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Abstract
To a person with colour vision deficiency (colour blindness), some pairs of colours that other people can easily tell
apart will be perceived as similar or identical. In the right context, this deficiency can be harnessed as an unusual
ability. In particular, some combinations of colours can serve as camouflage, allowing a design to conceal information
that is nearly invisible to a viewer with normal colour vision, but comprehensible by someone with the right form
of colour vision deficiency. I explore the possibility of using dichromatic vision as a vehicle for a subtle form of
steganography, present tools for processing digital images to achieve this effect, and discuss the possibilities of this
rather specialized aesthetic domain.

Introduction

Figure 1: Three sample Ishihara plates: a “vanishing” plate (a), a “hidden image” plate (b), and a
“transformation” plate (c).

Colour vision deficiency (CVD), also known as colour blindness, is an anomaly of the human visual system
causing an individual to be unable to distinguish as many colours as the general population. Most people
with CVD have difficulty distinguishing reds and greens, as well as other combinations such as blues and
magentas. Less common varieties lead to confusion between other sets of colours, or reduce all vision to
shades of grey. CVD affects about 5%–8% of men and 0.5%–1% of women. It is generally regarded as a
minor inconvenience, exacerbated by default assumptions about colour vision in technology and design.

The Ishihara Tests [4], including the three examples shown in Figure 1, are the most popular diagnostic
tool for CVD, not to mention iconic and attractive works of graphic design. Each one is a pattern of coloured
dots, with colours chosen to communicate potentially different information to subjects with and without CVD.
In Figure 1(a), for example, trichromats (i.e., people without CVD) see the digit 5, but a person with red-
green colour blindness sees a field of monochromatic dots. Many software tools exist to produce images like
Figure 1(a) [3], or for simulating CVD in order to reveal potential issues in colour design [2].

Far more interesting to me are Figures 1(b) and (c), which contain hidden information visible only to a
person with CVD. In both cases, a number is hidden in the dots; a trichromat will see random fields of colour



in (b) and a different number in (c). This hidden information is made possible through a kind of camouflage.
The trichromat’s eye is overwhelmed by the profusion of colours, but these colours collapse down to a smaller
set for a person with CVD, making the hidden number easier to discern. Biologists have speculated that there
may be an evolutionary advantage to maintaining a sub-population of a species with CVD—they can alert
the group to camouflaged predators [8].

In this paper I explore the possibility of creating art targeted at people with CVD, specifically the form
of red-green colour blindness called deuteranopia, a form of dichromacy. Because generated images contain
information concealed from trichromats, I refer to this practice generically as dichromatic steganography.
Such art is not altogether new. Working by eye, the Hong Kong artist Carol Man created a series of paintings
in the spirit of the Ishihara tests, containing hidden content for people with CVD [7]. However, I am not aware
of other prior examples of CVD-based steganography, nor of software tools for automating the creation of
such images. In this paper I develop a model and set of algorithms, inspired by the Ishihara tests and past
analyses of them. After a brief overview of the necessary elements of colour theory, I present techniques for
generating vanishing, hidden, and transformation images, corresponding to Figures 1(a), (b), and (c).

Colour Perception and Metamers
Although the emission spectra of real-world objects can conceptually be arbitrary functions, most people
experience colour as a three-dimensional phenomenon. The implied reduction in dimensionality is a product
of human physiology and psychology, and not of light itself. Humans retinas contain three kinds of cone
cells, which respond differently to photons of different wavelengths. They are usually called Long, Medium,
and Short (or 𝐿, 𝑀 , and 𝑆), in reference to the wavelengths of light at which their responses peak. To a first
approximation, an object’s colour corresponds to the response levels of the three cone types to the spectrum
of light emitted by the object.

Each cone type has a response curve, giving its normalized excitation level to each wavelength in the
visible spectrum. The cone’s total reponse to an incoming spectrum can be computed by integrating the
product of the spectrum and the response curve. It follows that these response curves form a basis for a
three-dimensional subspace of the space of all emission spectra, and an object’s colour is determined by the
coordinates of the projection of its spectrum onto that subspace. I refer to this subspace as LMS space.

Obviously, many spectra will project down to the same point in LMS space. Such spectra are called
metamers: distinct functions that are perceived as the same colour. Technology for reproducing colour is
ultimately based on synthesizing a weighted mix of a small set of predetermined spectra called primaries
(e.g., the red, green, and blue components of a pixel) to produce a metamer for the emission spectrum of
a given light source. There is no need to reproduce the original spectrum in full: by definition, a metamer
provokes the same total response from the viewer’s cone cells, and they will perceive the same colour.

LMS space is useful for modelling human vision, but not practical for most colour manipulation tasks.
The standard for computers is RGB, in which three numbers determine the brightnesses of a pixel’s red, green,
and blue primaries. Closely related is sRGB, in which those three numbers are passed through exponential
transfer functions to account for the historical nonlinearity in brightness of real-world display devices. The
Rosetta Stone for colour representation is CIE XYZ, developed in the early 20th century based on human
experiments matching colours to a set of three light sources with known spectra [5, Chap. 28].

Colour vision deficiency usually takes the form of anomalous trichromacy, in which one of the three
cone types is deficient, or dichromacy, in which it is absent altogether. In particular, protan, deutan, and tritan
CVD correspond to deficient 𝐿, 𝑀 , and 𝑆 cones, respectively. In this paper I will focus on deutan CVD, and
specifically on deuteranopia, the complete absence of 𝑀 cones and the most common form of dichromacy.
The effectiveness of my results will diminish for individuals with progressively milder 𝑀 deficiencies (known
as deuteranomaly). The algorithms presented here adapt readily to protan and tritan CVD as well.



LMS space offers a model in which to understand the experience of dichromatic colour. A person with
deuteranopia perceives colours in a space of two dimensions rather than three, based on the responses of their
𝐿 and 𝑆 cones alone. Two colours in LMS space that differ only in 𝑀 will be metamers to a deuteranope but
not to a trichromat. More generally, to each combination of 𝐿 and 𝑆 there corresponds a confusion line of
colours that ranges over all possible 𝑀 values. For example, some shades of red and green lie on one such
confusion line, and therefore cannot be distinguished by a deuteranope. Thus deuteranopia is one form of
“red-green colour blindness”.

Vanishing Images
We are now in a position to understand the construction of the subset of the Ishihara tests known as “vanishing”
plates, in which a foreground shape or object is visible to trichromats but invisible to dichromats. For a given
form of dichromacy, we need only choose a palette of colours that lie on a single confusion line. Then,
in an arrangement of dots, we colour the dots that make up the foreground using colours from one end of
the confusion line, and colour background dots using colours from the other end. A trichromat will easily
distinguish the two families of dots and identify the foreground object; a dichromat will see dots all of a single
colour. Figure 1(a) gives an example of an Ishihara vanishing plate, with a foreground object in shades of
green and the background in shades of red and yellow.

Ishihara’s work predated standardized colour spaces like CIE XYZ; he developed his plates experimen-
tally, with feedback from human subjects. With modern mathematical and computational tools, many people
have automated the construction of images like these [1, 3].

Burrus offers a Python library called DaltonLens [1] for CVD-aware colour management, including a
program for generating vanishing plates. His main goal is to provide a simple tool that simulates various
forms of dichromacy so that a trichromat can preview whether visual information (say, a user interface or a
diagram) is comprehensible to people with CVD [2]. Prior research has shown that deuteranopes perceive
a colour space that is well approximated by a planar quadrilateral within LMS space with vertices at black,
blue, white, and yellow, hereinafter denoted the “Yellow-Blue quad” or “YB quad”. Burrus’s deuteranopia
simulation projects colours along confusion lines onto this quad.

The YB quad is also a useful framework in which to generate vanishing images. For any point on the
quad, specified as fractional amounts of blue and yellow between 0 and 1, Burrus constructs a confusion
line parallel to the 𝑀 axis in LMS space. He then intersects that line with a parallelepiped corresponding to
the full RGB colour cube transformed into LMS space. The result is a “confusion segment”, a line segment
in LMS space whose points are all deuteranopic metamers, and all convertible to legal RGB colours. The
endpoints of a segment 𝑠 are colours 𝑐1 and 𝑐2, each represented as a triple of real numbers in LMS space.
We may then express 𝑠 parametrically over a real parameter 𝑡 ∈ [0, 1] by defining 𝑠(𝑡) = (1 − 𝑡)𝑐1 + 𝑡𝑐2.
In an Ishihara-style vanishing image, we select colours for the foreground object and the background based
on 𝑡 values in disjoint subintervals of [0, 1]. Burrus shows how to convert the resulting LMS values first into
CIE XYZ space, then into linear RGB, and finally into sRGB, allowing us to create standard raster and vector
images.

Figure 2 offers a novel artistic application of vanishing images, based on the observation that a confusion
segment’s endpoints usually do not have identical luminances. Given any point in the YB quad, I construct
its confusion segment 𝑠, arranging its endpoints so that 𝑠(1) has higher luminance than 𝑠(0). Now let 𝐼 be a
greyscale image, such as the portrait of CVD pioneer John Dalton in Figure 2(a). Let 𝑝 ∈ [0, 255] be a pixel
of 𝐼. I compute the LMS colour 𝑠(𝑝/255), convert it into an sRGB colour, and store it in the corresponding
pixel of a colour image 𝐼 ′. The result is a colourful image that is nevertheless able to communicate shading
to a trichromat, but that is invisible to a deuteranope.



Figure 2: A vanishing image based on a portrait of John Dalton (a). Grey levels are mapped to a confusion
segment (b) at point (0.4, 0.2) on the YB quad, yielding a final image (c). We can simulate the

appearance of the result to a dichromat (d) using Burrus’s software (top) and Photoshop
(bottom). The simulators produce slightly different outputs because of low-level differences in

their colour models.

Hidden Images
While the rendering in Figure 2 is mathematically interesting, and a good starting point for exploration of
CVD-aware image processing, I find it to be aesthetically disappointing. After all, CVD already makes many
artworks difficult or impossible to interpret; the world does not really need more artifacts that behave that
way by design. Far more interesting is to create images with the opposite behaviour: content that is visible
only to a viewer with CVD.

Ishihara’s “hidden digit” plates, like the one shown in Figure 1(b), demonstrate that images of this type
are possible in principle. In a hidden digit plate, a viewer with the correct form of dichromacy will be able to
discern a faint digit in the pattern of dots, one that is invisible (or nearly so) to a trichromat. Lakowski carefully
measured the trichromatic colours of hidden digit plates and discussed how those colours are organized [6].
As he reports, the trick is to select the dot colours that make up the foreground digit and background from
two nearby confusion segments in LMS space. To a trichromat, the colour variation along the two segments
should dominate their perception, masking the variation between the two segments. A deuteranope sees
only two colours projected onto the YB quad and can therefore more easily distinguish the digit from the
background.

We can adapt the analysis above into an algorithm for generating a hidden image based on a given
foreground object. Let an object be represented by a “mask image”, a raster image that is black in the interior
of the object and white in the intended background. Choose two nearby points on the YB quad and construct
foreground and background confusion segments 𝑠 𝑓 and 𝑠𝑏, as discussed above. Now construct a new output
image with the same resolution as the mask. For every black pixel in the mask, set the corresponding pixel of
the output image to 𝑠 𝑓 (0) or 𝑠 𝑓 (1), chosen at random. Similarly, for every white pixel choose one of 𝑠𝑏 (0)
or 𝑠𝑏 (1) at random. The resulting image will look like noise to a trichromat, but the foreground object will
be faintly visible to a deuteranope. Figure 3 gives an example of a raster image with a hidden object.

Raster-based hidden images are necessarily noisy: every pixel is assigned one of four colours in a random
pattern. By moving instead to vector illustrations, we can generate more structured hidden images. Here the
input to the algorithm is a set of closed geometric paths, such as polygons. Each path is given one of two



Figure 3: A raster-based hidden image. A mask (a) selects pixel colours from one of two confusion
segments (b). The resulting image (c) looks like noise to a trichromat, but a deuteranope can
discern a faint copy of the mask object, as visualized using simulators by Burrus (d, top) and

Photoshop (d, bottom). The bottom row (e–g) repeats the experiment in a different region of the
YB quad. The hidden message is a tribute to the cult sci-fi movie They Live.

symbolic labels, in order to distinguish the intended foreground and background regions. As before, we assign
colours from 𝑠 𝑓 to foreground regions, and colours from 𝑠𝑏 to background regions. Figure 4 demonstrates a
hidden image generated this way. The composition is somewhat calmer than that of Figure 3, because it is
made up of larger blocks of uniform colour. It more closely resembles a traditional Ishihara test.

Figure 5 shows a similar style of image constructed in a hybrid manner. Geometric paths are provided
as before, but the distinction between foreground and background is incorporated via a separate black and
white raster mask. For each coloured path shown on the left, we choose whether to use 𝑠𝑏 or 𝑠 𝑓 by sampling
the mask image at the same location. Black paths are carried over unchanged, allowing universally visible
features to be incorporated into the resulting illustration.

Transformation Images
Ishihara’s “transformation” plates are the most sophisticated of his collection. A transformation plate contains
one object that is visible to trichromats, and a second, hidden object visible to individuals with different forms
of dichromacy. In the example of Figure 1(c), a trichromat sees the number 74, and a deuteranope sees 21.

The good news is that mathematically, transformation images can be generated by merging the tech-
niques used for vanishing images and hidden images. A vanishing image uses a single confusion segment 𝑠,
and chooses colours 𝑠(𝑡) for varying values of 𝑡 to modulate the information shown to a trichromat without af-
fecting the image’s appearance to a deuteranope. A hidden image distinguishes foreground from background
using two confusion segments, but samples those segments randomly to present noise to a trichromat. A
transformation image can therefore be computed from two auxiliary images: a greyscale foreground image 𝐹
and a black and white hidden image mask 𝐻. As before, we choose two nearby confusion segments 𝑠𝑏 and



Figure 4: A vector illustration containing a hidden image. The paths (left) are generated from a collection
of overlapping background smiley faces, with a single foreground frowny face indicated in bold.

The frowny face is faintly visible to a deuteranope in the final rendering (right).

Figure 5: A hybrid hidden image inspired by Lewis Carroll’s Cheshire Cat, based on colouring unlabelled
geometric paths (left) as foreground or background using a separate mask image (centre). In the

final image (right), the black trunk and branches are copied over without recolouring.

𝑠 𝑓 . Now, for a given position (𝑥, 𝑦) in the output image, we choose a segment 𝑠 = 𝑠𝑏 or 𝑠 𝑓 depending on
whether 𝐻 is white or black at (𝑥, 𝑦), and then set the output pixel to the sRGB value of 𝑠(𝑝/255), where 𝑝
is the grey level of 𝐹 at (𝑥, 𝑦).

Turning this construction around, we see that a vanishing image is a special case of a transformation
image in which 𝑠 𝑓 = 𝑠𝑏, and a hidden image is a special case in which the pixels of 𝐹 are random.

As in the previous sections, we can also use this construction to control colours assigned to geometric
paths instead of pixels. Indeed, disjoint paths are a better choice than pixels in this case. If we produce a raster
output, then in regions where 𝐹 changes slowly, the boundary between black and white in 𝐻 will be visible to
a trichromat as a faint edge between similar colours. By isolating colours into disjoint shapes, like the dots in
an Ishihara plate, the viewer loses the ability to evaluate contrasting colours in direct juxtaposition, helping
to obscure the hidden image. Figure 6 gives an example of a transformation plate with an Ishihara-like dot
pattern, which uses a pure black and white foreground image to create a two-colour composition. Figure 7
shows a more elaborate colouring in which the foreground image changes continuously.



Figure 6: A transformation image. The foreground image 𝐹 (a) controls the colours visible to a trichromat.
The hidden mask 𝐻 (b) controls the choice of confusion segment. An Ishihara-like arrangement

of dots (c) is coloured to produce a design with two opposing messages (d).

Discussion
The method presented in this paper is mathematically sound and physiologically well motivated, but it is
also unavoidably fragile. After all, any two colours that are distinct to a deuteranope are also distinct to a
trichromat. There is no way, then, to achieve perfect steganography, in which the dichromatic content is truly
invisible. At best we can hope to camouflage the hidden image behind a dazzle of colour, making it difficult
to discern. Even then we must walk a fine line, choosing points on the YB quad whose confusion segments
are close enough to be conflated by a trichromat, but different enough to be distinguished by a deuteranope.
I chose the colours in my results by trial and error, using simulators to estimate what someone with CVD
might see. More systematic experiments could reveal which regions of the YB quad are best suited to these
constructions.

Furthermore, these results are always approximations. They are based on imperfect empirical models of
human vision, filtered through multiple layers of approximate mathematical transformations, and ultimately
displayed on unknown hardware in an unknown lighting environment. It is remarkable that they ever work at
all. While it would be ideal to control for all of these variables in a gallery setting, it may be more satisfying
to encounter images like these in the wild, where a trichromat might overlook the hint of a secret message
implied by subtle colour variations.

I find that these images offer a fascinating glimpse into the psychological grouping principles that guide
human vision, much like real-world camouflage. In this context, the tricks of colour and geometry played in
hidden and transformation images are devices to guide the trichromat’s eye to group the composition in one
particular way, obscuring the lower-order grouping possible for a deuteranope.
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Figure 7: A transformation image in which the foreground image 𝐹 has continuous grey levels (here
arranged in a diagonal gradient). The cells of a traditional Islamic geometric pattern are given a

range of colours controlled by the gradient, while also concealing a hidden traditional pattern
in 𝐻, made up of four copies of the word “ali” in square Kufic calligraphy.
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