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Abstract
“Escherization” [9] is a process that finds an Escher-like
tiling of the plane from tiles that resemble a user-supplied
goal shape. We show how the original Escherization al-
gorithm can be adapted to thedihedral case, producing
tilings with two distinct shapes. We use a form of the
adapted algorithm to create drawings in the style of Es-
cher’s printSky and Water. Finally, we develop an Es-
cherization algorithm for the very different case of Pen-
rose’s aperiodic tilings.
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1 Introduction

The Dutch artist M.C. Escher had a singular gift for in-
corporating mathematics into art. His work continues to
delight and fascinate, a mix of paradox and harmony, of
whimsy and order. In particular, he produced a large col-
lection of ingenious tessellations [14], made from motifs
resembling people, animals, and fantasy creatures. The
search for interlocking forms was for Escher a lifelong
pursuit and source of both frustration and inspiration.

In the SIGGRAPH 2000 conference, Kaplan and
Salesin presented “Escherization” [9], a method for auto-
matically discovering Escher-like tessellations with tiles
that resemble arbitrary user-supplied shapes. Given a
goal shapeS, their system uses continuous optimization
to hunt through a parameterized space of tilings in search
of a tile shapeT that best approximatesS. The quality of
the approximation is determined via an efficient polygon
comparison metric [1].

The Escherization algorithm they describe is able to
find Escher-like tilings that aremonohedral, i.e., made
up of copies of a single motif. Escher also created many
tessellations featuring two or (less frequently) more mo-
tifs. Dihedral (two-motif) tessellations are particularly
important in his work. Some of his most famous prints
(for example,Sky and Water, Verbum, andMetamorpho-
sis II) make use of one or more dihedral tilings [2]. Fur-
thermore, the use of multiple motifs agrees with Escher’s
predisposition to imbue his work with narrative structure.
The interplay between different motifs in a single design

provides an opportunity for contrasts, for harmony or dis-
cord, for interaction and drama.

In this paper we extend the Escherization algorithm of
Kaplan and Salesin to the dihedral case. We may begin
by analogy with their work, formulating adihedral Es-
cherization problem:

Problem (“D IHEDRAL ESCHERIZATION”): Given
closed plane figuresS1 andS2 (the “goal shapes”),
find new closed figuresT1 andT2 such that:

1. T1 andT2 are as close as possible toS1 and
S2, respectively; and

2. T1 andT2 admit a dihedral tiling of the plane.

We present a solution to the dihedral Escherization
problem as an extension to the algorithm given by Ka-
plan and Salesin. As discussed in Section 3, we augment
the representation of a tile shape with a curve that splits it
into two pieces. We optimize over this new configuration
space using an objective function that compares the two
pieces with two goal shapes. In Section 4, we show how
a restricted version of the general splitting process can
produce what Dress callsHeaven and Hell patterns[5].
In Section 5, we develop a tool that uses Heaven and Hell
patterns to generate drawings in the style of Escher’s print
Sky and Water. In Section 6, we present an alternative
formulation of dihedral Escherization that works on Pen-
rose’s aperiodic tile setsP2 andP3. We conclude in Sec-
tion 7 with a discussion of directions for future work.

2 Mathematical background

In this section we briefly define some of the concepts of
tiling theory that are relevant in this work. A definitive
treatment of the subject is given by Grünbaum and Shep-
hard [7]; Kaplan and Salesin [9] provide an overview.

A tiling of the planeis a countable collection of tiles
that cover the plane without any gaps or overlaps. A tiling
isk-hedralwhen every tile is congruent to one ofk differ-
ent shapes, calledprototiles. The casesk = 1 andk = 2
are referred to asmonohedralanddihedralrespectively.

A tiling vertexis a point where three or more tiles meet.
A tile’s boundary can be subdivided into a collection of
tiling vertices connected by arcs calledtiling edges.



The symmetriesof a tiling are rigid motions of the
plane that map the tiling onto itself. A tiling with transla-
tional symmetries in two non-parallel directions is called
periodic. There are many non-periodic tilings, but of-
ten the prototiles of such tilings can also be used to con-
struct periodic tilings. A more remarkable situation oc-
curs when every tiling that can be constructed from a set
of shapes is non-periodic; such sets are calledaperiodic,
as are the tilings that can be built from them.

For any two congruent tiles in a tiling, there will be
a rigid motion of the plane that maps the first tile onto
the second. If this motion also maps the entire tiling to
itself then the two tiles are said to betransitively equiva-
lent. Transitive equivalence partitions the tiles of a tiling
into equivalence classes calledtransitivity classes. A
tiling with exactly one transitivity class is calledisohe-
dral; more generally, ak-isohedraltiling is one withk
transitivity classes. Differently-shaped tiles will neces-
sarily belong to different classes, and so ak-hedral tiling
will be at leastk-isohedral, though it may possibly have
more transitivity classes.

The combinatorial properties of every isohedral tiling
can be summarized using a compact string called aninci-
dence symbol[7]. By writing down all possible incidence
symbols and eliminating those that cannot correspond to
legal tilings, Gr̈unbaum and Shephard showed that the
isohedral tilings can be partitioned into precisely 93 com-
binatorial types labeled IH1, . . . , IH93. Each type corre-
sponds to a different way that a tile can be surrounded by
its neighbours.

3 Split isohedral Escherization

Our search for a useful space of dihedral tilings be-
gins with Escher himself. A meticulous note-taker, he
carefully documented his exploration of two-motif sys-
tems [13, 14]. In every case, he starts with one of his
monohedral systems and draws a path through the pro-
totile to break it into two shapes. When that division is
copied to all other tiles, the result is a dihedral tiling.

We can apply a similar process to the isohedral tilings.
We augment the description of an isohedral prototile with
a “splitting path,” a path that starts and ends on the pro-
totile’s boundary. A splitting path naturally subdivides a
prototile into two shapesT1 andT2. When every tile in an
isohedral tiling is subdivided by the splitting path, the re-
sult is a “split isohedral tiling,” a dihedral tiling with pro-
totilesT1 andT2. Every such tiling will be 2-isohedral,
though there also exist 2-isohedral tilings that cannot be
constructed using a splitting path (see Section 7).

In our implementation, the splitting path is stored as a
piecewise linear path in a local coordinate system. The
isohedral prototile’s boundary is parameterized by ar-

clength and the start and end positions of the path are
recorded using two real values between 0 and 1. Once co-
ordinates for the start and end positions are determined,
the splitting path can be transformed into place.

The splitting process can be applied to prototiles from
any of the 93 isohedral types. As in the case of monohe-
dral Escherization, the choice of isohedral type is discrete
and cannot be made within the framework of a continu-
ous optimization. Following Kaplan and Salesin, we run
multiple per-tiling-type optimizations in parallel, gradu-
ally winnowing down the pool of candidates until only
the most successful type remains.

The monohedral Escherization algorithm searched a
configuration space where each tuple of floating-point
values encoded the shape of an isohedral prototile. Some
of the values controlled the positions of the tiling ver-
tices; the rest controlled a non-redundant description of
the edge shapes. To handle the split isohedral case, we
enlarge the search space to include parameters for the po-
sition and shape of the splitting path. At each step in the
optimization, we construct the split isohedral prototile,
extract shapesT1 andT2, and compare them with user-
supplied goal shapesS1 andS2 using the metric of Arkin
et al. [1]. The two comparisons yield two non-negative
real numbersd1 andd2; we usemax(d1, d2) as an objec-
tive function for dihedral Escherization, forcing both tile
shapes to resemble their respective goal shapes as closely
as possible. As in the monohedral algorithm, we peri-
odically subdivide the splitting path along with the edge
shapes, giving the algorithm a chance to pick up finer de-
tails in the goal shapes.

Let S′
1 andS′

2 denote reflections of goal shapesS1 and
S2. To find the best split isohedral tiling corresponding to
the goal shapes, two instances of the Escherization algo-
rithm are required: one withS1 andS2, and one withS1

andS′
2 (or S′

1 andS2). Although the shape comparison
metric is insensitive to translation and rotation, it does
distinguish between a shape and its reflection. It might
happen thatS1 andS2 interact more favourably if one is
reflected.1

The split isohedral Escherization process is illustrated
in Figure 1. Figure 7 shows some results obtained using
this process. One might guess that because of the need to
match two goal shapes simultaneously, dihedral Escher-
ization would have a lower success rate than monohedral
Escherization. We have found that the additional degrees
of freedom offered by the splitting path help to compen-
sate for the added complexity of the problem, and that the
dihedral and monohedral optimizations have comparable

1Note that only the relative parity matters here; the flexibility of
the isohedral tilings guarantees that the case(S1, S2) is equivalent to
(S′

1, S′
2), and that(S′

1, S2) is equivalent to(S1, S′
2).



success rates. Speeds are comparable as well; the dihe-
dral optimizer usually converges in 10–20 minutes. An
interactive viewer also allows the user to watch the opti-
mization in progress and abort it if no promising solutions
seem likely.

4 Heaven and Hell Escherization

Some of Escher’s dihedral tilings, such asHeaven and
Hell [14], have additional geometric structure. Each tile
can be given one of two colours so that adjacent tiles
never share a colour. Furthermore, each colour is the ex-
clusive domain of one of the two prototiles; in Heaven
and Hell, every angel is white and every devil is black.
This sort of colouring is possible when every tiling ver-
tex is surrounded by an alternating sequence ofA andB
tiles, or equivalently, when everyA tile shares edges only
with B tiles (and vice versa).

Aesthetically, such tilings are particularly effective be-
cause each transitivity class of tiles plays the role of
ground to the other’s figure: theB tiles exactly fill the
negative space created by theA tiles. Moreover, the fact
that the colours can be unambiguously associated with
tile shapes allows them to become part of the personali-
ties of those shapes, as in the white angels and black dev-
ils of Heaven and Hell. Escher used this particular space
of tilings to produce some of his best-known prints.

The class of 2-isohedral tilings with this additional
structure were enumerated by Dress [5], who dubbed
them “Heaven and Hell patterns.” Based on an analysis
using Delaney symbols [4], he classified the Heaven and
Hell patterns into 37 distinct types.

Of the types enumerated by Dress, 29 can be expressed
as specialized versions of split isohedral tilings. The ad-
ditional structure comes from a careful choice of loca-
tions for the endpoints of the splitting path. Dress’s clas-
sification shows that an endpoint will always be either
one of the tiling vertices of the underlying isohedral pro-
totile, or the midpoint of one of its tiling edges. If the
isohedral prototile hasn tiling vertices, we can enumerate
this set of locations asL = {1, 1 1

2 , 2, 2 1
2 , . . . , n, n + 1

2},
where a whole numberk refers to a tiling vertex and
k + 1

2 refers to the midpoint of the edge fromk to k + 1.
The numbering of the tiling vertices can be taken from
the order in which they appear in the enumeration by
Grünbaum and Shephard [7]. Each of the 29 types based
on splitting can then be given the notation(IHm; a, b),
whereIHm denotes one of the isohedral types, and where
a, b are members ofL.

We represent a prototile for the Heaven and Hell tiling
(IHm; a, b) by starting with the representation for the
split isohedral prototile of the same type, and fixing the
endpoints of the splitting path according to the locations

a andb. Once the degrees of freedom controlling the end-
points are removed from the configuration space, the re-
mainder of the dihedral Escherization algorithm can be
applied as is.

In Dress’s paper, some of the types of Heaven and Hell
patterns can be seen as subsumed under other types, in
the sense that a type with symmetric prototiles is merely a
special case of an asymmetric parent. Dress’s explicit or-
dering makes it easy to recognize that the 29 Heaven and
Hell tiling types representable as split isohedral tilings
can be summarized using twelvefundamentaltypes with
asymmetric prototiles. Using the notation given above,
the twelve types are as follows:

(IH1; 1, 4), (IH2; 2, 5), (IH3; 2, 5),
(IH5; 1, 4), (IH27; 1 1

2 , 4), (IH31; 1, 3),
(IH33; 1, 3), (IH41; 1, 3), (IH43; 1, 3),

(IH47; 2 1
2 , 4 1

2 ), (IH52; 1, 3), (IH55; 2, 4)

Eight remaining types in Dress’s classification are not
accounted for by split isohedral tilings. These tilings have
different proportions ofA andB tiles. We do not con-
sider Escherization over such tilings here, although we
mention them again in Section 7.

Figure 3 gives an example of Heaven and Hell Escher-
ization.

5 Sky and Water designs

Escher’s printSky and Wateris a very special application
of Heaven and Hell patterns. What starts out in the center
of the print as a dihedral tiling of stylized fish and birds
evolves towards the top and bottom of the print into real-
istic figures: birds above and fish below. Escher used this
device in many prints and sometimes multiple times in a
single print (as inVerbumandMetamorphosis II).

It is critical that the central tiling where the birds and
fish meet be a Heaven and Hell tiling. The stylized birds
evolve into the background for the realistic fish (and vice
versa), and so the tiling needs to be colourable with one
colour for each tile shape.

Escherization is especially well suited to the creation
of Sky and Water designs because the realistic goal
shapes are already part of the process that leads to the
stylized tile shapes. To turn a Heaven and Hell tiling into
a Sky and Water design, it suffices to gradually blend the
tile shape into the goal shape as tiles are placed succes-
sively farther from a given “interface line.”

We extended the basic Heaven and Hell Escherization
algorithm with a suite of interactive tools for construct-
ing Sky and Water designs. One tool lets the user specify
an interface line and a set of tiles to draw. Another tool
lets the user add decorations to tiles with monochromatic
vector-based strokes. Each stroke is a sequence of Bézier



Funky Chickens(IH51)

Figure 1: A summary of our process for split isohedral Escherization. On the left, two goal shapes S1 and S2 are
traced from images. Next, the isohedral tile and splitting path are shown at a late stage in the optimization. The quality
of this configuration is judged by breaking the tile into two shapes T1 and T2, which are then compared with S1 and
S2. The optimization attempts to minimize the value at the right, the maximum of the two comparisons. A finished
example based on these goal shapes appears on the right.

Figure 2: An example of a Sky and Water design, based
on the goal shapes of Figure 7d.

The Owl and the Pussycat(IH27; 1 1
2 , 4)

Figure 3: An example of Heaven and Hell Escherization.

The Pentalateral Commission(P3)

Figure 4: An Escher-like design created by hand, based
on Penrose tile set P3. The tile shapes were discovered
after a few minutes of interactive exploration, and deco-
rated using Adobe Illustrator.



curves with user-specified widths; the curves are fit to
the user’s drawing gestures using the method of Schnei-
der [15]. Additionally, each stroke is given a “priority”
that determines how far from the interface line the tile
must be before the stroke is drawn. This approach al-
lows for a prioritized sequence of strokes ordered by their
importance in expressing a stylized version of the goal
shape.

Finally, a renderer assembles the final drawing, taking
the output of the other two tools as input, together with
colours for theA andB tile shapes. For every tile, the
renderer interpolates that tile with its corresponding goal
shape by an amount determined from its distance to the
interface line. The interpolation is carried out so that any
tiles that touch or cross the line are set to the tile shape,
and maximally distant tiles are set to the goal shape. The
A tiles are then drawn over a solid background of theB
tile colour, and vice versa. Finally, the strokes are warped
into place and drawn if they have sufficiently high prior-
ities. Figure 2 shows an example of an Escherized Sky
and Water design.

6 Escherization using Penrose tiles

The most widely known aperiodic tilings are those dis-
covered by Penrose [7, 12]. In particular, he demon-
strated two tile sets that yield dihedral aperiodic tilings:
P2, made up of kites and darts, andP3, made up of thin
and thick rhombs. Like the Mandelbrot set, the Penrose
tilings are ambassadors of mathematical beauty to a gen-
eral audience.

Unfortunately, Escher did not live to see the develop-
ment of Penrose tilings, and so we can only imagine what
sorts of creatures he might have discovered in them. Pen-
rose himself, who corresponded regularly with Escher,
expresses his regret at the missed opportunity [11]. He
also gives an example of what Escher might have drawn:
a modification ofP2 where the kites and darts have been
turned into chickens. Other artists have also created de-
signs based on Penrose tiles [6].

In order to enforce aperiodicity in the tile setsP2 and
P3, the tiles must be augmented with matching con-
ditions that determine the legal ways one tile may be
placed next to another. One important way to express
these matching conditions is to deform tile edges so that
tiles only fit together in prescribed ways. Grünbaum and
Shephard give such geometric matching conditions for
P2 andP3 [7]. In both cases, the matching conditions
are boiled down to two non-congruent paths and the way
they are arranged around the two tiles in the set.

The geometric matching conditions suggest an Escher-
ization algorithm for Penrose tiles. The tiling vertices re-
main fixed, and the optimization operates on the degrees

Figure 5: An illustration of how a tiling vertex param-
eterization can be derived for the Penrose kite and dart.
The original edges are modified using Grünbaum and
Shephard’s edge matching conditions [7]. When adjacent
edges coincide, they are removed, displacing the tiling
vertices between the edges. The kite and dart each have
one unconstrained tiling vertex. The others are all im-
plied by the original matching conditions.

of freedom in the two fundamental edge shapes. These
edge shapes are assembled into two tile shapes that are
then compared against two goal shapes as usual.

However, this interpretation of the possible shapes of
Penrose tiles is limited, as can be seen from Grünbaum
and Shephard’s reproduction of Penrose’s aperiodic
chickens [7]. They superimpose the chickens on top of
the corresponding unmodified tiling. The registration of
these two tilings reveals that the chickens have tiling ver-
tices that are different from those of the original tiling!
There are evidently additional degrees of freedom to the
Penrose tilings that must be explored and exploited if we
are to extend the reach of aperiodic Escherization.

By experimenting with the geometric matching condi-
tions, we have discovered an extended set of points that
can be parameterized like the tiling vertices of an iso-
hedral tiling. We call these points the prototile’squa-
sivertices. The quasivertices include all the points on a
prototile’s boundary that act as tiling vertices somewhere
in a Penrose tiling, and some additional points that are
forced into existence by them.2

Figure 5 shows how the ordinary geometric matching
conditions yield a new set of parameterizable points for
the kite and dart. The fundamental edge shapes are mod-
ified so that they partially overlap. The overlapping re-
gions can then be excised from the tiles, producing new
tiles that no longer share all of the tiling vertices of the
original kite and dart. This process necessarily introduces
other vertices into the shapes of the two tiles. Note that
a tiling produced from these excised tiles will be visu-

2In an isohedral tiling, transitivity guarantees a unique configuration
of tiling vertices around every copy of the prototile. No such guarantee
exists forP2 or P3, and we must consider points that are tiling vertices
on some instances of a prototile but not others.



Figure 6: Extended matching rules for Penrose tiling sets
P2 (above) and P3 (below). The edge labels are not re-
lated between the two sets. Matching is enforced by iden-
tifying pairs of interlocking edges. The interlocking pairs
are (a, d), (b, h), (c, e), and (f, g) for P2, and (a, g),
(b, e), (c, d), and (f, h) for P3.

ally indistinguishable from one produced using equiva-
lent tiles with degeneracies. However, they behave dif-
ferently from the point of view of the shape metric. Our
new parameterization of the excised tiles is compatible
with the shape metric.

From Figure 5, we conclude that the quasivertices of
the kite and dart can be parameterized using four real-
valued parameters, determined by the positions of the
tiling vertices created at the tips of the two excised re-
gions. Similarly, four parameters suffice to parameterize
the Penrose rhombs. Once the free parameters are under-
stood, we can derive explicit formulae for the positions of
the quasivertices. See the thesis by Kaplan [8] for details.

Like tiling vertices, quasivertices partition tile bound-
aries into edges that behave like tiling edges. We must
derive new matching rules so that congruent edges are
controlled by a single set of parameters within the opti-
mization. By analogy with the incidence symbols used
for isohedral tilings, edge shapes can be specified by la-
beling edges around each tile and indicating adjacency
rules for the labels. Figure 6 shows a set of labels and
adjacency rules forP2 andP3.

The edge shapes, combined with the four parameters
controlling the tiling vertices, yield a configuration space
suitable for Penrose Escherization. Note that this param-
eterization cannot in general represent both a particular
pair of tile shapes and the reflections of those shapes, and

that in each of the Penrose setsP2 andP3 the two pro-
totiles are fundamentally different shapes. For these rea-
sons, given two goal shapesS1 andS2 and their reflec-
tionsS′

1 andS′
2, we must optimize for the eight combi-

nations(S1, S2), (S′
1, S2), (S1, S

′
2), (S′

1, S
′
2), (S2, S1),

(S′
2, S1), (S2, S

′
1), and(S′

2, S
′
1).

Rendered designs based on Penrose tilings are given
in Figure 8. In general, it is much more difficult to dis-
cover satisfactory Escherizations using Penrose tilings.
The range of possible tile shapes is limited and peculiar,
always having many sharp angles. More obviously, there
are fewer “tiling types” than in the split isohedral case;
we no longer have the luxury of hunting over many dif-
ferent types for one that happens to be particularly well
suited to a given pair of goal shapes. The results are there-
fore less successful than in the isohedral and 2-isohedral
cases, but interesting nevertheless for their connection to
the interaction (both mathematical and personal) between
Escher and Penrose. On the other hand, an interactive ed-
itor for Penrose tiles still allows profitable forward explo-
ration of the space of tilings. Figure 4 shows an example
of a tiling that was not Escherized but developed from
scratch in a few minutes and decorated in a cartoon style.

7 Discussion and future work

The first dihedral Escherization technique presented here
is a natural extension of the isohedral method of Kaplan
and Salesin — we subdivide isohedral prototiles with a
splitting path. By delving deeper into the tiling theory lit-
erature, we can restrict our technique to Dress’s Heaven
and Hell patterns, and then use those patterns to create
Sky and Water designs. We also take a fresh look at Es-
cherization in the context of the aperiodic Penrose tilings.
We close this paper by briefly discussing the issues that
arise with our technique, and suggesting ideas for future
work.

The split isohedral method can be used to construct
those 2-isohedral tilings for which the two prototiles oc-
cur in equal amounts. All of Escher’s two-motif sys-
tems have this property, and so we consider the method
satisfactory for reproducing his work. However, there
are also many 2-isohedral tilings with different relative
amounts of the two prototiles. To understand these ad-
ditional tiling types, we must take a closer look at the
mathematics behind 2-isohedral tilings.

Delgado-Friedrichset al.carry out a complete enumer-
ation of the 2-isohedral tilings [3]. They prove a gen-
eral result that every(k + 1)-isohedral tiling can be con-
structed from ak-isohedral tiling through a combination
of two operations:SPLIT and GLUE. The SPLIT opera-
tion is identical to our use of a splitting path. They show
that when the prototiles of a(k + 1)-isohedral tiling are



(a)Strange ’Tractors(IH28)
(b) Gödel, Bach (Braided):

an Eternal Escherization(IH2)

(c) Pen/Rose Tiling(IH1) (d) Rembrandt and Mrs. van Rijn(IH1)

Figure 7: Examples of dihedral Escherization using the split isohedral tile method. Many
source images appear courtesy of FreeFoto.com .

(a)Busby Berkeley Chickens(P2) (b)A Walk in the Park(P3)

Figure 8: Examples of dihedral Escherization based on parameterizations of Penrose tile sets P2 and P3.

FreeFoto.com


asymmetric, they can be derived from the prototiles of
a k-isohedral tiling via the application ofSPLIT to one
prototile. TheGLUE operation erases the edge between
two adjacent tiles, producing tilings with symmetric pro-
totiles. It is through use ofGLUE that we can construct
2-isohedral tilings with different relative amounts of the
two prototiles.

Because our technique is based only on theSPLIT

operation, it does not immediately generalize to all 2-
isohedral tilings. A full generalization comes in the
form of combinatorial tiling theory[4], in which a De-
laney symbolsummarizes the combinatorial structure of
a tiling. Delaney symbols can be used to describek-
isohedral tilings for anyk; they also generalize to dimen-
sions greater than two and to non-Euclidean geometry.

In principle, we might use Delaney symbols as a basis
for parameterizing the shapes of all 2-isohedral tilings,
yielding a new dihedral Escherization algorithm. Indeed,
given anyk user-supplied goal shapes, such a system
could discover ak-isohedral tiling that approximates all
of them. Unfortunately, Delgadoet al.show that there are
over a thousand 2-isohedral types. In general, the number
of k-isohedral types grows very quickly withk. Because
the choice of tiling type is discrete, it quickly becomes
infeasible to search all possible types by launching inde-
pendent continuous optimizations. It might be possible to
run an optimization on a carefully chosen subset of De-
laney symbols that are particularly well-suited to Escher-
ization. As a benchmark fork-isohedral Escherization,
consider Escher’s symmetry drawing 71, a remarkable
periodic tessellation featuring twelve distinct bird motifs.

Taken to the limit,k-hedral Escherization becomes a
kind of packing problem. Ask grows very large, we be-
come more interested in simply fitting allk goal shapes
together plausibly in a kind of puzzle. Such a large block
of shapes no longer has as much aesthetic appeal when
repeated across the plane. Escher’s printPlane Filling
1 is an example where a number of one-of-a-kind figures
are assembled to tile a finite region [2]. As we move from
monohedral and dihedral tilings to cases such as this one,
the importance of tiling theory is lessened. An approach
like that of Jigsaw Image Mosaics [10] might be more
appropriate.
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