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Abstract

M.C. Escher returned often to the themes of metamorphosis and deformation in his art, using a small set of pictorial
devices to express this theme. I classify Escher’s various approaches to metamorphosis, and relate them to the works
in which they appear. I also discuss the mathematical challenges that arise in attempting to formalize one of these
devices so that it can be applied reliably.

1. Introduction

Many of Escher’s prints feature divisions of the plane that change or evolve in some way [11, Page 254].
The most well-known is probably Metamorphosis II, a long narrow print containing a variety of ingenious
transitions between patterns, tilings, and realistic scenery. Escher was quite explicit about the temporal
aspect of these long prints. He would not simply describe the structure of Metamorphosis II – he would
narrate it like a story [5, Page 48].

I am interested in the problem of creating new designs in the style of Escher’s metamorphoses. More
precisely, I would like to develop algorithms that automate aspects of the creation process. To that end, I
have studied the devices Escher used to carry out his transitions, with the ultimate aim of formalizing these
devices mathematically. In this paper, I present my taxonomy of transition devices (Section 2) and provide a
cross-reference to the Escher works in which they appear. I then discuss what is known about the transition
types (Section 3) and focus on one type in particular—Interpolation—which shows the most promise for a
mathematical treatment.

2. Escher’s transitions

A survey of Escher’s work (as collected by Bool et al. [1]) turns up 18 works employing some kind of
transition device. By studying these works, I have identified six categories of transition. Metamorphosis II
serves as a kind of atlas, as it incorporates all six varieties. They are as follows:

T1. Realization: A geometric pattern is elaborated into a landscape or other concrete scene. In Metamor-
phosis II, a cube-like arrangement of rhombi evolves into a depiction of the Italian town of Atrani.

T2. Crossfade: Two designs with compatible symmetries are overlaid, with one fading into the other.
Escher applies this device sparingly, using it in Metamorphosis II and III to transition from a recti-
linear arrangement of copies of the word “metamorphose” into a checkerboard (and later, to make the
reverse transition).



T3. Abutment: Two distinct tilings are abruptly spliced together along a shared curve. The transition
works when the two tilings have vaguely similar geometry and can be made to abut one another
without too much distortion. Escher uses this device exactly once, to transition from hexagonal rep-
tiles to square reptiles in Metamorphosis II. (Later, he embedded the same sequence into the larger
Metamorphosis III.)

T4. Growth: Motifs gradually grow to fill the negative space in a field of pre-existing motifs, resulting
in a multihedral tiling. The new motifs need not occupy all the empty space; in Metamorphosis II,
red birds grow to occupy half the space between black birds. When the two sets of motifs finally fit
together, they leave behind a white area in the form of a third bird motif.

T5. Sky-and-Water: This sort of transition starts with copies of some realistic shape A, ends in copies
of another realistic shape B, and moves between them by passing through a tiling from two shapes
that resemble A and B. in Escher’s Sky and Water, realistic birds above encounter realistic fish below,
using the tiling first recorded as Number 22 in his notebooks [11] as an interface.

T6. Interpolation: A tiling evolves into another tiling by smoothly deforming the shapes of tiles. Escher
used this device to change simple tilings into his familiar interlocking animal forms (for example,
squares into reptiles in Metamorphosis II, and triangles into a variety of forms in Verbum). In some
cases (such as the print Liberation) the animal forms are then permitted to escape from the tiling.

Given this vocabulary of pictorial devices, the sequence of transitions in Metamorphosis II might
then be read from left to right as

• T2 (copies of “metamorphose” into a checkerboard)

• T6 (a checkerboard into a square arrangement of reptiles)

• T3 (square reptiles into hexagonal reptiles)

• T6 (hexagonal reptiles into hexagons)

• T1 (hexagons into a honeycomb with bees)

• T5 (bees into fish)

• T5 (fish into black birds)

• T4 (black birds into birds of three different colours)

• T6 (birds into a cube-like arrangement of rhombi)

• T1 (rhombi into the town of Atrani, which then becomes a chessboard)

• T1 (a chessboard into an orthographic checkerboard — a Realization in reverse)

• T2 (a checkerboard into copies of “metamorphose”)

Likewise, Metamorphosis III contains over 20 transitions according to the classification presented
here.

Inspired by the cross-reference provided by Schattschneider for Escher’s periodic drawings [11],
Table 1 presents a concordance between the six transition devices and the works in which they appear.

The table does not record the particular manner in which the transitions are carried out. Given Es-
cher’s penchant for interpreting these designs as stories, most transitions are arranged in a linear progression



Table 1 : A concordance between Escher’s transition devices and the works in which they appear. The
catalogue numbers in parentheses refer to the compilation of Escher’s works by Bool et al. [1].

Transition type
Title cat. T1 T2 T3 T4 T5 T6
Metamorphosis I 298 • •
Development I 300 •
Day and Night 303 • •
Cycle 305 • •
Sky and Water I 306 •
Sky and Water II 308 •
Development II 310 •
Development II (first version)a 310a •
Metamorphosis II 320 • • • • • •
Verbum 326 • •
New Year’s 1949 360 •
Horses and Birds 363 •
Fish and Frogs 364 •
Butterfliesb 369 •
Liberation 400 •
Regular Division I 416 •
Fish and Scales 433 •
Metamorphosis III 446 • • • • • •
Painted Columnc •

aEscher carved this woodblock but never printed it.
bSee also Escher’s watercolour painting of Butterflies [10] (no catalogue number).
cNo catalogue number; a painted concrete column in Haarlem [11, Page 260].

horizontally or vertically, though occasionally they operate radially. For example, Verbum is built upon a
single tiling by equilateral triangles. Interpolation happens outward from the centre to six realistic animal
forms on the edges of a hexagon; six instances of Sky-and-Water occur around the hexagon’s circumference.

Furthermore, some choices in the table are open to debate. Should the building in the top half of Cy-
cle be taken as a Realization of the tiling below, or do the two merely Abut? Surely not every juxtaposition of
a tiling with realistic imagery should be considered a Realization; although three dimensional forms emerge
from a printed page in Reptiles (cat. 327), the tiling itself does not undergo any kind of transformation.
As another example, note that there is some overlap between Interpolation and Sky-and-Water. The special
case of tiles evolving into realistic forms and escaping the tiling is very similar to half of a Sky-and-Water
transition. This case might indeed be best separated out into a seventh transition type (for which I would
suggest the name Liberation, after the print of the same name).

3. The mathematics of deformation

Much scholarly work has sought either to analyze the mathematical structure of Escher’s work [2, 4, 11] or
to synthesize new designs inspired by it [3, 13]. We might then wonder to what extent the transition types
of the previous section might serve as a basis for creating new geometric metamorphoses. As a researcher



in computer graphics, I envision a “metamorphosis toolkit”, a suite of algorithms that puts these transitions
under the control of a designer.

Clearly, there are many challenges to be met in formalizing each of the six transition types. The
prevalence of Sky-and-Water and Interpolation suggests that these two should be tackled first. In earlier
work, I showed how an optimization technique for discovering Escher-like tessellations automatically [8]
could be extended to produce Sky-and-Water designs [9]. In this section I turn to Interpolation transitions,
which I formulate as a problem in tiling theory.

Given two tilings T1 and T2, Interpolation asks for a smooth geometric transition between the two
tilings. Presumably, a one-to-one correspondence is established between the tiles of T1 and T2, and as a
parameter t moves from 0 to 1, each individual tile gradually deforms from its T1 shape to its T2 shape. Like
Escher, we seek to carry out this deformation across a region of the plane. We can also consider a temporal
variation, in which we construct a continuous animation from T1 to T2.

In addition to Escher’s art, we can also turn to William Huff’s parquet deformations as a source
of inspiration. Huff, a professor of architectural design, invented parquet deformations and assigned the
drawing of them to his students. They were later popularized by Hofstadter in Scientific American [7,
Chapter 10]. Huff was inspired directly by Escher’s Metamorphoses. He distilled the style down to an
abstract core, considering only interpolation transitions, and favouring abstract geometry rendered as simple
line art rather than Escher’s decorated animal forms. As reported by Hofstadter, Huff further decided to
focus on the case where T1 and T2 are “directly monohedral,” in the sense that every tile is congruent to
every other through translation and rotation only. We may also assume he had only periodic tilings in mind.
Finally, he asked that in the intermediate stages of the deformation the tile shapes created could each be the
prototile of a monohedral tiling. Hofstadter amends this last rule, pointing out that some deformation might
be necessary to make the intermediate shapes tile; this amendment is in need of a mathematically rigourous
treatment.

Inspired by Escher’s metamorphoses and by parquet deformations, I formalize the problem of Inter-
polation in terms of the theory of isohedral tilings [6, Chapter 6]. Isohedral tilings correspond well to an
intuitive notion of regularity in tessellation. They are expressive enough to express a wide range of shapes
including Escher’s periodic drawings, and admit a compact symbolic description that makes them ideal for
implementation in software. Therefore, we express the Interpolation problem as follows: given isohedral
tilings T1 and T2, called the “key tilings”, construct a smooth spatial or temporal deformation between them.

Aside from the relative difficulty of temporal versus spatial transitions, there is a succession of
increasingly complex cases to consider, which depend on the relationship between T1 and T2:

Case 1. The key tilings are of the same isohedral type and have congruent arrangements of tiling vertices
(points where three or more tiles meet).

Case 2. The key tilings are of different isohedral types and have congruent arrangements of tiling ver-
tices.

Case 3. The key tilings are of the same isohedral type.

Case 4. The key tilings are of the same topological type.

Case 5. The key tilings are arbitrary isohedral tilings.

The first case is easily solved temporally or spatially. When the tiling vertices are congruent, there
is a rigid motion that maps the tiling vertices of T2 onto those of T1. The registration afforded by this rigid
motion reduces the general interpolation of tilings to interpolation of curves joining tiling vertices. Any
algorithm that interpolates continuously between two paths can be applied to effect a smooth transition. Two



Figure 1 : Examples of parquet deformations from Case 1, in which the key tilings have the same isohedral
type and congruent tiling vertices. The left and right designs are based on isohedral types IH18 and IH88,
respectively.

Figure 2 : Examples of parquet deformations from Case 2, in which isohedral types differ but tiling vertices
are congruent. The tilings are of type IH50 on the left and IH61 on the right. The top row blends
corresponding edges directly, leading to two incongruent families of intermediate shapes. The bottom row
avoids this problem by passing through the underlying Laves tiling.

Figure 3 : Examples of parquet deformations from Case 3, in which both key tilings have the same isohe-
dral type but tiling vertices are permitted to move. The example on the left (IH3) is stable, whereas the
one on the right (IH41) bends. In both examples the key tilings are shown together with thick outlines
connecting the tiling vertices.

simple examples based on linear interpolation are shown in Figure 1. More sophisticated curve morphing
techniques such as that of Sederberg et al. [12] might produce more attractive results. Note that Escher’s
Interpolations relied exclusively on this simple case, or on the variation in which shapes are liberated from
the tiling as they become more realistic. Nevertheless, we wish to examine the remaining cases.

When the two tilings are of different isohedral types but have congruent tiling vertices, the aforemen-
tioned approach still works. However, Interpolation may produce several incongruent intermediate shapes,
violating one of the design principles of parquet deformations. This situation arises when the tiling types
have incompatible sets of orientations, causing tiles with different relative orientations to be identified. As
shown in Figure 2, we can restore approximate monohedrality by interpolating through an intermediate
tiling with straight edges (the so-called Laves tiling of the key tilings’ isohedral types [6, Chapter 4]). This
change reduces Case 2 to two instances of Case 1, though the simplicity of the intermediate tiling can be
aesthetically problematic.



Case 3 is easy to carry out temporally. In my previous work on Escherization, I showed how each
isohedral tiling type has a simple parameterization that controls the locations of the tiling vertices [8]. Given
two tilings of the same type, we can interpolate smoothly from the parameters controlling the vertices in T1
to those of T2. We can then interpolate the edge shapes as before. Though continuous, this Interpolation
may cause the tiling to undergo an arbitrary affine transformation (as in the case of squares deforming into
parallelograms), which does not necessarily make for a very “stable” animation.

The spatial variation of Case 3 is difficult. To draw the Interpolation, we must first lay down an
arrangement of tiling vertices that gradually changes from that of T1 to that of T2. But even within a single
isohedral type, configurations of tiling vertices can change dramatically. The problem is exacerbated by
the fact that the Interpolation is done in the same space in which the tiling is drawn. In the temporal case,
there is no such interference. One possible solution is to use the underlying correspondence between tiling
vertices to linearly interpolate between a tiling vertex’s positions in T1 and T2. In this case, it makes sense
to minimize the global affine transformation between the two sets of tiling vertices, in order to make the line
segment connecting any two corresponding vertices as short as possible. Once the tiling vertices are laid
out, tile edges can be interpolated as usual. This approach can produce unsatisfactory results because even
when the global affine transformation is minimized, the interpolation can still bend and bulge, destroying
the clean linear progression found in Huff’s deformations (see Figure 3). More work is needed to determine
how to align the two tilings in such a way that the interpolation can be done cleanly in a strip.

The fourth case is very much like the third. Because the two tilings have the same topological
structure, the Laves tiling with that topology can be expressed in the parameterizations of the isohedral
types of both key tilings. This shared tiling can then be used to deduce the correspondence between tiling
vertices, from which the previous interpolation methods follow. Note that because we are potentially dealing
with incompatible sets of tile orientations, the incongruence problem of Case 2 reappears here. As before,
making an explicit transition through the shared Laves tiling would reduce the problem to adjacent instances
of Case 3.

The general case is the trickiest; in addition to all the difficulties encountered so far, we must account
for a change in the very topology of the tiling. Thus, there can no longer be a clear correspondence between
tiling vertices. On the other hand, many of Huff’s examples achieve topological transitions without much
effort. If we could manually produce suitable Interpolations between the various Laves tilings, we could use
these transitions as “gateways” to connect any two isohedral tilings, regardless of topology. Because there
are only eleven Laves tiling, a small number of Interpolations are required.

In Figure 4, I propose a set of Interpolations between Laves tilings. Note that these transitions may
themselves be concatenated in order to move between two Laves tilings for which a direct transition is
not given (though other more direct Interpolations exist that are not shown). This approach unifies all the
Laves tiling except for (4.6.12). I conjecture that no smooth transition is possible into or out of that tiling.
Fortunately, ignoring (4.6.12) leaves out exactly one isohedral type out of 81 (IH77). The unreachability of
that type need not be considered a significant shortcoming.

Until now, we have assumed that when multiple transitions are chained together, the chaining is
done through simple concatenation. This approach limits the aesthetic range of Interpolation. In the tem-
poral case, the passage through an intermediate tiling may be continuous, but exhibit a jarring derivative
discontinuity. In the spatial case, we would like to pass from tiling T1 to tiling T2 in a way that smooths
over the intermediate gateway transitions. I hypothesize that in addition to concatenating interpolations,
we should be able to compose them, and have both interpolations occur simultaneously. Any sequence of
interpolations could then be composed together, yielding a smooth deformation directly from one tiling to
another.



(3.122)∗ (3.4.6.4) (3.4.6.4)∗ (34.6)

(63)∗ (34.6) (3.6.3.6)∗ (36)

(44)∗ (36) (44) (63)∗

(44)∗ (33.42) (44)∗ (32.4.3.4)

(44) (4.82)∗ (4.6.12)

Figure 4 : A collection of parquet deformations between the Laves tilings. Each deformation starts and
ends at a Laves tiling, as marked under the diagram. Each has a topological discontinuity somewhere
along its length. These examples all have discontinuities at one endpoint, which is marked with an asterisk.
By concatenating or composing these deformations, we should be able to transition between any two Laves
tilings other than (4.6.12), shown at the bottom right.

As an analogy, consider the motion of a point along a line segment. If we wish to move from position
p1 to p2 and then from p2 to p3, we might simply concatenate the two trajectories; this new path will exhibit
a discontinuous change in direction (and speed, if the segments have different lengths). However, de Castel-
jau’s algorithm for drawing a quadratic Bézier curve with control points p1, p2, and p3 short-circuits the
linear trajectory and creates a smooth path that composes the two original segments. It would be interesting
to investigate whether there is an analog to de Casteljau’s algorithm for this problem of composing tiling
interpolations.



4. Conclusions

The main purpose of this paper is to provide a taxonomy of transition types used by Escher. This taxonomy
could be used to understand similar work by other artists, or to investigate how we might push beyond these
six types with new geometric transitions.

Having presented my analysis of Escher’s work, I could not resist speculating on techniques that
could be applied to automate Interpolation. Escher’s use of Interpolation leads to a deep, fascinating problem
in the domain of isohedral tiling. I hope that the suggestions in this paper will stimulate new research in the
construction of mathematical metamorphoses.
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