
Calligraphic Packing

Jie Xu Craig S. Kaplan∗

Computer Graphics Lab
David R. Cheriton School of Computer Science

University of Waterloo

ABSTRACT

There are many algorithms in non-photorealistic rendering for rep-
resenting an image as a composition of small objects. In this paper,
we focus on the specific case where the objects to be assembled into
a composition are letters rather than images or abstract geometric
forms. We develop a solution to the “calligraphic packing” prob-
lem based on dividing up a target region into pieces and warping a
letter into each piece. We define an energy function that chooses a
warp that best represents the original letter. We discuss variations
in rendering style and show results produced by our system.

CR Categories: I.3.m [Computing Methodologies]: Computer
Graphics—Miscellaneous J.5 [Computer Applications]: Arts and
Humanities

Keywords: Tilings, Calligraphy, Mosaics, Non-Photorealistic
Rendering, Packing

1 INTRODUCTION

Artists and art lovers have always been captivated by the interplay
between a whole and its parts. When a complete image is seen as
composed of many small cooperating elements, we can appreciate
not only the image as a whole, but the ingenuity of its conception
and realization. In a Roman mosaic, for example, small squares of
coloured glass conspire to form a detailed scene.

Especially fascinating is the case where the parts are themselves
recognizable objects. The viewer is then caught in a dynamic ten-
sion between attending to the image and to the elements that make it
up. A famous example that has inspired many researchers in com-
puter graphics are Arcimboldo’s sixteenth century portraits [16].
His subjects are assembled from small objects such as flowers, veg-
etables, fruits, and animals. Halsman’s famous In Voluptate Mors
is a portrait of Dalı́ featuring a skull assembled from nudes. In Es-
cher’s tessellations, the whole is simply the entire plane, but we
are fascinated by the way lifelike characters occupy it without any
gaps. Escher was also interested in the narrative possibilities that
arise in having multiple different objects interact in an image.

A special case of this artform can be found in what we call “rep-
resentational calligraphy”. Here, a collection of letters or symbols
cooperate to compose an image that is also a calligraphic inscrip-
tion. Islamic calligraphers are certainly the masters of this style. A
stunning recent example by Sudanese-born artist Hassan Musa is
shown in Figure 2(a). Today, representational calligraphy is fre-
quently used in graphic design applications such as advertising,
product design, and corporate logos. The example of Figure 2(b)
was part of an advertising campaign for Veja, a Brazilian news mag-
azine.

∗e-mail: {jiexu,csk}@cgl.uwaterloo.ca

(a) (b)

Figure 1: A calligraphic mosaic created by our system. An elephant
is extracted from a photograph (a) and converted into a container
region (b). The word “elephant” is then packed into the container.

In representational calligraphy the letters are frequently dis-
torted, and the inscription may be difficult or even impossible to
read. In some examples, it is possible to recognize the letters only
if one already knows (from the context) what they are. Note that
there is no harm in deforming letters this way. Legibility and con-
sistency are the goals of typography; both may be suppressed for
artistic purposes in calligraphy. The resolution of the resulting vi-
sual puzzle can be a rewarding aesthetic experience.

Within non-photorealistic rendering (NPR) there has been a great
deal of work in the area of “NPR Packing”, the general problem of
depicting an image by automatically arranging a collection of small
pictorial elements. But to our knowledge, no research has been
done on the specific problem of packing letterforms. Inspired by the
examples above, we therefore pose a representational calligraphy
problem for computer graphics:

Problem (Calligraphic Packing): Given a region of the
plane (the “container”) and a sequence of letters L =
{l1, . . . , ln}, construct a non-overlapping arrangement of de-
formed glyphs {g1, . . . ,gn} in the interior of the container so
that

1. The glyphs fill the container as much as possible;
2. Individual glyphs are recognizable as the corre-

sponding letters; and
3. The order of the letters is suggested by the arrange-

ment of the glyphs in the packing.



(a) (b)

Figure 2: Two examples of representational calligraphy. The tiger
on the left, by Sudanese-born artist Hassan Musa, is made up of
elongated Arabic letters. The portrait on the right is from an adver-
tisement for the magazine Veja.

Note that we make a distinction between a letter (an abstraction)
and a glyph (its representation). A single letter may be equally well
represented by any of a number of glyphs, such as lowercase and
uppercase versions.

Although calligraphic packing is related to other forms of NPR
packing, there are important differences that make this problem
unique. First, we don’t have a database of available objects, and
the freedom to pack copies of objects from the database at will. We
are given a specific sequence of symbols, and must include each
exactly once. The relative positions and orientations of the letters
are important too, as they affect overall readability. Finally, we ex-
pect to apply a significant amount of deformation to the glyphs in
order to pack them. Unlike most NPR packing applications, our
glyphs can undergo a great deal of deformation compared to ordi-
nary images. The glyphs are not intended to be representations,
merely signs. As long as the original letters can be recovered, the
incidental shapes of the glyphs are unimportant.

In this paper, we provide a solution to the calligraphic packing
problem. We automate the process of warping glyphs to fill the con-
tainer, but leave the question of natural ordering partly in the hands
of the user. Our system uses a clustering algorithm (Section 3.2) to
subdivide the container into subregions. We then warp the glyphs
into the subregions (Section 3.3) in a way that minimizes distor-
tion (Section 3.4). We also include some variations in rendering
style (Section 4). An example created by our system is shown in
Figure 1.

2 RELATED WORK

Many researchers in non-photorealistic rendering have studied
some variation of NPR Packing. As far as we know, no previous
work has specifically addressed the packing of letterforms.

One primary thread of NPR packing techniques has focused on
the use of Lloyd’s method to relax an initial distribution of objects
into a final, evenly-spaced configuration. Hausner [7] simulated
the appearance of Roman mosaics. He applied Lloyd’s method to
Voronoi diagrams generated via the Manhattan metric, giving an ar-
rangement of oriented rectangular mosaic tiles. Hiller et al. [9] im-

proved and generalized this result by using area Voronoi diagrams,
allowing more complex objects to be packed together. Secord [18]
used a weighted version of Lloyd’s method as a form of importance
sampling to create stippled depictions of images. But for arbitrary
tiling shapes like the letters, these methods cannot get tiles that re-
semble these shapes.

Recently, Dalal et al. [4] achieved excellent packing results by
modifying the relaxation step in Lloyd’s method. Instead of mov-
ing the object to the centroid of its Voronoi region, they define a
metric based on image correlation that minimizes variation in the
space around the objects (the “grout” in the mosaic). All these
packing techniques focus on distributing a large number of small
elements without deformation. We wish to pack a small, fixed set
of deformable shapes.

Kim and Pellacini [13] presented a more generic framework for
packing shapes chosen from a database of candidates into a con-
tainer. Their algorithm attempts to minimize an energy function
that trades off between various measures of the packing’s quality.
Their technique deforms objects slightly to even out the irregular
boundaries between them. We would like to support an even greater
amount of deformation and provide some mechanism for control-
ling the flow of the letters in order to maintain readability.

Kaplan and Salesin [12] examined the problem of Escherization,
in which a given shape must be converted into a tiling of the plane.
Their algorithm seeks a tileable shape that resembles the original as
closely as possible, thereby minimizing the amount of deformation
that must be applied.

In the artistic screening method of Ostromoukhov and Her-
sch [17], shapes such as letterforms were continuously deformed
via interpolation from a small set representing different tones. Grids
of these shapes were then used for halftoning by varying the inter-
polation level spatially. Surazhsky and Elber [20; 21] presented a
method to arrange text along free-form parametric curves. They
rendered their text with varying tone along projected parametric
curves on surfaces in order to produce comprehensible text-based
rendering of 3D shapes. Compared to these techniques, our de-
formations are more freeform. Also, our results are not halftoned
representations; we pack a container derived from a bi-level image.

3 APPROACH

We have created a system that produces calligraphic mosaics.
Given an image and a sequence of letters, we convert the image into
a black and white representation of an object (Section 3.1), subdi-
vide it into regions (Section 3.2), and warp the individual letters
into these regions (Sections 3.3 and 3.4).

3.1 Container extraction

The first step in our system is to define the container region into
which we will pack the letter sequence. When drawn as a black
shape on a white background, the container should be a clear de-
piction of an object.

In our system, the user first extracts a desired foreground object
from an image using the Lazy Snapping method of Li et al. [15].
We then apply a Gaussian blur to the object to smooth out high
frequency details. Finally, we convert the object to greyscale and
threshold it to produce a bi-level raster image of the container re-
gion. The user can control the threshold value to select an appro-
priate container region. This procedure is illustrated in Figure 3.

3.2 Subdivision

The pixels of the container region must now be partitioned into n
subregions R1, . . . ,Rn, where each Ri will be assigned to li from the



(b) (c) (d)(a)

Figure 3: The extraction of a container region from an image. The user marks the input image in (a) with foreground (red) and background
(blue) curves. Lazy Snapping extracts the foreground object in (b). The blurred image in (c) is thresholded by brightness to obtain the bi-level
container in (d).

(a) (b) (c)

Figure 4: The user provides initial positions and orientations for a set
of letters in (a). The initial clustering result is shown in (b). In (c),
after iterative relaxation, we obtain an optimized clustering result.

original letter sequence. This step can be seen as a data clustering
problem, where pixels form into clusters around letters.

As with other NPR packing techniques, we use an iterative algo-
rithm to refine an initial letter placement into an evenly distributed
set of subregions. To begin, the user interactively creates a starting
arrangement of n letters inside the container region, as shown in
Figure 4(a). We then run a level-set algorithm to grow subregions
associated with the letters [19]. (The use of a level-set algorithm
helps ensure that letters are contained in their subregions, and that
the subregions are connected.) We initialize n clusters to the ras-
terized outlines of the letters. Then, while there exist unclaimed
pixels, we iterate over the clusters. Each cluster claims the pixels
adjacent to its boundary. The subregion boundaries will grow at
a roughly constant rate until they encounter one another and con-
sume the container. The resulting subdivision may be uneven, as in
Figure 4(b). We refine it by moving each letter to the centroid of
its cluster, in the style of the modified Lloyd’s method of Hiller et
al.[9]. Each letter is scaled so that it fits more snugly into its cluster.
The subdivision process then repeats until the user is satisfied with
the locations and orientations of the letters. Figure 4(c) shows an
example of a final set of subregions produced by this process.

We provide the user with two additional interactive tools to mod-
ify the behaviour of the subdivision step. First, they can sketch
closed curves containing pixels that must all belong to the same
subregion. A demonstration is given in Figure 5. This tool can be
used to force an area of the container to belong to a single letter
when the subdivision process is trying to pull it apart. It was used
in Figure 12 to ensure that the mouth would be depicted by a sin-
gle subregion containing the letter O. Second, the user can sketch a
closed curve that excludes a portion of the container from the sub-
division, as shown in Figure 6. In Figure 16(b), the propellers of the
airplane were simply drawn as black shapes rather than as awkward
protrusions on the letter D.

(a) (b) (c)

Figure 5: The forced clustering of pixels. The clustering algorithm
produced the result in (a). The user drew the green curve in (b).
The pixels inside the curve are forced to belong to a single cluster
in (c).

(a) (b) (c)

Figure 6: The forced exclusion of pixels from the subdivision pro-
cess. The user sketched the green curve in (b). Its contents do not
participate in the subdivision in (c).

At this point, the subdivision process has produced a partition of
the container region into sets of pixels. We must now convert these
subregions into paths that can serve as geometric targets for image
warping. We smooth the boundaries of the subregions by applying
a few iterations of the Open and Close morphological operations.
We finish by applying Open three more times to shrink the subre-
gion boundaries and create space between them. A library such as
Autotrace [23] can then convert the rasterized subregions into vec-
tor paths. If desired, the user can edit the paths manually before
proceeding with the warping step. A set of subregions is shown in
Figure 11(b).



(a) (b)

(c) (d) (e)

Figure 7: A visualization of the warping process. A source letter and
its convex hull are shown in (a). A container subregion is shown in
(b), partitioned into convex pieces. The corresponding subdivision is
applied to the convex hull in (c), and the letter is warped piece-by-
piece into the convex partition in (d). The finished warped letter is
shown in (e).

3.3 Warping

Now that we have the container subregions, we must warp the corre-
sponding glyphs into them. Warping and morphing are well studied
problems in computer graphics [5]. Unfortunately, in most cases the
user must provide an explicit correspondence between the source
and target shapes. We would like the computer to derive this cor-
respondence automatically based on the quality of the warp it pro-
duces. We provide a geometric warping technique that incorporates
an energy function based on shape matching to measure the success
of the warp. We can then try a large set of possible correspondences
and choose the one that minimizes the energy function. We discuss
the warp in this subsection, and the energy function in the next one.

Let us denote by Ci the convex hull of glyph gi, which will be
warped into subregion Ri. An example is given in Figure 7(a). We
will define a warp from Ci to Ri, and apply it to the glyph. To
begin, we place the same number of sample points evenly around
both Ci and Ri (we have found that 100 points is an adequate trade-
off between efficiency and accuracy). Any given assignment of a
point on Ci to a point on Ri induces a correspondence between the
two shapes.

Hormann and Floater [10] present a technique for warping be-
tween two arbitrary simple polygons, based on a generalized no-
tion of barycentric coordinates. We find that their technique per-
forms well when the source and target polygons are convex, but
produces unacceptable distortion in general. While Ci is convex
by definition, Ri need not be. Therefore, we partition Ri into con-
vex pieces using the approximation algorithm of Greene [6]. Fig-
ure 7(b) shows an example of a partitioned subregion. Given a cor-
respondence between the sample points on Ci and Ri, we can then
map this partition back through the correspondence and create a
convex partition of Ci, shown in Figure 7(c). Finally, we apply the
geometric warp of Hormann and Floater inside each convex piece to
obtain a warp of the entire glyph. The outlines of the glyph are ap-
proximated by piecewise-linear paths with m vertices {v1, . . . ,vm},
and the glyph is warped by computing new positions {w1, . . . ,wm}
for each of the vertices in those paths. A finished example is given
in Figure 7(e).

��

� �� �
� �� �

��
� �	


 
� �
� �

� �� �

� ��
��

� �� �
� �� �

� �� � � ��

��

��
  !

" "# $ $% & &' ' () *+
,-. ./ /

0 0123456 67 7
89

: :;
<= > >? ? @ @A A B BC

D DE
F FG G

HI
J JK K

L LM M
N NO O

P PQ
R RS S

TU
V VW W

X XY Y
Z[

\ \]
^ ^_ _

` à b bcd de e
f fg g

h hi
j jk k
l lm m

n no
pq
rs

t tu u
vw

x xy y
z{| |}~ ~� �� �� �

��
��
��

� �� �

��
� ��

��
� �� �

�� �� � ��� ��

� �� �� �� �
� ��    ¡

¢ ¢£¤ ¤¥¦ ¦§ §

©̈

ª«
¬ ¬ 

®̄

°±

²³

µ́
¶·

¸ ¸ ¸¸ ¸ ¸¸ ¸ ¸¸ ¸ ¸¸ ¸ ¸¸ ¸ ¸

¹ ¹ ¹¹ ¹ ¹¹ ¹ ¹¹ ¹ ¹¹ ¹ ¹¹ ¹ ¹

º º ºº º ºº º ºº º ºº º ºº º ºº º º

» » »» » »» » »» » »» » »» » »» » »

¼ ¼¼ ¼¼ ¼¼ ¼¼ ¼¼ ¼

½ ½½ ½½ ½½ ½½ ½½ ½

¾ ¾¾ ¾¾ ¾¾ ¾¾ ¾¾ ¾

¿ ¿¿ ¿¿ ¿¿ ¿¿ ¿¿ ¿

À À ÀÀ À ÀÀ À ÀÀ À ÀÀ À ÀÀ À ÀÀ À À

Á Á ÁÁ Á ÁÁ Á ÁÁ Á ÁÁ Á ÁÁ Á ÁÁ Á Á

Â Â ÂÂ Â ÂÂ Â ÂÂ Â ÂÂ Â ÂÂ Â Â

Ã Ã ÃÃ Ã ÃÃ Ã ÃÃ Ã ÃÃ Ã ÃÃ Ã Ã

Ä Ä ÄÄ Ä ÄÄ Ä ÄÄ Ä ÄÄ Ä ÄÄ Ä ÄÄ Ä Ä

Å Å ÅÅ Å ÅÅ Å ÅÅ Å ÅÅ Å ÅÅ Å ÅÅ Å Å

Æ ÆÆ ÆÆ ÆÆ ÆÆ ÆÆ Æ

Ç ÇÇ ÇÇ ÇÇ ÇÇ ÇÇ Ç

È ÈÈ ÈÈ ÈÈ ÈÈ ÈÈ È

É ÉÉ ÉÉ ÉÉ ÉÉ ÉÉ É

Ê Ê ÊÊ Ê ÊÊ Ê ÊÊ Ê ÊÊ Ê ÊÊ Ê Ê

Ë Ë ËË Ë ËË Ë ËË Ë ËË Ë ËË Ë Ë

Ì Ì ÌÌ Ì ÌÌ Ì ÌÌ Ì ÌÌ Ì ÌÌ Ì ÌÌ Ì Ì

Í Í ÍÍ Í ÍÍ Í ÍÍ Í ÍÍ Í ÍÍ Í ÍÍ Í Í

Î ÎÎ ÎÎ ÎÎ ÎÎ ÎÎ Î

Ï ÏÏ ÏÏ ÏÏ ÏÏ ÏÏ Ï

Ð ÐÐ ÐÐ ÐÐ ÐÐ ÐÐ Ð

Ñ ÑÑ ÑÑ ÑÑ ÑÑ ÑÑ Ñ

Ò Ò ÒÒ Ò ÒÒ Ò ÒÒ Ò ÒÒ Ò ÒÒ Ò Ò

Ó Ó ÓÓ Ó ÓÓ Ó ÓÓ Ó ÓÓ Ó ÓÓ Ó Ó

Ô ÔÔ ÔÔ ÔÔ ÔÔ ÔÔ Ô

Õ ÕÕ ÕÕ ÕÕ ÕÕ ÕÕ Õ

Ö ÖÖ ÖÖ ÖÖ ÖÖ ÖÖ ÖÖ Ö

× ×× ×× ×× ×× ×× ×× ×

Ø ØØ ØØ ØØ ØØ ØØ Ø

Ù ÙÙ ÙÙ ÙÙ ÙÙ ÙÙ Ù

Ú Ú ÚÚ Ú ÚÚ Ú ÚÚ Ú ÚÚ Ú ÚÚ Ú Ú

Û ÛÛ ÛÛ ÛÛ ÛÛ ÛÛ Û

Ü Ü ÜÜ Ü ÜÜ Ü ÜÜ Ü ÜÜ Ü ÜÜ Ü ÜÜ Ü Ü

Ý ÝÝ ÝÝ ÝÝ ÝÝ ÝÝ ÝÝ Ý

Þ ÞÞ ÞÞ ÞÞ ÞÞ ÞÞ Þ

ß ßß ßß ßß ßß ßß ß

à àà àà àà àà àà àà à

á áá áá áá áá áá áá á

â â ââ â ââ â ââ â ââ â ââ â â

ã ãã ãã ãã ãã ãã ã

ä ä ää ä ää ä ää ä ää ä ää ä ä

å åå åå åå åå åå å

æ æ ææ æ ææ æ ææ æ ææ æ ææ æ æ

ç ç çç ç çç ç çç ç çç ç çç ç ç

è è èè è èè è èè è èè è èè è è

é é éé é éé é éé é éé é éé é é

ê ê êê ê êê ê êê ê êê ê êê ê êê ê ê

ë ë ëë ë ëë ë ëë ë ëë ë ëë ë ëë ë ë

ì ìì ìì ìì ìì ìì ì

í íí íí íí íí íí í

î î îî î îî î îî î îî î îî î î

ï ïï ïï ïï ïï ïï ï

ð ð ðð ð ðð ð ðð ð ðð ð ðð ð ðð ð ð

ñ ññ ññ ññ ññ ññ ññ ñ

ò ò òò ò òò ò òò ò òò ò òò ò ò

ó ó óó ó óó ó óó ó óó ó óó ó ó

ô ô ôô ô ôô ô ôô ô ôô ô ôô ô ô

õ õ õõ õ õõ õ õõ õ õõ õ õõ õ õ

ö ö öö ö öö ö öö ö öö ö öö ö ö

÷ ÷ ÷÷ ÷ ÷÷ ÷ ÷÷ ÷ ÷÷ ÷ ÷÷ ÷ ÷

ø ø øø ø øø ø øø ø øø ø øø ø øø ø ø

ù ù ùù ù ùù ù ùù ù ùù ù ùù ù ùù ù ù

ú ú úú ú úú ú úú ú úú ú úú ú úú ú ú

û ûû ûû ûû ûû ûû ûû û

ü üü üü üü üü üü ü

ý ýý ýý ýý ýý ýý ý

þ þþ þþ þþ þþ þþ þ

ÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿ

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	


 
 


 
 


 
 


 
 


 
 


 
 


 
 


� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �

 
 
 
 
 
 

� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �   

   
   
   
   
   

! ! !
! ! !
! ! !
! ! !
! ! !
! ! !

" "
" "
" "
" "
" "
" "

# #
# #
# #
# #
# #
# #

$ $ $
$ $ $
$ $ $
$ $ $
$ $ $
$ $ $

% % %
% % %
% % %
% % %
% % %
% % %

& & &
& & &
& & &
& & &
& & &
& & &

' ' '
' ' '
' ' '
' ' '
' ' '
' ' '

( (
( (
( (
( (
( (
( (

) )
) )
) )
) )
) )
) )

* * *
* * *
* * *
* * *
* * *
* * *

+ + +
+ + +
+ + +
+ + +
+ + +
+ + +

, ,
, ,
, ,
, ,
, ,
, ,

- -
- -
- -
- -
- -
- -

. .

. .

. .

. .

. .

. .

/ /
/ /
/ /
/ /
/ /
/ /

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

2 2
2 2
2 2
2 2
2 2
2 2

3 3
3 3
3 3
3 3
3 3
3 3

4 4
4 4
4 4
4 4
4 4
4 4

5 5
5 5
5 5
5 5
5 5
5 5

6 6 6
6 6 6
6 6 6
6 6 6
6 6 6
6 6 6

7 7 7
7 7 7
7 7 7
7 7 7
7 7 7
7 7 7

8 8 8
8 8 8
8 8 8
8 8 8
8 8 8
8 8 8

9 9 9
9 9 9
9 9 9
9 9 9
9 9 9
9 9 9

: : :
: : :
: : :
: : :
: : :
: : :

; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;

< <
< <
< <
< <
< <
< <

= =
= =
= =
= =
= =
= =

> > >
> > >
> > >
> > >
> > >
> > >

? ? ?
? ? ?
? ? ?
? ? ?
? ? ?
? ? ?

@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @

A A A
A A A
A A A
A A A
A A A
A A A

B B
B B
B B
B B
B B
B B

C C
C C
C C
C C
C C
C C

D D
D D
D D
D D
D D
D D

E E
E E
E E
E E
E E
E E

F F
F F
F F
F F
F F
F F

G G
G G
G G
G G
G G
G G

H H
H H
H H
H H
H H
H H

I I
I I
I I
I I
I I
I I

J J J
J J J
J J J
J J J
J J J
J J J

K K K
K K K
K K K
K K K
K K K
K K K

L L
L L
L L
L L
L L
L L

M M
M M
M M
M M
M M
M M

θ

lo
g 

r

Figure 8: A visualization of the shape context for a single reference
point on a warped letter “a”. The plane is divided into log-polar
regions on the left, and the sample points are collected into histogram
bins on the right.

3.4 Shape Matching

As was mentioned in the previous section, if we fix a sample point
on Ci and assign it in turn to each sample point on Ri, we get a
sequence of correspondences between the two shapes. How do we
decide which one is the best? Here, we need a measurement that
evaluates the quality of the warp resulting from a given correspon-
dence. Our measurement is based primarily on geometric similarity
between the warped glyph and the original. We also penalize warps
that rotate the glyph too much or fail to fill the container subregion.

The measurement of similarity between two shapes is an impor-
tant and active area of research in computer vision. We have found
that the “shape context” method of Belongie et al. [2] is a good fit to
our needs. In this method, the shapes to be compared can have arbi-
trary topology (unlike, for example, the method of Arkin et al. [1]).
They need only have the same number of sample points, which ours
do by construction.

A shape context for a single reference point is a log-polar his-
togram of the locations of the other points in the shape. The his-
togram is discretized by logarithmic distance from the reference
point and by angle. An example is given in Figure 8.

Belongie et al. explain how to compute δ (vi,w j), the distance
between the histograms associated with reference points vi and w j
on the original and warped copies of the glyph. We can then define
a measurement of geometric similarity as ∆g = 1

m ∑
m
i=1 δ (vi,wi).

Note that the original use of shape contexts minimized over all pairs
of reference points; here, we exploit the known correspondence be-
tween the vi and wi.

In order to preserve readability, it is important to avoid rotating
glyphs too much. In the worst case, a rotated letter may turn into a
different letter entirely, as an “m” becomes a “w” under a half-turn.
Therefore, we define a penalty ∆o based on the effect of the warp
on the glyph’s orientation. We use a least-squares estimate [22] of
the rigid motion between the vi and wi to compute the change θ in
orientation induced by the warp. We can then define ∆o = θ/π .

We would also like to force warped glyphs to occupy as much
of their container subregions as possible. We introduce an addi-
tional penalty based on area coverage: ∆a = 1−Aw/Ar, where Aw
is the area of the warped glyph and Ar is the area of its container
subregion.

Finally, we define the overall quality of a matching as ∆ =
α∆g + β∆o + γ∆a. The values α,β and γ are weights chosen to
trade off between the relative importance of these three terms. In
practice, we use α = 0.6,β = 0.2 and γ = 0.2. Figure 9 shows some



cost=0.328 cost=0.369 cost=0.371 cost=0.429 cost=0.512

Figure 9: The costs of warping letters. Smaller values indicate a closer match to the original letter of Figure 7.

cost=0.324 cost=0.396 cost=0.333 cost=0.376

cost=0.469 cost=0.456 cost=0.36 cost=0.463

Figure 10: The best-fit costs of lowercase and uppercase versions of
the letter “a” for four different typefaces. The original letters are
shown on the top, and are packed into the blue container subregions.

warped letters and their associated costs. We compute ∆ for every
possible correspondence between Ci and Ri, and choose the warp
that produces the lowest cost.

We extend this cost function in a simple but important way by
trying multiple glyphs for each letter. We iterate over a few dif-
ferent typefaces, and try both lowercase and uppercase versions of
letters. Notice, for example, the use of mixed case in Figure 17(b).
The examples in this paper were constructed from the four type-
faces URW Bookman, Bitstream Vera Sans, Courier, and DejaVu
Serif. The additional variety of multiple letterforms helps to ensure
a better match.

A finished example of our calligraphic packing technique, based
on the Mona Lisa, is shown in Figure 11.

4 RENDERING

We usually render the warped letters as solid black shapes. We have
also experimented with a few additional rendering styles in order to
increase the aesthetic appeal of our results.

Inspired by the rough outlines in Figure 2(b), we allow bound-
aries of letters to be perturbed geometrically before rendering. This
style is useful for capturing the look of rough or irregular objects,
such as Lincoln’s facial hair in Figure 12.

We also allow the interior of a letter to be filled with strokes
instead of a solid colour. The user is able to draw a few sample
curves to define the principle stroke direction in a letter. We in-
terpolate from points sampled on those curves using radial basis
functions to infer a vector field, in the manner of Hays and Essa [8].

(a)

(b) (c)

Figure 11: A calligraphic mosaic made from the painting and words
“Mona Lisa”. After we subdivide the image (a) and extract the out-
lines (b), our system will produce the finished result in (c). The
details of the nose and mouth were excluded from the packing pro-
cess, and taken directly from the container.

The streamline placement algorithm of Jobard and Lefer [11] draws
long, curved strokes that follow the vector field. These strokes give
us an opportunity to experiment with texture and tone in our de-
signs. For example, Figure 13 shows streamlines used to give the
look of a reflection in water.

5 IMPLEMENTATION AND RESULTS

Our system is implemented in C++, and generates Postscript output.
We use the CGAL library [3] to compute the convex hull and con-
vex partition. We implemented a prototype user interface in Gtkmm
that lets the user load in an image, create the binary container im-
age, fill it with letters, and modify the rendering parameters. The
automated mosaic process usually takes from a couple of seconds
to a couple of minutes to complete on a standard PC, depending on
how many letters are used.

As mentioned throughout the paper, we provide a wide range of
interactive tools that permit the user to intervene in the automatic
construction of a mosaic. They can edit the curves representing the
subregions and the shapes of the warped letters. For example, we
added some detail to Chaplin’s eyes in Figure 17(b).

Of course, our system is not restricted to the Roman alphabet;
it can process more complex symbols. Figure 14(a) shows a result
in which three copies of the Chinese word “bird” (written in the
traditional zhuànwén, or “seal script”) are used to fill the outline of



(a)

(b) (c)

Figure 12: Abraham Lincoln (a) was faced with the conflict between
“freedom” and “slavery”. The container image is shown in (b). In
the result (c), we added noise to the outlines of the letters O and M
to give the appearance of Lincoln’s facial hair.

Figure 13: The word “successful” made into a mosaic of a boat and
its reflection.

a bird. Figure 14(b) includes some musical symbols in a portrait of
Beethoven.

Some additional results are shown in Figures 15, 16 and 17.

6 CONCLUSION

In this paper, we introduced the calligraphic packing problem and
proposed a solution. Our system uses a level-set approach to sub-
divide a container region into subregions, and a best-fit warping
algorithm to map letters into subregions. We also developed some
variations in rendering style that provide the user with additional
aesthetic opportunities.

(a)

(b)

Figure 14: Three copies of the Chinese character for “bird” are used
to fill a bird in (a). The source character is shown on the upper left.
“Muse” and some musical notation are used to create a portrait of
Ludwig van Beethoven in (b).

Like other problems in non-photorealistic rendering, calligraphic
packing is a challenging topic because a successful solution relies
on facts from both mathematics and human perception. Calligra-
phy is an especially interesting medium in this regard, because it
relies on the cognitive and perceptual mechanisms of reading, about
which far too little is understood.

We note two important directions in which the technique in this
paper can be improved. First, we would like to solve the third re-
quirement of our calligraphic packing problem, namely that the ar-
rangement of glyphs respect the order of original sequence of let-
ters. We would like to find a way to distribute letters automatically
so that the eye is naturally drawn across them in the order in which



Figure 15: The “Da Vinci Code” packed into a portrait of Leonardo.

they are intended to be read. We would have to extend our energy
function to account not only for the quality of each individual warp,
but for the layout of the glyphs as a whole.

Second, we would like to improve the legibility and fit of the
rendered letters. We cannot simply reduce the convex hull to the
boundary of the glyph, because some of the negative space adja-
cent to the letter is essential in identifying it (consider, for example,
the spaces separating the arms of an uppercase “E”). However, the
convex hull also contains incidental features such as serifs that re-
duce the quality of the packing. It may be necessary to move to
a spine-based model of letter construction, where we pack zero-
thickness drawings of letters and expand outward from them to fill
the container. A parameterized model of letterforms like that of
METAFONT [14] could be used to control the shapes of letters
during this process.

In the long run, we are interested in ways that the computer can
be used as a tool for calligraphic design. Computers are long estab-
lished as a powerful technology for typography, but more research
needs to be done to achieve the same level of power and flexibil-
ity with letterforms that non-photorealistic rendering grants us with
images.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their helpful
feedback. We are also very grateful to Mark ter Laan for the ele-
phant photograph in Figure 1, to Hassan Musa for permission to
print the tiger in Figure 2(a), to Bubbles Incorporated SA for per-
mission to use Chaplin image in Figure 17(b), and to AlmapBBDO
for permission to use the image in Figure 2(b).

REFERENCES

[1] Esther M. Arkin, L. Paul Chew, Daniel P. Huttenlocher, Klara Kedem,
and Joseph S. B. Mitchell. An efficiently computable metric for com-
paring polygonal shapes. IEEE Trans. Pattern Anal. Mach. Intell.,
13(3):209–216, 1991.

[2] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object
recognition using shape contexts. Pattern Analysis and Machine In-
telligence, IEEE Transaction on, 24(4):509–522, 2002.

[3] CGAL. CGAL:computational geometry algorithms library. http:

//www.cgal.org, 2006.
[4] Ketan Dalal, Allison Klein, Yunjun Liu, and Kaleigh Smith. A spectral

approach to npr packing. In NPAR ’06: Proceedings of the 4th inter-
national symposium on Non-photorealistic animation and rendering,
pages 71–78, 2006.

[5] Jonas Gomes, Lucia Darsa, Bruno Costa, and Luiz Velho. Warping
and Morphing of Graphical Objects. Morgan Kaufmann, 1999.

[6] D. Greene. The decomposition of polygons into convex parts. In In
Advances in Computing Research, pages 235–259. JAI Press, 1983.

[7] Alejo Hausner. Simulating decorative mosaics. In SIGGRAPH ’01:
Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, pages 573–580, New York, NY, USA, 2001.
ACM Press.

[8] James Hays and Irfan Essa. Image and video based painterly anima-
tion. In NPAR ’04: Proceedings of the 3rd international symposium
on Non-photorealistic animation and rendering, pages 113–120, New
York, NY, USA, 2004. ACM Press.

[9] Stefan Hiller, Heino Hellwig, and Oliver Deussen. Beyond stippling
- methods for distributing objects on the plane. Computer Graphics
Forum, 22(3):515–522, 2003.

[10] Kai Hormann and Michael S. Floater. Mean value coordinates for ar-
bitrary planar polygons. ACM Trans. Graph., 25(4):1424–1441, 2006.

[11] Bruno Jobard and Wilfrid Lefer. Creating evenly-spaced streamlines
of arbitrary density. In Visualization in Scientific Computing ’97. Pro-
ceedings of the Eurographics Workshop in Boulogne-sur-Mer, France,
pages 43–56, Wien, New York, 1997. Springer Verlag.

[12] Craig S. Kaplan and David H. Salesin. Escherization. In Kurt Ake-
ley, editor, Siggraph 2000, pages 499–510. ACM Press / ACM SIG-
GRAPH / Addison Wesley Longman, 2000.

[13] Junhwan Kim and Fabio Pellacini. Jigsaw image mosaic. In SIG-
GRAPH 2002 Conference Proceedings, pages 657–664, 2002.

[14] Donald E. Knuth. The METAFONT book. Addison-Wesley, 1986.
[15] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum. Lazy

snapping. ACM Trans. Graph., 23(3):303–308, 2004.
[16] O Mataev and H Mataev. Olga’s gallery. giuseppe Arcimboldo. http:

//www.abcgallery.com/A/arcimboldo/arcimboldo.html,
2006.

[17] Victor Ostromoukhov and Roger D. Hersch. Artistic screening. In
SIGGRAPH ’95: Proceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques, pages 219–228, New York,
NY, USA, 1995. ACM Press.

[18] Adrian Secord. Weighted voronoi stippling. In NPAR ’02: Proceed-
ings of the 2nd international symposium on Non-photorealistic ani-
mation and rendering, pages 37–43. ACM Press, 2002.

[19] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolv-
ing Interfaces in Computational Geometry, Fluid Mechanics, Com-
puter Vision, and Materials Science. Cambridge University Press,
1999.

[20] Tatiana Surazhsky and Gershon Elber. Arbitrary precise orientation
specification for layout of text. In PG ’00: Proceedings of the 8th
Pacific Conference on Computer Graphics and Applications, page 80,
Washington, DC, USA, 2000. IEEE Computer Society.

[21] Tatiana Surazhsky and Gershon Elber. Artistic surface rendering using
layout of text. Computer Graphics Forum, 21(2):99–110, 2002.

[22] Shinji Umeyama. Least-squares estimation of transformation param-
eters between two point patterns. IEEE Trans. Pattern Anal. Mach.
Intell., 13(4):376–380, 1991.

[23] Martin Weber. Autotrace - converts bitmap to vector graphics. http:
//autotrace.sourceforge.net/, 2006.



(a)

(b)

Figure 16: A “graceful” dancer in (a), and an airplane flying “like a
bird” in (b).

(a)

(b)

Figure 17: A calligraphic packing of “GI 2007” into the Graphics
Interface logo in (a), and Charlie Chaplin depicted using the words
“laugh” and “cry” in (b).


