample maze based on a photograph of a mill. Origi-
nal photograph by Mark R. Saunders.
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Figure 14: More examples that use the techniques presented in this paper: Snails (a), The Minotaur (b), and Myron’s Discus Thrower (c).
Each of these examples was produced after about ten minutes of user interaction and five minutes of computation. Original images for (a)
and (b) by Ronald Koster and Claudio Pozas, respectively.


