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Chapter 3

ISLAMIC STAR PATTERNS

3.1 Introduction

The rise and spread of Islamic culture from the seventh century onward has provided us with his-

tory’s great artistic and decorative traditions. In a broad swath of Islamic rule, at one time extending

across Europe, Africa, and Asia, we find artistic treasures of unrivaled beauty. Islamic art encom-

passes great achievements in calligraphy, stylized floral designs, architecture, and abstract geometric

patterns.

In this chapter, I will focus on the last category: abstract geometric patterns. Specifically, I study

the construction of Islamic star patterns such as the ones famously catalogued by Bourgoin [16].

These patterns adorn buildings, particularly mosques and tombs, throughout the Islamic world. They

are perhaps best known to Americans and Europeans through the Alhambra palace in Granada,

Spain, one of the jewels of Islamic art [88, 129].

Broadly speaking, an Islamic star pattern is a periodic arrangement of motifs, many of which

are star-shaped. As with many other forms of ornament, it would be counterproductive to attempt

a more rigorous definition. Instead, I work from the many published collections of star patterns [2,

16, 19, 27], letting them teach by example as Racinet suggested. The examples in these collections

surround the space of relevant patterns with a fuzzy boundary, and in this chapter I will show how

that boundary may be probed both mathematically and computationally.

There is some controversy in the question of why Islamic art tends so strongly towards geomet-

ric abstraction. Many European and American scholars assert that this tendancy is due to a strict

Muslim prohibition on representation in art. One claim made is that representation is the sole do-

minion of Allah, who by one of His many names is known as the Giver of Form (Al-Mussawir). This

dogmatic position can easily be refuted by the traditional Islamic arts of portraiture and miniature

painting. A more credible point of view holds that in Islam, God is perceived as being so perfect, so
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pure, that no mere worldly image could hope to express His nature. The only appropriate means of

religious exaltation lies then in art with mathematical, crystalline perfection [2].

There is a certain seductive element to the study of Islamic star patterns because little is known

about how they were originally constructed. The design methods were the private domain of the

artisans who practiced them. The knowledge was passed down from master to apprentice over gen-

erations and ultimately was lost as the practice of Islamic star patterns declined during the fifteenth

century. Except for a few scattered remnants of this technical knowledge, such as the sixteenth cen-

tury Topkapı scroll [116], the design of Islamic star patterns is a mystery. As a guide, we have only

the end product: hundreds of beguiling geometric designs found all over the world.

One thing we know with certainty is that star patterns are deeply mathematical in nature. The

most effective ones are little gems of geometry, conveying a kind of inevitability of design that

belies the hard work originally required to discover them. The artisans who developed the patterns

were well versed in geometry; in their pursuit of mathematical knowledge, early Islamic scholars

translated Euclid’s Elements into Arabic. And so even though we cannot peer back through time to

understand their design techniques, we can at least be confident that their constructions were firmly

rooted in geometry.

We should not expect a single construction technique to capture the structure of all star patterns.

Broad families of patterns that seem to share a common structure are counterbalanced by remarkable

one-of-a-kind artifacts no doubt conceived in a flash of inspiration. My goal is not universality, but

usefulness; the construction techniques I develop in this chapter can express many common star

patterns but make no claim at expressing them all.

Today, we have mathematical tools of a sophistication undreamed of by the Islamic scholars of

a thousand years ago. These tools can be brought to bear on the analysis of star patterns and might

even whisper geometric secrets that the inventors of those patterns were unaware of. Obviously,

a technique based on modern mathematics is unlikely to bear much resemblance to the original

methods. On the other hand, the goal here is not archaeological; any technique that can create a

large variety of well-known patterns can be judged a success. Modern mathematics might even

reveal degrees of freedom in pattern construction that were unavailable in the past because the tools

to understand them had not yet been developed.

More recently, we have also experienced a revolution in manufacturing. We now have a vari-
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ety of computer-controlled manufacturing systems that can build real-world artifacts from synthetic

computer descriptions. These systems allow computer-generated star patterns to be built and de-

ployed in the same architectural settings as their handmade historical counterparts.

In this chapter, I present my work on the construction and execution of Islamic star patterns.

The central focus is the development of a tiling-based construction method that decomposes the

design problem into two parts. First, a template tiling is given; it guides the large-scale layout of

the final design. Then, motifs are constructed for each individual tile shape. When the template

tiles are assembled into a tiling, the motifs join together to create a star pattern. I build this method

in stages, culminating in a new technique that can produce star patterns in Euclidean and non-

Euclidean geometry. I also show some ways that star patterns can be constructed based on aperiodic

tilings.

3.2 Related work

Over the years, many mathematicians and art historians have focused their attention on the mystery

of how star patterns were originally constructed. Many techniques have been proposed, and all are

successful in various ways. The wide variety of successful techniques reflects the improbability that

there was ever a single historical design method. More likely, the artisan’s toolkit held an assortment

of mathematical ideas.

Bourgoin created one of the first European collections of Islamic star patterns [16]. His book

serves as a valuable set of examples for artists and mathematicians. Each pattern has a small section

that appears to be inscribed with construction lines. One should not attempt to read too much into

these lines. If anything, they are indications of Bourgoin’s transcription process, guidelines he

discovered while tackling each individual pattern. They do not provide any presciption of how to

construct patterns in general.

Dewdney [36] presents a complete method for constructing designs based on reflecting lines off

of a regular arrangement of circles. Although this technique could be used to construct many well-

known designs, Dewdney admits that he requires many intuitive leaps to arrive at a finished design.

Dispot’s recent Arabeske software [37] allows the user to construct star patterns using an approach

similar to Dewdney’s.
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In his book, Castéra [19] presents a rich technique motivated by the practicalities of working

with the clay tiles used in traditional architectural settings. He starts out with a hand-placed “skele-

ton” of eight-pointed stars and elongated hexagons called “safts” (a reference to the shuttle used in

weaving), and fills the remaining space with additional shapes. With carefully chosen skeletons,

he is able to create designs of astonishing beauty and complexity. Castéra imposes no a priori re-

strictions on a design’s symmetries, though by the nature of his construction technique he tends to

obtain designs with global eightfold symmetry. Castéra’s designs reflect the Moroccan aesthetic of

complex patterns centered around a single large star, and not the large body of periodic star patterns

that I will address here.

The idea of using a tiling as a guide to the construction of star patterns is a common thread that

ties together the investigations of many scholars. Evidence of such a tiling-based (or at least tiling-

aware) construction can be found in the centuries-old Topkapı scroll [116]. In 1925, E. H. Han-

kin [70] wrote of his discovery of a Turkish bath where the star patterns on the walls were accom-

panied by a lightly-drawn polygonal tiling. Wade [134] elaborates on this construction, presenting

what he calls the “point-joining technique.” He specifies that a design should be developed from

a tiling by drawing line segments that cross the midpoints of the tiling’s edges. Referring to Han-

kin, Lee [99] mentions the “polygons in contact technique,” stating that new star patterns might be

constructed by searching for polygonal tesselations.

Jay Bonner, an architectural ornamentalist in New Mexico, has devoted considerable time and

energy to the classification and generation of Islamic star patterns. In an unpublished manuscript [13],

he details his techniques for producing star patterns, using a tiling-based construction technique very

much like the one presented in Section 3.4. He cites several pieces of evidence suggesting that this

approach was the predominant means by which star patterns were originally conceived. Section 3.8

discusses ways that his approach differs from the one presented in this chapter.

3.3 The anatomy of star patterns

Artistic and architectural renderings of Islamic star patterns are richly decorated, often made up

of coloured regions bounded by interlaced strands. Many of these lush renderings are expertly

reproduced in a nineteenth century collection by Prisse d’Avennes [31]. To understand them math-
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ematically, we must factor these artifacts into two pieces: an underlying geometric component, and

a decoration style that has been applied to it. The two pieces should be orthogonal, allowing one to

mix and match geometry with style.

Grünbaum and Shephard explain how one may extract from a rendered pattern the essential

geometric content, which they call the design [69]. We discard all colour information and reduce

thickened bands to lines. Where there is interlacing, we ignore it; as they point out, in a design that

admits interlacing the pattern of crossings is uniquely determined by the underlying geometry, up

to a global exchange of over and under. For designs derived from real-world artifacts, we must also

imagine this finite piece of geometry extended across the entire plane in a natural way. For periodic

designs, it is usually obvious how to carry out this extension. When precision is called for, I follow

the nomenclature of Grünbaum and Shephard, referring to a finished, decorated work as a “pattern,”

based on an underlying “design.”

A design is a collection of line segments in the plane that do not intersect each other except

possibly at their endpoints. We may regard such a collection as an infinite planar map. The map

consists of a set of vertices, each of which has a position in the plane, and a set of edges that

connect pairs of vertices. The valence of a vertex is the number of edges that have it as an endpoint.

In the periodic case, this planar map can be conveniently represented by its restriction to a single

translational unit.

In what follows, I restrict my attention to the class of designs with the following two properties:

1. Every vertex has valence two or four.

2. The valence four vertices are perfect crossings. That is, the four edges that meet at the vertex

can be interpreted as two line segments that intersect at the vertex.

The first property allows us to view the design as a well-defined collection of strands, paths

through the design that ultimately form closed loops or extend to infinity. A vertex of degree two is

a bend in a strand; a vertex of degree four is a place where two strands cross.

This first property is also sufficient to ensure that a design admits an interlacing. At every

crossing, one strand can be chosen to pass over the other. When every vertex has degree two or

four, this assignment can be carried out globally in such a way that as one follows a given strand, it
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passes alternately over and under any strands it crosses. When the design is a connected graph, the

assignment can be made by choosing the over/under relationship at a single vertex, and propagating

the assignment throughout the planar map. The single boolean choice at the designated vertex

leads to two self-consistent, opposite assignments (when the map has multiple components, the

choice must be made once per component). As an aside, the redundancy implied by the equivalence

of these assignments can be formalized through the inclusion of a new symmetry operation, one

that leaves the plane fixed but exchanges the roles of over and under everywhere. Mixing this re-

weaving operation in with the regular isometries produces an enrichment of the usual symmetry

groups that can provide a finer classification of interlaced figures (see, for example, Cromwell [29]

and Shubnikov and Koptsik [127, Chapters 5 & 8]).

The second property is motivated more from aesthetic considerations than mathematical con-

straints. The crossing at a degree four vertex is most clearly rendered when the two strands that

meet there pass right through the intersection without changing course. There is evidence in the

literature on Gestalt psychology to support the aesthetic superiority of perfect crossings.

The space of star patterns that satisfy these two conditions is still very large. A quick survey

shows that approximately 70% of the designs reproduced by Bourgoin are admissible. And as I will

demonstrate, within this framework there is a vast space of designs to be explored.

3.4 Hankin’s method

I begin the process of developing a tiling-based star pattern construction method by discussing the

creation of motifs. Later, I will consider the tilings themselves.

The tiling-based approach seems to have first been articulated in the west by Hankin in the early

part of the twentieth century. In a series of papers [70, 71, 72, 73], he explains his discoveries

and gives many examples of how the technique can be used. Hankin’s description of his technique

provides an excellent starting point for an algorithmic approach.

In making such patterns, it is first necessary to cover the surface to be decorated

with a network consisting of polygons in contact. Then through the centre of each side

of each polygon two lines are drawn. These lines cross each other like a letter X and
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are continued till they meet other lines of similar origin. This completes the pattern [70,

Page 4].

Hankin’s description immediately suggests an algorithm based on “growing” edges out of every

tiling edge midpoint, and cutting those edges off where they intersect each other. His description

of a letter X at each edge midpoint precisely fits the requirement of perfect crossings. The places

where edges meet other edges and are cut off complete the design with bivalent vertices.

Given a tiling, Hankin’s recipe has one remaining degree of freedom: the angle formed by the

growing motif edges with the tiling edges they emanate from. I call this the contact angle (see

Figure 3.1). A software implementation of these growing edges should accept a tile and a contact

angle as input, and attempt to grow a motif for that tile using the given contact angle. When this

operation is run on every tile in a tiling, a star pattern emerges.

I have developed an interactive Java program that implements what I call “Hankin’s Method.”

At its core is an “inference algorithm”: a subroutine that takes a polygonal tile and a contact angle as

input and returns a motif for that tile. The inference algorithm runs quickly enough that the contact

angle can be varied in real time, with the changes to the resulting design displayed interactively.

In his manuscript, Bonner gives a systematic presentation of this technique over a vast space

of tilings (which he calls “polygonal sub-grids”). Although I became aware of the tiling-based

approach from Hankin’s writing, it is through Bonner’s work that I came to appreciate its importance

as a step leading up to the work in the rest of this chapter. Bonner’s library of results shows just how

large a space of star patterns may be obtained using just Hankin’s Method.

Bonner’s work is intended to provide a resource for designers, and not an algorithm for software

writers. Therefore, he does not present a formal algorithm for inferring motifs in template tiles.

Besides its use in the automatic generation of star patterns, the inference algorithm presented here

could ultimately help designers as well, by guiding their intuition in the construction of motifs.

Hankin’s method begins by identifying those places from which pieces of the design will origi-

nate. Given a tiling by polygons, we define the contact points of a tile to be the set of midpoints of

its edges. When the tiles are assembled into a tiling, neighbouring tiles will often have coincident

contact points. It is from these shared contacts that an X-shaped arrangement of edges will grow.

Consider a single tile, and let θ be the desired contact angle. To each contact point p we can
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Figure 3.1 In the first step of Hankin’s method, a pair of rays is associated with every
contact position on every tile. Here, a single contact position gets its two rays, each of
which forms the contact angle θ with the contact edge.

associate a pair of rays starting at p and making an angle of θ with the edge containing p. These

rays are illustrated in Figure 3.1.

To create a final motif, we will need to truncate every one of these rays somewhere along its

length. Because the goal is to create unbroken strands, every ray will have to be truncated where it

meets some other ray, either creating a bend, or occasionally an unbroken straight line segment. If

every ray meets up with some other ray, we have a complete motif. Based on this description, we

can specify a motif by giving a pairing of the rays, a set of unordered pairs of rays in which each ray

appears exactly once. The ultimate goal of any inference algorithm is then to choose from among

all possible pairings for the one that best satisfies some sort of aesthetic goal.

As an aesthetic goal, I choose the minimization of the cost of drawing the motif, measured as the

total length of all the line segments that make it up. This goal makes some amount of intuitive sense.

As was mentioned earlier, in Islamic star patterns we find an inevitability of design, a sense in which

the design’s geometry is expressed with the greatest possible economy. This economy can be seen to

arise by choosing the simplest completion of a motif that fits the global design rules. Furthermore,

the principle of minimizing drawing cost is borne out by many well-known examples. By developing

Hankin-like tilings for historical designs, motifs can in fact be seen to take the simplest route to

completion. An approach based on simplicity would seem to be predicated upon a certain amount

of intelligence in the choice of tilings. This issue will be raised again later in Section 3.8.
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Figure 3.2 A demonstration of Hankin’s method. The frame on the left shows the original
tiling. Rays are grown out of every contact position, and continue until they meet other
rays in a manner dictated by the inference algorithm. When the original tiling is removed,
the result is the Islamic star pattern on the right.

As a first attempt at inference, we might then proceed as follows. Iterate over all possible

pairings, evaluating the total cost of each. From among all pairings that use the most possible rays,

choose the one with the lowest total cost. Unfortunately, this algorithm is not practical. In an n-sided

tile, there will be 2n rays. The number of pairings between rays is the number of ways to partition

the 2n rays into disjoint pairs. This number works out to be n!
(n/2)!2n = 1 · 3 · 5 · 7 . . . (n − 1). We

would need to evaluate more than half a billion possibilities for a region with 10 sides.

A simpler approach is to use a greedy algorithm. Given a list of rays, we first build a list of all

pairs of rays that intersect, sorted in order of increasing cost. We then traverse the list, incorporating

the segments induced by every pair in order provided both of the rays that make up that pair are still

unused.

In practice, this algorithm performs very well on many of the typical tile shapes that arise in

template tilings. It certainly performs perfectly on regular polygons, where it constructs star-shaped

motifs. In the cases where it fails, it usually does so not because it is greedy, but because the

underlying idea of using edge midpoints and a single contact angle is overly simplistic. Bonner

demonstrates some cases of template tilings for which contact positions must be moved slightly off-

center and contact angles changed. These special cases are discussed in greater detail in Section 3.8.

Figure 3.2 illustrates the process of growing rays from contact positions. Figure 3.3 shows some

typical designs that can result from using my implementation of Hankin’s method.

There are some cases where simple modifications to the basic inference algorithm can improve
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(4.82) θ = 22.5◦ θ = 45◦ θ = 67.5◦

(4.6.12) θ = 45◦ θ = 60◦ θ = 75◦

(3.4.3.12; 3.122) θ = 35◦ θ = 60◦ θ = 75◦

Altair θ = 30◦ θ = 45◦ θ = 72.5◦

Figure 3.3 Examples of star patterns constructed using Hankin’s method. Each row shows
a template tiling together with three designs that can be derived from it using three differ-
ent contact angles. The bottom row features an amusing tiling by nearly regular polygons.
It is reproduced from Grünbaum and Shephard [68, Page 64], where it serves as a reminder
of the danger of over-reliance on figures. A related design also appears in Bourgoin [16,
Plate 163].
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(a) (b) (c) (d)

Figure 3.4 A demonstration of two cases where an extension to the inference algorithm
can produce a slightly more attractive motif. In (a), a star pattern is shown with large
unfilled areas that were the centers of regular dodecagons in the template tiling. Adding
an additional layer of inferred geometry to the inside of the motif produces the improved
design in (b). The process is repeated with a different template tiling in (c) and (d).

the generated motif. Consider, for example, the star pattern given in Figure 3.4(a). This pattern

contains large regions, derived from regular dodecagons, that are left unfilled. A more attractive

motif can be constructed using a second pass of the inference algorithm, building inward from the

points where the rays from the first pass meet. The resulting design, shown in Figure 3.4(b), is more

consistent with tradition. In the inference algorithm, it is easy to recognize when the provided tile

shape is a regular polygon and to run the second round of inference when desired. An alternative

solution to this problem, based on an explicit parameterization of star shapes, is given in the next

section.

A further enhancement is to allow the contact position to split in two, as shown in Figure 3.5.

This splitting can be accomplished quite naturally by providing the inference algorithm with a sec-

ond real-valued parameter δ that specifies the distance between the new starting points of the rays.

The parameter δ can be allowed to vary from zero (giving the original construction) up to the length

of the shortest tile edge in the tiling. This construction gives what Bonner calls “two-point patterns,”

a set of designs that are historically important in Islamic art. Examples of two-point patterns con-

structed using the δ parameter are shown in Figure 3.6. The designs corresponding to two-point

patterns tend to be made up of very short closed strands, each one forming a loop around a single

tiling vertex in the template tiling.
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Figure 3.5 A visualization of how δ is incorporated into Hankin’s method. The con-
tact position is split in two, resulting in two rays whose starting points are separated by
distance δ. Motifs will still line up provided the same δ is used throughout the design.

Figure 3.6 Examples of two-point star patterns constructed using Hankin’s method. Each
row shows a template tiling, a star pattern with δ = 0, and a related two-point pattern with
non-zero δ. The structure of the tiling in the bottom row will be explained in Section 3.8.
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The success of a tiling-based approach in the construction of star patterns does not seem so sur-

prising given the foregoing discussion. When applied to a regular polygon, the inference algorithm

presented will always produce a star. When many regular polygons are assembled into a tiling, the

result is a pattern containing many stars. This simple process can therefore be applied to a wide

variety of well-known tilings to produce designs that are recognizably in the tradition of star pat-

terns. On the other hand, the first of the two extensions mentioned above suggests that for tiles that

are regular polygons, we might recognize the regularity and choose to insert a motif richer than that

provided by the inference algorithm alone. This observation is the basis for the system presented in

Section 3.5.

3.4.1 Islamic parquet deformations

Parquet deformations are a style of ornamental design created by William Huff, a professor of

architectural design, and later popularized by Hofstadter in Scientific American [83, Chapter 10].

They are a kind of “spatial animation,” a geometric drawing that makes a smooth transition in space

rather than time. Parquet deformations are certainly closely related to Escher’s Metamorphosis

prints, though unlike Escher’s work they are purely abstract, geometric compositions. They will be

discussed in more detail in Section 5.4.

Hankin’s method can be used as the basis for a simple but highly effective method of construct-

ing Islamic patterns in the spirit of parquet deformations. I lay out a strip of the template tiling

and then run a modified inference algorithm where the contact angle at every contact point is de-

termined by the location of that point in the strip. Smoothly varying the contact angle results in

a gently changing geometric design that is still recognizably Islamic. The construction process is

illustrated in Figure 3.7; two more examples appear in Figure 3.8. These parquet deformations oc-

cupy an interesting place in the world of Islamic geometric art. They have enough overall structure

and balance to satisfy the Islamic aesthetic, but they would not have been produced historically be-

cause very little repetition is involved. The effort of working out the constantly changing shapes by

hand would have tested the patience of any ancient designer.
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Figure 3.7 The construction of an Islamic parquet deformation based on Hankin’s
method. The top rows shows the effect of continuously varying the contact angle of a
ray depending on the x position of the ray’s starting point in the design. When the process
is carried to all other tiles, the design in the second row emerges.

Figure 3.8 More examples of Islamic parquet deformation based on Hankin’s method.
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Figure 3.9 The discovery of a complex symmetric motif in a star pattern. The original
design was constructed by placing six-pointed stars in a regular tiling by copies of the
smaller hexagon. Around each star, we find a larger d6 motif by adjoining the six neigh-
bouring regular hexagonal regions. An example of the larger motif, called a rosette, is
outlined by the larger blue hexagon. The entire design can be seen as constructed from
copies of the rosette.

3.5 Design elements and the Taprats method

Hankin’s method, described in the previous section, can produce a wide range of well-known and

unknown Islamic star patterns. The method is based on a kind of Occam’s razor of aesthetics: in

deciding on a motif for a tile shape, the simplest possible motif is the best choice. When the tile is

a regular polygon, that simplest motif will be a star shape.

Yet in surveying the many historical examples of star patterns we can see the repeated occurence

of radially symmetric motifs more complex than mere stars. We already encountered one example in

Figure 3.4, where many-pointed stars are given an additional inner layer of geometry to help fill the

large areas of otherwise empty space. It might be possible to give a contrived tiling that accounts for

these more complex motifs, but ultimately we are better off hypothesizing that the original designers

of star patterns understood higher-level motifs directly.

Once we make this hypothesis, many other recurrent motifs assert their identities as first-class

objects. A classic example is given in Figure 3.9. Here, a pattern composed of six-pointed stars with

hexagonal holes can be reinterpreted by adjoining to a star its six neighbouring hexagons. Copies

of this rosette fit together to recreate the original pattern, now leaving behind stars as holes. It is
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reasonable to assume that these rosettes were well understood in their own right, and not merely as

an incidental by-product of constructing star patterns.

I build upon Hankin’s method by giving a general theory of radially symmetric motifs (motifs

with symmetry group dn, in the language of Section 2.2) that can be associated with regular poly-

gons. I then use this theory to build a set of design elements, parameterized families of historically

important motifs. The design elements represent our opportunity to interpret most explicitly the

features of traditional designs. A design element is a “clipping” from history, a fragment of a pat-

tern that has been abstracted from its surroundings and endowed with some number of degrees of

freedom.

The design elements can take the place of the default inference algorithm in the construction

of motifs for regular polygons. I combine the design elements and the inference algorithm in an

interactive tool called Taprats that has been used successfully to design, render, and execute many

traditional and novel star patterns.

3.5.1 Path-based construction of design elements

Let P be a regular n-sided polygon with center O, inscribed in a circle of radius r. Designate the

midpoint of one of the polygon’s sides by M , and for convenience orient the polygon so that M lies

due east of O. A design element can then be represented as as a piecewise-linear path that starts at

M and wanders around inside P . A dn-symmetric motif can then be constructed by combining all

images of the path under the symmetries of the surrounding polygon. The process of turning a path

into a symmetric motif is illustrated in Figure 3.10.

During this replication process, the original path will intersect rotated and reflected copies of

itself. The intersections occur on successive lines of reflection of P . As shown in Figure 3.10, the

integer parameter 0 < s ≤ n/2 controls how many of these subpaths to keep. The number s turns a

single path into a family of related motifs. It is generalized from its standard use in describing star

polygons [99].

Using this path-based description of design elements, we can now define a family of higher-level

procedural models that generate motifs common to star patterns. Given n and r as above, such a

model produces a path inside P , starting at M . The replication process above, combined with the
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(a) (b) (c)

s = 1 s = 2 s = 3 s = 4

Figure 3.10 The path-based construction of Section 3.5.1 applied to a dn-symmetric motif
inscribed in a regular n-gon P . The initial path is shown in (a). That path is combined
with all its dn-symmetric copies in (b). In (c), the original path is divided into subpaths
by intersections with its copies. The bottom row shows how the parameter s can be used
to control how many of the subpaths to keep.

s parameter, can then be applied to the path to obtain a planar map representing the finished motif.

Every design element will include n, r, and s as variables. Naturally, the procedural model may

include its own additional degrees of freedom.

I have created parameterized design elements for stars and rosettes, which together capture the

majority of symmetric motifs found in star patterns. I have also developed a generic “extension”

mechanism that wraps an additional layer of geometry around any other motif. These models know

only how to construct a piecewise-linear path starting at M . All models share a common imple-

menation of the algorithm above that turns a path and a value of s into a radially symmetric planar

map.
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3.5.2 Stars

At the very heart of Islamic star patterns we find the star. Islamic art features stars with many

different numbers of points, up to a remarkable 96 [19, Page 220]. We have already seen how a star

can arise naturally by running the inference algorithm on a regular polygon. It can also be useful to

express stars as higher-level design elements, in order to exert more direct control over them.

Grünbaum and Shephard [68, Section 2.5] show how star polygons may be specified using the

notation {n/d}, where n and d are integers, n ≥ 3, and 1 ≤ d < 	n/2
. The star is constructed

by placing points v1, . . . , vn at the vertices of a regular n-gon, and joining every vi to vi+d, where

indices are taken modulo n. For the purposes of ornamental design, Lee [99] adds an s parameter

equivalent to the one presented above, arriving at the final description {n/d}s.

Instead of relying on {n/d}s notation, it is more convenient to parameterize stars by giving the

contact angle θ directly. My implementation of Hankin’s method is based fundamentally on the

user’s choice of contact angle, and so making this angle the basis of design elements allows for

smoother integration with the construction technique already given.

In Taprats, a star is constructed from a path consisting of a single line segment that effectively

acts as a ray. The segment begins at M and has length 2r. It is parameterized by a single degree of

freedom, the contact angle θ. Some examples of stars constructed this way are given in Figure 3.11.

The parameterization, based on the tuple (n, r, s, θ), generalizes the original star notation in a

straightforward way. Given a star {n/d}s and a radius r, a little trigonometry shows that this star

can be reparameterized as (n, r, s, πd/n). As an extension, the angle θ can take on any real value

in the range (0, π/2) (as Lee mentions [99], a similar extension can be carried out on the original

notation by permitting non-integral values of d).

For a given regular n-gon of radius r and a contact angle θ, we can now see that the infer-

ence algorithm used to implement Hankin’s method will produce (n, r, 1, θ). Moreover, the special

case illustrated in Figure 3.4, where a star receives an extra internal layer of geometry, is simply

(n, r, 2, θ). In general, an appropriate value of s can usually be decided for stars automatically from

n and θ: typically, s = 2 when n > 6 and θ > 2π/n, and s = 1 otherwise.



63

θ = 46◦, s = 1 θ = 46◦, s = 2 θ = 72◦, s = 1 θ = 72◦, s = 2 θ = 72◦, s = 3

Figure 3.11 Examples of stars constructed using the technique of Section 3.5.2. Each
example is of the form (10, 1, s, θ) for varying choices of θ and s.

Figure 3.12 Examples of eight-, ten-, and twelve-pointed rosettes. The eight-pointed
rosette on the left is partially decomposed into an internal {8/3}2 star and the eight sur-
rounding hexagons.

3.5.3 Rosettes

The rosette is one of the most characteristic motifs of Islamic art. We may hypothesize that rosettes

were first observed in the design of Figure 3.9, and that through experimentation they were gradually

adapted to more general contexts. A rosette may be viewed as a star to which hexagons have been

attached in the concavities between adjacent points (see Figure 3.12). Each hexagon straddles a line

of reflection of the star, and thus has bilateral symmetry.

A rosette can be represented as a two-segment path. Referring to the labeling shown in Fig-

ure 3.13, the first segment, MG, becomes part of the outer edge of a hexagon. The path bends at

G, what Lee calls the “shoulder,” and continues in a segment through C that becomes the hexagon’s

flank and forms the inner star. Because the second segment effectively acts as a ray, its length is

irrelevant, and the four degrees of freedom implied by the path are reduced to three. The problem
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then is to encode these degrees of freedom in a way that makes it easy to express rosettes with mean-

ingful, intuitive properties. As usual, we choose the contact angle as a first parameter. To derive two

more parameters, we first must understand what an “ideal” rosette might look like, and then provide

as parameters deviations from this ideal.

Lee [99] provides an ideal construction, demonstrated in Figure 3.13. Given the surrounding

polygon, point C is found as the point on OA with AC = AM , and G is found as the intersection

of MM ′ with the line through C parallel to
←−→
OM . The result is a motif where GC = GM and

∠ACG = ∠AMG.

Before generalizing Lee’s construction, let α be the “natural” height of point G in the ideal

rosette, as a fraction of the surrounding polygon’s side length. Referring to Figure 3.14(a), let point

H be the projection of G onto segment OM . Then α = GH/AM . The value α provides a scale-

independent measure of the default height of G.

The three degrees of freedom in the generalized rosette model are now encoded as deviations

from the ideal path implied by Lee’s construction. As shown in Figure 3.14(b), a rosette is specified

via six parameters: (n, r, s, θ, h, φ). Parameters n, r, and s are as given for all path-based motifs.

The shoulder G is defined as point with height hα above line OM such that |∠GMA| = θ. The

second point in the path is then chosen so that the resulting ray leaving G forms an angle φ with

the horizontal. Observe that as usual, θ is chosen to encode the desired contact angle, which allows

for easy integration with Hankin’s Method. Also note that under this parameterization, Lee’s ideal

rosette can be recovered as (n, r, s, π/n, 1, 0). Figure 3.15 shows some examples of the effect of

varying θ, h, and φ.

Every rosette contains a central star. As was mentioned, in constructing stars there is usually a

natural value for s, determined from n and θ. The same is true here: the choice of s can be obtained

by determining the correct value for the central star and adding 1 to account for the additional

geometry of the surrounding hexagons. Accordingly, most large rosettes will have s = 3.

3.5.4 Extended design elements

When the contact angle of a design element is sufficiently small, it is possible to connect contact

edges from adjacent contacts until they meet outside the tile as in Figure 3.16, forming a larger
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Figure 3.13 A diagram used to explain the construction of Lee’s ideal rosette [99]. The
construction is explained in Section 3.5.3.

(a) (b)

Figure 3.14 Two diagrams used to explain the construction of generalized rosettes as
presented in Section 3.5.3.

motif with dn symmetry. We refer to this process as extension. It is important to offer an extension

facility, as “extended rosettes” figure prominently in many historical examples.

The procedural model for extension takes as input any other procedural model that includes the

contact angle θ as a parameter and constructs directly an extended version of that model’s elements
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θ = 20◦

h = 1
φ = 0

θ = 10◦

h = 1
φ = 0

θ = 20◦

h = 0.8
φ = 0

θ = 20◦

h = 1
φ = 10

Figure 3.15 Examples of rosettes constructed using the technique of Section 3.5.3. Each
example has n = 9, r = 1, and s = 3, and shows the effect of varying θ, h, and φ.

Figure 3.16 The extension process for design elements. The contact edges of the inner
element are extended until they meet to become the contacts of the outer element.

inside a given polygon.1 Given n, r, s, and θ, a little trigonometry shows that if we take

θ′ =
θ

2
, r′ = r

[
1

cos π
n

−
sin θ tan π

n

cos
(

π
n − θ

)
]

then an inner motif with contact angle θ′ inscribed in a polygon of radius r′ can be extended into a

motif that fits perfectly in the outer n-gon. The child model is passed n, r′, s− 1, and θ′, along with

unchanged values for any remaining parameters. The resulting motif must be rotated by π/n about

its center in order to bring the motif into alignment with the outer polygon’s contact points.

1Extension might be considered a higher-order model, i.e., a function from models to models.
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3.5.5 Taprats

I have taken the tiling-based approach of Hankin’s method, the inference algorithm presented in the

previous section, and the parameterized design elements, and combined them in a single Java-based

program called Taprats. Taprats provides an interactive interface for creating, editing, decorating,

and rendering star patterns. The system can operate on any periodic tiling, and has a number of

common Islamic template tilings built in, derived from experimentation and examination of histor-

ical sources. Taprats has been available on the internet since 2000 as an applet, and more recently

as a downloadable application. Both versions have received a great deal of positive feedback and

interest from computer scientists, artists, architects, and educators.

Given a periodic tiling, Taprats presents a user inferface featuring an editor for the motifs in each

tile shape. For regular polygons, that editor allows the user to choose from among stars, rosettes,

and extended rosettes, and to edit the degrees of freedom in the design elements directly. For the

remaining irregular tile shapes, the system runs the inference algorithm discussed in the previous

section. It also allows the user to edit inferred motifs directly in case the inference algorithm pro-

duces an unacceptable result. The line segments that make up the motifs are then assembled into

planar maps that are joined to cover a region of the plane. The final map can be decorated in various

ways (a discussion of decorating star patterns will be postponed until Section 3.7) or exported to a

number of manufacturing processes (see Section 3.9). A visualization of how Taprats assembles a

star pattern is shown in Figure 3.17. Some other examples of patterns generated by Taprats appear

in Figure 3.18.

3.6 Template tilings and absolute geometry

In the previous sections, I have developed a set of tools that can be used to construct a wide range

of Islamic star patterns. However, one aspect of the process remains unexplained. Each design is

ultimately based on a template tiling, and nothing has been said so far about how these tilings might

be specified. In theory, we could simply stop here, and rely on a large body of hand-coded tilings

derived from collected examples and the work of researchers like Bonner. This approach was taken

in writing Taprats, with acceptable results. But stopping here seems unsatisfying since there is then

no rhyme or reason to the set of available tilings, no abstraction that encompasses them. In effect,
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Figure 3.17 A visualization of how Taprats assembles a star pattern. On the top left, a
tiling is selected. Each different tile shape is assigned a motif. In this case the dodecagons
and enneagons receive rosettes; the bowtie’s motif is inferred. When the motifs are copied
into the tiles and the tiling is erased, the design on the upper right is revealed. That design
can then be decorated and turned into a final rendering as shown below. The decoration
process is described in Section 3.7.
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Figure 3.18 Examples of designs constructed using Taprats. Each example shows part of
the template tiling from which the design was produced.
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the resulting system embodies a model that has many continuous degrees of freedom, but is limited

to a multiway switch in the choice of tiling. In this section, I demonstrate how the design space of

Islamic star patterns can be fleshed out to include a parameterized model for the template tilings.

We know from the theory developed so far in this chapter that tilings containing many regular

polygons as tiles make particularly good templates for Islamic star patterns because the regular

polygons lead directly to stars or other traditional motifs. The tiling may contain other tiles that

are not regular polygons, as long as they are not so oddly-shaped that inference fails on them. The

main contribution of this section is a parameterized family of template tilings based on the explicit

placement of regular polygons. Any leftover space is then divided into irregular tiles as necessary.

The most exciting fact about the tilings I present here is that they are carefully developed in

a way that avoids any dependence on the parallel postulate; nothing in their construction is tied

to Euclidean geometry. Looked at the right way, these tilings are constructions in the absolute

geometry presented in Section 2.1.3 (the truth of this statement requires some logical precision

and will be examined at the end of this section). From this specification of a tiling, a geometry-

agnostic construction technique can then be applied seamlessly to produce Islamic star patterns in

the Euclidean plane, the hyperbolic plane, and on the sphere.

The creation of non-Euclidean Islamic star patterns has been explored to some extent in the

past. There is at least one historical case where a well-known Euclidean star pattern was reinter-

preted in spherical geometry.2 More recently, several designers have produced star patterns on the

surfaces of the regular and Archimedean polyhedra [2, 98]; the most popular of these are Bonner’s

Geodazzlers [12], a commercially-available set of foldable polyhedral models. These polyhedral

models are closely related to symmetric patterns in spherical geometry. Fewer examples exist of

hyperbolic Islamic star patterns. When Lee wrote about star patterns in 1995, he knew of no such

examples [99]. Among the star patterns Abas displays in his online gallery, there is a single, some-

what cumbersome hyperbolic design [1]. Building on his considerable experience with hyperbolic

patterns, Dunham has recently produced numerous hyperbolic interpretations of Islamic geometric

patterns [42], though he does not consider star patterns in particular. In most of these cases, the non-

Euclidean patterns are found through a modification of an initial Euclidean pattern. By developing

2Jay Bonner, personal communication.
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designs in absolute geometry, I take a more unified approach, constructing non-Euclidean designs

directly without a translation step through the Euclidean plane. The result is more elegant in terms

of both the patterns that are produced and the mathematical theory that underlies them.

Non-Euclidean star patterns represent a fairly valuable addition to the body of Islamic art.

Islamic culture has always been interested in the beauty and elegance of mathematics, and non-

Euclidean patterns are a fairly direct visualization of deep truths in geometry. Furthermore, although

I am an outsider to Islam, I would speculate that non-Euclidean patterns sit well with the intent of

star patterns in general to proclaim the crystalline perfection of Allah. The sphere is a marvelous

visualization of boundlessness, and the hyperbolic plane of infinity (we will see in Section 4.7 how

Escher exploited this fact in his tilings).

In this section, I present my family of tilings using only facts from absolute geometry. I then give

revised design elements that have all reliance on parallelism removed. This generalized technique is

then implemented in a C++ program called Najm (pronounced Nazhm, arabic for “star”). I discuss

the implementation of Najm and techniques for decorating star patterns. Finally, I examine in more

detail the statement that Najm is a construction in absolute geometry.

3.6.1 Template tilings

Although regular polygons in a template tiling represent regions of higher local symmetry than

is describable using a wallpaper group, those regular polygons still tend to interact closely with

the group’s symmetries. Regular polygons will tend to be centered on the rotational axes. I use

this observation to build a system of tilings where regular polygons are explicitly placed around

rotational axes of a symmetry group.

The construction presented here adapts itself to any symmetry group of the form [p, q], as pre-

sented in Section 2.2. Accordingly, let p and q be given, with p, q > 2.

The regular tiling {p, q} has centers of p-fold, 2-fold, and q-fold rotation at its face centers, edge

midpoints, and vertices, respectively. When the tiling’s symmetry group [p, q] is visualized through

copies of its generating triangle, these rotational axes correspond exactly to triangle vertices A, B,

and C as labeled in Figure 3.19. These vertices will serve as the set of potential centers for regular

polygons.
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Figure 3.19 The canonical triangle used in the construction of Najm tilings.

Consider a single p-fold rotational axis A0. For a regular n-gon to be compatible with the local

symmetry at A0, n must be a multiple of p. Furthermore, there are only two orientations of the n-gon

that make it compatible with the p lines of reflection that pass through A0. Given a distinguished ray

starting at A0 and lying on a line of reflection, the n-gon can intersect the ray either at a vertex or

an edge midpoint, as shown in Figure 3.20. We are therefore left with the following free parameters

in defining an on-axis polygon at A: the multiplier mA = n/p, the choice of vertex- or edge-

orientation oA relative to some ray, and the radius rA of the circle in which to inscribe the polygon.

The same parameters are available at the q-fold and twofold axes, with the exception that we do not

permit mB = 1, which would result in a degenerate two-sided polygon.

To record the orientations oA, oB and oC unambiguously, we use the designated rays
−−→
AB,

−−→
BC,

and
−→
CA respectively at vertices A, B, and C. The symbols v and e can then be used to determine

whether a polygon should present a vertex or an edge midpoint on its designated ray.

Given a symmetry group [p, q], we represent a given set of multipliers and orientations using

the notation ([p, q]; mAoA, mBoB, mCoC). We allow any of the multipliers to be zero (indicating

that polygons should not be placed at that set of rotational axes), in which case the orientation is

irrelevant and can be omitted from the notation. This symbol tells us that a regular polygon with

pmA sides should be centered on vertex A, oriented according to oA. The polygons at B and C are
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mA = 1 mA = 2

Figure 3.20 Examples of valid orientations for on-axis polygons around a fivefold ro-
tational axis. The first and third examples have edge midpoints lying on the designated
ray (marked by an arrow). The second and fourth have vertices on the ray. The notation
oA = e and oA = v refers respectively to these two cases.

similarly determined.

We are left with the choice of how to record the radii rA, rB , and rC . Ultimately, we will aim

to link together motifs inscribed in the on-axis polygons. Therefore, we will usually want to choose

values for the radii that force the polygons to come into contact with one another. Although it would

be possible to give explicit radii that achieve contact, these scaling operations are fundamental

enough that we make them an integral part of the notation.

I refer to the scaling process applied to the regular polygons as “inflation.” When it is a polygon’s

turn to be inflated, we center it at the appropriate vertex of the generating triangle, orient it relative

to its designated ray, and scale it until it is as large as possible without overlapping any other inflated

polygons. We also do not permit the inflating polygon to cross the triangle edge opposite its center;

if it did, it would then overlap its own symmetric copy erected on a neighbouring triangle.

We determine the three radii by adjoining to the above notation an “inflation symbol,” describing

how and in what order the on-axis polygons should be inflated. The symbol mentions every polygon

with a non-zero multiplier exactly once. An optional first part of the symbol, fixing the radii of one

or more of the polygons, takes one of the following seven forms. In each case the letters A, B, and

C refer to the polygons centered at those vertices of the generating triangle.
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Figure 3.21 An example showing step by step how the tiling ([6, 3]; 2e, 0, 3e) is con-
structed. The inset on the left shows the labels on a single fundamental region. Next,
dodecagons and enneagons are placed at vertices A and C, respectively. The polygons are
then scaled until they meet and have the same edge length. These polygons can be copied
to all other fundamental regions, leaving behind a set of bowtie-shaped holes. Finally, the
holes are filled in using additional tiles.

A = r, B = r, C = r (r ∈ R): Set the radius of the corresponding polygon to r.

AB, BC, AC: Inflate the two polygons simultaneously until they

meet one another, subject to the constraint that

their edge lengths are the same.

ABC: Inflate all three polygons simultaneously until

each one contacts the other two.

Once the radii of one or more polygons are known, any remaining polygons can be inflated. The

order in which to inflate them is specified by naming the polygons in a comma-separated list, again

using the vertex names of the generating triangle.

The equations required to carry out all these inflations rely on the formulae of absolute trigonom-

etry. Radii for the three on-axis polygons can be solved for in closed form, though it is typically
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more straightforward (and nearly as precise) to solve them numerically.

Some definitions simplify the presentation of the formulae to follow. As always, let�ABC be

the generating triangle of [p, q] with right angle at B, and let ([p, q]; mAoA, mBoB, mCoC) be given

as above. Let variables α, β, and γ represent a permutation of the triangle vertices A, B, and C. If

mα is nonzero, let Pα be the regular polygon centered at vertex α.

The boundary of Pα intersects the two triangle edges αβ and αγ; define the extent of Pα on a

triangle edge to be the length of the part of the edge that is contained inside Pα. For every ordered

pair (α, β) of triangle vertices, we can consider the extent of Pα on triangle edge αβ, which we

denote by lαβ . There are therefore six possible extents to consider: lαβ , lαγ , lβα, lβγ , lγα, and lγβ}.

If mα is nonzero, then Pα is a regular n-gon centered on vertex α with some radius rα. The

extent lαβ can take on one of two possible values. If Pα has a vertex lying on edge αβ, then

lαβ = rα. Otherwise Pα has an edge midpoint lying on αβ, in which case the extent can be

obtained from T(lαβ) = T(r) cos π
n (the function T(x) is defined in Section 2.1.4). Note that this

calculation can be reversed as well; given one of a polygon’s extents, we can determine the radius.

Given these definitions, there are four inflation operations to solve:

1. Inflating a polygon to another polygon. In this case we have Pα, a regular nα-gon with

fixed radius rα centered at vertex α, and Pβ , a regular nβ-gon at vertex β. We wish to scale

Pβ until it touches Pα. Let d be the length of triangle edge αβ.

From the definitions above, this is a fairly simple relationship to solve algebraically. We can

easily determine the value lαβ , and then we solve for the value of rβ that gives lβα = d− lαβ .

2. Inflating a polygon to the generating triangle. Here, the inflation of regular nα-gon Pα

centered at α is not constrained by any other regular polygon, and so we inflate it until it

touches βγ, the edge of the generating triangle opposite α. Let d be the perpendicular distance

from α to the opposite edge of the triangle. We assume that α is A, or C, since we then have

the simpler case that d is the length of one of the triangle edges. The case α = B is more

complicated. It could also be solved numerically, although I omit the details because this case

is less useful in constructing practical tilings.

Suppose α = A. Then d = AB because of the right angle at B and we can simply set rα so



76

that lαβ = d. By the definition of extent, we will either have rα = d or T(rα) = T(d)/ cos π
n .

A similar argument yields the solution for the case α = C.

3. Simultaneous inflation of two polygons. Here, we have regular polygons Pα and Pβ with

nα and nβ vertices, and we wish to scale the two polygons until they touch, subject to the

constraint that they have the same side length. Again, let d be the length of the shared triangle

edge αβ.

Once the two polygons are scaled, they will have the same side length; let this length be rep-

resented by x. Using some trigonometry, we can give formulae for lαβ and lβα in terms of x.

Specifically,©(lαβ) = ©(x)/ sin π
nα

or©(lαβ) = T(x)/ tan π
nα

when Pα respectively has

a vertex or an edge midpoint on αβ. One of two identical formulae determine lβα from x and

nβ . Since nα and nβ are given, the equation lαβ + lβα = d has x as its single unknown. A

solution for x could be used to back out final values for rα and rβ .

In my implementation, I observe that the expression lαβ + lβα−d is monotonic in x and solve

for x numerically using binary search. It is also possible to solve for x algebraically. For

instance, if Pα and Pβ both meet αβ at edge midpoints, we have

©−1

(
T(x)

tan π
nα

)
+©−1

(
T(x)

tan π
nβ

)
= d

which, after some manipulation, gives

x = T−1


©(d)

(
1

tan2 π
nα

+
1

tan2 π
nβ

+
2E(d)

tan π
nα

tan π
nβ

)− 1
2




The complexity of the algebraic solution casts a solid vote for the practicality of finding x

numerically.

4. Simultaneous inflation of all three polygons. In this most complicated case, we have only

the inflation symbol ABC, indicating that all three polygons should be inflated until each one

touches the other two. Our goal is to calculate radii rA, rB , and rC for regular polygons PA,

PB , and PC .
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Although it is possible to solve this problem in closed form, the algebra involved is quite

grueling. Instead, observe that we can build a numerical solution using the results of previous

cases. Given some value for rA, we can inflate both PB and PC until they meet PA as in

case 1, yielding candidate values for rB and rC . We can then decide how close PB and PC

come to touching each other by computing lBC + lCB − d, where d is the length of triangle

edge BC. This expression is a monotonic function of rA, and so we can search for a solution

to lBC + lCB − d = 0 numerically using binary search. The final value for rA determines the

values for rB and rC .

When the inflation process is complete, the result will be one or more regular polygons centered

on the vertices of a single generating triangle. By the definition of a generating triangle for [p, q],

we can extend the placement of regular polygons to the whole plane simply by applying successive

reflections across triangle edges. The symmetry group of the resulting tiling is [p, q].

As an example of this notation, consider the tiling ([6, 3]; 2e, 0, 3e; AC), the construction of

which is shown step-by-step in Figure 3.21. Here, we have mA = 2 in symmetry group [6, 3],

meaning that we will place regular dodecagons at every center of sixfold rotation. Because oA = e,

these dodecagons will be oriented so that an edge midpoint lies on the ray
−−→
AB. We also have

mC = 3 and oC = e, and so a regular enneagon will be placed at every center of threefold rotation,

oriented so that an edge midpoint lies on
−→
CA. The inflation symbol AC indicates that we should

inflate the dodecagons and enneagons until they meet and have equal edge lengths. This inflation

is possible because there are two equations (one causing the polygons to meet, one equating their

edge lengths) in two unknowns (the radii rA and rC). Once the inflation is performed, the remaining

empty space in the plane is consumed by additional bowtie-shaped tiles, and the tiling construction

is complete. The resulting tiling can then be used to create numerous star patterns. An example

using rosettes appears in Figure 3.17. Other examples of tilings produced by this notation are given

in Figure 3.22.

This notation for tilings is very flexible and can express a large number of the tilings that underlie

Islamic star patterns. However, it was chosen for its adaptability to non-Euclidean geometry and

not for its universality in the Euclidean plane. As a result, there are some simple, well-known

Euclidean tilings such as the one in Figure 3.2 that cannot be represented via this notation. They are
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primarily the ones that do not have symmetry group [4, 4] or [6, 3]; every Euclidean tiling produced

by Najm will have one of these two as its symmetry group. Such tilings can still be used in Taprats,

which provides a convenient user interface for drawing periodic Euclidean template tilings by hand.

Alternatively, it may be possible in some special cases to extend the notation above to symmetry

groups other than those of the form [p, q].

At the start of this section, I pointed out the relationship between polyhedra and patterns in

spherical geometry. When p and q are chosen to yield a spherical symmetry group in the notation

above, many of the resulting tilings can easily be converted into polyhedra simply by taking the

convex hull of the vertices of all generated regular polygons. George Hart and I have experimented

with these polyhedra, which we call “symmetrohedra.” This class of polyhedra contains all of

the Platonic and Archimedean solids except for the snubs [84], and generalizes them to provide a

family of symmetric convex solids with many, but not necessarily all, regular faces. Examples of

symmetrohedra are given in Figure 3.23. Hart and Leigh Boileau have also executed some of the

novel symmetrohedra as sculptures in wood and metal.

3.6.2 Motifs in absolute geometry

Now that I have a geometry-neutral source of tilings to use in the creation of Islamic star patterns,

we must reexamine the way motifs are generated to make sure that the same algorithms apply in ab-

solute geometry. Certainly there is no problem expressing planar maps in absolute geometry; points

and line segments still exist. However, parts of the construction process might require modifications

to remove dependencies on the parallel postulate.

As a first step, observe that the inference algorithm of Section 3.4 can be applied unmodified

in absolute geometry. We may still speak of rays emanating from contact points, forming given

contact angles with a tile edge. Rays may or may not intersect, and if they do we can still calculate

the length of the line segments that join the contact points to the intersection point.

The path-based construction of symmetric motifs still works. And although the design element

model for stars requires no modification, the formula for converting between {n/d} notation and

the contact angle θ requires some additional work in absolute geometry. Using some trigonometric

manipulation, it can be shown that the star {n/d}s, inscribed in an absolute circle of radius r, has
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[4, 3] [6, 3] [7, 3]

[3, 3] [4, 4] [5, 5]

[4, 3] [4, 4] [4, 5]

Figure 3.22 Examples of tilings that can be constructed using the procedure and notation
given in Section 3.6. The tilings are of the form ([p, q]; 4e, 3v, 3e; ABC) in the first row,
([p, q]; 3e, 0, 0; A) in the second row, and ([p, q]; 3e, 2e, 3v; A = 0.85, B, C) in the third.
The symmetry group is indicated under each tiling.
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([5, 3]; 2e, 0, 3e, AC) ([4, 3]; 3v, 0, 2e, AC) ([5, 3]; 1v, 2v, 0, AB) ([5, 3]; 0, 3v, 2v, BC)

Figure 3.23 Examples of symmetrohedra, symmetric polyhedra based on the tilings de-
scribed in Section 3.6.1. Each solid is derived from its given tiling symbol by building the
spherical tiling and taking the convex hull of the tiling vertices.

contact angle θ = π/2− φ, where φ is given from the equation tan(φ) = 1/(E(r) tan πd
n ).

The rosette model presents the first major change in moving to absolute geometry. The con-

struction shown in Figure 3.13 computes point G as lying on the line through point C parallel to

line OM . The existence of this line relies on a direct application of the parallel postulate! Fortu-

nately, we can sidestep Euclid by noting that to have GC = GM , vertex G must lie on the bisector

of ∠CAM . Point G can therefore be found as the intersection of that bisector with MM ′. Even

better, this construction adapts to any contact angle θ by intersecting the bisector with MA′, where

A′ is obtained by rotating A by an angle of θ around M . The value of θ that yields the ideal rosette

is then simply |∠AMM ′|, which depends only on n and r.

Extended motifs require some special treatment as well. As in the Euclidean case, we are given

n, r, and a contact angle θ, and must produce r′ and θ′ so that when extension is applied to an inner

motif with contact angle θ′ inscribed in a regular polygon of radius r′, the result is a larger motif

with contact angle θ and radius r.

Once again it is possible, but complicated, to obtain an algebraic solution for r′ and θ′, but

relatively easy to solve for these values numerically. The solution is illustrated using the diagram

in Figure 3.24. The outer polygon is a regular n-gon of radius r. We can determine the location of

point B as the intersection of the two blue rays
−−→
AB and

−−→
A′B, in much the same way that we would

in the inference algorithm. We can then compute θ′ from the observation that 4θ′ +2∠ABA′ = 2π.

Furthermore, if d is the length of segment OB, then we can obtain r′ from T(r′) = T(d)/ cos π
n .
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Figure 3.24 A diagram used to build extended motifs in absolute geometry. See the text
in Section 3.6.2 for more details.

3.6.3 Implementation

The preceding construction for template tilings, together with the geometry-neutral versions of the

inference algorithm and the design elements, have been implemented as a C++ program called

Najm. The architecture of Najm is sufficiently interesting to warrant detailed description.

In many ways, the large-scale structure of plane geometry mimics the behaviour of classes and

instances in an object-oriented language A geometry as a formal system is like the declaration of an

abstract data type, with the model of that system acting as the data type’s implementation. Absolute

geometry is then very much an abstract base class with Euclidean, spherical, and hyperbolic sub-

classes. Each of the subclasses adds behaviour (specifically, the behaviour of parallel lines), but we

can still do a great deal of geometry by accessing only those behaviours present in the base class.

Najm is divided into two layers. The lower layer is an independent library that provides an

abstract interface to absolute geometry. Tools are then written in a geometry-independent way on

top of the lower layer. By hiding all specific knowledge of the Euclidean, spherical, and hyperbolic

planes behind the abstraction of absolute geometry, we need only write the application layer once.
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This factoring has helped to clarify the nature of star pattern design by shielding the top-level code

from unnecessary detail and repetition.

The expression of this abstraction layer must be carefully designed so that the interface is as easy

to work with as a familiar set of classes implementing Euclidean geometry. At the same time, the ex-

pressibility should not come at the expense of runtime speed or efficient storage. In a language like

Java, where all non-primitive data types are heap-allocated, we must immediately accept the perfor-

mance hit of indirection. On the positive side, we might then implement, say, an AbsolutePoint

class with subclasses EuclideanPoint, SphericalPoint, and HyperbolicPoint. In

this case, branching to the appropriate model (implementation) of geometry is carried out at runtime

through casting and dynamic dispatch. The resulting library would be expressive, but relatively

inefficient.

Instead, I implement the absolute geometry library in an efficient, typesafe, and expressive man-

ner by using explicit specialization of templated classes in C++ [104, section 16.9]. Three “tag”

classes are defined: Euclidean, Spherical, and Hyperbolic. These classes have no mem-

bers, and act effectively as constants that branch to the proper implementation at compile time. The

familiar objects of geometry such as points, lines, line segments, and symmetry groups are declared

as templated classes parameterized on a single type variable. I then give specialized versions of

those classes with the type variable set to one of the three tag classes. Whereas the decision to

branch to a particular implementation is made at runtime in a language like Java, here we can make

the decision at compile time.

For example, a generic point<T> class is declared but not defined. The generic declaration

is then overridden by three specialized classes point<Spherical>, point<Euclidean>,

and point<Hyperbolic>. A client can write generic code that manipulates objects of type

point<T> (in the same way that a Java programmer might manipulate only AbsolutePoints),

and at compile time the code will be instantiated with one of the concrete implementations. This

architecture is the compile-time analogue of a small class hierarchy, but without the speed or space

overhead of indirection. This example is illustrated in Figure 3.25.

Clients that are parameterized on the tag types above can carry out any construction in absolute

geometry. The concrete implementation of that construction is then written out by the compiler

when the client code is instantiated with Spherical, Euclidean, or Hyperbolic. There
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is no run time penalty in using this abstraction layer, although the heavy use of C++ templates

increases compilation time and the sizes of generated object files.

3.6.4 Replication

One important aspect of the library implementation that changes drastically from geometry to geom-

etry is the algorithm that fills a region of the plane with copies of a symmetry group’s fundamental

unit. Each geometry has a specialized structure that calls for a tailored algorithm:

• The sphere permits the simplest replication process. There are three regular spherical sym-

metry groups: [3, 3], [3, 4] ∼= [4, 3] and [3, 5] ∼= [5, 3].3 These three groups are finite, so we

precompute rigid motions for all copies of the generating triangle and store them in tables.

No fill region is specified; the sphere is simple enough that we always draw the entire pattern.

• The Euclidean groups [3, 6] ∼= [6, 3] and [4, 4] are infinite, so we need an algorithm that

fills only a region. We assemble fundamental units into a translational unit, a region that

can be repeated to fill the plane using translations alone. This translational unit consists of

twelve triangles in a hexagon for [3, 6] and eight triangles in a square for [4, 4]. Copies of the

translational unit can then be replicated to cover any rectangular region, using the algorithm

discussed in Section 4.4.3.

• Replication in the hyperbolic groups presents the greatest challenge. Fortunately, efficient

algorithms already exist, including remarkable table-driven systems based on the theory of

automatic groups [47, 101]. We base our code directly on the pseudocode presented by Dun-

ham et al. [40, 43]. The regions we fill are discs centered at the origin in the Poincaré model.

3.6.5 The meaning of Najm

At first glance, the implementation of Najm may seem somewhat mysterious. After all, the con-

struction of star patterns relies on concrete mathematics like measurements of distances and angles,

intersections between lines, even the construction of planar maps. How can all these calculations be

carried out in absolute geometry, a logical system where concepts like distance exist only formally?

3Although the prismatic groups [2, q] and [p, 2] are also regular and spherical, we are not interested in them for the
purposes of creating Islamic star patterns.
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// Define the three tag classes
class Euclidean {};
class Spherical {};
class Hyperbolic {};

// Any definitions provided in this ’abstract base class’ are purely
// for documentation purposes, since they will never be called.
template<typename geo> class Point {

double distance( const Point<geo>& other ) { return 0.0; }
};

// A point in two-dimensional Cartesian coordinates
class Point<Euclidean> {

double distance( const Point<Euclidean>& other ) {
return sqrt( (x-other.x)*(x-other.x) + (y-other.y)*(y-other.y) ); }

double x, y;
};

// A point in the hyperboloid model of the hyperbolic plane
class Point<Hyperbolic> {

double distance( const Point<Hyperbolic>& other ) {
return acosh( z*other.z - x*other.x - y*other.y ); }

double x, y, z;
};

// A point on the sphere
class Point<Spherical> {

double distance( const Point<Spherical>& other ) {
return acos( x*other.x + y*other.y + z*other.z ); }

double x, y, z;
};

// An example of a geometry-independent client function.
template<typename geo> double perimeter( const vector<Point<geo>>& pts ) {

double total = 0.0;
for( size t idx = 0; idx < pts.size(); ++idx ) {

total + = pts[idx].distance( pts[(idx+1)%pts.size()] );
}
return total;

}

Figure 3.25 An excerpt from the absolute geometry library underlying Najm, showing
the class specialization technique. C++ templates allow code to be parameterized over a
choice of geometry without incurring the runtime overhead of a class hierarchy. Here, I
demonstrate the declaration of a simple point class, together with its specializations and a
sample client function.
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Figure 3.26 Samples of Islamic star patterns that can be produced using Najm. To provide
a basis for comparing patterns across geometries, each page presents a single conceptual
design interpreted in each of the three different geometries.
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Figure 3.26 (continued)
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Figure 3.26 (continued)
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Figure 3.26 (continued)
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The simple answer is that such calculations cannot be carried out. The shuffling of numerical

values and the representation of objects like points using coordinates are properties of a model of

geometry, not of geometry itself. That the distinction between the two is hard to visualize is a by-

product of the categoricalness of Euclidean geometry. As was mentioned in Section 2.1.3, we need

not make a mental distinction between the axioms of Euclidean geometry and the Cartesian plane,

because the latter is (up to isomorphism) the only way to represent the former.

The implementation still manages to carry out computation, though, because it makes an ex-

plicit allowance for the substitutability of models in absolute geometry. The key is that a client of

the absolute geometry library is parameterized on the choice of model. This parameterization takes

the form of the template argument geo in the perimeter function of Figure 3.25. This seemingly

inocuous parameter is shorthand for a whole collection of data structures and algorithms that im-

plement geometry in the Euclidean plane, the hyperbolic plane, or the sphere. That implementation

is pulled in by consistently using the geo parameter in the client implementation, for example by

referring to points as point<geo>.

Although the implementation itself is strong evidence that this approach works, the explanation

still suffers from a subtle but interesting logical hole.

In geometry, a construction is really just a theorem, a theorem stating that the construction is

possible. In some sense, the elaborate method of star pattern construction presented here is then just

a very long-winded theorem of absolute geometry. What is that theorem?

The construction of star patterns is controlled by a set of parameters: the notation describing the

tiling (which includes the symmetry group [p, q], multipliers mA, mB , and mC , and so on), and the

parameters that assign motifs to the tile shapes. Let us extract from this collection the numbers p

and q, and lump all remaining parameters together into a set S.

An initial attempt to state the “theorem of star patterns” might read as follows: “for all p, q,

and S, we can construct a star pattern with symmetry group [p, q], as dictated by the parameters

in S.” Unfortunately, this statement is absolutely untrue! For any given p and q, the existence of

symmetry group [p, q] is equivalent to one of the three versions of the parallel postulate, and is

therefore independent from the axioms of absolute geometry. Worse still, asserting the existence of

[p, q] for all values of p and q simultaneously is like trying to have a single geometry where all three

parallel postulates hold, an obvious impossibility.
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The existence of symmetry group [p, q] is the geometric fact that gets the entire construction

process off the ground, but it is the one fact we cannot prove in absolute geometry. The way out

of this quandary is to suppose that [p, q] exists as a condition of the theorem: “for all p and q, if

symmetry group [p, q] exists then for all S we can construct a star pattern with symmetry group [p, q],

as dictated by the parameters in S.” This subtle change eliminates all inconsistency because the

theorem does not assert that any of the groups [p, q] actually exist, but should one exist, star patterns

can be constructed from it. This view of star pattern construction comes closest to expressing the

mathematical “meaning” that underlies the implementation of Najm.

3.6.6 Results

Examples of rendered star patterns in the three planar geometries are given in Figure 3.26. In each

case, a single choice of motifs and rendering style is applied across related Euclidean, hyperbolic,

and spherical symmetry groups. This consistency makes clear the similarity between related sym-

metry groups. Typically, the change is that one of the stars in the Euclidean design will have fewer

points in the spherical design, and more points in the hyperbolic design.

3.7 Decorating star patterns

Although I have already given some examples of decorated star patterns, I have postponed the

discussion of how these decorations are carried out until now so that I can describe the algorithms

once and for all in the absolute geometry framework presented in the previous section.

I distinguish between two kinds of decoration styles for star patterns. Ornamentation is the

addition of non-geometric figures, such as curvilinear floral motifs, to the underlying design. I do

not attempt to generate such motifs, although they could in principle be supplied by the user (and

perhaps generated to fit the design by adapting the technique of Wong et al. [139]). My focus is on

geometric rendering: purely mathematical operations on the vertices, edges, and faces of the planar

map itself.

We can use the high degree of symmetry of Najm’s template tilings to simplify decoration and

rendering. We compute the restriction of the overall design to a single generating triangle. That

restricted map, which I call the “fundamental map,” contains all geometric information necessary to
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Figure 3.27 Examples of decoration styles. The undecorated fundamental map is shown
on the left, followed by the filled, outline, interlaced, and outlined-interlace decoration
styles. To make the over-and-under patterns consistent in the two interlaced cases, the
decoration must be carried out on two adjacent fundamental maps.

render any amount of the final design. To create a decorated design, it suffices to apply a decoration

style to only one or two copies of the fundamental map. Figure 3.27 shows examples of decorated

fundamental maps.

3.7.1 Filling

A simple and effective decoration style is to colour the faces of the fundamental map, including faces

bordered by the generating triangle. This style emulates the many real-world examples executed

using coloured clay tiles.

Because the designs produced by Najm have only 2-valent and 4-valent vertices, the map can

be 2-coloured. My implementation automatically 2-colours the fundamental map as a basis for user

selection of face colours. Following tradition, one set of faces in the 2-colouring will typically be

left white and the other set will receive a range of colours, chosen interactively by the user.

3.7.2 Outlining

We can choose instead to simulate the “grout” of a real-world tiling by thickening the edges of the

fundamental map. In the Euclidean plane, this operation is straightforward; to endow a line l with

thickness w, construct the two parallels at distance w/2 to l. Unfortunately, these parallels are not
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Figure 3.28 A diagram used to compute the mitered join of two line segments in absolute
geometry. The diagram is used in the text of Section 3.7.2.

well-defined in absolute geometry.

As was discussed in Section 2.1, the solution is to move from parallel lines to equidistant curves,

the two loci of points of constant perpendicular distance w/2 from l. Equidistant curves can be

manipulated with ease in absolute geometry, although they cannot, for example, be assumed to be

straight (another property equivalent to the Euclidean parallel postulate).

The other operation that must be translated to non-Euclidean geometry is the mitered join of

two thickened absolute line segments. The situation is shown in Figure 3.28. Suppose two segments

(in blue) meet at a point O, where they create an angle of θ. The mitered join depends on the two

points A and A′, which we know lie on the bisector of of the blue lines and are equidistant from O.

It remains to determine the distance l = OA = OA′. This distance can be found via a direct

application of one of the identities of absolute trigonometry: ©(l) =©(w)/ sin θ
2 .

3.7.3 Interlacing

The interlaced decoration style can be derived from the outline style by drawing additional curves at

every crossing to suggest an over-and-under relationship. This style is of great importance both in

Islamic art and in the ornamental traditions of other cultures, such as Celtic [29] and Byzantine [91].
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As shown in Figure 3.27, the over-and-under relationship must be determined over two copies

of the fundamental map, a map together with a copy reflected along one of the edges of the gener-

ating triangle. This larger map covers a fundamental region of [p, q]+, the orientation-preserving

subgroup of [p, q] [26, section 4.4]. This group can cover the plane using only direct (non-reflecting)

symmetries, which allows the interlacing to be carried to the whole plane consistently. The repli-

cation algorithm discussed in Section 3.6.4 must be modified slightly so that it does not draw any

reflected fundamental regions.

3.7.4 Combining styles

In practice, designs are rendered using some combination of the styles above. The most common

combinations are the superposition of an outlined or interlaced rendering over a filled rendering.

In some cases, we may also think of composing various styles. Consider that an interlaced

rendering can itself be considered a kind of planar map (it is not a planar map because some vertices

are connected by equidistant curves, not straight lines). This new map can now be outlined. The

result is a composed outline-interlace style. This style is particularly effective when executed as a

real-world object by a computer-controlled manufacturing system. Examples appear in Figures 3.35

and 3.37.

3.8 Hankin tilings and Najm tilings

A quick visual inspection shows that the tilings presented in this chapter fall loosely into two camps.

There are simple tilings such as the ones defined using the notation of Section 3.6, which for the

purposes of discussion I call “Najm tilings.” They are mostly made up of regular polygons with

hole fillers completing the tiling as needed. Then there are “Hankin tilings,” the more complex

tilings introduced by Hankin and used in Section 3.4. In a Hankin tiling the regular polygons are

often surrounded by rings of irregular pentagons. And yet, once higher-level design elements such

as rosettes are added to the construction method in Section 3.5, it seems as if the two families of

tilings can produce similar (and sometimes identical) designs. Figure 3.29 gives two examples of

how distinct tilings can lead to the same design.

Bonner uses both kinds of tilings to create star patterns, and he too observes that a single design
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Figure 3.29 Examples of distinct tilings that can produce the same Islamic design. In
each case, the tilings on the left is filled in using a combination of design elements and
inference, and the tiling on the right uses inference alone. They meet in the shared design
in the center.

may originate from two very different tilings (he makes this observation in the context of the tilings

in the top row of Figure 3.29). In fact, there is a deep connection between the two tilings, one that

should not be dismissed as coincidence. In this section, I explain the relationship between Hankin

tilings and Najm tilings and discuss situations in which it might be preferable to use one family over

the other.

I define an operation on Euclidean tilings called the rosette transform. The algorithm for the

rosette transform is reminiscent of the inference algorithm: given a tiling, it constructs a planar map

for each distinct tile shape. The planar maps are then assembled, this time into a new template tiling

rather than a final design. The map for each tile shape is constructed in one of the following two

ways:

• If the tile is a regular n-gon P of radius r with five or more sides, then the map is constructed
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Figure 3.30 The rosette transform applied to a regular polygon. Here, a regular 10-gon
of radius r (shown in black) is inscribed with a smaller regular 10-gon of radius r′ (shown
in blue) together with segments that join the vertices of the inner polygon to the edge
midpoints of the outer one. The inner radius is chosen so that the marked edges have the
same length.

Figure 3.31 The rosette transform applied to an irregular polygon. On the left, a perpen-
dicular bisector is drawn for every tile edge as a ray pointing to the interior of the tile. The
rays are cut off when they meet each other, as with the inference algorithm.

as in Figure 3.30. We build a new regular n-gon P ′ with radius r′ < r and place it concen-

trically with the original polygon but rotated by π/n relative to it. We then add line segments

connecting the vertices of P ′ to the edge midpoints of P . The inner radius r′ is chosen so

that the length of each of these new segments is exactly half of the side length of P ′. Some

trigonometry shows that given n and r, the correct value of r′ is

r′ = r

(
cos

π

n
− sin

π

n
tan

(
π(n− 2)

4n

))

The map returned is P ′ together with the segments joining it to the edge midpoints of P .
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(a) (b)

Figure 3.32 Two demonstrations of how a simpler Taprats tiling is turned into a more
complex Hankin tiling. The simpler tiling is shown in black, and its rosette transform
superimposed in blue.

• If the tile is a polygon P that does not satisfy the conditions above, we extend perpendicular

bisectors of the sides of P towards its interior, as shown in Figure 3.31. The bisectors are

truncated where they meet each other. The result is returned as the map for this tile shape.

This step is similar in spirit to running the inference algorithm with a contact angle of 90◦ and

is subject to the same pitfalls. We do not expect it to return a meaningful answer for every

possible polygon, but in the cases of polygons that occur in Najm tilings, the map it discovers

is “correct.” Some heuristics also work here that do not apply in the inference algorithm. One

moderately successful heuristic is to consider the intersection points of all pairs of rays and to

cluster those points that lie inside the tile. The clusters can then be averaged down to single

points that all rays contributing to that cluster can use as an endpoint.

When this algorithm is run on Najm tilings, it tends to produce Hankin tilings. For instance,

the two black tiles in Figures 3.30 and 3.31 correspond to the Najm-like tiling in the top row of

Figure 3.29. When assembled into a complete rosette transform tiling, the result is the corresponding

Hankin tiling. The two tilings are shown superimposed in Figure 3.32(a), along with the rosette
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transform of the bottom row of Figure 3.29 in (b).

As Figure 3.29 shows, when the Najm tiling is turned into a design by putting rosettes inside all

the regular polygons and using inference elsewhere, the design is similar to the one obtained from

the related Hankin tiling through inference alone. When the tilings are superimposed, we see that a

regular polygon will generally be converted into a similar regular polygon surrounded by a ring of

irregular shapes, mostly pentagons. Inference will produce a large star inside the regular polygon

and five-pointed stars in the surrounding pentagons. Adjacent five-pointed stars conspire with the

large inner star to create the hexagons characteristic of rosettes. The rosette transform is motivated

by (and named after) the goal of making the pentagons as close as possible to regular, producing

rosettes that are nearly ideal.

Although the rosette transform is given above for the Euclidean plane, it could easily be adapted

to absolute geometry, thus providing a means of producing more elaborate star patterns in the hyper-

bolic plane and on the sphere. The only change would be a generalization of the formula for scaling

regular polygons to absolute geometry. The presentation here is confined to the Euclidean plane for

simplicity and to highlight the relationship with Bonner’s work.

Given the seeming equivalence between these two families of tilings, why not simply choose

either Najm tilings or Hankin tilings and develop star patterns based on them alone? It turns out that

each approach can handle cases that the other cannot. There is a tradeoff in choosing one kind of

tiling over the other. The simpler Najm tilings rely on the design elements, which allow for more

direct control over the appearance of complex motifs. Design elements can occasionally produce

designs that are aesthetically superior to the design related through the corresponding Hankin tiling.

On the other hand, the more complex Hankin tilings need only a single inference algorithm to

produce a complex design.

Consider the Archimedean tiling (4.82). Running the Taprats algorithm on this tiling, using

eightfold rosettes for the octagons, produces the design shown in Figure 3.33(b). If instead we

first compute the rosette transform of the tiling, and run Hankin’s method on the result, we get the

very similar design in Figure 3.33(d). Although these designs have the same general structure, the

former can be considered superior because the rosette hexagons all have the same size and line up

cleanly. Bonner handles the problem with rosette hexagons in (d) by moving the contact positions

on the pentagons away from the edge centers. This sort of adjustment proves to be necessary when
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(a) (b) (c) (d)

Figure 3.33 An example where the simpler tilings of the Taprats method, combined with
more complex design elements, can produce a better overall design than the more complex
tilings of Hankin’s method. The tiling in (a) produces the design in (b) by placing rosettes
in the octagons. The corresponding Hankin tiling in (c) produces a similar design in (d),
but this new design is unsatisfactory because the rosette hexagons have different sizes.

applying Hankin’s method to some tilings, but it is not clear how such a correction can be formalized

and applied generally. In cases like this one, it seems simpler to use the equivalent Najm tilings and

the parameterized design elements.

On the other hand, the Hankin tilings can be useful for expressing designs featuring stars with

unusual numbers of points. Bonner exhibits several such designs including unlikely combinations

like a periodic design with 11- and 13-pointed stars, reproduced in Figure 3.34. These remarkable

designs work because the extra layer of smaller tiles such as irregular pentagons can absorb the error

in attempting to reconcile the incompatible angles of these regular polygons. The template tiling

that produces the design with 11- and 13-pointed stars is not the rosette transform of any Najm

tiling. The more complex tilings are therefore essential in some cases for creating designs that are

impossible to express using Najm. Of course, the rest of the system can operate on either sort of

tiling — design elements can still be placed in the regular polygons if desired, and the inference

algorithm can be run everywhere else.

3.9 CAD applications

I now diverge temporarily from the development of new families of star patterns to discuss some of

the CAD and manufacturing applications of the patterns presented so far. In the next section, I will
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Figure 3.34 An unusual star pattern, reproduced from Bonner’s manuscript, featuring 11-
and 13-pointed stars.

return to the creation of novel designs one last time, creating star patterns based on aperiodic tilings.

The primary historical use of star patterns is as architectural ornamentation. Star patterns can be

found on walls, floors, and ceilings of buildings all across Europe, Africa, and Asia. Traditionally,

they are executed in a variety of media: assembled from small terracotta tiles (a style known as

“Zellij”), carved as a bas-relief into stone or wood, built from wooden slats into latticework, or

simply painted onto a surface. All of these methods are highly costly and laborious, which might

account for a modern decline in the application of star patterns. Sometimes a compromise is reached,

where a square translational unit is extracted from a pattern and stamped onto large square tiles.

Though pretty, this approach has only a small fraction of the visual impact of Zellij, where each

coloured region is fabricated as a separate tile.

The patterns created by the programs in this chapter cry out to be made into real world artifacts.

The good news is that the capability of computer graphics to invent and visualize shapes is now

being matched by an incredible array of devices that can manufacture those shapes in the real world.

These CAD devices hold great promise for a revitalization of ornament in everyday architecture. We
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(a) (b) (c)

Figure 3.35 Examples of laser-cut star patterns.

have become accustomed to the featureless grey urban towers of the previous century. With tools

that design and fabricate ornamentation quickly and at a reasonable cost, perhaps we can reawaken

our primordial urge to decorate.

Islamic star patterns are ideally suited to experimentation with computer-aided manufacturing.

They are geometric rather than image-based, meaning that precise information is available to guide

the paths of cutting tools. Though tied to Islamic culture, star patterns are appreciated around the

world for their harmony and simplicity. Finally, they have been used extensively in architecture

already, and so we have a large library of real-world artifacts to guide the aesthetic of an automated

approach.

I have used star patterns as a test case in experimenting with a variety of manufacturing processes

and media. The results of some of those experiments are presented here.

One general class of devices, similar to plotters, are those in which a computer-controlled tool

moves over a plane, selectively cutting or scoring parts of the material. These devices can cut

away the lines that make up a star pattern, resulting in a screen resembling a traditional piece of

latticework.

For thin materials like paper, the simplest approach is to use a CO2 laser cutter. This machine

is quite effective at cutting paper and mylar, as shown in Figure 3.35. I have used the laser cutter

to create prototype business cards, which have proven to be very popular but time consuming to
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produce. The laser cutter I used was not practical for mass production, though there are larger

industrial systems that can cut objects on an assembly line. One might also imagine cutting star

patterns using metal die cutting; I have not attempted this approach because of the prohibitive cost

of die fabrication.

CNC milling machines have been around for some time. Here, the cutting tool is a drill bit,

allowing the milling machine to automate many of the tasks performed by hand-operated power

tools. Figure 3.36 shows an example of the use of the milling machine. Using a router bit, I cut

star patterns into blocks used for linocut printing. The blocks were then hand printed onto paper.

The result combines the rigidity of computer-generated geometry with the handcrafted quality of

the printing process.

It might also be possible to address the problem of fabricating metal dies for paper cutting by

machining a die using a milling machine.

At the high end of the plotting devices is the waterjet cutter. These machines cut by directing a

high-pressure stream of grit-impregnated water at the material. They have an incredible range, able

to cut through materials ranging in toughness from foam to titanium, even able to handle delicate

materials like glass. As part of a collaboration on an architectural project, I have had access to

a waterjet cutter, and have fabricated several prototype artifacts in different media. Examples are

shown in Figure 3.37.

Another exciting class of manufacturing devices are rapid prototyping machines. These tools use

a variety of processes to build any watertight three-dimensional model, usually by slicing the model

into layers and fabricating one layer at a time from a synthetic material. Two common processes

are fused deposition modeling, where a nozzle extrudes a stream of liquid ABS plastic to print each

layer, and the ZCorp process, where a stream of liquid selectively bonds a powder substrate.

Rapid prototyping machines are not especially practical for executing Euclidean patterns; these

are much more effectively manufactured using any of the plotting machines described above. But

they are excellent at fabricating spherical patterns, which otherwise would be very difficult to ma-

chine or carve accurately by hand. Figure 3.38 shows some manufactured spherical patterns. Ideally,

these models could be used to create molds for metal sculptures; Grossman has used rapid proto-

typing to fabricate models suitable for bronze casting via a lost-wax method [63].
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(a) (b)

Figure 3.36 Examples of star patterns created using a CNC milling machine. The milling
machine was used to route star patterns into linoleum printing blocks, from which hand
prints were made.

(a)

(b) (c)

Figure 3.37 Examples of star patterns cut using a waterjet cutter. The pieces are cut from
particleboard and steel in (a), from MDF (a versatile wood composite) in (b), and from
plexiglass in (c).
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(a) (b) (c)

Figure 3.38 Examples of star patterns fabricated using rapid prototyping tools. The first
two were built using fused deposition modelling, and the last using ZCorp. Models (b)
and (c) are based on the same design.

3.10 Nonperiodic star patterns

As a final excursion in the world of Islamic art, I would like to consider the construction of nonpe-

riodic star patterns in the Euclidean plane. Although it may seem as if such an idea would have to

be an exclusively modern one, there are in fact many historical examples of Islamic ornament based

on a nonperiodic arrangement of elements. For example, the placement of Muqarnas (a system of

ornamental corbelling, usually installed under domes or arches) is typically guided by a symmetric

but not periodic patch of squares and 45◦ rhombs [19, Page 289]. Many domes are also decorated

with star patterns that cannot be extended periodically.

These wonderful historical artifacts do not imply that Islamic artisans understood the mathemat-

ics of aperiodic tilings. With some experimentation, it is easy to cover a large region of the plane

with a radially symmetric arragement of squares and 45◦ rhombs or Penrose rhombs. The deeper

fact that these shapes are related to inherently aperiodic prototile sets need not play a role in the

experimentation process.

On the other hand, it is reasonable to exploit the modern theory of quasiperiodic tilings in con-

structing star patterns, provided the results do not stray too far from the aesthetic of Islamic geomet-

ric art. Here, I explore several ways of deriving novel quasiperiodic template tilings, and the star
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patterns that can be generated from them.

3.10.1 Lattice projection tilings

One well-known method for creating quasiperiodic tilings is the “lattice projection method,” best

demonstrated by the Geometry Center’s online Quasitiler application [18]. In this method, an n-

dimensional integer lattice is sliced through by a carefully rotated two-dimensional plane. Edges of

the lattice that touch the plane are projected orthogonally onto it. The network that ends up inscribed

on the plane is a quasiperiodic tiling by rhombs.

By themselves, these rhombic tilings are not suitable for use as template tilings. Rather, they

can be seen as a guide for the placement of regular polygons in the formation of a new tiling. The

rhombs act like fundamental regions for the tilings described in Section 3.6.1. When run on an

n-dimensional lattice, the lattice projection method will yield only rhombs with smaller interior

angles in the set {π/n, 2π/n, . . . , �n/2�π/n}. For example, the 5-dimensional lattice produces

rhombs with interior angles of π/5 and 2π/5, which are none other than the rhombs of Penrose’s

aperiodic set P3. Castéra has demonstrated a star pattern based on Penrose rhombs that is very

similar to the ones developed here [20].

As with a tiling construction based on fundamental regions of symmetry groups, the structure

of angles around tiling vertices in a lattice projection tiling permits regular polygons to be placed at

those vertices in a principled way. The placement of regular polygons might leave behind holes that

are then filled with additional tiles. In a rhombic tiling derived from an n-dimensional lattice, we

can, for every integer k ≥ 1, place a regular 2kn-gon at each tiling vertex and inflate them (in the

same way as was done in Section 3.6.1) until they meet.

Inspired by this observation, I consider the simplest case of placing a regular 2n-gon at every

rhomb vertex. Each regular polygon is oriented so that it has an edge midpoint on the two rhomb

edges that are adjacent to the vertex. They are scaled so that they meet at the center of every rhomb

edge (as in the “simultaneous inflation of two polygons” in Section 3.6.1). As with the other families

of tilings given in this chapter, this process will leave behind holes, which are filled as needed with

new tiles. The resulting tiling can then be turned into a design for a star pattern by applying the

usual inference algorithm and design elements.
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(8, 2) (9, 2) (10, 3)

Figure 3.39 Examples of (n, c)-monsters for n = 8, n = 9, and n = 10.

Unfortunately, there is a slight problem with this technique. When applied to the thinnest rhomb

in the tiling, the placed regular polygons will overlap in the middle of the tile, as shown in Fig-

ure 3.41(a). If the motifs for the two overlapping polygons are simply superimposed, the result is

not aesthetically pleasing. Instead, we must fuse these overlapping regular polygons into a larger

entity that astronomer Johannes Kepler called a monster (at the end of this section, I will discuss a

monstrous tiling due to Kepler). But then we encounter another problem: the inference algorithm

performs poorly on monsters. It tends to produce large empty areas that ought to be filled with

additional geometry. In order to proceed with Quasitiler-based star patterns, we need a taxonomy of

monsters and the motifs that can be associated with them.

For every n > 6 and 2 ≤ c ≤ 	n/2
 − 2, define the (n, c)-monster as the union of a pair of

regular n-gons arranged so that exactly c full edges of each polygon lie inside the other. Note that

the cases c = 0 and c = 1 are meaningful — they correspond to two polygons that share a single

vertex and a single edge, respectively. But these cases do not need to be dealt with specially when

designing motifs, and so we ignore them for the rest of this discussion. Figure 3.39 shows some

examples of monsters for n = 8, n = 9, and n = 10.

Clearly, a large part of a monster looks like parts of regular polygons, and so we should strive as

much as possible to place parts of star-like motifs in those regions. It is only in the overlapping area

that the star motifs interact and need to be modified.

Monsters are somewhat special, in that the motif chosen to deal with the region where the poly-

gons overlap is usually specially tailored to that situation. In some cases, a solution will generalize

to other values of n, c, and the desired contact angle. In his manuscript, Bonner provides motifs

for the (10, 2)-monster under various choices of contact angle. For the contact angle 2π/5, Castera
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Figure 3.40 A menagerie of monsters and their motifs. This table shows a collection
of (n, c)-monster motifs useful for n ≤ 12. Each row depicts monsters with a different
value of c. The columns depict varying contact angles (I consider only multiples of π/n).
Except where otherwise noted, the entry given in a cell applies for all legal values of
n ≤ 12.

provides an alternate solution to Bonner’s [20] that is somewhat less visually pleasing. Inspired by

their efforts, I present in Figure 3.40 a small menagerie of motifs for some of the more frequently

occuring monsters. I concentrate on values of n up to 12 and contact angles that are multiples of

π/n (i.e., contact angles corresponding to integral values of d in the traditional {n/d} star notation).

This library of monster motifs can now be used to create a variety of quasiperiodic designs.

Some examples are shown in Figure 3.42. In this case I have not written a tool to deal with these

tilings directly. Instead, I rely on Taprats to draw and edit the individual motifs, and then import

the motifs into Adobe Illustrator for decoration and assembly. I simply invoke Quasitiler to obtain

a quasiperiodic patch of rhombs that then guide the placement of motifs. There is no reason why
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(a) (b)

(c)

Figure 3.41 The development of design fragments for a Quasitiler-based Islamic star
pattern. In (a), the two fivefold rhombs (identical to the Penrose rhombs) are shown su-
perimposed over decagons centered at their vertices. In (c), the template tiles are given
motifs, with the (10, 3)-monster receiving the motifs shown in Figure 3.40. Finally, in (c),
the collected motifs are restricted to the rhombs and assembled into a star pattern. The
rhombs are randomly coloured in the final pattern to show the structure of the underlying
quasiperiodic tiling.
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(a) (b)

(c) (d)

Figure 3.42 Examples of Quasitiler-based Islamic star patterns. The examples in (a) and
(b) are based on 6- and 5-dimensional lattices, respectively. The examples in (c) and
(d) are both based on 4-dimensional lattices. The designs in (b) and (d) are based on
rosette transforms of tilings (as defined in Section 3.8), leading to the stronger presence
of rosettes.
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these individual steps could not be combined into a single program; the manually-assembled results

here are presented primarily as a proof of concept of the approach.

3.10.2 Kepler’s Aa tiling

I close this journey through Islamic star patterns with an example based on a single unusual and

very elegant tiling.

The frontispiece of Tilings and Patterns reproduces a set of tilings from Kepler’s seventeeth

century Harmonice Mundi. Most of Kepler’s tilings are well known, or at least easily understood.

But one tiling, labeled “Aa,” does not succumb to analysis so readily. Kepler seems to be attempting

to fill the plane exclusively with shapes possessing fivefold symmetry, though his scheme eventually

produces what we can recognize as (10, 2)-monsters (it was in fact Kepler who suggested the term

“monster” for these fused polygons). Interestingly, it is still unknown whether such a tiling exists

(with uniformly bounded tiles) [30], or indeed whether a tiling exists with cn-symmetric tiles for

n = 5 or n ≥ 7 [28, Page 93].

The difficulty with Kepler’s drawing of his Aa tiling is that it is far from obvious how the patch

of tiles given might be extended to cover the whole plane in an orderly manner. Indeed, it is not

even clear that Kepler had a specific extension in mind. Nevertheless, one possible approach was

discovered by Dessecker, Eberhart and others [68, Page 89]. Their ingenious construction fills a

36◦ rhomb with tiles from Aa. These rhombs can then be laid out in two different ways, each

preserving the consistency of the contained tiles. Rhombs can fit together edge-to-edge, or offset by

the golden ratio of the rhomb edge length. The two possible configurations are exploited by filling

the plane with a radially symmetric arrangement of rhombs that overlap around a pentacle at the

origin. When the tiles are assembled according to this arrangement of rhombs, the result is a truly

remarkable nonperiodic tiling of the plane with global fivefold symmetry. Figure 3.43 shows the

steps in the construction of the Aa tiling.

Kepler’s tiling is made up of regular pentagons, regular decagons, (10, 2)-monsters, and penta-

cles (stars of the form {5/2}1). Except for the pentacles, all of these tiles are now familiar ground,

and motifs can be given for them easily. The one remaining obstacle in building a star pattern based

on Aa is to figure out what to do with the pentacles.



110

(a) (b) (c)

Figure 3.43 The construction of Kepler’s Aa tiling, reproduced from Grünbaum and
Shephard [68, Figure 2.5.10]. The arrangement of tiles inside one rhomb is shown in
(a). Two distinct ways to place rhombs are shown in (b). In (c), both of these ways are
used to cover the plane with rhombs, five of which overlap. When the smaller tiles are
placed according to this arrangement of rhombs, a consistent aperiodic tiling of the plane
is produced.

The pentacle is not particularly well-suited to the task of being a template tile. The inference

algorithm produces a motif, but that motif is rather unsuccessful, leaving a large empty region

that cries out for more geometry. We can observe, however, that in Kepler’s tiling the pentacle is

always surrounded by a ring of five pentagons. We can modify these configurations of six tiles

to permit more satisfying motifs in the regions they cover. Two possible modifications are shown

in Figure 3.44, along with motifs they can be used to generate. In the second of those cases, the

inference algorithm is still inadequate in expressing a suitable motif; the motif given was developed

by hand, inspired by consideration of traditional solutions in similar contexts.

These slightly modified versions of the original tiling can now serve as template tilings for star

patterns. Two examples are shown in Figure 3.45. These star patterns are particularly satisfying as

they bring together the insights of mathematicians from across centuries of time and vastly different

cultures. They seem to reach close to the heart of the geometric aesthetic.
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Figure 3.44 Proposed modifications to the region surrouding the pentacle in Kepler’s Aa
tiling that permit better inference of motifs.

3.11 Future work

This chapter has explored the riddle of Islamic star patterns. I propose one possible solution to that

riddle, in the form of a sequence of algorithms and constructions that produce star patterns. Moving

beyond the work presented here, there are still tremendous opportunities for future work centered

on the use of computers in creating star patterns. I conclude this chapter by discussing some of the

most exciting future directions.

3.11.1 Better decoration tools

The decoration tools provided by Taprats and Najm are quite flexible, but still require manual inter-

vention in many cases. Some of these cases might be automated by borrowing from traditional rules

of star pattern design.

For example, Castéra points out that for certain classes of star pattern, there is a “correct” choice

of band width for the outlined and interlaced decoration styles [19]. The best width achieves a

pleasing visual balance between the thickened bands and the spaces between them. Some additional

analysis of historical artifacts might lead to formulae for these band widths.



112

Figure 3.45 Two examples of star patterns based on Kepler’s Aa tiling.
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The default behaviour for the filled decoration style is to 2-colour the design. More than two

colours are almost always used in traditional renderings of star patterns, and there are conventions

that govern the choice of colours and their distribution over the regions of the design. Some automa-

tion could be applied to the colouring of regions by encoding these conventions in software. The

automation would rely on the ability to “parse” the regions in a design into well-known categories.

3.11.2 The use of optimization

There are cases where the simple inference algorithm of Section 3.4 fails to discover what is histor-

ically the “correct” motif for a template tile. In his manuscript, Bonner discusses these situations as

they arise, pointing out special cases where a contact angle must be changed or a contact position

moved slightly away from the center of a tile edge. While layers of heuristics might be heaped

upon the basic inference algorithm to account for these special cases, it is always more satisfying to

discover general principles.

The inadequacies of the inference algorithm may be surmountable through the use of optimiza-

tion. Given a template tiling, we might imagine using the algorithms presented in this chapter to

construct an initial design, one that at least has the correct topology. An optimization procedure,

with an aesthetic evaluation as its objective function, might then be used to improve the design,

seeking a configuration that has better visual balance. Bonner has suggested that rigorous aesthetic

goals for star patterns could be derived from experience with historical examples.4 Alternatively,

the aesthetic objective could be based on measuring the visual appeal of the design according to

principles from Gestalt psychology.

3.11.3 Moroccan star patterns

This chapter presents techniques for constructing a wide class of designs, but there is a completely

separate historical tradition for star pattern construction that came out of Morocco and Spain. The

majority of examples in Castéra’s book [19] are not intended to be periodic patterns. They are

presented as finite designs centered around a single, large star (with as many as 96 points). In some

cases, the designs could be extended into periodic patterns, but the repeated large stars would be a

4Jay Bonner, personal communication.
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distraction rather than a focal point. These finite designs are often installed in fountains, doors, and

other clearly delimited planar regions.

As was mentioned in Section 3.2, Castéra’s method is based fundamentally on the placement

of a skeleton made up of stars and safts. The skeleton delineates the broad structure of the design.

Then, he uses a kind of inference step to fill the regions outlined by the skeleton. His inference step

seems to rely on a great deal of intuition, although some computer assistance may be possible. In

particular, he always aims to create inferred regions in the shapes of well-known tiles from the Zellij

style. Inference may then be regarded as a kind of puzzle assembly problem (where each piece may

be used multiple times).

The more remarkable of Castéra’s examples are those featuring stars with many points. An

interesting challenge would be to develop a system that draws such designs automatically. This is a

difficult problem; the designs are highly specialized, relying on a great deal of trickery to interface

a large star with the lower-order symmetry of the area that surrounds it. Perhaps optimization could

be used here to carry out this trickery with a minimum amount of disturbance to the surrounding

geometry.

The quasiperiodic technique of Section 3.10.1 seems like another fruitful approach to producing

large stars, as the rhomb tilings produced by Quasitiler can have a global center of high rotational

symmetry. A region of the design around the rotational center could be replaced with a single large

star or rosette. Again, optimization might better integrate the star into the rest of the design. Alter-

natively, a different means of producing quasiperiodic tilings, such as the overlay-dual described by

Stampfli [128] and Zongker [142], might play a role in creating Moroccan-style patterns.

3.11.4 Strange stars

For what sets of integers can we construct attractive periodic star patterns in which there are k-

pointed stars for every k in the set? Many simple combinations, such as the sets {8, 12}, {9, 12},

and {9, 18} follow immediately from the tiling notation of Section 3.6 or a review of historical

examples. But we can accept a little flexibility by considering polygons that are “nearly regular,” in

which we can inscribe motifs that are not-quite-perfect stars. Many designs containing rosettes, for

instance, might also be seen to contain distorted 5-pointed stars. A more dramatic example is the
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near-miss Altair tiling given in Figure 3.3, inducing a star pattern with 4-, 5-, 6-, 7-, and 8-pointed

stars.

The development of attractive patterns based on unusual sets of star orders is a fascinating chal-

lenge that balances mathematics with an intuition for covering up distortion. Historical artisans

seemed to delight in discovering such designs; one wonderful example shown by Bonner contains

11- and 13-pointed stars (see Figure 3.34). It is hard to imagine that a general algorithm underlies

the creation of these unusual designs, but it would be interesting to search for some heuristics that

could intelligently guide the placement of star centers and invent plausible hole-filling motifs to take

up the space between the stars.




