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Figure 1: A sampling of bunnies decorated with different repeating patterns, one from each of the five symmetry types supported in this
paper. From left to right: Escherized teapots, A Celtic key pattern, A Japanese stencil pattern, an Islamic interlacement, and a Persian tile
design.

Abstract

Inspired by recent advances in high-quality mesh parameterization,
I present a technique for decorating surfaces with seamless orna-
mental patterns. The patterns are transferred from planar drawings
with wallpaper symmetry. I show that when the original drawing
belongs to one of a few specific symmetry groups, then it can easily
be rendered with low distortion on a suitably parameterized mesh.
The result is not symmetric, but retains most of the structure of the
original drawing.
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1 Introduction

A popular topic in computer graphics is the problem of synthesizing
textures on surfaces. Usually, the goal is to ensure that the surface
is textured in an irregular way, so that any perceived order and rep-
etition are suppressed.

It is also worthwhile to consider the cultivation of this order. How
might we cover arbitrary surfaces seamlessly with repeating deco-
rative patterns? In the plane, we have an established mathematical
theory of symmetry that can account for the structure of many or-
namental patterns, together with a rich, ongoing artistic tradition
from which to draw inspiration. In general, surfaces do not have
enough structure to support a meaningful theory of symmetry, but
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perhaps planar patterns could be transferred to surfaces in a way
that preserves the spirit of the original patterns.

In this paper, I describe a simple solution to the problem of cover-
ing arbitrary surfaces seamlessly with repeating decorative patterns
belonging to certain symmetry types. My solution does not intro-
duce any new algorithms or equations; it is based entirely on texture
mapping of appropriately parameterized meshes. Recent advances
in semiregular mesh parameterization have made it worthwhile to
demonstrate the artistic possibilities of surface decoration. Several
examples are shown in Figure 1.

My main contribution is an explanation of which planar patterns can
easily be transferred to surfaces. I also show how to select a repre-
sentative texture from a pattern. Finally, this paper greatly simpli-
fies the previous remeshing-based approach of Kaplan et al. [2004],
while simultaneously producing higher-quality results.

I present my method in the following section, and discuss it in the
context of related work by Kaplan et al. and others in Section 3.

2 Transferring planar patterns to surfaces

Symmetry theory provides the most natural basis for understanding
and classifying patterns in the plane. A symmetry of a figure in the
plane is a rigid motion that maps the figure onto itself. The symme-
tries of a figure naturally form a group, called the figure’s symmetry
group, under composition of transformations. A figure whose sym-
metries include translations in two non-parallel directions is called
a wallpaper pattern or (in the context of this paper) simply a pat-
tern, and its symmetry group is called a wallpaper group. It has
been known since the late 19th century that there are exactly 17
distinct types of wallpaper patterns [Conway et al. 2008].

Consider the pattern shown in Figure 2(a). This pattern has symme-
try type p4. In addition to two directions of translational symmetry,
it has two inequivalent families of fourfold rotations, and a family
of halfturns. One representative from each of these families is de-
picted in the figure. In any p4 pattern we can extract a square region
with the following properties:



Figure 2: A demonstration of how a tile may be extracted from a
wallpaper pattern of type p4 and mapped onto a surface. A source
pattern is shown in (a). A sample of a centre of twofold rotation is
marked with a rhomb; two inequivalent centres of fourfold rotation
are marked with squares. Given a source pattern, a single tile can
be identified that repeats purely by translation (b). Then, given a
surface parameterized into quadrilateral domains (c), a copy of the
tile can be mapped into each domain to produce a final decorated
surface (d). Different numbers of tiles meet around vertices in the
coarse mesh; in (d), examples where three, four, and five tiles meet
are indicated.

• The region itself has fourfold rotational symmetry;

• The region’s corners are centers of fourfold rotation; and

• The entire pattern can be formed from translated copies of the
region.

I refer to any such region as a “tile”. An example of a tile is shown
in Figure 2(b).

Suppose we are now given a surface (i.e., a triangle mesh) equipped
with a semiregular parameterization into square domains, as in
Spectral Surface Quadrangulation [Dong et al. 2006] or PolyCube-
maps [Tarini et al. 2004]. These techniques do not parameterize
a mesh surface to a simple domain such as a planar polygon or a
sphere, but to a coarse mesh of quadrilateral domains with the same
overall topology as the original surface. Each domain has a simple
uv parameterization that maps it to a square with low angle distor-
tion. Thus a square texture (or collection of textures) can easily be
mapped onto the surface one domain at a time. Figure 2(c) shows a
parameterization of the bunny into quadrilateral domains.

Using this parameterization, we can simply fill every domain with
a copy of the tile from Figure 2(b) (or from any other p4 pattern).
Obviously, the resulting textured surface is faithful to the planar
pattern within each domain. The pattern is also continuous across
boundaries between adjacent domains, just as it is for two adjacent
tiles in the plane. The only potential difficulty is at the corners

p4: Two distinct centres of four-
fold rotation, one centre of twofold
rotation, no reflections.

p4g: Differently-oriented systems
of reflections and glide reflections
laid out in square grid arrange-
ments.

p4m: Reflections in the sides of a
45-degree right triangle.

p6: Centres of twofold, three-
fold and sixfold rotation, no reflec-
tions.

p6m: Reflections in the sides of a
30-degree right triangle.

Figure 3: Visualizations of wallpaper patterns belonging to each
of the five groups that can be mapped seamlessly onto surfaces.
Each pattern shows a selection of centres of two-, three-, four- and
sixfold rotation using rhombs, triangles, squares and hexagons re-
spectively. Dashed lines indicate reflections and notched red lines
indicate glide reflections. Underneath each pattern is the group
name and a short description of its distinguishing features.

where parameterization domains meet. In theory, any number of
domains greater than two might meet at such a corner; this number
is always four in the plane. Although the surface decoration cannot
match the original pattern perfectly at these corners, it achieves a
graceful re-interpretation of the original. The symmetries of the tile
guarantee that any number of tiles can meet around a point, with the
effect of locally growing or shrinking the local order of rotational
symmetry around that point.

Figure 2(d) shows a bunny textured using the p4 tile. The center of
every yellow ring is a corner where domains meet. Examples are
shown where three, four, and five tiles meet. Interestingly, this local
change in symmetry offers a rough visualization of the surface’s
Gaussian curvature. The number of purple rings linked by a yellow
ring will be less than, equal to, or greater than four depending on
whether the Gaussian curvature is locally positive, zero, or negative.



Figure 4: An example of the use of inequivalent tiles for planar
patterns with fourfold symmetry. The two eligible square tiles are
shown in (a), together with surfaces using those tiles in (b) and (c).
In (b), red squares become regular polygons with different numbers
of sides; in (c), flowers have different numbers of petals.

Two other symmetry types are compatible with a parameterization
into square domains: p4g and p4m. This result follows immedi-
ately from the fact that these two groups contain p4 as a subgroup,
and must therefore have similar sets of fourfold rotations and half-
turns. Because no other symmetry types are guaranteed to be de-
composable into squares, the three types given here are the only
ones compatible with a parameterization based on square domains.

We can also consider parameterizations by coarse domains that
map to equilateral triangles, as in Globally Smooth Parameteriza-
tion [Khodakovsky et al. 2003]. Here, we must begin with a planar
pattern from which we can extract an equilateral triangular tile. By
analogy with the square case, the tile must have threefold rotational
symmetry and sixfold rotational centres at its vertices. The only
two symmetry types that fulfill these requirements are p6 and p6m.
Tiles from patterns of these types can be mapped into the triangular
domains of a parameterized surface, producing results similar to the
square case.

Based on the preceding discussion, we find that of the 17 wallpaper
types, five can easily be applied to parameterized surfaces. Sam-
ple patterns belonging to these five groups are shown in Figure 3,
together with brief descriptions of the groups’ distinguishing fea-
tures. Washburne and Crowe [1992] present flowcharts for identi-
fying any given wallpaper pattern’s group. Ostromoukhov [1998]
offers a variety of algorithmic and mathematical tools for analyzing
and synthesizing wallpaper patterns.

The focus on five types out of 17 may seem like a severe limitation,
but in fact it leaves us with a large body of tradition to work from.
These types encompass patterns derived from the symmetries of
the three regular tilings of the plane (squares, hexagons, and equi-
lateral triangles), and are therefore very popular in historical and
contemporary ornamental design. For example, in a collection of
350 Islamic star patterns catalogued by Abas and Salman [1995],
more than half belonged to p4m or p6m.

2.1 Choosing a tile for fourfold patterns

Note that when a source pattern is of type p4 or p4m, there are
two ways to extract an appropriate square tile. There are two in-
equivalent families of fourfold rotations. A tile may be centred on a
member of either family, with the other family occupying the tile’s
corners. In the plane, it makes no difference which tile is chosen
to represent the pattern. When mapped onto a surface, however,
the two possibilities become visually distinct, as shown in Figure 4.

source tiles 1-frequency

2-frequency 3-frequency

Figure 5: The use of frequency to create variations with more rep-
etitions of a tile. The leftmost image shows a source tile alone and
in 2× 2 and 3× 3 configurations. For each frequency, a rendered
surface is shown. (The word “frequency” is borrowed from its use
in describing geodesic domes.)

The center of the tile will continue to be a fourfold rotation on the
surface, but the orders at the corners will vary. This difference does
not arise with patterns of type p4g, because the two families of ro-
tations are equivalent to each other via a reflection. In that case, the
two possible tiles will produce left-handed and right-handed ver-
sions of the same decoration.

2.2 High frequencies

The symmetry group p4 contains copies of itself as subgroups.
These subgroups correspond to k× k square arrangements of the
original pattern’s tile, for all k > 1. Looked at another way, square
arrangements of this tile form a larger tile with all the symmetry
properties of the original. The larger tile can therefore serve just as
easily as a basis for texturing. Figure 5 demonstrates this flexibil-
ity. Given a coarse mesh, it is always possible to decorate it with
increasingly fine patterns that have the same structure as the planar
version except at the isolated domain corners. The same argument
applies to the other two square pattern types, as well the two trian-
gular types.

2.3 3D shells

The combination of a mesh parameterization with a symmetric pla-
nar pattern need not be used only for texturing, of course. Another
possibility is to generate shell geometry near the surface. In Fig-
ure 6, I use the pattern tile as a stencil to be cut out of the mesh
surface. I join the surface to a concentric copy to create a thin shell
that interprets the original pattern. A similar approach could be



Figure 6: A bunny constructed by cutting the stencil pattern from
the center of Figure 1 out of the original surface.

Figure 7: A comparison of two bunnies decorated with the same
Islamic star pattern. The bunny on the left is decorated using the
remeshing technique of Kaplan et al. [2004], and exhibits consid-
erable pattern distortion in some areas (for example, on the ears).
The bunny on the right uses the technique described in this paper.

used to implement a variation of mesh quilting [Zhou et al. 2006]
in which the shell geometry is intended to form a regular pattern.

3 Discussion

I have produced many textured surfaces based on semiregular mesh
parameterizations. The square parameterizations use meshes pro-
cessed with the Spectral Surface Quadrangulation method of Dong
et al. [2006], and the triangular parameterizations use the Globally
Smooth Parameterization method of Khodakovsky et al. [2003]. In
both cases, I rely on the underlying parameterization methods to
ensure reasonable continuity across domain boundaries. Additional
examples are shown in Figure 8. All images were rendered using
pbrt [Pharr and Humphreys 2004].

This work was originally inspired by research on synthesizing ir-
regular patterns on surfaces, specifically the triangular technique
described by Neyret and Cani [1999]. Much later, Fu and Le-
ung [2005] presented their square technique based on Wang tiles.
These two approaches are very similar—tiles are chosen to fill do-

mains at random, subject to certain constraints on legal adjacen-
cies between tiles. All such constraints are trivially satisfied in this
work, where there is a single tile, every edge of which is compatible
with every other.

As I mentioned in the introduction, there is not a lot of research that
specifically addresses the question of covering surfaces with regu-
lar patterns. The work that exists seems to focus not on texturing,
but on remeshing. For example, Akleman et al. [2005] show how
to subdivide a mesh to create analogues to the semiregular planar
tessellations.

The most closely related work is the pattern oriented remeshing
technique used by Kaplan et al. [2004] in the construction of Celtic
knots on surfaces. They parameterize a genus-0 surface using a
geometry image. They can then superimpose an arbitrary tiling on
the square domain of the geometry image and use the projection of
that tiling onto the original surface as a basis for remeshing.

Their approach produces attractive results, but suffers from several
deficiencies. First, a geometry image can exhibit significant distor-
tion, which in turn causes distortion in the remeshed tiles. Figure 7
compares one of their results with the analogous pattern (of type
p4m) rendered as described in this paper. Second, a tiling may be
fundamentally incompatible with the boundaries of the geometry
image, yielding seams when the surface is decorated. Kaplan et al.
address this problem by stitching together tiles to close gaps along
the boundary, but this operation does not preserve the topology of
the source tiling. Third, they are unable to render patterns based on
images, since their method relies on a tiling as a base for remeshing.

The potential advantage of the technique of Kaplan et al. is that it is
not restricted to the five symmetry types discussed in the previous
section. In theory it can support any tiling at all, symmetric or oth-
erwise. On the other hand, all but one of the examples in their paper
belongs to one of the five symmetry groups discussed here, and the
anomalous case could easily be transformed into one compatible
with my technique via a simple non-uniform scaling operation.

Ultimately, the approach of Kaplan et al. might be more useful for
meshes with boundaries, where there is no need to stitch tiles to-
gether. It might then be better to use the recent method of Spring-
born et al. [2008] to produce a planar parameterization domain upon
which an arbitrary tiling may be superimposed. Indeed, this latter
paper shows several examples of surfaces decorated with patterns
of type p4.

A different but related problem is that of transferring planar pat-
terns to the sphere and the hyperbolic plane. Dunham [1986; 1999]
has constructed many examples of hyperbolic interpretations of
Euclidean patterns. In a recent paper, von Gagern and Richter-
Gebert [2009] offer a principled, general solution to the problem of
creating hyperbolic versions of Euclidean ornament. They map fun-
damental regions of Euclidean patterns conformally to their curved
analogues in the Poincaré model of the hyperbolic plane. They min-
imize distortion in the mapping process by using a discrete confor-
mal mapping, as described by Springborn et al. [2008].

In the future, it would be interesting to investigate ways to transfer
information that is embedded in a pattern at a higher level than its
symmetries. For example, in many tilings the tiles are coloured in
a way that breaks the (uncoloured) tiling’s symmetries. Perhaps an
uncoloured version of the tiling could be mapped onto a surface,
and then the colours regenerated approximately using rules derived
by noting adjacent colours in the original.



Figure 8: A sampling of surfaces decorated with patterns of type p4 (left) and p6 (right).
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