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In art, hatching means drawing patterns of roughly parallel lines. Even

with skill and time, an artist can find these patterns difficult to create and

edit. Our new artistic primitive—the hatching shape—facilitates hatching

for an artist drawing from imagination. A hatching shape comprises a mask

and three fields: width, spacing, and direction. Streamline advection uses

these fields to create hatching marks. A hatching shape also contains barrier

curves: deliberate discontinuities useful for drawing complex forms. We

explain several operations on hatching shapes, like the multi-dir operation,

an easy way to depict 3D form using a hatching shape’s direction field. We

also explain the modifications to streamline advection necessary to produce

hatching marks from a hatching shape.
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dering; • Human-centered computing → Gestural input.

ACM Reference Format:
Greg Philbrick and Craig S. Kaplan. 2021. A Primitive for Manual Hatching.

1, 1 (December 2021), 17 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The term hatching refers to groups of roughly parallel curves in

a drawing. This technique has a long history, particularly in print

media like woodcut, and is still in use. It often serves as halftoning,

with marks blending visually to suggest various tones. Hatching can

also portray texture and the curvature of three-dimensional forms.

For an artist drawing marks one at a time, hatching is hard to

create and even harder to edit. Altering a drawing means adding

marks to an existing hatching pattern, which is prone to messiness;

carefully erasing specific marks; or erasing the entire pattern and

starting over. The difficulty is highest when hatching is dense, neat,

and complex.

In a digital context, an artist might use a specialized primitive to

direct a group of hatching marks collectively rather than adding or

removing them individually. An experienced artist will want such a

primitive to operate just above the level of individual marks, coor-

dinating a group of marks without automating the entire drawing

process.

The hatching shape (Figure 1) is our answer to this need. A hatch-

ing shape’s purpose is to be more convenient to create and edit than

a group of unorganized hatching marks. A hatching shape is a kind

of patch [Philbrick and Kaplan 2019], which is just a group of marks

that run together—the fundamental unit of hatching.

A hatching shape defines hatching within a bounding box. Three

fields give hatching marks’ widths, directions, and the spacings
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Fig. 1. The hatching marks come from hatching shapes: one shape for the
human figure, one for the egg, and two for the water. Except where noted,
art is by the first author.

between them. The artist manages these fields and streamline advec-

tion [Jobard and Lefer 1997] uses them to produce hatching marks.

A mask specifies where marks are visible within the bounding box.

A hatching shape also includes a collection of barrier curves, which
induce discontinuities. Figure 2 shows two hatching shapes, one

with and one without a barrier curve. Figure 1 shows the importance

of barrier curves in an actual illustration. The torso has discontinu-

ities in the picture plane which hatching marks should not cross,

such as the edge of the right shoulder blade (Figure 3). Furthermore,

a single hatching patch (produced by a single hatching shape) does

the job of rendering the entire torso. Using a single patch to render

a complex form like this is especially difficult. It is more common

to break such a form into multiple patches, as in Figure 4. It is not

necessarily better to use a single patch, but it is usually harder, a

show of virtuosity. The show of virtuosity in Figure 1 would be

impossible without the discontinuities created by barrier curves.
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Fig. 2. At top left is a hatching shape mask. At top right is the mask plus
a barrier curve. Below is the hatching produced (by our implementation)
without the barrier curve (left) and with it (right).

Fig. 3. This detail from Figure 1 shows how useful barrier curves are for
portraying discontinuities in (imagined) three-dimensional surfaces.

Our primary contribution is the hatching shape primitive itself,

which has the same type of research value as the diffusion curve

primitive [Orzan et al. 2008] or the abstract computational-artistic

technique of Modeling with Rendering Primitives [Schwarz et al.

2007]. Secondary contributions are (1) a suggested set of hatching

shape operations with implementation details and (2) modifications

to streamline advection for producing hatching marks from a hatch-

ing shape. These modifications primarily deal with discontinuities

at barrier curves.

We have built a prototype interactive tool in C++ that takes input

from a drawing tablet and uses OpenGL to render a virtual canvas.

It has many of the features of an ordinary drawing tool along with

the ability to create and edit hatching shapes.

Fig. 4. The artist usesmultiple hatching patches to render the single complex
form of the upraised hand. Notice the seam between the patch on the back
of the hand and patch running along the heel of the hand and the arm.
Detail from Ars Pictoria [Browne 1669], copper plate.

The rest of this paper is organized as follows: Section 2 mentions

prior literature. Section 3 explains the parts of a hatching shape.

Sections 4 and 5 treat hatching shape operations: Section 4 covers

basic operations and Section 5 explains more advanced ones that

involve barrier curves. Section 6 gives our streamline advection

details. Section 7 discusses the merits and limitations of hatching

shapes. Section 8 considers future developments.

2 RELATED WORK
As a research problem, hatching usually falls in the purview of 3D

rendering—the electronic kind. Lawonn et al. [2018] survey hatch-

ing applications in this context. Some 3D work outside of rendering,

such as surface parametrization [Knöppel et al. 2015; Lichtenberg

et al. 2018] essentially performs hatching without using the word.

Our work has little to do with 3D research, though we should note

that some 3D hatching renderers use streamline advection [Hertz-

mann and Zorin 2000; Lawonn et al. 2013; Singh and Schaefer 2010;

Zander et al. 2004].

The immediate family of our work is hand-driven 2D hatching in-

terfaces [Durand et al. 2001; Ostromoukhov 1999; Pnueli and Bruck-

stein 2005; Salisbury et al. 1996, 1994, 1997]. Our work is distinct

within this family. One difference is superficial but worth noting

for clarity: hatching shapes are meant mainly for drawing from

imagination, not for creating hatching from a reference image. (We

do describe one hatching shape operation that involves a reference

image; see Section 4.4.)

Less superficially, hatching shapes give greater control overmarks’

widths, directions, and spacing than do previous alternatives. Con-

trol over the direction field is the most important, and therefore the

best way to compare our contributions to others’.

One of the first hatching interfaces is DigiDürer [Pnueli and

Bruckstein 2005], in which marks’ directions come from a refer-

ence image. The same applies in Interactive Pen-and-Ink Illustration

[Salisbury et al. 1994], though there the user additionally provides

an offset angle. Orientable Textures [Salisbury et al. 1997] gives

more direct control over marks’ directions. As with our work, there
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. Example process for an illustration that includes a hatching shape:
Draw strokes in the canvas (a). Create a hatching shape (b), possibly using
some of those strokes for its mask (Section 4.1). Specify barrier curves (c),
again possibly snapping to preexisting strokes. Set the shape’s direction field
(d) using the multi-dir operation (Section 5). Tweak the spacing field (e) and
the width field (f) using fill and blend-stroke operations (Sections 4.3 and 5).

is a rasterized direction field, editable via brush tools. The most

interesting operation has the user draw two curves and fills the

direction field between them by sampling from interpolating curves.

A similar mechanism seems to feature in Strokes Maker [Apanovich

2021], a commercial application for creating hatching from a photo-

graph. Adobe Illustrator, augmented with plugins like WidthScribe

by Astute Graphics [2021], offers controls similar to Strokes Maker’s.

The idea of interpolating curves crystallizes further in Digital

Facial Engraving [Ostromoukhov 1999], where hatching marks’

paths are isocurves in Coons patches. Digital Facial Engraving is

the closest in the hand-driven hatching family to our work, since it

focuses on hatching smooth, difficult 3D forms, though it does not

give control over marks’ directions beyond editing the boundaries

of Coons patches.

An interesting approach not attempted in our work is to synthe-

size hatching from examples. This tack appears in the 2D domain

[Barla et al. 2006; Jodoin et al. 2002; Xing et al. 2014] and in the 3D

domain [Gerl and Isenberg 2013; Kalogerakis et al. 2012].

3 PARTS OF A HATCHING SHAPE
A hatching shape stores information for producing hatching within

a bounding box: three fields, a mask, and barrier curves.

The three fields—width, spacing, and direction—are 2D arrays

with a shared resolution. At each grid location, the hatching shape

defines (1) a scalar width, the width of a hatching mark passing

through that location; (2) a scalar spacing, the distance between

the spines of two hatching marks; and (3) a direction, stored in our

case as the three unique components of a structure tensor. We use

structure tensors rather than 2D vectors or polar values since our

directions need to be 180°-symmetric. Our tensors have the form

provided by Knutsson [1989]: given a vector v = (𝑥,𝑦), the structure
tensor is [

𝑥2 𝑥𝑦

𝑥𝑦 𝑦2

]
(1)

Structure tensors are a useful representation because the vectors

v and −v come out identical. This matters not so much when storing

a hatching shape in memory, but is crucial when editing its direction

field. We do ultimately convert tensors back to 2D vectors when

sampling the direction field during streamline advection.

To sample the width, spacing, or direction at a position inside

the hatching shape’s bounding box, we interpolate. When no bar-

rier curves are nearby, this means standard bilinear interpolation;

otherwise, it is more complicated—see Section 6.

The resolution of a just-created hatching shape’s fields depends

on the shape’s relative size in the canvas. By default, a shape that

completely fills a square canvas will have a 50 × 50 grid. The artist

can change the resolution if desired. The torso hatching shape in

Figure 1 has a 200 × 243 grid.

In Sections 4 and 5, we discuss operations that modify a hatching

shape’s three fields. Often, the goal of these operations is to inter-

polate a smooth field from a sparse set of constraints. In such cases

we solve grid-Laplacians [Chaudhuri 2017]. A grid-Laplacian is a

linear system that interpolates a scalar field 𝑓 on a grid. The field

has known values—Dirichlet constraints—at some grid locations

, Vol. 1, No. 1, Article . Publication date: December 2021.



4 • Greg Philbrick and Craig S. Kaplan

Fig. 6. A hatching shape’s mask is a collection of closed curves—three in
this case.

and Δ𝑓 should be zero (𝑓 should be smooth) elsewhere. For each

unknown 𝑓𝑖, 𝑗 , the system contains the equation

− 4𝑓𝑖, 𝑗 + 𝑓𝑖−1, 𝑗 + 𝑓𝑖+1, 𝑗 + 𝑓𝑖, 𝑗−1 + 𝑓𝑖, 𝑗+1 = 0 (2)

When interpolating a smooth direction field, we solve separate

grid-Laplacians for the three unique components of a structure

tensor. Our grid-Laplacians all take the four-neighbor form shown

in Equation 2, though an eight-neighbor form exists. The importance

of this restriction becomes clear in Section 5, when barrier curves

get involved. We solve grid-Laplacians with the sparse simplicial

LDLT solver from the Eigen library [Guennebaud et al. 2010].

Since an artist might want to confine hatching marks to a shape

other than a rectangle, a hatching shape also has a mask, which is a

group of closed curves that do not intersect but may contain each

other (Figure 6).

We perform themasking itself in twoways. In interactive OpenGL

rendering, we fill a stencil buffer by rendering each polyline-approximated

mask curve using a triangle fan, incrementing the stencil value at

drawn locations [Woo et al. 1997]. This produces stencil values that

are odd (with the least significant bit set to one) inside the mask,

where hatching marks should be visible. Later, when we export the

artist’s work in PostScript form, we use the mask curves as clipping

paths.

The last part of a hatching shape is zero or more barrier curves

(Figure 2). These must extend inside the bounding box to have effect.

4 CREATING AND EDITING HATCHING SHAPES
With a hatching shape’s parts defined, we now present operations

on this primitive. In this section, we cover simpler operations that

do not involve barrier curves (but do not rule out their presence).

These operations are hatching shape creation (Section 4.1), mask

editing (Section 4.2), field fill operations (Section 4.3), sourcing a

hatching shape’s width field from a reference image (Section 4.4),

field multiplication (Section 4.5), and crosshatching (Section 4.6).

Section 5 discusses more complex operations that respect barrier

curves.

Fig. 7. One way to create a hatching shape (left) is to draw two strokes
defining opposite sides of a Coons patch. Another way (right) is to draw a
closed curve, which becomes a new hatching shape’s mask.

4.1 Creating a Hatching Shape
One way to create a hatching shape is to draw two source strokes,

as in the left half of Figure 7. The strokes’ combined bounding box

becomes the shape’s bounding box. The spacing field starts out with

a user-chosen uniform value; the irregular spacings in the figure

are an artifact of our streamline placement algorithm (Section 8.2).

The width and direction fields come from solving grid-Laplacians,

where the Dirichlet constraints are widths and directions sampled

from the strokes.

Another way to create a hatching shape is to draw a closed curve,

possibly snapping to strokes in the canvas as in Figure 5. The bound-

ing box of the curve becomes the bounding box of the hatching

shape. The three fields start out with uniform values: a diagonal

direction for the direction field and user-chosen values for the width

and spacing fields. The initiating curve becomes the shape’s single

mask curve (Figure 7, right).

4.2 Mask Editing
The artist can draw a closed curve and remove its enclosed area

from a hatching shape’s visible area (Figure 8b). This affects only

the hatching shape’s mask. We use planar arrangements (provided

by CGAL [The CGAL Project 2020]) to derive a new collection of

mask curves. Adding area to a hatching shape (Figure 8c) is more

involved, since it might require expanding the hatching shape’s

bounding box. In that event, we recompute all three fields, setting

them to interpolated original values in the space covered by the

original box and to the solution of a grid-Laplacian (with Dirichlet

constraints along the border of the old box) elsewhere.

4.3 Field Fill Operations
We offer several means of editing a hatching shape’s fields, including

three kinds of fill operations. A simple fill takes a fill value and an

alpha in [0, 1]. A linear gradient or radial gradient fill operation

takes start and end positions, two fill values, and two alphas. All fill

operations reduce to updating each of a field’s values to an alpha-

weighted mixture of its old value and a fill value. No grid-Laplacian

is involved. Figure 9 shows linear and radial gradient fill operations

applied to the width and spacing fields of a hatching shape. Figure 10
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(a)

(b) (c)

Fig. 8. Removing the orange shape from the hatching shape’s mask requires
only coming up with a new mask curve using planar arrangements (b).
Adding the orange shape to the mask is more complicated, since it expands
the hatching shape’s bounding box, requiring new versions of the width,
spacing, and direction fields.

shows a linear gradient fill on a hatching shape’s spacing field in

the context of an illustration.

The user explicitly chooses alpha values and fill values, except for

direction-field fill values, which are inferred from the input stroke.

The simple fill uses the direction from one end of the stroke to

the other. The linear gradient fill interpolates between the stroke’s

endpoint tangents. In the radial gradient fill, fill values point either

toward the stroke’s start position (source/sink mode) or perpen-

dicular to that direction (vortex mode). Figures 11 and 12 show fill

operations on the direction field.

4.4 Setting the Width Field From an Image
The artist can set a hatching shape’s width field using a maximum

width value and a greyscale reference image. This option is a fallback

for modifying the width field manually is too tedious. Figure 13

presents such a case. In a widths-from-image operation, the hatching

shape’s resolution changes: its cell width becomes twice the size of

a pixel from the reference image, assuming the reference image is

mapped to the bounding box of the canvas.

4.5 Field Multiplication
The artist can multiply either the width or the spacing field by

some factor 𝑒 . Or they can perform a density-change operation by

specifying a density factor 𝑒 such that both the width and spacing

fields get multiplied by 1/𝑒 . Though trivial, these operations make

clear the value of procedural hatching. Consider how long it would

(a)

(b) (c)

(d) (e)

Fig. 9. An initial hatching shape (a) modified with linear (b,c) and radial
(d,e) gradient fill operations on the width and spacing fields.

(a) (b)

Fig. 10. Initially, the hatching shape representing the tree has a uniform
spacing field (a). A linear gradient fill operation guided by the orange stroke
applies a smaller spacing value with an alpha that decreases from top to
bottom. This produces foreshortening (b).
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(a) (b)

Fig. 11. Simple fill and linear gradient fill operations on the direction field.
The simple fill operation uses a stroke’s endpoint-to-endpoint direction (a).
The linear gradient fill operation uses a stroke’s endpoint tangents (b).

Source/Sink Vortex

Fig. 12. Radial gradient fills on the direction field, shown with the precipi-
tating strokes. The first column shows source/sink mode; the second shows
vortex mode. In all four cases, the first alpha value, associated with the
beginning of the stroke (the center of the field), is 1. The second alpha value
is 0 in the first row and 1 in the second row.

take to effect the edit shown in Figure 14 drawing each mark by

hand.

4.6 Crosshatching
Our crosshatching operation, demonstrated in Figure 15 and also

discernible in the foliage of Figure 10, takes an angular range 𝛼

between 0 and 90°, plus a number 𝑛 of crosshatching layers to create.

We make that many copies of the selected hatching shape. Each

(a) (b)

Fig. 13. A quick Photoshop painting (a) provides the width field for the
hatching shape depicting clouds and sky in a detail from a larger composi-
tion (b).

Fig. 14. The artist can modify the density of a hatching shape, doubling it
here.

(a) (b)

Fig. 15. The crosshatching operation copies a hatching shape and rotates
the direction field in the copies. Here, the crosshatching angle 𝛼 is 45° and
the number of copies 𝑛 is 1.
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Fig. 16. Barrier curves create “dead cells” (red) in a hatching shape’s grid.
Widths, spacings, and directions from dead cells are unreliable for use in
streamline advection.

(a) (b)

(c) (d)

Fig. 17. Blend strokes applied to the width (b), direction (c), and spacing (d)
fields of an initial hatching shape (a).

copy has its direction field (not its marks) rotated clockwise by 𝑖𝛼/𝑛,
where 𝑖 = 1 . . . 𝑛.

5 BARRIER CURVES AND OPERATIONS INVOLVING
THEM

Having explained the simpler hatching shape operations, we now

discuss twomore complex ones: blend-stroke andmulti-dir. These op-
erations respect a hatching shape’s barrier curves, if any. Remember

that barrier curves are for creating discontinuities.

(a) Without barrier (b) With barrier

Fig. 18. Blend strokes’ effects stop at barriers.

Before describing these two operations, we must introduce “dead

cells” (Figure 16). We find these by rasterizing barrier curves to a

hatching shape’s grid. Dead cells let barrier curves have influence

in this section’s two operations. They also influence streamline

advection (Section 6).

5.1 Blend Stroke
A blend-stroke operation lets the user locally and smoothly modify

one of a hatching shape’s fields with a stroke. Effects propagate from

the stroke up to a user-specified radius (Figure 17). Achieving this

means updating each of the field’s values using a fill value and an

alpha value, like the fill operations described earlier. Here, however,

fill values and alpha values are more complex to calculate.

There are three steps to a blend-stroke operation. First, we com-

pute a distance transform of the stroke at the same resolution as the

hatching shape. When there are no barrier curves, we use a simple

two-pass distance transform [Toivanen 1996]. Otherwise we use

Dijkstra’s algorithm modified to ignore dead cells. This means that

for every cell position, we find the length of the shortest path to the

stroke, where paths are a mixture of horizontal and vertical steps

that do not visit dead cells.

Second, we compute an alternate version of the field using a grid-

Laplacian with Dirichlet constraints along the stroke. When editing

the direction field or width field, we densely sample the stroke’s

tangents or widths for our Dirichlet values. In a spacing field edit,

we interpolate between two user-specified spacing values along the

stroke. Third, we blend this alternate version of the field with the

current field. Each cell’s alpha value comes from the distance map,

the effect radius, and an overall alpha value chosen by the user.

Because our Dijkstra distance transform uses four-neighbor paths

only and considers dead cells non-traversable, effects do not propa-

gate across barriers (Figure 18). Dead cells are unchanged by blend-

stroke operations, which means their values are liable to stop agree-

ing with their neighbors. To be safe, then, we do not use dead cells’

values when interpolating data from the three fields (Section 6.3).

5.2 Multi-Dir
The multi-dir operation is an expansion of the blend-stroke opera-

tion, meant just for the direction field. Bending hatching marks to

show the curvature of an imagined 3D surface is a crucial part of
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Fig. 19. The multi-dir operation fills the direction field using the barrier
curves (red) and multiple guiding strokes (orange).

hatching, and we find it too difficult using individual blend strokes.

In multi-dir, we do away with the effect radius and do not alpha

blend with the old direction field. Instead we produce a completely

new direction field that interpolates the densely sampled directions

of one or more guiding strokes (Figure 19). The input in multi-dir

evokes the “directional guides” of FLOWPAK [Saputra et al. 2017],

the “curvature lines” of BendFields [Iarussi et al. 2015], the “cross

sections” of CrossShade [Shao et al. 2012], and the “hatching strokes”

of Bui et al. [2015].

Multi-dir requires another grid-Laplacian, with Dirichlet values

set to guiding strokes’ tangents. There is a critical difference between

this grid-Laplacian and those discussed earlier. We exclude dead

cells from this linear system, which lets barrier curves exert an

effect: cells on opposite sides of a barrier are no longer as closely

connected, if at all. A similar technique creates discontinuities in the

context of diffusion curves [Bezerra et al. 2010; Finch et al. 2011].

To clarify, we do not exclude dead cells from the grid-Laplacian

used for a blend stroke. Blend strokes do respect barrier curves,

but by way of the distance map used for blending. With a blend

stroke, the grid-Laplacian only needs to produce a smooth field

that interpolates sample values from an input stroke. We could

use the more advanced, barrier-respecting grid-Laplacian for this

interpolation, but we have not yet seen the need.

In the dead cell-excluding grid-Laplacian, the four-neighbor ver-

sus eight-neighbor distinction is just as critical as it is in the Dijk-

stra distance transform used in the blend-stroke operation. If we

used eight-neighbor paths in our distance transforms or an eight-

neighbor grid-Laplacian for multi-dir, the rasterized barriers would

Fig. 20. In the multi-dir operation, the grid-Laplacian leaves out dead cells.
There might be pockets of live cells that are unreachable from Dirichlet
constraints (orange). The system leaves these out as well to prevent the
solver from failing.

Fig. 21. Streamlines taper as they approach each other.

not be effective unless we used a “thick” rasterization algorithm that

marked every cell touched by a barrier curve as dead. We use “thin”

rasterization, keeping as many cells as possible live and thereby

throwing away no more data than necessary. Section 6.4 explains

our rasterization further.

Removing dead cells from the grid-Laplacian sometimes means

that a small pocket of cells is unreachable from any of the Dirichlet

constraints (Figure 20). These pockets can make the linear solver fail.

Thus, the system includes only live cells reachable from Dirichlet

constraints via four-neighbor paths that do not include dead cells.

6 STREAMLINE ADVECTION
We have explained a hatching shape’s parts and showed ways to

manipulate this primitive. Now we explain how to produce hatching

marks from a hatching shape using our version of Jobard and Lefer’s

streamline placement algorithm [1997].

The original placement algorithm fills a rectangle with stream-

lines one at a time, popping seed locations from a queue. If a can-

didate location is too close to already placed streamlines, discard

it; otherwise, integrate through a vector field (a hatching shape’s

direction field, in our case) and terminate the streamline upon going

out of bounds or coming within a stopping distance of an older

streamline.

There aremany low-level implementation choices, of course. Here

are the the simpler details of our approach:

• Streamline density is variable [Chen et al. 2007; Li et al. 2008;

Mebarki 2016; Schlemmer et al. 2007; Singh and Schaefer
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2010]. The separation distance between streamlines, called

𝑑sep by Jobard and Lefer, comes from a hatching shape’s spac-

ing field.

• Like Jobard and Lefer, we use midpoint integration.

• For a given hatching shape, the integration step size is a

constant: the smallest 𝑑sep found in the spacing field.

• Streamlines taper when they come close together, again as

per Jobard and Lefer. The local value 𝑑test is the minimum

spacing allowed between two streamlines: the “stopping dis-

tance” mentioned above. A streamline in progress will taper

to nothing and terminate if its distance to a previous stream-

line falls to this value. We set 𝑑test to half of the local spacing

value (𝑑sep/2). See Figure 21.
• A streamline seed must be at least 𝑑sep (not 𝑑test) away from

previous streamlines in order not to be discarded.

• Before placing any hatching marks, we fill our seed queue,

borrowing the approach of Suggestive Hatching [Singh and

Schaefer 2010]. We take seeds from the vertices of a coarse-to-

fine series of grids, the finest grid having a cell size equal to

the step size. As Suggestive Hatching explains, this is a cheap

way to get the benefits of farthest-point seeding [Mebarki

et al. 2005]. A second seed queue handles gaps caused by

barriers (Section 6.5).

• We use a minimum length test: if, after advection in both

directions, a streamline contains fewer than 5 points, we

discard it.

There are several advanced streamline placement features that

our implementation lacks, such as the adaptive step size and loop

prevention of ADVESS [Liu et al. 2006] and the critical-point han-

dling of Verma et al. [2000].

With these lighter points covered, we move to the more involved

parts of our streamline placement algorithm. Most of the complexity

comes from the need to respect barrier curves.

6.1 The Dead Grid and the Collider Grid
We use auxiliary 2D arrays for streamline placement, such as the

dead grid, a boolean image to which we rasterize barrier curves. We

have already alluded to checking the dead-or-alive status of cells;

that is the dead grid’s role. The collider grid cheaply determines

whether a given line segment intersects any barrier curve. Each cell

in the collider grid stores line segments to use in intersection tests.

Both the dead grid and the collider grid have the same resolution as

a hatching shape’s three fields.

To fill these two grids, we approximate each barrier curve with

a series of line segments. For each line segment 𝐴𝐵, we find the

integral coordinates it rasterizes to (Section 6.4) and mark these

in the dead grid. We also add 𝐴𝐵 to the bin at each of the same

positions in the collider grid. Finally, we dilate the information in

the collider grid with a 3 × 3 kernel (Figure 22). Dilating the collider

grid is necessary because of the thin rasterization we use. Without

it, we would miss diagonal intersections.

We can find the first intersection of any directed line segment𝐶𝐷

with any barrier curve by finding the rasterized coordinates of 𝐶𝐷

and, for each, checking the intersection between 𝐶𝐷 and the line

(a) (b)

(c)

Fig. 22. Given a barrier curve (a), we split it into line segments. The boolean
dead grid marks cells visited by any barrier line segment (b). The collider
grid (c) stores copies of barrier line segments. For example, a cell with a
yellow and a purple dot contains a copy of the yellow line segment and a
copy of the purple line segment.

segments stored in the collider grid there, returning the intersection

closest to 𝐶 , if any.

6.2 Occupancy Grid
The occupancy grid is a third auxiliary array, meant for finding

the distance to the nearest streamline at a query position. Ours

resembles the occupancy grid of ADVESS: each cell stores points

visited by completed streamlines (not the points from the streamline

in progress). The choice of cell size for this grid can be made without

regard to the cell sizes of other grids, permitting a trade-off between

more memory usage and more distance calculations. We choose as

our occupancy grid cell size the minimum value found in a hatching

shape’s spacing field, clamped so that the occupancy grid’s minimum

dimension is no smaller than 15 and its maximum dimension is no

larger than 500.

There are two use cases for the occupancy grid: checking a stream-

line in progress and checking a streamline seed.

6.2.1 Streamline in Progress. Every time a streamline takes a step,

we need to check how close it is to previous streamlines. If the

nearest streamline is 𝑑test away—recall that 𝑑test is half of 𝑑sep—then

the current streamline tapers to nothing and takes no more steps in

the current direction.

The occupancy grid does not need to return the true nearest dis-

tance to an already placed streamline at the current location; it just

needs to return the true distance clamped to the range [𝑑test, 𝑑sep].
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(a) (b)

Fig. 23. Failing to account for barriers in occupancy-grid tests causes un-
necessary tapering (a). When checking the distance to previously placed
hatching marks from a query position, we ignore marks on the other side
of barriers (b).

This observation yields the general routine DistToNearest-

Streamline, which takes a query position 𝑝 along with lower and

upper bounds on the distance to return: 𝑑min and 𝑑max. First, we

look at the occupancy grid cell containing 𝑝 and check if it has any

stored points, then the 3 × 3 ring of cells around that cell, then the

5×5 ring of cells around that cell. We proceed until we complete the

𝑘 × 𝑘 ring, where 𝑘 = min(2𝑙max + 1, 2 ⌈𝑑max/𝑤occ⌉ + 1), 𝑙max is the

maximum dimension of the occupancy grid, and𝑤occ is the width

of one of the occupancy grid’s cells. Any points stored outside of

the 𝑘 × 𝑘 ring will be at least 𝑑max away from 𝑝 , so there is no need

to check any more cells. If we find a stored point less than or equal

to 𝑑min away from 𝑝 , we immediately return 𝑑min. Otherwise we

return the minimum distance found, or 𝑑max if we encounter no

stored positions.

Barrier curves add a wrinkle. The occupancy information from

one side of a barrier should not affect the other side, or streamlines

will taper unnecessarily as they approach a barrier and detect pre-

viously placed streamlines on the other side (Figure 23). We use

the collider grid to test whether the line segment from the query

position to each stored position intersects any barrier curve, and

ignore stored positions blocked by barriers.

If the next integration step for a streamline has it run into a barrier,

as indicated by the collider grid, then the streamline terminates 5%

short of reaching the intersection. The padding ensures that the

last stored position for the streamline is on the correct side of the

barrier. Without it, subsequent streamlines on the other side might

spuriously detect the just completed streamline’s influence in the

occupancy grid.

6.2.2 Streamline Seed. The second use case for the occupancy grid

is when creating a new streamline, given a seed position. If the

seed is less than 𝑑sep from an existing streamline, then we discard

it. Here we use our occupancy grid routine atLeastThisFarAway,

which takes a query position 𝑝 and a minimum distance 𝑑min, re-

turning a boolean. This routine is simply the boolean expression

DistToNearestStreamline(𝑝, (1 − 𝜖)𝑑min, 𝑑min) ≥ 𝑑min. The con-

stant 𝜖 = 0.001 is necessary to keep the expression from always

evaluating to true. This constant actually features twice: when we

call AtLeastThisFarAway, we set 𝑑min to (1 − 𝜖)𝑑sep instead of

just 𝑑sep, as floating point error can otherwise lead perfectly placed

seeds to be discarded for being detected as just barely too close to

existing streamlines.

pa b

c d

pa b

c d

Fig. 24. In the left case, we exclude cells 𝑐 and 𝑑 from interpolation because
they are dead. In the right case, we exclude 𝑎 and 𝑏 for the same reason.
There we also exclude 𝑐 and 𝑑 since their centers are separated from 𝑝 by a
segment of a barrier curve.

(a) (b)

Fig. 25. In the left case, we allow dead cells to participate in interpolation.
Some of the streamlines at bottom veer undesirably as they enter the dead
cells’ zone of influence and start incorporating out-of-date direction values.
In the right case, we allow cells on the wrong side of barrier curves to
participate. Some of the streamlines below the barrier receive influence
from direction values above the barrier, and one streamline from above the
barrier receives influence from below it.

6.3 Interpolating Field Data
The width, direction, and spacing values for a query position inside

a hatching shape come from interpolating the values surrounding

that position. Barrier curves pose a couple of problems: we must

avoid sampling dead cells’ values or sampling values from the wrong

side of a barrier.

By default, we use bilinear interpolation between four cells’ val-

ues. To prevent interpolation problems caused by barriers, we may

disqualify some of these four cells. Two tests can disqualify a cell.

First, we ignore dead cells, since their values are unreliable, as ex-

plained in Section 5. Second, we ignore cells whose centers are

blocked from the query point by barriers. Figure 24 shows both of

these tests. When using the collider grid to answer the necessary

intersection queries, we err on the false-positive side. Remember

, Vol. 1, No. 1, Article . Publication date: December 2021.



A Primitive for Manual Hatching • 11

that the collider grid returns the first collision between a directed

line segment 𝐶𝐷 and barriers. In this case we start with 𝐶 equal

to the query point and 𝐷 equal to the center of the cell of interest.

To avoid missing any intersections, we extend the length of 𝐶𝐷 by

a factor of 1.001 in both directions before checking it against the

collider grid.

Figure 25a shows the consequence of leaving out the first test

and letting dead cells participate in the interpolation of streamline

directions: old data pollute the pattern. Figure 25b shows the result of

leaving out the second test: “leaks” result when streamlines approach

a barrier and start sampling data from the other side of it.

If three of the four cells are considered valid, we use distance-

weighted averaging to interpolate their values. In two-cell cases

where the two passing cells have the same X or Y coordinate, we

linearly interpolate using the query position’s X or Y coordinate. In

diagonal two-cell cases, we use distance-weighted averaging.

6.4 Rasterization Issues
We must take care when choosing how to rasterize barriers to the

dead grid. A subtle problem arises if we use integer-based algorithms.

Situations arise like that shown in Figure 26. Here, a barrier segment

is so far from its rasterized cells that there are areas of live space

below the true barrier segment yet above the rasterized version. In

this situation, the collider test for excluding interpolation values is

unreliable, resulting in leaks.We use a floating-point DDA algorithm

[Watt 2000] that steps a distance of one cell width until capping

off with a step less than or equal to one cell width. This algorithm

keeps barrier segments closer to their rasterized versions.

6.5 When Interpolation Fails
Sometimes a query point is surrounded by four disqualified cells,

meaning that width, spacing, and direction are indeterminate there.

If a streamline enters indeterminate space, it keeps advecting using

its last known data until it terminates or reenters determinate space.

When we pop a seed from the primary queue and find that it

falls in indeterminate space, we discard it. This can cause gaps in

hatching. To fill these, we introduce a secondary seed queue, which

we do not use until the primary queue is empty. While advecting a

streamline, at each step we look 𝑑sep to the left and right, creating

two candidate positions 𝑝𝑙 and 𝑝𝑟 . If a position falls within a dead

cell and there is no barrier curve between 𝑝 and the streamline’s

current position, we tentatively create a secondary seed at 𝑝 . (We do

not enqueue the secondary seeds produced by a streamline until that

streamline finishes and passes our minimum length test. Otherwise

an infinite loop can result from zero-length streamlines reseeding

each other.) Secondary seeds, unlike primary seeds, store initial

spacing, width, and direction data, sourced from parent stream-

lines. When we pop a seed from the secondary queue, the resulting

streamline starts out using these stored data. Figure 27 shows how

secondary seeds fill some gaps, but not areas of indeterminate space

completely walled off by barriers.

Hatching inevitably degrades near barrier curves. This degrada-

tion owes not just to indeterminate space, but more generally to the

p
a b

c d

(a) Integer-based midpoint [Pradhan 2020]

p
a b

c d

(b) Floating point DDA [Watt 2000]

Fig. 26. If we mark dead cells using integer-based rasterization, situations
arise where we cannot rely on our tests to prevent the wrong cells from
participating in interpolation. The first scenario is an example (a). Cells 𝑏
and 𝑐 qualify to participate. Neither is dead and neither is separated from
the query point by the barrier. But these cells are on opposite sides of the
rasterized barrier, so using them both at once means leaking data across.
Our floating-point rasterization algorithm (b) avoids situations like this by
keeping the rasterized barrier curve closer to the actual barrier curve.

(a) (b)

Fig. 27. Normal streamlines cannot sprout in indeterminate space, which
causes gaps wheremultiple barrier curves come close together (a). Secondary
seeds, which can sprout in indeterminate space, fill some of these gaps (b).

loss of interpolation data as query points approach barriers. Reduc-

ing artifacts caused by barrier curves is one of the main reasons to

increase the resolution of a hatching shape (Figure 28).
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Breeze Twee Houppelande

Hatching Shapes 8 4 2

Hatching Marks 3425 3669 1294

Hand-Drawn Marks 5462 3450 3883

Total Draw Time (s) 3.85893 1.77037 0.35684

Hatching-Only Draw Time (s) 3.8353 1.76357 0.328343

Table 1. Data for “Breeze” and “Twee” (Figure 29), and for “Houppelande” (Figure 32). Each time figure is an average of ten runs.

(a) (b)

Fig. 28. The fields of the first hatching shape (a) are 8×9. There are artifacts
caused by streamlines losing interpolation data as they approach the barrier
curve. Increasing the resolution to 20 × 21 masks these artifacts.

7 RESULTS
We have explored hatching shapes’ utility in full illustrations like

“Breeze” and “Twee” (Figure 29). Not all marks in these pictures

are hatching, and not all hatching comes from hatching shapes

(Figure 30).

In our exploration we have found a couple of criteria for deciding

if a hatching task would benefit from hatching shapes. First, the best

subjects for hatching shapes are forms that read visually as smooth

surfaces, like the cliffs in “Breeze” and the concrete walls in “Twee.”

Good subjects may have many discontinuities, as long as there are

smooth areas visible between. Figure 31 shows an extreme example:

the jagged interior of the egg.

Second, individual hatching marks should have low pictorial

weight. In “Houppelande” (Figure 32), hatching shapes only feature

in the dark drapery and the egg; other hatching is completelymanual.

The woman’s face is not ideal for a hatching shape, despite being

a smooth form, because individual marks have too much pictorial

weight here: marks’ widths and spacings are large relative to the size

of crucial facial features, which makes it possible for the placement

of individual marks to ruin the rendering. A hatching shape could
produce the hatching here, but because individual marks are so

visually powerful, this would require a lot of careful editing, enough

to justify hatching manually instead. The same goes for the hatching

on the turban (which needs to jibe with the hatching on the face),

plus the hatching on the arms and hands.

Hatching produced by hatching shapes has a distinct style. It is

often so regular that it draws the eye more than hatching normally

does. This can be pleasing or painful to the eye, and may harm

a composition. In “Breeze,” the marks on the cliffs are primarily

from hatching shapes, but there are additional hand-drawn marks

to break up the uniformity and add naturalism. Future work with

hatching shapes could impart such naturalism automatically by

mimicking traditional hatching, whether at the level of individual

marks [AlMeraj et al. 2009] or at the level of a group of hatching

marks [Gerl and Isenberg 2013; Jodoin et al. 2002], i.e., at the level

of a hatching shape.

Table 1 gives render times for “Breeze,” “Twee,” and “Houppelande.”

It lists the time required for our interface to completely redraw the

canvas, plus the time required just to redraw all hatching shapes.

Drawing times for hatching shapes include the streamline advection

process.

7.1 Artist Interviews
We conducted semi-structured interviews with three professional

artists to help assess hatching shapes’ value. In each interview, we

explained what hatching shapes are, showed some operations, and

looked at example illustrations. We solicited reactions and asked

about prior experience with hatching. Responses to hatching shapes

were encouraging.

Artist 1 has over forty years of hatching-oriented professional

experience. His preferred medium is scratchboard. He could be

considered a master of hatching, experienced enough not to benefit

much from hatching shapes, though he did muse that his lines

might be more “consistent” if he had them at his disposal. When we

showed him our illustrations, most of his criticisms were around

draftsmanship and unrelated to our research. His reaction to the

hatching shape primitive itself was encouraging: “You are on your

way to creating extraordinary effects with your hatching.”

Artist 2 has about 13 years of professional experience, primarily

digital. His work has a clean, op art style. He often creates hatching

with Adobe Illustrator “blends”—interpolations between two curves,

like the Coons patch-based hatching of Digital Facial Engraving

[Ostromoukhov 1999]. The affordance these blends give him is

limited. He said that if he could use hatching shapes, he would

feel less averse to doing intricate hatching, especially with organic

subject matter.

Artist 3 had a similar reaction. He also has 13 years of professional

art experience, also largely digital, though little if any involving

hatching. He admires hatching, but feels intimidated by its difficulty,

saying hatching can seem like a “magic trick” when done by experts.

Early in the interview, as we showed operations on hatching shapes,

he called what he saw “phenomenal,” and later said he would do

much more hatching if hatching shapes were on the table. However,

he disliked the untapered ends of hatching marks that terminate
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Fig. 29. “Breeze” (top) and “Twee” rely heavily on hatching shapes.
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Fig. 30. “Breeze” contains procedurally generated marks from hatching shapes (left) and individually hand-drawn marks (right).

Fig. 31. Hatching shapes are ideal for this form because it is easy to visually
separate into smooth surfaces, plus individual hatching marks have little
pictorial importance. One hatching shape covers the outside of the egg and
another handles the exposed interior.

against barrier curves (this is discernible in Figures 1 and 2; normally

wemask this effect by placing a hand-drawnmark on top of a barrier

curve).

These interviews, plus the pictures we havemade, suggest that the

hatching shape and its operations have value. Our finished pictures

are almost able to communicate this on their own, but remember

that much of the hatching shape’s value is the ease of repeated

editing. That, if nothing else, is the hatching shape’s reason for

being.

8 LIMITATIONS AND FUTURE WORK
Hatching shapes could grow to cover a broader range of hatching

tasks. Some enhancements might be simple. For example, currently

Fig. 32. “Houppelande” contains two hatching shapes, which produce the
hatching of the dark fabric and of the egg’s outer surface. Everything else
was more practical to accomplish with individual hand-drawn strokes.

a barrier curve applies to all three hatching fields at once, but there

are situations where it would be better for a barrier to apply only

to one or two of the fields, such as in the dunes of Figure 14. Here,

streamlines stop at the barriers representing shadows, which makes

, Vol. 1, No. 1, Article . Publication date: December 2021.



A Primitive for Manual Hatching • 15

the forms harder to read. The hatching would be more legible if

those barriers applied only to the width field, so that streamlines did

not terminate at them but abruptly changed their widths instead.

Other improvements could be much more involved, entailing

the addition of completely new data fields, a more sophisticated

mask definition, or new mechanisms for seeding and advecting

streamlines. Below we consider a few broad areas for future work.

8.1 Tonal Controls
The previous 2D hatching solutions that inspire our work tend to

make tone an explicit part of their interfaces and algorithms. In

practice this means that hatching patterns must approximate the

tones of reference images. With hatching shapes, however, the artist

operates below the level of tone, instead directly accessing hatching

marks’ widths and spacing, which are the two components of tone.

We choose this approach partly because we are not specifically

concerned with matching tones from reference images, but more

importantly because we want to keep control over hatching as low-

level as we can. However, it would be useful to wrap hatching shapes

with higher-level tone-based controls. These controls ought to be

tunable by the artist, since it is possible to achieve a desired tonal

pattern by adjusting just a hatching shape’s width field, just its

spacing field, or both at once.

8.2 Spacing Artifacts
Hatching shapes sometimes produce spacing artifacts, as shown

earlier in the left half of Figure 7. Figure 33 shows two more cases

(first two rows). These artifacts stem from our streamline seeding

strategy. As a reminder, we enqueue seed positions on a coarse-to-

fine series of grids. This process is almost completely oblivious to

the ideal spacing between marks.

Consider the first case in Figure 33, where the direction and spac-

ing fields are constant. Streamlines initially grow from far-apart

seed positions taken from a very coarse grid, then from a finer

but still coarse grid, and so on. At some point, two streamlines are

placed such that the vertical distance between them is not an integer

multiple of 𝑑sep, which leads to the artifacts. (Sometimes a constant-

spacing, constant-direction hatching shape does not manifest this

problem—see the right half of Figure 7.) In the second case, the spac-

ing field varies linearly from top to bottom but the resulting pattern

features banding in inter-mark spacings. The bands correspond to

the different grids used for enqueuing seed positions.

As a stopgap, we have implemented an optional, line-based seed-

ing mode where we fill the primary seed queue by starting at the

center of the shape and placing seeds while walking perpendicular

to the direction field, using the spacing field for each step distance.

Just in case this approach leaves gaps, we append all the seeds

produced by the default method. Line-based seeding works well

if the direction field is constant and the spacing field only varies

perpendicular to the direction field. However, it is too crude to han-

dle more complex hatching shapes in a visually uniform way. The

bottom-right square of Figure 33 shows a failure case. Seeds from

the line-based method produce the hatching in the bottom left of

the square, while seeds from the default method fill in the top right.

An unwanted false contour separates the two regions.

Default Seeding Line-Based Seeding

Fig. 33. The left column shows the default seeding method while the right
shows the alternate, line-based seeding method. The line-based method
fixes spacing artifacts for simpler hatching shapes (first two rows), but is
too simplistic for more complex ones (bottom row), where it fails to produce
a uniform look.

Moving beyond stopgaps, there may be multiple valid ways to

resolve spacing artifacts. We might adopt a more intelligent seeding

strategy that accounts for the structure of both the spacing and the

direction fields. Or we might fix spacing irregularities in a post-

processing step.

8.3 Messy Hatching
Hatching shapes favor “clean” hatching (Figure 34a), where marks

are as long as possible and a single mark has clear left and right

neighbors. In “messy” hatching (Figure 34b), marks are more chaot-

ically placed and choppy. Subjects like fur or dense vegetation are

not separable into smooth surfaces divided by barrier curves. For

now, hatching shapes are insufficient for tackling such hatching.

Enabling that would require augmentations, like a choppiness field.
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(a)

(b)

Fig. 34. “Clean” and “messy” hatching, demonstrated respectively by details
from The Deluge, Gustave Doré (a), circa 1866, engraving, and from Balans,
Anders Zorn, 1919, etching (b).

It would also help to give hatching shapes soft rather than hard

masks.
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