Aliasing Artifacts and Accidental Algorithmic Art

Craig S. Kaplan
School of Computer Science
University of Waterloo
csk@cgl.uwaterloo.ca

Abstract

While developing a program to render Voronoi diagrams, | accidentally produced a strange and surprising image.
The unexpected behaviour turned out to be caused by a combination of reasons from signal processing and computer
architecture. | describe the process that led to the pattern, explain its structure, and display many of the wonderful
designs that can be produced from this and related techniques.

1. Introduction

This paper tells the story of a surprising image that | discovered by accident, and of the exploration that
followed as | attempted to understand this image and produce more like it. The discovery begins with a
program to draw Voronoi diagrams.

A Voronoi diagram is a subdivision of space induced by a set of generators. In its simplest form, the
generators are poin{s;}7_, in the plane, and the Voronoi diagram associates every point in the plane with
the generator to which it is closest (measured using ordinary Euclidean distance). If gefigriatgiven
colour¢;, the diagram can easily be visualized by colouring every point in the plane with the colour of its
associated generator.

In previous work, | developed a simple renderer to explore ornamental applications of Voronoi dia-
grams [4]. Every pixel in the output image is interpreted as a point in the plane, and its distance to every
generator is computed. The closest generator wins, and its colour is assigned to that pixel. There are other,
more efficient algorithms for computing Voronoi diagrams, but this approach is simple and easily extendible
to non-point generators. The algorithm is shown on the left in Figure 1. Note the minor optimization of
comparing squared Euclidean distances directly, avoiding a costly square root.

One day, | accidentally ran this algorithm on a degenerate set of two generators: one black, one
white, both located at the origin. We can specialize the original algorithm on these two generators, as shown
on the right in Figure 1. The result seems trivial. No number is less than itself, and so we expect the program
to produce a solid black image. But my renderer produced the surprising result shown in Figure 2(a). Not
only does the image have both black and white pixels, it has them in an intricate pattern with a great deal of
structure. The pattern appears to change in concentric rings around the centre of the image. Furthermore,
the structure is very brittle: rendering the same region of the plane with sample points moved just a small
amount changes the result completely, as shown in Figure 2(b).

The complexity of these patterns (which | will simply call “Voronoi patterns”) is clearly not con-
tained in the program. It must therefore be inside the computer’'s hardware. The rest of this paper tries
to answer this riddle. First, we take a detour to explore a large family of well-known computer generated

for each pixel(s, j) corresponding to
point(x,y) in the plane:
d =00
¢ = unknown
for each generata®; with colourc;:
if |(z,y) — Gi|*> < &
d=||(z,y) - Gil*

C=C;

for each pixel(7, j) corresponding to
point(x,y) in the plane:
d = LL'2 + y2
if 22 + 92 < d:
set pixel(i, j) to white
else:
set pixel(s, j) to black

set pixel(s, j) to colourc

Figure 1 A simple algorithm for rendering Voronoi diagrams (left), and a version specialized on two
generators both located at the origin (right).

interference patterns. We then return to the behaviour of the program above, and see why these interference
patterns are lurking inside such a seemingly simple program.

2. Aliasing artifacts on the line and in the plane

Consider the functiorf(z) = sin(2?). The graph of this function should display an increasingly compressed
sine wave as we move away from the origin. Indeed, since we would sayitifiat«x) has frequency

for any o # 0, we can describg(z) = sin((z/27)(27z)) as having a linearly increasing “instantaneous
frequency” ofz /27 at every pointe.

We might imagine plotting a graph ¢f(x) by takingn evenly spaced samples with peridcand
connecting the samples via a polygonal path. In other words, we compute the (d@inf$kd)) for each
integerk € {0,...,n} and draw line segments connecting adjacent points. Elementary signal processing
tells us that this approach is bound to fail. If we sample belowNkgquist limit of twice the highest
frequency in our signal, we will not be able to reproduce the signal accurately [3]. Since the frequéncy of
increases without bound, we know that eventually any fixed sampling rate will be inadequate.

When we sample below the Nyquist limit, we gaitasing phantom low-frequency signals derived
from the original high-frequency information. What'’s interesting here is that the aliases themselves exhibit
a clear pattern. Figure 3 shows sampled plotg(af). The plots show that as the frequency of the function
increases, the apparent frequency of the aliased signal oscillates up and down at a fixed rate. When the
apparent frequency drops to zero, we get a kind of “nodal point”, a region of relative calm.

We can use Fourier analysis to understand the behaviofitzof when sampled at different rates.
A complete analysis is beyond the scope of this paper, but it can be shown that when reconstructed from
samples at an even spacingipthe apparent frequency ¢fx) oscillates betweetand1/2d. Furthermore,
the nodal points occur precisely whens a multiple ofr/d.

A similar analysis applies to the functiofi(z,y) = sin(z? + »?) in the plane. The frequency
increases linearly along every ray leaving the origin. In theory, the graphstiould resemble ever tighter
concentric rings. But when sampled, we encounter the same problem as in the one-dimensional case — the
frequency of the function rapidly exceeds the sampling rate, and aliasing sets in.

In two dimensions, we encounter an additional phenomenon: the nodal points occur in a square
lattice. They must line up this way because of the underlying square sampling grid. The same pattern of
oscillating frequencies must be visible around every nodal point, which is only possible if they lie in a grid.

() (b)

Figure 2 Two surprising images produced from a Voronoi diagram of a degenerate set of generators. Both
images are renderings of the regienl0, 10] x [—10, 10] in the plane. They are rendered at resolutions of
600 x 600 in (a) and601 x 601 in (b).

Figure 3 Sampled plots of the functiofi(x) = sin(z?). The top plot shows the function from= 0 to
a = 100 with a distance between sampledlof. The bottom plot goes to = 200 with distance).2.

Figure 4 shows several sample rendering$'6f, y). In these images, each pixel is associated with
a point(z, y) in the plane. The value df (z, y) is rescaled td0, 1] and mapped to a grayscale value for that
pixel. Altering the sampling rate produces a continuum of widely varying images, of which | can only offer
a few examples. As we zoom out from the origin, nodal points form. They have varying shades of gray in
their centres. Eventually, the nodal points merge to become a low-frequency image of a single concentric
ring at a much larger scale. The process then repeats.

U“
i

| \) i

\])?)]["wuu

(
i
i

I

"'s.‘.\"'e.‘.\"'w‘u‘l‘ff‘j'l'w"‘. il

.

\‘H‘ i

|

Figure 4 Example images formed by sampling the functi6r, y) = sin(z? + y?) at various rates. In
the top left image, aliases are just beginning to form.

Note that ifh(z) is any periodic function, theh(z?) will exhibit the same pattern of aliasing when
sampled at a fixed rate, andz? + y?) will generate images very similar to the ones in Figure 4.

3. The bathtub algorithm and dot-matrix holograms

Patterns of this sort have been discovered and rediscovered many times in the history of computer graphics.
The first mention in print seems to be by A.K. Dewdney nearly twenty years ago [1]. In his Computer
Recreations column, he discusses John E. Connett’s accidental discovery of the pattern while experimenting
with a program originally intended to draw the Mandelbrot set. Connett truncates,? to an integer, and
assigns black or white to a pixel depending on whether the integer is even or odd. The periodic function in
this case is simply:(z) = |z](mod 2), and so Connett's patterns closely resemble those of the previous
section. Dewdney named Connett's algorithm ¢hecLE? algorithm. It lives on under that name as a class

of fractal in the popular software Fractint (though it is not, technically speaking, a fractal).

At almost exactly the same time, Brian Hayes published an article about what he called “dot-matrix
holograms” [2]. He stumbled onto the aliasing patterns while writing a program to print contour maps of
surfaces on a dot-matrix printer. It just happens that as a test surface he chose a paraboloid, expressed via
the formulaz = 2% + 42. Plotting a contour line at regular values:ois equivalent to mapping through a
periodic function.

Hayes called his approach the “bathtub algorithm”, since it was if the surface being rendered were
placed in a bathtub and rings allowed to form on it for a set of water heights. And because he was only able to
view the generated images using his printer, he called them “dot-matrix holograms” due to the interference
patterns that form.

Hayes points out that the lattice arrangement of nodal points (which he calls “bull’'s-eyes”) follows
from the underlying square sampling grid. He goes on to suggest that on a device with a hexagonal ar-
rangement of pixels, the nodal points would repeat in a hexagonal lattice. Although we still don’t have easy
access to devices with hexagonal pixels, we can nevertheless draw a picture made from a honeycomb of
tiny hexagons, and look at it using the high resolution available on today’s printers. The results are striking,
perhaps because of their novelty in our rectilinear world. Several examples that confirm Hayes’s hypothesis
are given in Figure 5.

These patterns also turn up several times in more-or-less disguised forms in Pickover’s anthology of
computer-generated patterns [5], and no doubt in many other places as well.

4. \oronoi patterns

Let us now return to the discovery that motivated this exploration: the degenerate Voronoi patterns of Sec-
tion 1. Can we reproduce them explicitly, in a controlled way? Comparing the designs in Figures 2 and 4, it
seems as if each of the concentric annuli produced in the Voronoi patterns contains a fragment of a function
like those of Section 2. We should therefore look for some hint of a function of the 6, whereh is
periodic.

I will note that when translated into a C program, the pseudocode in Section 1 does not always
produce interesting patterns. The patterns appear only when the program is run on Intel x86 computers, and
only under certain combinations of compiler switches. We must therefore suspect that the pattern is highly
architecture dependent.

The answer to the riddle lies in the limited precision available for representing real numbers on

i
o \‘\{
B
NN
w\\\\h\
AR
(S
3

)

{7
\
B \\

R

M
1 S
\ L

X0

AT S - 2%
R TN

Rt

54 ".'-""“‘“S-‘t"‘ .-‘.o": ;
o R R
DR S S R e
ey SPtw o P SO G S

P gt L e W02 “atatatataty
e s s R e

s

S TR
I, &2 g=x
PR
Py T Ha
A :
£ o6 ¥ 2, 1’}“,'5-#3': 2
2 A R L
RRRRS P S
5 2
Y giaetaleivy 2 ‘—‘_. pravtetelvg
RO e e Q¥ RO e D ¥
P R e AR %

P iR s B e e T el
ptariete e Pk R U R R 3 e
SRRERATCS Bt RIS L R AR
B3 A R e L e e Han B 0s SRR et R S-S e Tty e
ReVaterere e R e e R e R e gty Svieteteivy PRt Ra Re iR St srierat
pERI ARt R ,} L e AR O R Rt _c\;, CRTRTRTRTR N
P AR er PG R B 3 s S W .?, SN S
ﬂ/—'n-u—cw.‘i\k.;_; 9;0;}"‘; AT SRS ‘}"'t;*\v‘-:' S a T ata e (o)
s Fagen eleniE R R

S S e s b S

Figure 5 Example images formed by sampling the functi®(r, y) = sin(x? + y?) at various rates on a
hexagonal grid.

computers. Computers use a floating-point representation, where a number is decomposed into a product of
a power of two and a normalized fraction betwdei2 and1. On an Intel Pentium processor, 80 bits are

used in the arithmetic unit while computing intermediate results, but only 64 bits are typically used to store
results of computations in memory. Therefore, whiéa compared ta:2 + 4? in the pseudocode, the two

values are not necessarily identical, becatise- »? had its precision reduced when it was stored in the
variabled. Most importantly, when precision is reduced, numbers are rounded and not simply truncated.
The comparison:? + y? < d succeeds or fails depending on whether the low-order bits aduse it to

get rounded up or down, making it slightly larger or smaller thdn- y2. And therein lies our periodic
function. Numbers are rounded alternately up and down with unit frequency.

Whenz? + 32 passes through a power of two, the position at which rounding occurs moves over
by one bit in the representation of the numbers. This change in the rounding behaviour creates the annuli,
each of which resembles a different sampling of the functiafw? + y?). Because the pattern shifts as the
magnitude of the numbers shifts, the pattern has structure at every scale to within the limits of floating-point
precision. These Voronoi patterns therefore have a more legitimate claim to being fractals thactie?

patterns they resemble, since the latter ultimately bottom out in an unaliased image.

Once we know what is causing the Voronoi patterns, it becomes easy to reproduce the behaviour on
any floating-point architecture. We must explicitly request types that force the rounding to occur correctly.
The easiest approach is to use the C tyffmeg =~ anddouble , which have 32 and 64 bits of precision. We
computexr? + 42 as adouble and also convert the result intdlaat . We can compare the two as before.

The result does not have quite as much precision as the comparison of 64 and 80 bit floating-point numbers,
but the precision is more than adequate for rendering images. These patterns can also be rendered directly
on the processors of modern graphics cards using a pixel-level “fragment program”.

Figure 6 gives a few examples of Voronoi patterns. The number of possible images that can be
produced this way is very large; an interactive program the best way to explore this space of designs.

We can also use the C library functifrexp to produce a grayscale version of the pattern. This
function returns the exponent and normalized fraction stored internally for the floating-point number. If we
computez? + y? as both dloat and adouble , then we can appljrexp to the difference between
the two values and use the normalized fraction part as a grayscale value. Two examples produced this way
appear in Figure 7. When the same region of the plane is rendered using the rounding method above and the
frexp method, the resulting pictures are very similar, confirming that we have explained the mathematical
structure of these Voronoi patterns.

5. Conclusions

The patterns described in this paper are based on a curious mix of the abstract mathematics of Fourier anal-
ysis and the practicalities of computer architecture. They are often fascinating and surprising, if somewhat
idiosyncratic.

As a researcher in computer graphics, | found it difficult to analyze these patterns. | would claim
that this is because we are trained in computer graphics that aliasing can only be regarded as a problem, as
an artifact to be suppressed or eliminated. There are few opportunities to celebrate aliasing and study the
fragile patterns it brings into being.

Acknowledgments

Thanks to Michael McCool for helpful discussions about signal processing.

References

[1] A.K. Dewdney. Wallpaper for the mind: computer images that are almost, but not quite, repetitive.
Scientific Americaji253:14-23, September 1986.

[2] Brian Hayes. On the bathtub algorithm for dot-matrix hologran@omputer Language3:21-32,
October 1986.

[3] RobertJ. Marks IlIntroduction to Shannon Sampling and Interpolation The&pringer-Verlag, 1991.

[4] Craig S. Kaplan. Voronoi diagrams and ornamental design. In Nathaniel A. Friedman and Javier Barralo,
editors,Proceedings of ISAMA 99999.

[5] Clifford A. Pickover. The Pattern Book: Fractals, Art, and Naturé/orld Scientific, 1995.

Figure 7 Examples of grayscale Voronoi patterns rendered using the C library furfotiom , as ex-
plained in Section 4.

