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Abstract provides an opportunity for contrasts, for harmony or dis-

“Escherization”[9] is a process that finds an Escher-likeord, for interaction and drama.

tiling of the plane from tiles that resemble a user-supplied In this paper we extend the Escherization algorithm of
goal shape. We show how the original Escherization akKaplan and Salesin to the dihedral case. We may begin
gorithm can be adapted to tlkhedral case, producing by analogy with their work, formulating dihedral Es-
tilings with two distinct shapes. We use a form of thecherization problem

adapted algorithm to create drawings in the style of Es-
cher’s printSky and Water Finally, we develop an Es-
cherization algorithm for the very different case of Pen-
rose’s aperiodic tilings.

Problem (“DIHEDRAL ESCHERIZATION’): Given
closed plane figures; and S, (the “goal shapes”),
find new closed figure®; and7» such that:

B _ o 1. T} andT; are as close as possible $p and
Key words: Tilings, tessellations, Escher, aperiodic, Pen- S,, respectively; and

fose tilings 2. Ty andT, admit a dihedral tiling of the plane.

1 Introduction We present a solution to the dihedral Escherization

The Dutch artist M.C. Escher had a singular gift for in-problem as an extension to the algorithm given by Ka-
corporating mathematics into art. His work continues t@lan and Salesin. As discussed in Secfiipn 3, we augment
delight and fascinate, a mix of paradox and harmony, ahe representation of a tile shape with a curve that splits it
whimsy and order. In particular, he produced a large colnto two pieces. We optimize over this new configuration
lection of ingenious tessellatioris [14], made from motif$pace using an objective function that compares the two
resembling people, animals, and fantasy creatures. Tpgces with two goal shapes. In Sectjdn 4, we show how
search for interlocking forms was for Escher a lifelonga restricted version of the general splitting process can
pursuit and source of both frustration and inspiration. produce what Dress calldeaven and Hell patterng].

In the SIGGRAPH 2000 conference, Kaplan andn Sectiorf$, we develop a tool that uses Heaven and Hell
Salesin presented “Escherizationl [9], a method for autgeatterns to generate drawings in the style of Escher’s print
matically discovering Escher-like tessellations with tilesSky and Water In Section §, we present an alternative
that resemble arbitrary user-supplied shapes. Givenfermulation of dihedral Escherization that works on Pen-
goal shapes, their system uses continuous optimizatiorrose’s aperiodic tile set82 and P3. We conclude in Sec-
to hunt through a parameterized space of tilings in sear¢ion[7 with a discussion of directions for future work.
of atile shapd” that best approximates. The quality of
the approximation is determined via an efficient polygo? Mathematical background
comparison metric [1]. In this section we briefly define some of the concepts of

The Escherization algorithm they describe is able ttiling theory that are relevant in this work. A definitive
find Escher-like tilings that arenonohedral i.e, made treatment of the subject is given byi@baum and Shep-
up of copies of a single motif. Escher also created mariyard [7]; Kaplan and Salesin|[9] provide an overview.
tessellations featuring two or (less frequently) more mo- A tiling of the planeis a countable collection of tiles
tifs. Dihedral (two-motif) tessellations are particularly that cover the plane without any gaps or overlaps. A tiling
important in his work. Some of his most famous printds k-hedralwhen every tile is congruent to one/otiiffer-

(for example Sky and Watenerbum andMetamorpho- ent shapes, callggrototiles The caseg = 1 andk = 2
sis 1) make use of one or more dihedral tilings [2]. Fur-are referred to asionohedrabnddihedralrespectively.
thermore, the use of multiple motifs agrees with Escher’s A tiling vertexis a point where three or more tiles meet.
predisposition to imbue his work with narrative structureA tile’s boundary can be subdivided into a collection of
The interplay between different motifs in a single desigiling vertices connected by arcs callglihg edges



The symmetriesof a tiling are rigid motions of the clength and the start and end positions of the path are
plane that map the tiling onto itself. A tiling with transla- recorded using two real values between 0 and 1. Once co-
tional symmetries in two non-parallel directions is callecbrdinates for the start and end positions are determined,
periodic There are many non-periodic tilings, but of-the splitting path can be transformed into place.
ten the prototiles of such tilings can also be used to con- The splitting process can be applied to prototiles from
struct periodic tilings. A more remarkable situation oc-any of the 93 isohedral types. As in the case of monohe-
curs when every tiling that can be constructed from a seral Escherization, the choice of isohedral type is discrete
of shapes is non-periodic; such sets are callgeriodic  and cannot be made within the framework of a continu-
as are the tilings that can be built from them. ous optimization. Following Kaplan and Salesin, we run

For any two congruent tiles in a tiling, there will be multiple per-tiling-type optimizations in parallel, gradu-

a rigid motion of the plane that maps the first tile ontcally winnowing down the pool of candidates until only
the second. If this motion also maps the entire tiling téhe most successful type remains.

itself then the two tiles are said to ransitively equiva- The monohedral Escherization algorithm searched a
lent Transitive equivalence partitions the tiles of a tilingconfiguration space where each tuple of floating-point
into equivalence classes callédnsitivity classes A  values encoded the shape of an isohedral prototile. Some
tiling with exactly one transitivity class is callédohe- of the values controlled the positions of the tiling ver-
dral; more generally, &-isohedraltiling is one withk  tices; the rest controlled a non-redundant description of
transitivity classes. Differently-shaped tiles will necesihe edge shapes. To handle the split isohedral case, we
sarily belong to different classes, and sk-bedral tiling  enlarge the search space to include parameters for the po-
will be at leastk-isohedral, though it may possibly havesition and shape of the splitting path. At each step in the
more transitivity classes. optimization, we construct the split isohedral prototile,

The combinatorial properties of every isohedral tilingextract shape$; and 7>, and compare them with user-
can be summarized using a compact string calleiiein ~ supplied goal shape$ andS; using the metric of Arkin
dence symbdl]. By writing down all possible incidence et al. [I]. The two comparisons yield two non-negative
symbols and eliminating those that cannot correspond téal numbers/; andd,; we usemax(d;, d2) as an objec-
legal tilings, Giinbaum and Shephard showed that théve function for dihedral Escherization, forcing both tile
isohedral tilings can be partitioned into precisely 93 comshapes to resemble their respective goal shapes as closely
binatorial types labeled IH1. ., IH93. Each type corre- as possible. As in the monohedral algorithm, we peri-
sponds to a different way that a tile can be surrounded mdically subdivide the splitting path along with the edge

its neighbours. shapes, giving the algorithm a chance to pick up finer de-
tails in the goal shapes.
3 Splitisohedral Escherization Let .S] andS} denote reflections of goal shapgsand

Our search for a useful space of dihedral tilings ped2. To find the best sp_lit isohedral tiling correspon_ding to
gins with Escher himself. A meticulous note-taker, héhe goal shapes, two instances of the Escherization algo-
carefully documented his exploration of two-motif sys-ithm are required: one withi; andS,, and one withs,
tems [13/14]. In every case, he starts with one of highdS5 (or 51 andS,). Although the shape comparison
monohedral systems and draws a path through the prdletric is insensitive to translatlon'and rotation, it dqes
totile to break it into two shapes. When that division idistinguish between a shape and its reflection. It might
copied to all other tiles, the result is a dinedral tiling. ~ happen thab, and.S; interact more favourably if one is

We can apply a similar process to the isohedral tiIings@ﬂeCte(ﬂ ] o o
We augment the description of an isohedral prototile with 1€ split isohedral Escherization process is illustrated
a “splitting path,” a path that starts and ends on the prdP Figure[1. Figur¢]7 shows some results obtained using
totile’s boundary. A splitting path naturally subdivides alhiS Process. One might guess that because of the need to

prototile into two shape®, and7,. When every tile in an _mat.ch two goal shapes simultaneously, dihedral Escher-
isohedral tiling is subdivided by the splitting path, the reization would have a lower success rate than monohedral

sultis a “split isohedral tiling,” a dihedral tiling with pro- Escherization. We have founc_j 'Fhat the additional degrees
totiles 71 andTy. Every such tiling will be 2-isohedral, Of freedom offered by the splitting path help to compen-

though there also exist 2-isohedral tilings that cannot beate for the added complexity of the problem, and that the
constructed using a splitting path (see Sedfjon 7). dihedral and monohedral optimizations have comparable

In our implementation, the splitting path is stored as & INote that only the relative parity matters here; the flexibility of

piecewise "near_ path in a Iocal_coordinate S}’Stem- Th&e isohedral tilings guarantees that the case Sy) is equivalent to
isohedral prototile’s boundary is parameterized by ars;, S5), and that(S}, S2) is equivalent ta(S1, S5).




success rates. Speeds are comparable as well; the dihendb. Once the degrees of freedom controlling the end-
dral optimizer usually converges in 10-20 minutes. Ampoints are removed from the configuration space, the re-
interactive viewer also allows the user to watch the optimainder of the dihedral Escherization algorithm can be
mization in progress and abort it if no promising solutionspplied as is.

seem likely. In Dress’s paper, some of the types of Heaven and Hell
o patterns can be seen as subsumed under other types, in
4 Heaven and Hell Escherization the sense that a type with symmetric prototiles is merely a

Some of Escher’s dihedral tilings, such ldeaven and special case of an asymmetric parent. Dress’s explicit or-
Hell [14], have additional geometric structure. Each tilélering makes it easy to recognize that the 29 Heaven and
can be given one of two colours so that adjacent tiiedell tiling types representable as split isohedral tilings
never share a colour. Furthermore, each colour is the e&&n be summarized using twelftndamentatypes with
clusive domain of one of the two prototiles; in Heaver@Symmetric prototiles. Using the notation given above,
and Hell, every angel is white and every devil is blackthe twelve types are as follows:

This sort of colouring is possible when every tiling ver-
tex is surrounded by an alternating sequencd ehd B
tiles, or equivalently, when every tile shares edges only
with B tiles (and vice versa).

Aesthetically, such tilings are particularly effective be-

cause each transitivity class of ti_Ies plays tht_’-_\ role of Eight remaining types in Dress's classification are not
groun_d to the other's figure: thB tiles exactly fill the accounted for by splitisohedral tilings. These tilings have
negative space created by thdiles. Moreover, the fact different proportions ofd and B tiles. We do not con-

that the colours can be unambiguously associated W'g?der Escherization over such tilings here, although we
tile shapes allows them to become part of the persona}hention them again in Sectiph 7

ties of those shapes, as in the white angels and black dev
ils of Heaven and HellEscher used this particular space,
of tilings to produce some of his best-known prints.

The class of 2-isohedral tilings with this additionals5 Sky and Water designs

structure were enumerated by Dress [5], who dubbegscher's prinSky and Wateis a very special application
them “Heaven and Hell patterns.” Based on an analys{s Heaven and Hell patterns. What starts out in the center
using Delaney symbols][4], he classified the Heaven ang the print as a dihedral tiling of stylized fish and birds
Hell patterns into 37 distinct types. evolves towards the top and bottom of the print into real-
Of the types enumerated by Dress, 29 can be expressegtic figures: birds above and fish below. Escher used this
as specialized versions of split isohedral tilings. The acdevice in many prints and sometimes multiple times in a
ditional structure comes from a careful choice of locasingle print (as inverbumandMetamorphosis ).
tions for the endpoints of the splitting path. Dress’s clas- |t is critical that the central tiling where the birds and
sification shows that an endpoint will always be eithefish meet be a Heaven and Hell tiling. The stylized birds
one of the tiling vertices of the underlying isohedral proevolve into the background for the realistic fish (and vice
totile, or the midpoint of one of its tiling edges. If the versa), and so the tiling needs to be colourable with one
isohedral prototile has tiling vertices, we can enumerate colour for each tile shape.
this set of locations a6 = {1,15,2,23,...,n,n+ 5}, Escherization is especially well suited to the creation
where a whole numbek refers to a tiling vertex and of Sky and Water designs because the realistic goal
k + 3 refers to the midpoint of the edge frobto k + 1. shapes are already part of the process that leads to the
The numbering of the tiling vertices can be taken fronstylized tile shapes. To turn a Heaven and Hell tiling into
the order in which they appear in the enumeration by Sky and Water design, it suffices to gradually blend the
Grinbaum and Shephaild [7]. Each of the 29 types basgk shape into the goal shape as tiles are placed succes-
on splitting can then be given the notatifitim; a,b),  sively farther from a given “interface line.”
wherelHm denotes one of the isohedral types, and where We extended the basic Heaven and Hell Escherization
a, b are members of. algorithm with a suite of interactive tools for construct-
We represent a prototile for the Heaven and Hell tilingng Sky and Water designs. One tool lets the user specify
(IHm;a,b) by starting with the representation for thean interface line and a set of tiles to draw. Another tool
split isohedral prototile of the same type, and fixing thdets the user add decorations to tiles with monochromatic
endpoints of the splitting path according to the locationsector-based strokes. Each stroke is a sequencézéB

(IH1;1,4), (IH2;2,5), (IH3;2,5),
(IH5;1,4), (IH27;15,4), (IH31; 1, 3),
(IH33; 1, 3), (IH41; 1, 3), (IH43; 1, 3),

(IH47;23,41), (IH52;1,3), (IH55; 2, 4)

Figure[3 gives an example of Heaven and Hell Escher-
ation.



A Funky ChickenglH51)
Figure 1: A summary of our process for split isohedral Escherization. On the left, two goal shapes S, and Ss are
traced from images. Next, the isohedral tile and splitting path are shown at a late stage in the optimization. The quality
of this configuration is judged by breaking the tile into two shapes T and T, which are then compared with S and

So. The optimization attempts to minimize the value at the right, the maximum of the two comparisons. A finished
example based on these goal shapes appears on the right.
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The Owl and the PussycétH27;13,4)

Figure 3: An example of Heaven and Hell Escherization.
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The Pentalateral CommissiqR®3)

Figure 4: An Escher-like design created by hand, based
on Penrose tile set P3. The tile shapes were discovered
after a few minutes of interactive exploration, and deco-
rated using Adobe Illustrator.

Figure 2: An example of a Sky and Water design, based
on the goal shapes of Figure[7d.



curves with user-specified widths; the curves are fit to , , ,
the user’s drawing gestures using the method of Schnei- . . .
der [15]. Additionally, each stroke is given a “priority” ' ' \

that determines how far from the interface line the tile

must be before the stroke is drawn. This approach al- - ' '
lows for a prioritized sequence of strokes ordered by theirVﬂ N N -
importance in expressing a stylized version of the goal ‘ ‘

shape.
Finally, a renderer assembles the final drawing, taking. . . o
. . Figure 5: An illustration of how a tiling vertex param-
the output of the other two tools as input, together with ="~ ~ . ;
. . eterization can be derived for the Penrose kite and dart.
colours for theA and B tile shapes. For every tile, the .. . . .
. . L . he original edges are modified using Griinbaum and
renderer interpolates that tile with its corresponding go , . . - .
. L hephard’s edge matching conditions [7]. When adjacent
shape by an amount determined from its distance to the L X . .
. . . L . edges coincide, they are removed, displacing the tiling
interface line. The interpolation is carried out so that any = .
. . - ertices between the edges. The kite and dart each have
tiles that touch or cross the line are set to the tile shape, . o )
. . . one unconstrained tiling vertex. The others are all im-
and maximally distant tiles are set to the goal shape. Th ied by the orieinal matchine conditions
A tiles are then drawn over a solid background of the p 4 g g ’

tile colour, and vice versa. Finally, the strokes are warped

into place and drawn if they have sufficiently high prior-g¢ freedom in the two fundamental edge shapes. These
ities. Figure P shows an example of an Escherized Skyyge shapes are assembled into two tile shapes that are
and Water design. then compared against two goal shapes as usual.

However, this interpretation of the possible shapes of
Penrose tiles is limited, as can be seen fronirbaum
The most widely known aperiodic tilings are those disand Shephard’s reproduction of Penrose’s aperiodic
covered by Penrosel[7.12]. In particular, he demorchickens[[7]. They superimpose the chickens on top of
strated two tile sets that yield dihedral aperiodic tilingsthe corresponding unmodified tiling. The registration of
P2, made up of kites and darts, aft$, made up of thin these two tilings reveals that the chickens have tiling ver-
and thick rhombs. Like the Mandelbrot set, the Penrosgces that are different from those of the original tiling!
tilings are ambassadors of mathematical beauty to a gemhere are evidently additional degrees of freedom to the
eral audience. Penrose tilings that must be explored and exploited if we

Unfortunately, Escher did not live to see the developare to extend the reach of aperiodic Escherization.
ment of Penrose tilings, and so we can only imagine what By experimenting with the geometric matching condi-
sorts of creatures he might have discovered in them. Petiens, we have discovered an extended set of points that
rose himself, who corresponded regularly with Eschetan be parameterized like the tiling vertices of an iso-
expresses his regret at the missed opportuhity [11]. Heedral tiling. We call these points the prototilejsia-
also gives an example of what Escher might have drawsivertices The quasivertices include all the points on a
a modification ofP2 where the kites and darts have beerprototile’s boundary that act as tiling vertices somewhere
turned into chickens. Other artists have also created digr a Penrose tiling, and some additional points that are
signs based on Penrose tiles [6]. forced into existence by theﬂw.

In order to enforce aperiodicity in the tile sg®® and Figure[% shows how the ordinary geometric matching
P3, the tiles must be augmented with matching coneonditions yield a new set of parameterizable points for
ditions that determine the legal ways one tile may béhe kite and dart. The fundamental edge shapes are mod-
placed next to another. One important way to expresfied so that they partially overlap. The overlapping re-
these matching conditions is to deform tile edges so thgions can then be excised from the tiles, producing new
tiles only fit together in prescribed ways. itibaum and tiles that no longer share all of the tiling vertices of the
Shephard give such geometric matching conditions fariginal kite and dart. This process necessarily introduces
P2 and P3 [[7]. In both cases, the matching conditionsother vertices into the shapes of the two tiles. Note that
are boiled down to two non-congruent paths and the wagy tiling produced from these excised tiles will be visu-
they are arranged around the two tiles in the set.

The geometric matching conditions suggest an ESChec{f_tiling vertices around every copy of the prototile. No such guarantee

izat.ion_ algorithm for Pe_nr(?se .t”es- The tiling vertices reeyists forP2 or P3, and we must consider points that are tiling vertices
main fixed, and the optimization operates on the degrees some instances of a prototile but not others.

6 Escherization using Penrose tiles

2In an isohedral tiling, transitivity guarantees a unique configuration



that in each of the Penrose sétg and P3 the two pro-
totiles are fundamentally different shapes. For these rea-
sons, given two goal shapés and .S, and their reflec-
tions.S] and S}, we must optimize for the eight combi-
nations (.S, S2), (S1,S2), (S1,5%), (S1,5%), (S2,S51),
(53,51), (52, 51), and(S3, 51).

Rendered designs based on Penrose tilings are given
in Figure[8. In general, it is much more difficult to dis-
cover satisfactory Escherizations using Penrose tilings.
The range of possible tile shapes is limited and peculiar,
always having many sharp angles. More obviously, there
are fewer “tiling types” than in the split isohedral case;
we no longer have the luxury of hunting over many dif-
ferent types for one that happens to be particularly well
suited to a given pair of goal shapes. The results are there-
fore less successful than in the isohedral and 2-isohedral
cases, but interesting nevertheless for their connection to
Figure 6: Extended matching rules for Penrose tiling sets ~ the interaction (both mathematical and personal) between
P2 (above) and P3 (below). The edge labels are not re- Escher and Penrose. On the other hand, an interactive ed-
lated between the two sets. Matching is enforced by iden-  itor for Penrose tiles still allows profitable forward explo-
tifying pairs of interlocking edges. The interlocking pairs ~ ration of the space of tilings. Figuré 4 shows an example
are (a,d), (b,h), (c,e), and (f,g) for P2, and (a,g), oOf a tiling that was not Escherized but developed from
(b,e). (c,d), and (f, h) for P3. scratch in a few minutes and decorated in a cartoon style.

7 Discussion and future work

ally indistinguishable from one produced using equivaThe first dihedral Escherization technique presented here
lent tiles with degeneracies. However, they behave difs a natural extension of the isohedral method of Kaplan
ferently from the point of view of the shape metric. Ourand Salesin — we subdivide isohedral prototiles with a
new parameterization of the excised tiles is compatiblgp|itting path. By delving deeper into the tiling theory lit-
with the shape metric. erature, we can restrict our technique to Dress’s Heaven
From Figurg b, we conclude that the quasivertices aind Hell patterns, and then use those patterns to create
the kite and dart can be parameterized using four reatky and Water designs. We also take a fresh look at Es-
valued parameters, determined by the positions of theherization in the context of the aperiodic Penrose tilings.
tiling vertices created at the tips of the two excised reWe close this paper by briefly discussing the issues that
gions. Similarly, four parameters suffice to parameterizarise with our technique, and suggesting ideas for future
the Penrose rhombs. Once the free parameters are undeork.
stood, we can derive explicit formulae for the positions of The split isohedral method can be used to construct
the quasivertices. See the thesis by Kaglan [8] for detailthose 2-isohedral tilings for which the two prototiles oc-
Like tiling vertices, quasivertices partition tile bound-cur in equal amounts. All of Escher’'s two-motif sys-
aries into edges that behave like tiling edges. We mugtms have this property, and so we consider the method
derive new matching rules so that congruent edges asatisfactory for reproducing his work. However, there
controlled by a single set of parameters within the optiare also many 2-isohedral tilings with different relative
mization. By analogy with the incidence symbols useédmounts of the two prototiles. To understand these ad-
for isohedral tilings, edge shapes can be specified by lditional tiling types, we must take a closer look at the
beling edges around each tile and indicating adjacenegathematics behind 2-isohedral tilings.
rules for the labels. Figuig 6 shows a set of labels and pelgado-Friedrichst al.carry out a complete enumer-
adjacency rules foP2 and 3. ation of the 2-isohedral tiling$ [3]. They prove a gen-
The edge shapes, combined with the four parameteesal result that everyk + 1)-isohedral tiling can be con-
controlling the tiling vertices, yield a configuration spacestructed from &-isohedral tiling through a combination
suitable for Penrose Escherization. Note that this pararf two operations:SPLIT andGLUE. The SPLIT opera-
eterization cannot in general represent both a particuléipn is identical to our use of a splitting path. They show
pair of tile shapes and the reflections of those shapes, atiit when the prototiles of @ + 1)-isohedral tiling are



(b) Godel, Bach (Braided):
an Eternal EscherizatiofiH2)

Figure 7: Examples of dihedral Escherization using the split isohedral tile method. Many
source images appear courtesy of FreeFoto. com.
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(a) Busby Berkeley ChickeiiB2) (b)A Walk in the ParKP3)

Figure 8: Examples of dihedral Escherization based on parameterizations of Penrose tile sets P2 and P3.


FreeFoto.com

asymmetric, they can be derived from the prototiles of

a k-isohedral tiling via the application gPLIT to one

3]

prototile. TheGLUE operation erases the edge between
two adjacent tiles, producing tilings with symmetric pro-

totiles. It is through use o&LUE that we can construct
2-isohedral tilings with different relative amounts of the

two prototiles.
Because our technique is based only on #m.T

[4]

operation, it does not immediately generalize to all 2-

isohedral tilings.
form of combinatorial tiling theory{4], in which aDe-

A full generalization comes in the

laney symbokummarizes the combinatorial structure of

a tiling. Delaney symbols can be used to describe

isohedral tilings for any; they also generalize to dimen-
sions greater than two and to non-Euclidean geometry. [6]
In principle, we might use Delaney symbols as a basis
for parameterizing the shapes of all 2-isohedral tilings,
yielding a new dihedral Escherization algorithm. Indeed,[7]
given anyk user-supplied goal shapes, such a system
could discover &-isohedral tiling that approximates all 8]

of them. Unfortunately, Delgadet al.show that there are

over athousand 2-isohedral types. In general, the number

of k-isohedral types grows very quickly with Because

the choice of tiling type is discrete, it quickly becomes
infeasible to search all possible types by launching indelg]
pendent continuous optimizations. It might be possible to
run an optimization on a carefully chosen subset of De-
laney symbols that are particularly well-suited to Escher-

ization. As a benchmark fak-isohedral Escherization,

consider Escher's symmetry drawing 71, a remarkablg 0]
periodic tessellation featuring twelve distinct bird motifs.
Taken to the limit,k-hedral Escherization becomes a

kind of packing problem. A& grows very large, we be-
come more interested in simply fitting dllgoal shapes

together plausibly in a kind of puzzle. Such a large blockl1]
of shapes no longer has as much aesthetic appeal when

repeated across the plane. Escher’s phlane Filling

1is an example where a number of one-of-a-kind figures

are assembled to tile a finite region [2]. As we move fronrlz

monohedral and dihedral tilings to cases such as this one,
the importance of tiling theory is lessened. An approach

like that of Jigsaw Image Mosaics [10] might be mor

appropriate.
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