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Abstract

Computer Graphics and Geometric Ornamental Design

by Craig S. Kaplan

Chair of Supervisory Committee:

Professor David H. Salesin
Computer Science & Engineering

Throughout history, geometric patterns have formed an important part of art and ornamental design.

Today we have unprecedented ability to understand ornamental styles of the past, to recreate tradi-

tional designs, and to innovate with new interpretations of old styles and with new styles altogether.

The power to further the study and practice of ornament stems from three sources. We have new

mathematical tools: a modern conception of geometry that enables us to describe with precision

what designers of the past could only hint at. We have new algorithmic tools: computers and the

abstract mathematical processing they enable allow us to perform calculations that were intractable

in previous generations. Finally, we have technological tools: manufacturing devices that can turn a

synthetic description provided by a computer into a real-world artifact. Taken together, these three

sets of tools provide new opportunities for the application of computers to the analysis and creation

of ornament.

In this dissertation, I present my research in the area of computer-generated geometric art and

ornament. I focus on two projects in particular. First I develop a collection of tools and methods

for producing traditional Islamic star patterns. Then I examine the tesselations of M. C. Escher,

developing an “Escherization” algorithm that can derive novel Escher-like tesselations of the plane

from arbitrary user-supplied shapes. Throughout, I show how modern mathematics, algorithms, and

technology can be applied to the study of these ornamental styles.
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Chapter 1

INTRODUCTION

All the majesty of a city landscape

All the soaring days of our lives

All the concrete dreams in my mind’s eye

All the joy I see thru’ these architect’s eyes.

— David Bowie

The creation of ornament is an ancient human endeavour. We have been decorating our objects,

our buildings, and ourselves throughout all of history and back into prehistory. From the moment

humans began to build objects of any permanence, they decorated them with patterns and textures,

proclaiming beyond any doubt that the object was an artifact: a product of human workmanship.

The primeval urge to decorate is bound up with the human condition.

As we evolved, so did our talents and technology for ornamentation. The history of ornament

is a reflection of human history as a whole; an artifact’s decoration, or lack thereof, ties it to a

particular place, time, culture, and attitude.

In the last century, we have developed mathematical tools that let us peer into the past and ana-

lyze historical sources of ornament with unprecedented clarity. Even when these modern tools bear

little or no resemblance to the techniques originally used to create designs, they have an undeniable

explanatory power. We can then reverse the analysis process, using our newfound understanding to

drive the synthesis of new designs.

Even more recently, we have crossed a threshold where these sophisticated mathematical ideas

can be made eminently practical using computer technology. In the past decade, computer graph-

ics has become ubiquitous, affordable, incredibly powerful, and relatively simple to control. The

computer has become a commonplace vehicle for virtually unlimited artistic exploration, with little

fear of committing unfixable errors or of wasting resources. Interactive tools give the artist instant
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feedback on their work; non-interactive programs can solve immense computational problems that

would require considerable amounts of hand calculation or vast leaps of intuition.

The goal of this work is to seek out and exploit opportunities where modern mathematical and

technological tools can be brought to bear on the analysis and synthesis of ornamental designs.

The goal will be achieved by devising mathematical models for various ornamental styles, and

turning those models into computer programs that can produce designs within those styles. The

complete universe of ornament is obviously extremely broad, constrained only by the limits of

human imagination. Therefore, I choose to concentrate here on two particular styles of ornament:

Islamic star patterns and the tesselations of M. C. Escher. During these two investigations, I watch

for principles and techniques that might be applied more generally to other ornamental styles.

The rest of this chapter lays the groundwork for the explorations to come, discussing the his-

tory of ornament and its analysis, and the roles played by psychology, mathematics, and computer

science. In Chapter 2, I review the mathematical concepts that underlie this work. Then, the main

body of research is presented: Islamic star patterns in Chapter 3, and Escher’s tilings in Chapter 4.

Finally, in Chapter 5, I conclude and offer ideas for future work in this area.

1.1 The study of ornament

The practice of ornament predates civilization [22]. The scholarly study and criticism of this practice

is somewhat more recent, but still goes back at least to Vitruvius in ancient Rome. Gombrich

provides a thorough account of the history of writings on ornament in The Sense of Order[60], a

work that will no doubt become an important part of that history.

What is ornament? To attempt a formal definition seems ill-advised. Any precise definition will

omit important classes of ornament through its narrowness, or else grow so broad as to encompass

an embarrassing assortment of non-ornamental objects. In the propositions that open Jones’s classic

The Grammar of Ornament[91], we find many comments on the structure and common features

of ornament, but no definition. Racinet promises to teach “more by example than by precept [121,

Page 13].” Ornament, like art, is hard to pin down, always evading definition on the wings of human

ingenuity.

On the other hand, the works of both Racinet and Jones teach very effectively by example. Their
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marvelous collections contain a multitude of designs from around the world and throughout history.

Based on these collections, and the definitions that have been offered in the past, we may identify

some of the more common features of ornament. We will adopt these features not as a definition,

but as guidelines to make the analysis of ornament possible here.

• Superficiality: Jensen and Conway attribute the appeal of ornament to its “uselessness [90].”

They are referring to the fact that ornament is precisely that which does not contribute to an

object’s function or structure. Anything that is “without use,” superficial, or superfluous is an

ornamental addition. As they point out, uselessness frees the designer to decorate in any way

they choose, without being bound by structural or functional concerns.

• Two-dimensionality: Most ornament is a treatment applied to a surface. The surface may

bend and twist through space, but the design upon it is fundamentally two-dimensional. A

common use of ornament is as a decoration on walls, floors, and ceilings, and so adopting this

restriction still leaves open many historical examples for analysis and many opportunities for

synthesis.

• Symmetry: Symmetry is a structured form of order, balance, or repetition (it will be defined

formally in Section 2.2). Speiser, one of the first mathematicians to use symmetry in studying

historical ornament, required that all ornament have some degree of symmetry [135, Page 9].

This requirement seems overly strict, as there are forms of repetition that cannot be accounted

for by symmetry alone, and there are many examples of ornament that repeat only in a very

loose sense. Therefore I use symmetry here to refer more generally to a mathematical theory

that accounts for the repetition in a particular style of ornament. At the end of this dissertation,

I return to the question of the applicability of formal symmetry theory and discuss alternatives.

The history of ornamentation, particularly in the context of architecture, has been marked by

the constant pull of two opposing forces. At one extreme is horror vacui, literally “fear of the

vacuum.” This term has been used to characterize the human desire to adorn every blank wall,

to give every surface of a building decoration and texture. Taken to its logical conclusion, horror

vacui produces the stereotypical Victorian parlour, saturated with ornament. A more appealing
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historical example is the Book of Kells, an illuminated Celtic manuscript whose pages are intricately

ornamented (prompting Gombrich to suggest the more positive amor infiniti in place of horror

vacui).

Opposing the use (and abuse) of ornament wrought by believers in horror vacui, we have what

Gombrich calls the “cult of restraint.” He uses the term to refer to those who reject ornament because

of its superficiality, and praise objects that convey their essence without the need to advertise it via

decoration.

The most recent revival of the cult of restraint came in the form of the modernist movement

in architecture. Its pioneers were architects like Mies van der Rohe and Le Corbusier, as well as

Gropius (who founded the Bauhaus in Germany) and the Italian Futurists. They rebelled against an

overuse of ornament, and reveled in the beauty of technology and machines that promised to change

the world for the better. To the modernists, ornament was tied to an erstwhile philosophy and way

of life, and the immediate rejection of ornament was a first step to embracing the new ideals of the

twentieth century [90]. Architecture of the period has a distinctly spare, austere style with blank

walls and right angles.

Modernism came as a breath of fresh air after a century of stifling ornamental saturation. Un-

fortunately, many architects who lacked the talent of masters like Mies van der Rohe latched on to

the modernist movement as a license to erect buildings in the shapes of giant, featureless concrete

boxes. Thus was born yet another backlash, this time a cautious return to horror vacuiin the form of

what Jensen and Conway term ornamentalism[90]. Today we see some highly visible buildings that

experiment with “uselessness”; a recent example is Seattle’s Experience Music Project, designed by

Frank Gehry. Overall, it seems as if the forces of modernism and ornamentalism are both active in

contemporary architecture. I do not propose to sway opinion one way or the other. But if architects

and other designers are willing to explore the use of geometric ornament, the work presented here

could help them turn their explorations into real artifacts.

1.2 The psychology of ornament

The great majority of ornament exhibits some degree of symmetry. The reason must in part be

tied to the practicalities of fabricating ornament. As a simple example, fabrics and wallpapers are
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printed from cylindrical templates, so their patterns will necessarily repeat in at least one direction.

Looking more at the human experience of ornament, there is also a significant neurological and

psychological basis for our appreciation of symmetry. This section discusses some of the reasons

why there is an innate human connection between symmetry and ornament.

The science of Psychoaestheticsattempts to quantify our aesthetic response to sensory input.

Research in psychoaesthetics shows that our aesthetic judgment of a visual stimulus derives from

the arousal created and sustained by the experience of exploring and assimilating the stimulus. They

test their theories by measuring physical and psychological responses of human subjects to visual

stimuli.

Detection of symmetry is built in to the perceptual process at a low level. Experiments with

functional brain imagining show that humans can accurately discern symmetric objects in less than

one twentieth of a second [132]. The eye is particularly fast and accurate in the detection of objects

with vertical mirror symmetry. The common explanation for this bias is that such symmetry might

be characteristic of an advancing predator. Rapid perception can take place even across distant

parts of the visual field, indicating that a large amount of mental processing is expended in locating

symmetry. Furthermore, once symmetry is perceived, it is exploited. By tracking eye fixations

during viewing of a scene, Locher and Nodine [106] show that in the presence of symmetry the eye

will explore only non-redundant parts of that scene. Once the eye detects a line of vertical mirror

symmetry, it goes on to explore only one half of the scene, the other half taken as understood.

In another experiment, Locher and Nodine show that an increase in symmetry is met with a

reduction in arousal. When asked to rate appreciation of works of art, subjects rated asymmetric

scenes most favourably and symmetric scenes decreasingly favourably as symmetry increased. Psy-

choaesthetics might help to explain this result; a more highly ordered scene requires less mental

processing to assimilate, resulting in less overall engagement. While this result might appear to

bode poorly for the effectiveness of symmetric ornament, mitigating factors should be considered.

Most importantly, they tested the effect of symmetry by adding mirror symmetries to pre-existing

works of abstract art. This wholesale modification might have destroyed other aesthetic properties

of the original painting, such as its composition.

On the other hand, the reduction in arousal associated with symmetry might be appropriate for

the purposes of ornamental design. In many cases, particularly in an architectural setting, the goal
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of ornament is to please the eye without unduly distracting it. Locher and Nodine support this claim,

mentioning that as complexity of a scene increases, the rise in arousal “is pleasurable provided the

increase is not enough to drive arousal into an upper range which is aversive and unpleasant [106,

Page 482].”

Other research supports the correlation between symmetry and perceived goodness. In the lim-

ited domain of points in a grid, Howe [85] shows that subjective ratings of goodness correlated

precisely with the degree of symmetry present. In a similar domain, Szilagyi and Baird [131] found

that subjects preferred to arrange points symmetrically in a grid. In their recent review of the per-

ception of symmetry, Møller and Swaddle simply state that humans find symmetrical objects more

aesthetically pleasing than asymmetric objects [113].

Moving from the experimental side of psychology to the cognitive side, the theory of Gestalt

psychology might be invoked to explain our positive aesthetic reaction to ornament. Gestalt is

concerned with understanding the perceptual grouping we perform at a subconscious level when

viewing a scene, and the effect this grouping has on our aesthetic response. Perhaps the most

compelling explanation for the attractiveness of symmetric ornament is the “puzzle-solving” aspect

of Gestalt. A symmetric pattern invites the viewer into a visual puzzle. We sense the structure on an

unconscious level, and struggle to determine the rules underlying that structure. The resolution of

that puzzle is a source of psychological satisfaction in the viewer. As Shubnikov and Koptsik say,

“The aesthetic effects resulting from the symmetry (or other law of composition) of an object in our

opinion lies in the psychic process associated with the discoveryof its laws.” [127, Page 7]

In a philosophical passage, Shubnikov and Koptsik go on to discuss the psychological and socio-

logical effects of specific wallpaper groups [127, Page 155] (the wallpaper groups will be introduced

in Section 2.2). In their theory, lines of reflection emphasize stability and rest. A line unimpeded

by perpendicular reflections encourages movement. Rotational symmetries are also considered dy-

namic. For the various wallpaper groups, they give specific applications where ornament with those

symmetries might be most appropriate.

We should not attempt to use the evidence presented in this section as a complete justification

for the use of symmetry in art and ornament. But these experiments and theories reveal that we

do have somehard-wired reaction to symmetry, a reaction that affects our perception of the world.

This evidence provides us with a partial explanation for the historical importance of symmetry in
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ornament, and some confidence in its continued aesthetic value.

1.3 Contributions

This dissertation grew out of an open-ended exploration of the uses of computer graphics in creating

geometric ornament. As such, the goals were not always stated at the outset, but were discovered

along the way as my ideas developed and my techniques became more powerful. As with the artistic

process in general, we cannot aim to achieve a specific goal or inspire a specific aesthetic response.

But when some interesting result is found, we can then reflect on the method that produced that

result and its applicability to other problems.

Here are the main contributions that this work makes to the greater world of computer graphics

and computer science:

• A model for Islamic star patterns. The two main themes of this dissertation are presented

in Chapters 3 and 4. Each of these central chapters makes a specific, thematic contribution.

Chapter 3 develops a sophisticated theory that can account for the geometry of a wide range

of historical Islamic star patterns. This theory is used to recreate many traditional examples,

and to create novel ones.

• A model for Escher’s tilings. Another specific contribution is the model in Chapter 4 for

describing the tesselations created by M. C. Escher. The model accounts for many of the

kinds of tesselations Escher created and culminates in an “Escherization” algorithm that can

help an artist design novel Escher-like tesselations from scratch.

• CAD applications. Computer-controlled manufacturing devices are becoming ever more

flexible and precise. The range of materials that can be manipulated by them is continuing

to grow. Many computer scientists and engineers are investigating ways these tools can be

used for scientific visualization, machining, and prototyping. I add to the list of applications

by demonstrating how computer-generated ornament can be coupled with computer-aided

manufacturing to produce architectural and decorative ornament quickly and easily.
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• The geometric aesthetic.George Hart is a mathematician and sculptor who creates wonder-

ful polyhedral sculptures in various media. He states [76] that his work “invites the viewer

to partake of the geometric aesthetic.” An aesthetic is a particular theory or philosophy of

beauty in art. It is the set of psychological tools that allow someone to appreciate art in a

particular genre or style. The geometric aesthetic is therefore a form of beauty derived pri-

marily from the geometry of a piece of art, from its shape and the mathematical relationships

among its parts. I believe that the geometric aesthetic extends beyond art to account for a

feeling of elegance in mathematics. The same mindset that allows one to appreciate Hart’s

sculptures accounts for the sublime beauty of what Erdős called a “proof from the book,” a

truly ingenious and insightful proof [82].

The work presented here is steeped in the geometric aesthetic, and in part has the goal of

creating new examples of geometric art. In this regard, its contributions are intended to take

part in the artistic discourse on the geometric aesthetic, to increase interest in it, and hopefully

to enrich it with the many results presented here.

1.4 Other work

This section discusses some recent work by others that is generally related to the computer gener-

ation of geometric ornament. Chapters 3 and 4 each contain additional discussions of related work

limited to their respective problem domains.

1.4.1 Floral ornament

An important precursor to the work in this dissertation is the paper by Wong et al. on floral orna-

ment [139]. They provide a modern approach to the analysis and creation of ornament, including

a taxonomy by which ornament may be classified and a “field guide” for recognizing the common

features of designs. Subsequently, they develop a system capable of elaborating floral designs over

finite planar regions.

Their algorithm decomposes the problem of creating floral designs into the specification of a

collection of primitive motifs that make up the designs, and the elaboration of those primitives over

a given region. The paper is concerned with the elaboration process, and leaves the construction of



9

suitable motifs to the artist.

Elaboration is handled by a growth model, a synthetic method of distributing design elements

over a region in an approximately uniform way. Growth is accomplished by applying rules to extend

the design from existing motifs into currently empty parts of the region. Beginning with a set of

“seeds,” the algorithm iteratively applies rules until no more growth is possible. The final design

can then be rendered by applying the drawing code associated with each of the motifs.

The value of the work of Wong et al. is that their innovations do not come at the expense of

tradition. Their approach is clearly respectful of the centuries of deeply-considered thought that

preceded the advent of computer graphics. Their algorithms emerge from an understanding of the

intent and methods of real ornamentation, and are not developed ex nihilo as devices that merely

appear consistent with historical examples.

For example, they eschew more traditional botanical growth models such as L-systems. The

most compelling reason they give is that L-systems are a powerful tool for modeling real plants,

which is exactly what floral ornament is not. There is no reason to believe that a simulation of the

biological process of growth should lead to attractive designs. Their growth model represents the

artist’s process is creating a stylized plant design, not the growth of an actual plant.

Although the approach of Wong et al. lists repetition as a principle of ornament, their repetition

is very loose and not constrained by global order such as symmetry. Therefore, while their results

might be appropriate for an illuminated manuscript (or web page) where the surface to be decorated

is small, it might be less successful in an architectural setting. Their repetition without order would

deprive the viewer of any global structure to extract from the design. The visual puzzle of non-

symmetric ornament is less interesting because there is no puzzle, only the incompressible fact of

the whole design.

1.4.2 Fractals and dynamical systems

The computer has not only been used as a tool for recreating preexisting ornamental styles. Com-

puters have also made possible styles that could not have been conceived of or executed without

their capacity for precise computation and brute-force repetition.

Fractals are probably the ornamental form most closely associated with computers. They have
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a high degree of order, but little symmetry. The Mandelbrot set has but a single horizontal line of

mirror reflection, but such a stunning degree of self-similarity that order is visible at every point

and at every scale. The correspondence between parts of the Mandelbrot set is always approximate,

creating an engaging visual experience. Many computer scientists continue to research interesting

ways to render the Mandelbrot set and fractals like it.

Chaos is closely related to fractal geometry. Field and Golubitsky [52] have created numerous

ornamental designs by plotting the attractors of dynamical systems. In particular, they have devel-

oped dynamical systems whose attractors have finite or wallpaper symmetry. In their work, we find

a true rebirth of ornamental design in the digital age.

1.4.3 Celtic knotwork

The art of the Celts was always non-representational and geometric [89]. With the arrival of Chris-

tianity to their region in the middle of the first millennium C.E. came the development of the distinc-

tive knotwork patterns most strongly associated with the Celts. Knotwork designs appear carved into

tombstones, etched into personal items, and most prominently rendered in illuminated manuscripts

such as the Lindisfarne Gospels and the Book of Kells. A design is formed by collections of ribbons

that weave alternately over and other each other as they cross. Often, human and animal forms are

intertwined with the knotwork, with ribbons becoming limbs and hair.

Celtic knotwork is the intellectual cousin of the Islamic star patterns to be discussed in Chapter 3.

Both can be reduced from a richly decorated rendering to an underlying geometric description. Both

are heavy users of interlacing as an aesthetic device. But most intriguing is the fact that in both cases,

the historical methods of design are now lost. Research into both Celtic knotwork and Islamic star

patterns has at times required the unraveling of historical mysteries.

For Celtic knotwork, one possible solution to the mystery is offered by George Bain [7], who

built upon the earlier theories of J. Romilly Allen. Allen suggested that knotwork was derived from

a transformation of plaitwork, the simple weave used in basketry. Bain presents a method based on

breaking crossings in plaitwork and systematically rejoining the broken ribbons.

Also building on the work of Allen, Cromwell [29] presents a construction method similar to

Bain’s, based on an arrangement of two dual rectangular grids. Cromwell explores one-dimensional
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frieze patterns that appear in Celtic art and shows how the structure of generated designs relates to

the arrangement of broken crossings in the underlying plaitwork.

The algorithms of Bain and Cromwell adapt readily to the computer generation of Celtic knot-

work. In a series of papers, Glassner describes Bain’s method and several significant extensions,

creating highly attractive knotwork imagery [56, 57, 58]. Zongker [141] implemented an interac-

tive tool similar to the one presented by Glassner. Other popular treatments of Celtic knots on the

internet are given by Mercat [111] and Abbott [3].

In an interesting alternative approach, Browne [17] uses an extended tile-based algorithm to fit

Celtic knots to arbitrary outlines (letterforms in his case). The technique works by filling the interior

of a region with a tiling whose tiles are as close as possible to squares and equilateral triangles. Using

a predefined set of tiles decorated with fragments of Celtic knotwork, he assigns motifs to tiles in

such a way that the fragments link up to form a continuous Celtic knotwork design. In some cases,

the result bears a strong resemblance to the illuminated letters of the ancient Celtic manuscripts.

Browne’s approach is certainly not the one used by the original artisans, although the final results

are fairly successful.



12

Chapter 2

MATHEMATICAL BACKGROUND

2.1 Geometry

The formalization of geometry began with the ancient Greeks. They took what had been an ad

hoc collection of surveying and measuring tools and rebuilt them on top of the bedrock of logic.

A remarkable journey began then and continues to the present day. The story is brilliantly told by

Greenberg [62] and summarized concisely by Stewart [130, Chapter 5]. Other valuable presenta-

tions of Euclidean and non-Euclidean geometry are given by Bonola [14], Coxeter [25], Faber [51],

Kay [97], and Martin [109].

In his monumental Elements, Euclid attempts to reduce the study of geometry to a minimal

number of required assumptions from which all other true statements may be derived. He arrives

at five postulates, primitive truths that must be accepted without proof, with the rest of plane ge-

ometry following as a reward. Over the years, some of the postulates (particularly the fifth) have

drifted to alternate, logically equivalent forms. One statement of Euclidean geometry, adapted from

Greenberg [62, Page 14], is as follows:

I. Any two distinct points lie on a uniquely determined line.

II. A segment AB may always be extended by a new segment BE congruent to a given seg-

ment CD.

III. Given points O and A, there exists a circle centered at O and having segment OA as a

radius.

IV. All right angles are congruent.

V. (Playfair’s postulate) Given a line l and a point P not on l, there exists a unique line m

through P that is parallel to l.

The development of a logical system such as Euclid’s geometry is a process of abstraction and

distillation. Euclid presented his five postulates as the basis for all of geometry, in the sense that



13

any other true statement in geometry could be derived from these five using accepted rules of log-

ical deduction. Today, we know that Euclid’s postulates are incomplete — they are an insufficient

foundation upon which to build all that he wanted to be true. Many mathematicians have since pro-

vided revised postulates that preserve the spirit of Euclid’s geometry and hold up under the careful

scrutiny of modern mathematics. In all cases the core idea remains to distill all possible truths down

to a minimal set of intuitive assertions.

There are two other senses in which this distillation must occur in order to make the logical

foundation of geometry self-contained. First, the objectsof discourse must be reduced to a suitable

primitive set. The postulates mention only points, lines, segments, circles, and angles. No mention is

made of polygons, parabolas, or a multitude of other geometric objects, because all such objects can

be defined in terms of the five mentioned in the postulates. Even segments, circles, and angles can

be defined in terms of points and lines. Euclid attempts to take this process to the limit, providing

definitions for points and lines. However, his definitions are somewhat enigmatic. Today, we know

that just as all truth must eventually bottom out in a set of primitive postulates, all identity must

reduce to a set of primitive objects. So we reduce plane geometry to two sorts of objects: points and

lines. These objects require no definition; as Hilbert famously remarked, geometry should be equally

valid if it were phrased in terms of tables, chairs, and beer mugs. The behaviour of these abstract

points and lines is determined by the postulates. We keep the names as an evocative reminder of the

origins of these objects.

The other chain of definition concerns the relationships between objects. The postulates mention

relationships like “lie on,” “congruent,” and “parallel.” Again, the chain of definition must bottom

out with some primitive set of relationships from which all others can be constructed. In modern

presentations of Euclidean geometry such as Hilbert’s [62, Chapter 3], three relationships are given

as primitive: incidence, congruence, and betweenness. Incidence determines which points lie on

which lines. Congruence determines when two segments or two angles have “the same shape.”

Betweenness is implicit in the definition of objects like segments (the segment AB is A and B

together with the set of points C such that C is between A and B). Again, these relationships do

not have any a priori definitions; their behaviour is specified and constrained through their use in

the postulates.

We are left then with geometry as a purely logical system (a first-order language, in mathe-
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matical logic [81, Section 4.2]). When establishing the validity of a statement in geometry, any

connection to its empirical roots is irrelevant. We call this system Euclidean geometry, or some-

times parabolic geometry.

In a sense though, geometry is still “about” objects like points and lines. Geometry can be

tied back to a concrete universe of points and lines through an interpretation. An interpretation

of Euclidean geometry is a translation of the abstract points and lines into well-defined sets, and

a translation of the incidence, congruence, and betweenness relations into well-defined relations

on those sets. The postulates of geometry then become statements in the mathematical world of

the interpretation. An interpretation is called a modelof geometry when all the postulates are true

statements.

The familiar Cartesian plane, with points interpreted as ordered pairs of real numbers, is a model

of Euclidean geometry. But it is a mistake to say that the Cartesian plane is Euclidean geometry.

Other inequivalent models are possible for the postulates given above. It was only in the nineteenth

century, when the primacy of Euclidean geometry was finally called into question, that mathemati-

cians worked to rule out these alternate models and make the logical framework of geometry match

up with the intuition it sought to formalize. Several systems (such as Hilbert’s) emerged that were

categorical: every model of the system is isomorphic to the Cartesian plane. In such categorical

systems, it is once again safe to picture Euclidean geometry as Euclid did, in terms of the intuitive

notions of points and lines.

2.1.1 Hyperbolic geometry

The fifth postulate, the so-called “parallel postulate,” is the source of one of the greatest controver-

sies in the history of science, and ultimately led to one of its greatest revolutions.

In any logical system, the postulates (also called the axioms) should be obvious, requiring only

a minimal investment of credulity. From the start, however, the parallel postulate was considered

much too complicated, a lumbering beast compared to the other four. Euclid himself held out as long

as possible, finally introducing the parallel postulate in order to prove his twenty-ninth proposition.

For centuries, mathematicians struggled with the parallel postulate. They sought either to replace

it with a simpler, less contentious axiom, or better yet to establish it as a consequence of the first
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four postulates. Neither approach proved successful; no alternate postulate was found that was

uncontroversial, and any attempts to formulate a proof either led to a dead end or involved a hidden

assumption, itself equivalent to the parallel postulate.

All of these efforts were based on one fundamental hidden assumption: that the only possible

geometry was that of Euclid. The possibility that an unfamiliar but perfectly valid geometry could

exist without the parallel postulate was unthinkable. Literally so, according to Kant, who in his

Critique of Pure Reasondeclared that Euclidean geometry was not merely a fact of the physical

universe, but inherent in the very nature of thought [62, Page 182].

Finally, in the nineteenth century, a breakthrough was made by three mathematicians: Bolyai,

Gauss, and Lobachevski. They separately realized that the parallel postulate was in fact independent

of the rest of Euclidean geometry, that it could be neither proven nor disproven from the other

axioms. Each of them considered an alternate logical system based on a modified parallel postulate

in which multiple lines, all parallel to l, could pass through point P . This new geometry appeared

totally self-consistent, and indeed was later proven to be so by Beltrami.1 Paulos [117] likens the

consistency of non-Euclidean geometry to the surprising but plausible incongruity that makes riddles

funny – the riddle in this case being “What satisfies the first four axioms of Euclid?”

Today, we refer to the non-Euclidean geometry of Bolyai, Gauss, and Lobachevsky as hyperbolic

geometry, the study of points and lines in the hyperbolic plane. Hyperbolic geometry is based on

the following alternate version of the parallel postulate:

V. Given a line l and a point P not on l, there exist at least two lines m1 and m2 through P

that are parallel to l.

In Euclidean ornamental designs, parallel lines can play an important role. To thicken a math-

ematical line l into a band of constant width w, we can simply take the region bounded by the two

parallels of distance w/2 from l. This approach presents a problem in hyperbolic geometry, where

these parallels are no longer uniquely defined. On the other hand, parallelism is not the defining

quality of a thickened line, merely a convenient Euclidean equivalence. What we are really after are

1Beltrami’s proof hinged upon exhibiting a model of non-Euclidean geometry in the Euclidean plane. Any inconsis-
tency in the logical structure of non-Euclidean geometry could then be interpreted as an inconsistency in Euclidean
geometry, which we are assuming to be consistent. This sort of relative consistencyis about the best one could hope
for in a proof of the validity of any geometry.
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the loci of points of constant perpendicular distance w/2 from l. These are called equidistant curves

or hypercycles, and they are always uniquely defined. In the Euclidean plane, equidistant curves are

just parallel lines. In the hyperbolic plane, they are curved paths that follow a given line.

There are several different Euclidean models of hyperbolic geometry; all are useful in different

contexts. Each has its own coordinate system. Hausmann et al. [78] give formulae for converting

between points in the three models.

In the Poincaŕe model, the points are points in the interior of the Euclidean unit disk, and the

lines are circular arcs that cut the boundary of the disk at right angles (we extend this set to include

diameters of the disk). The Poincaré model is conformal: the angle between any two hyperbolic lines

is accurately reflected by the Euclidean angle between the two circular arcs 2 that represent them.

The Poincaré model is therefore a good choice for drawing Euclidean representations of hyperbolic

patterns, because in some sense it does the best job of preserving the “shapes” of hyperbolic figures.

It also happens to be particularly well-suited to drawing equidistant curves; in the Poincaré model,

every equidistant curve can be represented by a circular arc that does not cut the unit disk at right

angles.

The points of the Klein modelare again the points in the interior of the Euclidean unit disk, but

hyperbolic lines are interpreted as chords of the unit disk, including diameters. The Klein model

is projective: straight hyperbolic lines are mapped to straight Euclidean lines. This fact makes the

Klein model useful for certain computations. For example, the question of whether a point is inside

a hyperbolic polygon can be answered by interpreting it through the Klein model as a Euclidean

point-in-polygon test.

The Minkowski model[40, 51] requires that we move to three dimensional Euclidean space.

Here, the points of the hyperbolic plane are represented by one sheet of the hyperboloid x2 + y2 −

z2 = −1, and lines are the intersections of Euclidean planes through the origin with the hyperboloid.

The advantage of The Minkowski model is that rigid motions (see Section 2.2 for more on rigid

motions) can be represented by three dimensional linear transforms. Long sequences of motions

can therefore be concatenated via multiplication, as they can in the Euclidean plane. Our software

implementations of hyperbolic geometry are based primarily on the Minkowski model, with points

2The angle between two arcs is measured as the angle between their tangents at the point of intersection.
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converted to the Poincaré model for output.

Note that although there are several models for hyperbolic geometry (including others not dis-

cussed here), it is still categorical. The Poincaré, Klein, and Minkowski models are all isomor-

phic [62, Page 236].

2.1.2 Elliptic geometry

Given a line l and a point P not on l, we have covered the cases where exactly one line through P is

parallel to l (Euclidean geometry) and where several lines are parallel (hyperbolic geometry). One

final case remains to be explored:

V. Given a line l and a point P not on l, every line through P intersects l.

Once again, this choice of postulate leads to a self-consistent geometry, called elliptic geometry.

In elliptic geometry, parallel lines simply do not exist.

A first attempt at modeling elliptic geometry would be to let the points be the surface of a three

dimensional Euclidean sphere. Lines are interpreted as great circles on the sphere. Since any two

distinct great circles intersect, the elliptic parallel property holds. This model is invalid, however,

because Euclid’s first postulate fails. Antipodal points lie on an infinite number of great circles.

A strange but simple modification to the spherical interpretation can make it into a true model

of elliptic geometry. A point is interpreted as a pair of antipodal points on the sphere. Lines are still

great circles. The identification of a point with its antipodal counterpart fixes the problem with the

first postulate, because no elliptic “point” is now more than a quarter of the way around the circle

from any other, and the great circle joining those points is uniquely defined.

Despite this antipodal identification, the elliptic plane can still be drawn as a sphere, with the

understanding that half of the drawing is redundant. Any elliptic figure will be drawn twice in this

representation, the two copies opposite one another on the sphere. Note also that the equidistant

curves on the sphere are simply non-great circles.

2.1.3 Absolute geometry

The parallel postulate is independent from the other four, which allows us to choose any of the three

alternatives given above and obtain a consistent geometry. But what happens if we choose noneof
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them? In other words, let us decide to leave the behaviour of parallel lines undefined, and develop

that part of geometry that does not depend on parallelism. We refer to this geometry, based only on

the first four postulates, as absolute geometry.

Formally, this choice presents no difficulties whatsoever. We have already assumed that the first

four postulates are consistent, and so they must lead to some sort of logical system. Furthermore,

we already know that many Euclidean theorems still hold in absolute geometry; these are the ones

whose proofs do not rely on the parallel postulate. The first twenty-eight of Euclid’s propositions

have this property.

In practice, the absolute plane is somewhat challenging to work with. As always, in order to

visualize the logical system represented by absolute geometry, we need a model. Such models are

easy to come by, because any model of parabolic, hyperbolic, or elliptic geometry is automatically

a model of absolute geometry! Of course, those models do not tell the whole story (or rather, they

tell more than the whole story), because in each case parallels have some specific behaviour. This

behaviour does not invalidate the model, but it imposes additional structure that can be misleading.

It is perhaps easier to imagine absolute geometry as a purely formal system, one that contains all

the constructions that are common to parabolic, hyperbolic, and elliptic geometry.

The model of elliptic geometry presented above can be somewhat difficult to visualize and ma-

nipulate. In some ways, it would be desirable to work directly with the sphere with no identification

of antipodal points. From there, perhaps an absolute geometry could be developed that unifies the

Euclidean plane, the hyperbolic plane, and the sphere in a natural way.

Unfortunately, as we have seen, the native geometry on the sphere violates Euclid’s first postu-

late. However, it turns out that by giving a slightly revised set of axioms, we can in fact develop a

consistent geometry modeled by the Euclidean sphere without the identification of antipodal points.

This geometry is called spherical geometry, or sometimes double elliptic geometry. Moving from

elliptic to spherical geometry requires some reworking of Euclid’s postulates, but is justified by the

convenience of a far more intuitive model.

Kay [97] develops an axiomatic system for spherical geometry. The trick is to start with ruler

and protractor postulates, axioms that provide formal measures of distance and angle. A (possibly

infinite) real number α is then defined as the supremum of all possible distances between points. On

the sphere, α is half the circumference; in the Euclidean and hyperbolic planes, α is infinite. Kay
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then insinuates α into his axioms, using it to do the bookkeeping necessary to avoid problematic

situations. For instance, his version of Euclid’s first postulate is as follows:

I. Any two points P and Q lie on at least one line; when the distance from P to Q is less than

α, the line is unique.

Kay’s presentation carefully postpones any assumption on parallelism until the final axiom. As

a result, we can consider the geometry formed by all the axioms except the last one. This is a form

of absolute geometry that can be specialized into parabolic, hyperbolic, and spherical (as opposed

to elliptic) geometry.

In the absence of any single model that exactly captures its features, one may wonder how

absolute geometry can be made practical. We do know that any theorem of absolute geometry will

automatically hold in parabolic, hyperbolic, and spherical geometry, since formally they are all just

special cases. By interpreting absolute geometry in various different ways, we can then view that

theorem as a true statement about the Cartesian plane, the Poincaré disk, the sphere, or any of the

other models discussed above. In effect, we can imagine an implementation of absolute geometry

that is parameterized over the model. In computer science terms, the interface has no inherent

representation of points or lines, but interprets the axioms of absolute geometry as a contract that

will be fulfilled by any implementation. A client program can be written to that contract, and later

instantiated by plugging in any valid model. This approach will be discussed in greater detail in

Section 3.6.

2.1.4 Absolute trigonometry

Trigonometry is the study of the relationships between parts of triangles. Triangles exist in absolute

geometry and can therefore be studied using absolute trigonometry. Bolyai first described some of

the properties of absolute triangles; his work was later expanded upon by De Tilly [14, Page 113].

Following De Tilly, we define two functions on the real numbers:©(x) and E(x). The function

©(x), or “circle-of-x,” is defined as the circumference of a circle of radius x. To obtain a definition

for E(x), let l be a line and c be an equidistant curve erected at perpendicular distance x from l.

Take any finite section out of the curve, and define E(x) as the ratio of the length of that segment

to the length of its projection onto l. It can be shown that this value depends only on x. From these
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©(a) =©(c) sin A cos A = E(a) sin B
©(b) =©(c) sinB cos B = E(b) sin A

E(c) = E(a)E(b)

Figure 2.1 Trigonometric identities for a right triangle in absolute geometry. When in-
terpreted in Euclidean geometry, the equation©(a) = ©(c) sin A becomes “sine equals
opposite over hypoteneuse,” and cos A = E(a) sinB becomes cos A = sin(π

2 − A). The
equation E(c) = E(a)E(b) is vacuously true (and therefore not particularly useful) in Eu-
clidean geometry, but in hyperbolic and spherical geometry it can be seen as one possible
analogue to the Pythagorean theorem.

two functions, we can also define T(x) = ©(x)/E(x), and the three inverses ©−1(x), E−1(x),

and T−1(x).

Bolyai initiated absolute trigonometry with the observation that the sines of the angles of a

triangle are as the circumferences of circles with radii equal to the lengths of the opposite sides.

Expressed in the notation just given, we can say that for any triangle with vertices ABC and opposite

edges abc, ©(a)/ sin A = ©(b)/ sin B = ©(c)/ sin C. By substituting the Euclidean definition

of ©(x), this relationship can be seen as a generalization of the sine law to absolute geometry.

Other identities of absolute geometry that apply specifically to right triangles are summarized in

Figure 2.1.

We can give formulae for ©(x) and E(x), though their definitions must be broken down into

cases. Each case corresponds to the choice of a parabolic, hyperbolic, or spherical model.

parabolic hyperbolic spherical

©(x) 2πx 2π sinhx 2π sinx

E(x) 1 cosh x cos x

While it is perfectly valid to analyze absolute triangles abstractly using absolute trigonometry,

actual values for side lengths and vertex angles can be derived only by resorting to one of the models.

This curious fact follows from the difference between the axiomatic and analytic views of geometry.

Because Euclidean geometry is categorical, the usual trigonometric functions in the Cartesian plane
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are the only ones (up to isomorphism) that satisfy the axiomatic relationships in a Euclidean triangle.

However, absolute geometry is not categorical, meaning that different, inequivalent trigonometric

functions can (and do) hold under different models. We are not used to making this distinction,

because in ordinary Euclidean geometry there effectively is no distinction. It can be challenging to

one’s intuition to visualize such functions that are well-defined formally but not analytically.

2.2 Symmetry

The mathematical tools behind a formal treatment of symmetry are relatively new, but our apprecia-

tion of symmetric patterns goes back millennia [137]. In addition to its usefulness in many branches

of science, symmetry is often used to study art and ornament [127, 135]. M.C. Escher interacted

with the growth of symmetry theory, creating new art based on the mathematical results that emerged

during his lifetime [124].

The original conception of symmetry, as conveyed by the dictionary definition, is expressed with

words such as beauty, balance, and harmony. The word was and still is used to refer to a balance of

components in a whole.

The contemporary non-scientific usage of the word, as Weyl points out, refers to an object

whose left and right halves correspond through reflection in a mirror [137]. Thus a human figure, or

a balance scale measuring equal weights, may be said to possess symmetry.

In light of the formal definition of symmetry to come, we qualify the particular correspondence

described above as “bilateral symmetry.” Bilateral symmetry is certainly a familiar experience in

the world around us; it is found in the shapes of most higher animals. The prevalence of bilateral

symmetry can be explained in terms of the body’s response to its environment. Whereas gravity

dictates specialization of an animal from top to bottom and locomotion engenders differentiation

between front and back, the world mandates no intrinsic preference for left or right [137, Page 27].

An animal must move just as easily to the left as to the right, resulting in equal external structure on

each side. Indeed, lower life forms whose structure is not as subject to the exigencies of gravity and

linear locomotion tend towards more circular or spherical body plans.

Let us regard the mirror of bilateral symmetry as a reflection through a plane in space. Saying

that the mirror reconstructs half of an object from the other half is equivalent to saying that the
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reflection maps the entire object onto itself. We formalize the notion of symmetry by noting two

properties of this reflection. It preserves the structure of space, just as a (flat) mirror preserves the

shapes of objects, and it maps the object onto itself, allowing us to think of its two halves as having

the same shape. By generalizing from these two properties, we will arrive at a formal definition of

symmetry.

Given a mathematical space S, we identify some important aspect of the mathematical structure

of S, and define a set of motionsM to be automorphisms of S that preserve that structure. Then,

given some figure F ⊆ S, we can say that a motion σ is a symmetryof F if σ(F ) = F , that is, if σ

maps the figure F to itself.

This somewhat vague definition achieves rigour when we give a specific meaning to “mathe-

matical structure.” As a simple example, let S be the integers from 1 to n, and consider preserving

no structure of S beyond the set-theoretic. Then the motions M are just the n! permutations of

the members of S, and every k-element figure (subset) of S has k!(n − k)! symmetries, each one

permuting the figure internally and the remaining elements of S externally.

The important mathematical spaces in the present work are the parabolic, the hyperbolic, and

the spherical planes. We know from Kay’s presentation [97] that each of these planes has a notion

of distance, defined both formally in the axioms of geometry and concretely in the models. If we

let S be the set of points in one of these planes, then we can define the motions to be the isometries

of S: the automorphisms that preserve distance. This point of view leads to the most important

and most common definition of symmetry: a symmetry of a set F is an isometry that maps F to

itself. We will also sometimes use the term rigid motion in the place of isometry; isometries are

rigid in the sense that they do not distort shape. In the Euclidean plane, the symmetries of a figure

are easily visualized by tracing the figure on a transparent sheet and moving that sheet around the

plane, possibly flipping it over, so that that original figure and its tracing line up perfectly [68, Page

28].

2.2.1 Symmetry groups

For a given F ⊆ S, let Σ(F ) be the set of all motions that are symmetries of F . This set has a

natural group structure through composition of automorphisms. The set Σ(F ) is therefore called
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the symmetry groupof F .

The orbit of a point p ∈ F under a symmetry group G is the set {σ(p)|σ ∈ G}. When S is

equipped with a measure of distance, we say that the symmetry group G is discreteif for every point

p, the orbit of p does not get arbitrarily close to p. More precisely, if d(p, q) is the distance between

points p and q in S, then G is discrete if for all p, inf{d(p, σ(p))|σ ∈ G, σ(p) �= p} > 0. A circle

is an example of a figure with non-discrete symmetry; every point on the circle is a limit point of

its orbit. In this work, we restrict ourselves to discrete symmetry groups, a technical but important

point that simplifies the classification of the groups we will use. There exist ornamental designs that

can be profitably analyzed using non-discrete symmetry groups, but such designs will not arise here.

Symmetry is a measure of redundancy in a figure, and so we ought to be able to use our un-

derstanding of the symmetries of a figure to factor out the redundancy. The result would be a

minimal, sufficient set of non-redundant information that, together with the symmetries, completely

describe the original figure. For any discrete symmetry group, this set exists and is called the

group’s fundamental regionor fundamental domain. One possible definition, given by Grünbaum

and Shephard [68, Section 1.6], says that U ⊆ S is a fundamental region of symmetry group G if

the following conditions hold:

(a) U is a connected set with non-empty interior.

(b) No two points in U have the same orbit under G (or equivalently, for all p, q ∈ U , there

does not exist a σ ∈ G such that σ(p) = q).

(c) U is as big as possible; that is, no other set satisfying (a) and (b) contains U as a proper

subset.

The first condition ensures that the fundamental region is relatively simple topologically. The

other two guarantee that the region has “exactly enough” information — condition (b) rules out

redundancy and condition (c) forces every orbit to be represented by some point in U .

It is important from an algorithmic standpoint to understand a symmetry group’s fundamental

region. The fundamental region contains a single, non-redundant copy of the information in a

symmetric figure. Therefore, in order to draw the figure as a whole, it suffices to draw all images of

the fundamental region under the motions of the symmetry group. The drawing process can be seen

as a replication algorithm that determines the set of motions to apply, and a subroutine that draws a
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c4 c5 d4 d5

Figure 2.2 Figures in the Euclidean plane with cn or dn symmetry. Each figure is labeled
with its symmetry group.

transformed copy of the fundamental region.

2.2.2 Some important symmetry groups

The discrete symmetry groups in the Euclidean plane are well understood. Up to isomorphism,

only a limited collection of discrete groups can be symmetry groups of Euclidean figures. They

can be classified according to the nature of the subgroup of the symmetry group consisting of just

translations:

• If the translational subgroup is trivial, then the symmetry group must be finite, isomorphic

either to cn, the cyclic group of order n, or dn, the dihedral group of order 2n. The group cn

is the symmetry group of an n-armed swastika, and dn is the group of a regular n-gon. These

possibilities were enumerated by Leonardo Da Vinci, and the completeness of the enumer-

ation is sometimes called “Leonardo’s Theorem” [109, Section 30.1]. Examples of figures

with cn and dn symmetry are shown in Figure 2.2.

• If all the translations are parallel, then the symmetry group must be one of the seven frieze

groups. Friezes are decorations executed in bands or strips, and the frieze groups are particu-

larly well suited to their study. A frieze patternis a figure with a frieze group as its symmetry

group.

• The remaining case is when the translational subgroup contains translations in two non-

parallel directions. This category consists of the seventeen wallpaper groups. A wallpaper
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[6, 3]

[5, 3] [7, 3]

Figure 2.3 Examples of symmetry groups of the form [p, q]. Each example visualizes the
lines of reflection (shown as dotted lines) and centers of rotation of the symmetry group.
The green, red, and blue forms represent centers of p-fold, q-fold, and twofold rotation,
respectively.

pattern(sometimes called a periodic pattern) is a figure with a wallpaper group (or a periodic

group) as its symmetry group. The wallpaper patterns are “all-over” patterns in the sense that

the pattern repeats in every direction, not just in one distinguished direction as is the case with

frieze patterns. A wallpaper pattern necessarily has a bounded fundamental region.

For images of frieze and wallpaper patterns, see for example Grünbaum and Shephard [68,

Section 1.3], Beyer [11] (a lovely presentation in the context of quilt design), or Shubnikov and

Koptsik [127]. Washburn and Crowe [135] give many examples and include a flowchart-based

technique for classifying a given pattern.
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The groups cn and dn can also occur as the symmetries of figures in the hyperbolic plane and

on the sphere, but the frieze and wallpaper patterns are very much tied to Euclidean geometry. The

linear independence implied by translational symmetry in two non-parallel directions only makes

sense in an affine space; the Euclidean plane is affine, whereas the sphere and hyperbolic plane are

not.

A different set of all-over patterns leads to a family of symmetry groups that span Euclidean and

non-Euclidean geometry. For every p ≥ 2 and q ≥ 2, there is a group [p, q], which can be seen as

the symmetry group of a tiling of the plane by regular p-gons meeting q around every vertex [26,

Chapter 5]. These regular tilings are discussed in greater detail in Section 2.3.1.

A simple calculation shows that each group [p, q] is tied to one of the three planar geometries. In

particular, [p, q] is a symmetry group of the Euclidean, hyperbolic, or spherical plane when 1/p+1/q

is respectively equal to, less than, or greater than 1/2. Note that [p, q] is isomorphic to [q, p], even

though the regular tilings they are based on are different. Three examples of [p, q] symmetry groups

are shown in Figure 2.3.

The fundamental region of [p, q] is a right triangle with interior angles π/p and π/q. The entire

group can be said to be generatedby reflections in the sides of this triangle, in the sense that every

symmetry in the group is the product of a finite number of such reflections.

2.3 Tilings

In their indispensible book Tilings and Patterns[68], Grünbaum and Shephard develop an extensive

theory of tilings of the Euclidean plane. They begin from first principles with a nearly universally

inclusive definition of tilings, one that permits so many pathological cases that the resulting objects

cannot be meaningfully studied. They then proceed to layer restrictions upon the basic definition,

creating ever smaller families of tilings that yield to more and more precise analysis and classifi-

cation. Although the material persented here is largely drawn from Tilings and Patterns, it should

not be considered to apply only in the Euclidean plane. Most of the basic facts about tilings apply

equally well in non-Euclidean geometry.

For the purposes of creating the kinds of ornaments we will encounter in this work, we can jump

in fairly late in the process and accept the following definition, corresponding to their notion of
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Figure 2.4 A tiling for which some tiles intersect in multiple disjoint curves. The inter-
section between the two tiles outlined in bold is shown in red; it consists of two disjoint
line segments.

“normal tiling” [68, Section 3.2].

Definition (Tiling) A tiling is a countable collectionT of tiles{T1, T2, . . .}, such that:

1. Every tile is a closed topological disk.

2. Every point in the plane is contained in at least one tile.

3. The intersection of every two tiles is empty, a point, or a simple closed curve.

4. The tiles are uniformly bounded; that is, there existu, U > 0 such that every tile contains a

closed ball of radiusu and is contained in a closed ball of radiusU .

The most natural property associated with tilings, that they cover the plane with no gaps and

no overlaps, is handled by conditions 2 and 3. Conditions 1 and 4 ensure that the tiles are reason-

ably well behaved entities that do not have exotic topological properties or become pathological at

infinity.

Observe that condition 3 does more than prevent tiles from overlapping. It also prevents tilings

like the one shown in Figure 2.4 from arising, where the boundary between two tiles is disconnected.

When two tiles intersect in a curve, we may then refer to this well-defined curve as a tiling edge.
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A

B

C

Figure 2.5 The features of a tiling with polygonal tiles. For the tile highlighted in blue,
A is a shape vertex but not a tiling vertex, B is a tiling vertex but not a shape vertex, and
C is both a tiling vertex and a shape vertex. The tiling polygon is shown as a dashed red
outline.

Every tiling edge begins and ends at a tiling vertex, a place where three or more tiles meet. The tiling

vertices are topologically important points in a tiling, as they determine the overall connectivity of

the tiles and adjacencies between them. We will sometimes use the term “tiling polygon” to refer to

the polygon joining the tiling vertices that lie on a single tile.

When the tiles in a tiling are polygons, there can be some confusion between the tiling vertices

and edges as described above and the vertices and edges of individual polygons. To avoid confusion,

we refer to the latter features when necessary as shape verticesand shape edges. Shape vertices and

edges are properties of tiles in isolation; tiling vertices and edges are properties of the assembled

tiling. Although the features of the tiling occupy the same positions as the features of the tiles, they

may break down differently, as shown in Figure 2.5. When the two sets of features coincide (that is,

when the tiling vertices are precisely the shape vertices), the tiling is called edge-to-edge.

In many of the tilings we see every day on walls and streets, the tiles all have the same shape. If

every tile in a tiling is congruent to some shape T , we say that the tiling is monohedral, and that T

is the prototileof the tiling. More generally, a k-hedraltiling is one in which every tile is congruent
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to one of k different prototiles. We also use the terms dihedraland trihedral for the cases k = 2 and

k = 3, respectively. Note that a tiling need not be k-hedral for any finite k.

Just as with any other object in the plane, a tiling can be symmetric. Symmetries are a property

of figures in the plane; the figure of a tiling can be taken as the set of points that lie on the boundary

of any tile. Alternatively, we can alter the definition of symmetry slightly, saying that a symmetry

of a tiling is a rigid motion that maps every tile onto some other tile.

2.3.1 Regular and uniform tilings

A regular tiling is an edge-to-edge tiling of the plane by congruent regular polygons. In the Eu-

clidean plane, an easy calculation shows that the only regular tilings are the familiar ones by squares,

equilateral triangles, and regular hexagons.

We may then ask about edge-to-edge tilings of the plane using two or more different regular

polygons as prototiles. In general, we can say very little about an arbitrary tiling of this type. To get

more predictable behaviour, we further require that the vertices be indistinguishable, in the sense that

any vertex can be mapped onto any other via a rigid motion that is also a symmetry of the tiling as a

whole.3 Given such a restriction, we can describe the tiling using a vertex symbol. A vertex symbol

is a sequence p1.p2 . . . pn that enumerates, in order, the regular polygons encountered around every

vertex in the tiling. The tilings that can be described using vertex symbols in this way are called

uniform tilings.

In the Euclidean plane, we can enumerate all vertex symbols that correspond to legal uniform

tilings of the plane [68, Section 2.1]. The result is a set of eleven distinct tilings, sometimes also

known as the Archimedean tilings. We name these tilings by placing their vertex symbols in paren-

theses. Among the uniform tilings the regular tilings are the ones whose vertex symbols are of the

form pq: (44) for squares, (36) for equilateral triangles, and (63) for regular hexagons. (In a vertex

symbol, we abbreviate blocks of repeated values using exponentiation.) Figure 2.6 shows the eleven

Archimedean tilings.

There are vertex symbols that clearly cannot correspond to tilings of the Euclidean plane because

3Such tilings are usually called isogonal. In an isogonal tiling, the vertices form one transitivity class with respect to
the tiling’s symmetries. Isohedrality, a definition based on transitivity of whole tiles, will be encountered in Section 2.4.
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(36) (44) (63) (34.6)

(33.42) (32.4.3.4) (3.4.6.4) (3.6.3.6)

(3.122) (4.6.12) (4.8.8)

Figure 2.6 The eleven uniform Euclidean tilings, also known as Archimedean tilings.
The tiling (34.6) occurs in two mirror-image forms.

the interior angles of the regular polygons around a vertex do not sum to 360 degrees. For example,

five equilateral triangles leave a gap when arranged around a point. Yet there is a familiar shape

with five equilateral triangles around every point: the icosahedron. Indeed, if we “inflate” the

icosahedron so that all its edges become arcs of great circles on a unit sphere (line segments in

spherical geometry), the result is a regular tiling of the sphere that can legitimately be called (35).

In general, a given vertex symbol p1.p2 . . . pn may describe a Euclidean, spherical, or hyperbolic

tiling (or no tiling at all). If there is a tiling associated with the symbol, the tiling will be Euclidean,

spherical, or hyperbolic when
∑n

i=1
1
pi

is respectively equal to, greater than, or less than 1
2 . In

particular, for any p ≥ 3 and q ≥ 3 there is a regular tiling (pq), consisting of regular p-gons

meeting q around every vertex. We have already seen the three Euclidean cases. The five spherical
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(53) (54) (55)

(43) (44) (45)

(33) (34) (35)

Figure 2.7 Some Euclidean and non-Euclidean regular tilings.

cases correspond to the Platonic solids. The remaining cases are all hyperbolic. Some examples of

regular tilings are shown in Figure 2.7. As discussed in Section 2.2.2, each regular tiling (pq) has

symmetry group [p, q], generated by reflections in a right triangle with interior angles π/p and π/q.

There is no simple mathematical formula for deciding whether an arbitrary vertex symbol can be

realized as a uniform tiling. For the most part, one simply tries to build the tiling, either discovering

that all roads lead to contradictions, or finding a pattern that allows the tiling to be continued forever.

As in the Euclidean case, the uniform tilings of the sphere are completely enumerated4 – they

4The uniform tilings of the sphere should not be confused with the so-called uniform polyhedra[77]. A uniform
polyhedron is allowed to have non-convex faces and may pass through itself. These polyhedra follow from a natural
extension of the notion of uniform tiling in which the vertex symbol is allowed to have rational entries. There are
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correspond to the five Platonic and thirteen Archimedean solids [136].

The existence of infinitely many regular tilings of the hyperbolic plane implies that there are

infinitely many uniform tilings. Enumerating all possible uniform hyperbolic tilings remains an

active area of inquiry. One approach is to define functions that transform a regular tiling into a

related uniform tiling. Many of these functions are hyperbolic equivalents of spherical versions

used by Hart to create novel polyhedra [75] (these functions implement what Hart calls “Conway

notation”). Mitchell uses a similar idea to prove the existence of many parameterized families of

hyperbolic uniform tilings [112].

Throughout the foregoing discussion, we have avoided the question of whether a given vertex

symbol uniquely determines a uniform tiling. As Grünbaum and Shephard point out, there is no

reason why this should necessarily be true, but it happens that in the Euclidean plane the uniform

tilings are “just barely” unique [68, Page 64]. The same could be said for the sphere. In the hy-

perbolic plane, there is no guarantee of uniqueness; combinatorially distinct uniform tilings exist

with the same vertex symbol [107]. The lack of uniqueness further complicates the enumeration of

uniform hyperbolic tilings.

2.3.2 Laves tilings

Every uniform tiling has a well-defined geometric dual, obtained by replacing every n-sided face

by an n-valent vertex and vice versa. These dual tilings are monohedral and have the property

that every tiling vertex is regular: the edges leaving the vertex are evenly spaced around it. In the

Euclidean plane, these duals are called the Laves tilings, and they are given names analogous to

their Archimedean duals. They are depicted in Figure 2.8. The Laves tilings will prove useful in

Section 4.5, where they serve as a set of “defaults” from which to develop more complex tilings.

2.3.3 Periodic and aperiodic tilings

A periodic tiling is a tiling of the Euclidean plane with periodic symmetry. That is, there exist two

linearly independent directions of translational symmetry. In addition to a fundamental region, every

periodic tiling has a translational unit, which is a fundamental region of the translational subgroup

seventy-five uniform polyhedra.
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[36] [44] [63] [34.6]

[33.42] [32.4.3.4] [3.4.6.4] [3.6.3.6]

[3.122] [4.6.12] [4.8.8]

Figure 2.8 The eleven Laves tilings. Each one is the dual of a corresponding Archimedean
tiling. The tiling [34.6] occurs in two mirror-image forms.

of the tiling’s symmetry group. The translational unit can always be chosen to be a parallelogram

with sides equal to two of the tiling’s shortest non-parallel translational vectors.

The behaviour of periodic tilings is much more predictable than that of tilings in general because

this behaviour only varies over a single translational unit. In a periodic tiling, a translational unit can

be assembled from a finite number of tiles, guaranteeing that there are only finitely many different

tile shapes. Each prototile can only occur in finitely many orientations and reflected orientations. We

refer to these orientations collectively as the prototile’s aspects, and distinguish the direct aspects

from the reflected aspectswhen necessary.

At the opposite end of the spectrum, aperiodic tilingshave received a great deal of attention over

the past few decades, both from tiling theorists and lay audiences. Especially popular are Penrose’s
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(a) (b)

Figure 2.9 The two famous aperiodic tilings of Penrose. The “kite and dart” tiling is
shown in (a) and thin and thick rhombs in (b).

aperiodic tilings, which have provided a steady stream of results and inspiration in physics [74,

Section 9.8], algebraic geometry [23], and the popular mathematical press [119, Chapter 7]. Of the

aperiodic tilings devised by Penrose, the most well known are the ones shown in Figure 2.9, made

up either of “kites” and “darts” or thin and thick rhombs.

Like the Mandelbrot set, the Penrose tilings are ambassadors of the geometric aesthetic, bringing

their message of mathematical beauty to a general audience. A quick survey of the Geometry

Junkyard’s web page on Penrose tilings [46] shows dozens of non-technical ways that they have

been applied. They have been fashioned into puzzles, games, and fridge magnets; used to cover

walls, floors, and windows; even sewn into lace doilies. Glassner has discussed the creation of

graphical ornament based on Penrose tilings [54, 55].

A tiling that is not periodic is called nonperiodic. A frequent but incorrect assumption is that

the definitions of aperiodic and nonperiodic coincide. In fact, the aperiodic tilings are a very special

subset of the nonperiodic tilings. It is worthwhile to clarify the distinction between the two, showing

why the aperiodic tilings are an active and exciting area of research.
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Figure 2.10 A contrived example of how even a very simple shape may yield aperiodic
tilings. A spiral path is used to place digits from the binary expansion of π, as given
by Wolfram [138, Page 137]. Each digit is then used to place a pair of bricks, oriented
vertically to represent a 0 and horizontally to represent a 1. The resulting tiling, when
extended to the whole plane, is clearly aperiodic, even though the brick prototile could
easily be used to construct periodic tilings. There exist uncountably many aperiodic tilings
based on this prototile.

Lack of periodicity is not in itself a very surprising property. One might argue that nonperiodicity

is the common case in the universe of tilings, and that the periodic tilings represent small pockets

of order in a sea of chaos. This situation is reminiscent of the disposition of the rational numbers,

peppered among the much more common irrationals. This analogy can be interpreted quite literally:

a number is rational precisely when its digit sequence is periodic. To move from this chaos to a

definition of aperiodicity, we must must narrow our point of view significantly.

It is easy to construct tilings where every tile shape is unique – consider, for example, the Voronoi

diagram induced by an infinite integer lattice whose points have been jittered randomly. Clearly

there can be no hope of periodicity in such a case, but this fact seems unimpressive. In developing a

definition of aperiodicity, we therefore consider only those nonperiodic tilings with a finite number

of prototiles, i.e., those that are k-hedral for some k.

Under this restricted definition, we can still construct very simple nonperiodic tilings. Even a

2-by-1 brick yields an infinite variety, as demonstrated in Figure 2.10. These tilings seem contrived,

however, because the same brick can easily be made to tile periodically. Nonperiodic tilings become
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Figure 2.11 Sample matching conditions on the rhombs of Penrose’s aperiodic tile set
P3. The unmodified rhombs (indicated by dotted lines) can form many periodic tilings.
The puzzle-piece deformations on the tile edges guarantee that any tiling formed from
these new shapes will be aperiodic.

truly interesting when we take into account all possible alternative tilings that can be constructed

from the same set of prototiles. We call a set of prototiles an aperiodic tile setwhen every tiling

admitted by that set is nonperiodic. (We also ask that the set admit at least one tiling!) We can then

define an aperiodic tiling as a tiling whose prototiles are an aperiodic tile set. An aperiodic tiling

is one that is “essentially nonperiodic,” in the sense that no rearrangement of its tiles will achieve

periodicity. When used to refer to a particular tiling, aperiocity is therefore a far reaching concept —

it encompasses all possible tilings that can be formed from the same prototiles.

The Penrose tilings highlight the special behaviour of aperiodic tilings. Consider the tiling by

Penrose rhombs shown in Figure 2.9(b). By themselves, the two rhombs do not form an aperiodic

tile set; they can be arranged into both periodic and nonperiodic tilings. What makes the rhombs

aperiodic are additional “matching conditions” that are imposed on them, limiting the ways that

two tiles may be adjacent to one another. These matching conditions can be expressed in a number

of ways. One possibility is to modify the shapes of the tiles by adding protrusions to the rhomb

edges, so that the tiles must snap together like pieces in a jigsaw puzzle [68, Section 10.3] (we will

exploit these geometric matching conditions in Section 4.6). A set of protusions that express the

matching conditions is shown in Figure 2.11. It is these two modified shapes that form an aperiodic

tile set, known as the Penrose tile set P3 (the modified kite and dart are known as P2). Many sets of
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prototiles must be endowed with similar matching conditions to enforce aperiodicity. The matching

conditions are typically not shown when the tilings are rendered, perhaps leading to the confusion

between nonperiodicity and aperiodicity.

As it turns out, Penrose tilings have even more structure than that determined by the aperiodicity

of their prototiles. A beautiful argument shows that even though there are infinitely many different

combinatorially inequivalent Penrose tilings from a given set of prototiles, they are all indistinguish-

able on any bounded region of the plane. Given some Penrose tiling, if we let P denote the set of

tiles that lie inside some bounded region of the plane, then P will occur infinitely often in every Pen-

rose tiling by those same prototiles. Tilings like these seem to live right on the edge of periodicity,

and receive the special designation quasiperiodic.

For many years, research in aperiodic tilings has sought to create ever smaller aperiodic tile

sets. The first aperiodic sets contained thousands of prototiles [68, Chapter 11]. Penrose managed

to bring the minimum number of prototiles needed down to two. Other small aperiodic tile sets

have been discovered by Ammann [68, Section 10.4] and Goodman-Strauss [61]. However, nobody

has been able to improve upon this result or to show that at least two tiles shapes are required.

The question of whether there exists an aperiodic tile, a single shape that tiles only aperiodically,

remains open [28, Section C18], and is one of the most beautiful unsolved problems in geometry.

2.4 Transitivity of tilings

For two congruent tiles T1 and T2 in a tiling, there will be some rigid motion of the plane that

carries one onto the other (there may in fact be several). A somewhat special case occurs when

the rigid motion is also a symmetry of the tiling. In this case, when T1 and T2 are brought into

correspondence, the rest of the tiling will map onto itself as well. We then say that the two tiles are

transitively equivalent.

Transitive equivalence is an equivalence relation that partitions the tiles into transitivity classes.

When a tiling has only one transitivity class, we call the tiling isohedral. More generally, a k-

isohedral tiling has k transitivity classes. An isohedral tiling is one in which a single prototile can

cover the entire plane through repeated application of rigid motions from the tiling’s symmetry

group. In an isohedral tiling, there is effectively no way to tell any tile from any other.
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Figure 2.12 An example of a monohedral tiling that is not isohedral. The two tiles labeled
A and B cannot be in the same transitivity class, which can be seen by the different ways
each is surrounded by its neighbours. This tiling is 2-isohedral.

Two tiles in the same transitivity class must obviously be congruent, but the converse need not

be true. Figure 2.12 shows a monohedral tiling with two transitivity classes. The two classes of tiles

can be distinguished by the arrangement of a tile’s neighbours around it.

As with the definition of aperiodicity, while the tiling given above is 2-isohedral, it seems that

way only in a weak sense, because the same shape also tiles the plane isohedrally. We must ask,

therefore, whether there exists an anisohedral tile, a single shape that tiles the plane, but never iso-

hedrally. In 1900, Hilbert seemed to take it for granted that no such shape can exist [68, Section 9.6].

In 1935, however, Heesch demonstrated an anisohedral prototile [79], reproduced in Figure 2.13.

In Heesch’s example, a single prototile generates tilings with two transitivity classes. We there-

fore specify that the given tile is 2-anisohedral, and generalize the definition, calling a prototile

k-anisohedralif every tiling it admits has at least k transitivity classes. Grünbaum and Shephard

exhibit a collection 2- and 3-anisohedral pentagons, and ask for what values of k there exist k-

anisohedral tiles [68, Section 9.3]. In 1993, Berglund found a 4-anisohedral prototile, and called

for examples with k ≥ 5 [10]. Since 1996, using computer searches over polyominoes, polyia-
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Figure 2.13 Heesch’s anisohedral prototile. No tiling that can be assembled from this
shape will be isohedral.

monds, and polyhexes,5 Joseph Myers has demonstrated k-anisohedral tilings for all k ≤ 9 [115].

There seems to be no reason to assume an upper bound on possible values of k, though one must

imagine the search will become more difficult each time k increases. The search for k-anisohedral

prototiles is related to the search for an aperiodic prototile, in the sense that an aperiodic prototile is

∞-anisohedral.

2.4.1 Isohedral tilings

By definition, an isohedral tiling is bound by a set of geometric constraints: congruences between

tiles must be symmetries of the tiling. Grünbaum and Shephard show that those geometric con-

straints can be equated with a set of combinatoricconstraints expressing the adjacency relationship

a tile maintains across its edges with its neighbours. They prove that the constraints yield a divi-

5A polyominois the union of a finite set of connected squares from the regular tiling by squares. Polyiamondsand
polyhexescan be defined analogously from the regular tilings by triangles and hexagons. A general introduction to the
field is given by Golomb [59], who coined the term; Grünbaum and Shephard discuss polyominoes as tilings of the
plane [68, Section 9.4].
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IH41 IH43 IH44

IH61IH55 IH71

Figure 2.14 An isohedral tiling type imposes a set of adjacency constraints on the tiling
edges of a tile. When the bottom edge of the square deforms into the dashed line, the
other edges must respond in some way to allow the new shape to tile. The six resulting
prototiles tiles here are from six different isohedral types, and show six of the possible
responses to the deformation.

sion of the isohedral tilings into precisely 93 distinct typesor families,6 referred to individually as

IH1, . . . , IH93 and collectively as IH [68, Section 6.2]. Each family encodes information about

how a tile’s shape is constrained by the adjacencies it is forced to maintain with its neighbours. In

12 of these types, the adjacency relationship can only be realized by placing markingson tiles that

indicate their orientations. We will primarily be concerned with the other 81 types, where the com-

binatoric structure of the tiling can be expressed geometrically through deformations to the tiling

edges. A change to a tiling edge is counterbalanced by deformations in other edges; which edges

respond and in what way is dependent on the tiling type, as shown in Figure 2.14. In what follows,

we review the classification and notation used with the isohedral tilings.

The combinatorial structureof an isohedral tiling T is an infinite graph whose vertices are the

tiling vertices of T , and where two vertices are connected by an edge if the two corresponding tiling

vertices are connected by a tiling edge. Two isohedral tilings can then be said to be combinatorially

equivalentwhen their combinatorial structures are isomorphic. Combinatorial equivalence parti-

tions the isohedral tilings into eleven classes, referred to as combinatorial types, or more commonly

as topological types.7 Each topological type has one of the eleven Laves tilings as a distinguished

6In tiling theory, seemingly arbitrary numbers like 93 are not uncommon; enumerations of families of tilings tend to
have sets of constraints that collapse certain cases and fracture others.

7The use of the term “topological type” would seem to suggest that the two tilings are topologically, and not combina-
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T1

T2

Figure 2.15 An example of an isohedral tiling of type IH16. A single translational unit
of the tiling is shown through the two translation vectors T1 and T2 and the three coloured
aspects.

representative, and we name the type using the vertex symbol of the corresponding Laves tiling. For

example, Figure 2.15 shows an isohedral tiling of type IH16. We can see that every tile has six

tiling vertices, all of valence three, meaning that IH16 is of topological type 36.

Every isohedral tiling is both monohedral and periodic, meaning that its behaviour over the

entire plane can be summarized by specifying the aspects of the single prototile that make up a

translational unit, and two linearly-independent translation vectors that replicate that unit over the

plane. IH16 has three aspects, shown in varying shades of blue in Figure 2.15. These three tiles

comprise one possible translational unit with translation vectors T1 and T2.

The adjacency constraints between the tiling edges of a tile are summarized by an incidence

symbol. Given a rendering of an isohedral tiling, the incidence symbol can be derived in a straight-

forward way.

Figure 2.16 shows five steps in the derivation of an incidence symbol for our sample tiling. To

torially equivalent. In fact, for normal tilings the two forms of equivalence are identical [68, Section 4.1] and so both
terms are valid.
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Figure 2.16 Five steps in the derivation of an isohedral tiling’s incidence symbol.

obtain the first part of the incidence symbol, we pick an arbitrary tiling edge as a starting point,

assign that edge a single-letter name, and draw an arrow pointing counterclockwise around the tile

(step 1). Then, we copy the edge’s label to all other edges of the tile related to it through a symmetry

of the tiling (step 2). Should the edge get mapped to itself with a reversal of direction, it becomes

undirected and is given a double-headed arrow. We then proceed counterclockwise around the tile to

the next unlabeled edge (if there is one) and repeat the process (step 3). The first half of the symbol

is obtained by reading off the assigned edge names (step 4). A directed edge is superscripted with a

sign indicating the agreement of its arrow with the traversal direction. Here, a plus sign is used for

a counterclockwise arrow and a minus sign for a clockwise arrow.

The second half of an incidence symbol records how, for each different label, a tiling edge with

that label is related to the corresponding edge of the tile adjacent to it. To derive this part of the

symbol, we copy the labeling of the tile to its neighbours (step 5). Then, for each unique edge letter

assigned in the first step, we write down the edge letter adjacent to it in the tiling. If the original

edge was directed, we also write down a plus or minus sign, depending on whether edge direction

is respectively preserved or reversed across the edge. A plus sign is used if the arrows on the two

sides of a tiling edge are pointing in opposite directions, and a minus sign is used otherwise. For the

running example, the incidence symbol turns out to be [a+b+c+c−b−a−; a−c+b+]. Note that the

incidence symbol is not unique; edges can be renamed and a different starting point can be chosen.

But it can easily be checked whether two incidence symbols refer to the same isohedral type.

Every isohedral type is fully described in terms of a topological type and an incidence symbol.
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Enumerating all possible topological types and incidence symbols and eliminating the ones that do

not result in valid tilings or that are trivial renamings of other symbols leads to the classification

given by Grünbaum and Shephard.

2.4.2 Beyond isohedral tilings

Since the work of Grünbaum and Shephard on the classification of isohedral tilings of the Euclidean

plane, other tiling theorists have gone on to search for generalizations to related tilings. In particular,

a group led by Dress, Delgado-Friedrichs, and Huson pioneered the use of Delaney symbolsin the

study of what they call combinatorial tiling theory[33, 34, 86]. A Delaney symbol completely

summarizes the combinatorial structure of a k-isohedral tiling of the Euclidean plane, the hyperbolic

plane, or the sphere. They can also be generalized to tilings in spaces of dimension three and higher.

Delaney symbols form the basis for an efficient software implementation, and Delgado-Friedrichs

and Huson have created 2dtiler , a powerful tool for exploring, rendering, and editing tilings from

their combinatorial descriptions.

Combinatorial tiling theory does not play a direct role in the present work (although it is used

in a classification by Dress that motivates the technique of Section 4.6.2). Nevertheless, Delaney

symbols have helped to advance tiling theory beyond the material of Tilings and Patterns, and it

seems likely that adopting them as a standard description of all-over tilings could lead to principled

k-isohedral and non-Euclidean generalizations of the algorithms and data structures presented in

Chapter 4.

2.5 Coloured tilings

Up to now, we have ignored the possibility of colouring tiles in a tiling. When analyzing the sym-

metries of a tiling, we have treated colour as superficial, to be disregarded when deciding whether

two tiles are “the same.” It is also possible to take colour into account, adding a layer of richness

and complexity to a tiling. The colouring can have a great deal of structure, particularly when it

acts compatibly with the symmetries of the tiling. Coxeter gives a group-theoretic presentation of

colouring, using Escher’s tilings as motivating examples [24]. Grünbaum and Shephard provide an

extensive account of the relationship between colouring and tilings [68, Chapter 8]. We restate two
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important definitions here.

A k-colouring of a tiling is a function from tiles to the set {1, . . . , k} that assigns an abstract

“colour” to each tile.8 That colouring is a perfect colouringif every symmetry of the tiling acts

as a permutation of the colours. Symbolically, let σ be a symmetry of a tiling T with colouring

c : T → {1, . . . , k}. The rigid motion σ maps every tile T ∈ T to some tile σ(T ). Then the

colouring c is a perfect colouring if for any symmetry σ, there exists a permutation ρ of the set

{1, . . . , k} such that c(σ(T )) = ρ(c(T )) for all T ∈ T .

Escher studied colourings of tilings in depth while preparing his notebook drawings. He paid

great attention to the question of colouring, expressing as a clear objective that adjacent tiles should

have contrasting colours to better distinguish them from each other [50]. In general, he aimed to

achieve this contrast with a minimal number of colours. Yet his intuition seems to have guided

him to the perfect colourings, in some cases choosing a perfect colouring with more colours over

a non-perfect one with fewer. A clear example is symmetry drawing 20 [124, Page 131], where a

tiling coloured perfectly by four colours is accompanied by a note mentioning that three would have

sufficed to distinguish adjacent tiles. Shephard points out that for this tiling, no perfect colouring

is possible with only three colours [126]. Escher intuited that a fourth colour allowed for a more

regular colouring. Four colours suffice to perfectly colour any isohedral tiling in such a way that

adjacent tiles have contrasting colours.

Escher’s understanding of the compatibility between a tiling’s symmetries and its colouring

predated the development of a formal theory of colour symmetry, and to some extent set that de-

velopment in motion [123]. For while a small amount of mathematical work had been done on the

subject previously, it was when the crystallography community became aware of Escher’s tessela-

tions that they understood how much of a theory there was to be had, and they were provided with

a rich library of illustrations from which to build that theory.

8This definition of k-colouring should be distinguished from its use in problems of graph colouring and map colouring,
where there is an additional restriction that adjacent vertices or regions have different colours (as in the four colour the-
orem). A k-colouring does not require adjacent tiles to have different colours, although we will discuss this additional
restriction as well.
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Chapter 3

ISLAMIC STAR PATTERNS

3.1 Introduction

The rise and spread of Islamic culture from the seventh century onward has provided us with his-

tory’s great artistic and decorative traditions. In a broad swath of Islamic rule, at one time extending

across Europe, Africa, and Asia, we find artistic treasures of unrivaled beauty. Islamic art encom-

passes great achievements in calligraphy, stylized floral designs, architecture, and abstract geometric

patterns.

In this chapter, I will focus on the last category: abstract geometric patterns. Specifically, I study

the construction of Islamic star patternssuch as the ones famously catalogued by Bourgoin [16].

These patterns adorn buildings, particularly mosques and tombs, throughout the Islamic world. They

are perhaps best known to Americans and Europeans through the Alhambra palace in Granada,

Spain, one of the jewels of Islamic art [88, 129].

Broadly speaking, an Islamic star pattern is a periodic arrangement of motifs, many of which

are star-shaped. As with many other forms of ornament, it would be counterproductive to attempt

a more rigorous definition. Instead, I work from the many published collections of star patterns [2,

16, 19, 27], letting them teach by example as Racinet suggested. The examples in these collections

surround the space of relevant patterns with a fuzzy boundary, and in this chapter I will show how

that boundary may be probed both mathematically and computationally.

There is some controversy in the question of why Islamic art tends so strongly towards geomet-

ric abstraction. Many European and American scholars assert that this tendancy is due to a strict

Muslim prohibition on representation in art. One claim made is that representation is the sole do-

minion of Allah, who by one of His many names is known as the Giver of Form (Al-Mussawir). This

dogmatic position can easily be refuted by the traditional Islamic arts of portraiture and miniature

painting. A more credible point of view holds that in Islam, God is perceived as being so perfect, so
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pure, that no mere worldly image could hope to express His nature. The only appropriate means of

religious exaltation lies then in art with mathematical, crystalline perfection [2].

There is a certain seductive element to the study of Islamic star patterns because little is known

about how they were originally constructed. The design methods were the private domain of the

artisans who practiced them. The knowledge was passed down from master to apprentice over gen-

erations and ultimately was lost as the practice of Islamic star patterns declined during the fifteenth

century. Except for a few scattered remnants of this technical knowledge, such as the sixteenth cen-

tury Topkapı scroll [116], the design of Islamic star patterns is a mystery. As a guide, we have only

the end product: hundreds of beguiling geometric designs found all over the world.

One thing we know with certainty is that star patterns are deeply mathematical in nature. The

most effective ones are little gems of geometry, conveying a kind of inevitability of design that

belies the hard work originally required to discover them. The artisans who developed the patterns

were well versed in geometry; in their pursuit of mathematical knowledge, early Islamic scholars

translated Euclid’s Elementsinto Arabic. And so even though we cannot peer back through time to

understand their design techniques, we can at least be confident that their constructions were firmly

rooted in geometry.

We should not expect a single construction technique to capture the structure of all star patterns.

Broad families of patterns that seem to share a common structure are counterbalanced by remarkable

one-of-a-kind artifacts no doubt conceived in a flash of inspiration. My goal is not universality, but

usefulness; the construction techniques I develop in this chapter can express many common star

patterns but make no claim at expressing them all.

Today, we have mathematical tools of a sophistication undreamed of by the Islamic scholars of

a thousand years ago. These tools can be brought to bear on the analysis of star patterns and might

even whisper geometric secrets that the inventors of those patterns were unaware of. Obviously,

a technique based on modern mathematics is unlikely to bear much resemblance to the original

methods. On the other hand, the goal here is not archaeological; any technique that can create a

large variety of well-known patterns can be judged a success. Modern mathematics might even

reveal degrees of freedom in pattern construction that were unavailable in the past because the tools

to understand them had not yet been developed.

More recently, we have also experienced a revolution in manufacturing. We now have a vari-
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ety of computer-controlled manufacturing systems that can build real-world artifacts from synthetic

computer descriptions. These systems allow computer-generated star patterns to be built and de-

ployed in the same architectural settings as their handmade historical counterparts.

In this chapter, I present my work on the construction and execution of Islamic star patterns.

The central focus is the development of a tiling-based construction method that decomposes the

design problem into two parts. First, a template tilingis given; it guides the large-scale layout of

the final design. Then, motifsare constructed for each individual tile shape. When the template

tiles are assembled into a tiling, the motifs join together to create a star pattern. I build this method

in stages, culminating in a new technique that can produce star patterns in Euclidean and non-

Euclidean geometry. I also show some ways that star patterns can be constructed based on aperiodic

tilings.

3.2 Related work

Over the years, many mathematicians and art historians have focused their attention on the mystery

of how star patterns were originally constructed. Many techniques have been proposed, and all are

successful in various ways. The wide variety of successful techniques reflects the improbability that

there was ever a single historical design method. More likely, the artisan’s toolkit held an assortment

of mathematical ideas.

Bourgoin created one of the first European collections of Islamic star patterns [16]. His book

serves as a valuable set of examples for artists and mathematicians. Each pattern has a small section

that appears to be inscribed with construction lines. One should not attempt to read too much into

these lines. If anything, they are indications of Bourgoin’s transcription process, guidelines he

discovered while tackling each individual pattern. They do not provide any presciption of how to

construct patterns in general.

Dewdney [36] presents a complete method for constructing designs based on reflecting lines off

of a regular arrangement of circles. Although this technique could be used to construct many well-

known designs, Dewdney admits that he requires many intuitive leaps to arrive at a finished design.

Dispot’s recent Arabeskesoftware [37] allows the user to construct star patterns using an approach

similar to Dewdney’s.
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In his book, Castéra [19] presents a rich technique motivated by the practicalities of working

with the clay tiles used in traditional architectural settings. He starts out with a hand-placed “skele-

ton” of eight-pointed stars and elongated hexagons called “safts” (a reference to the shuttle used in

weaving), and fills the remaining space with additional shapes. With carefully chosen skeletons,

he is able to create designs of astonishing beauty and complexity. Castéra imposes no a priori re-

strictions on a design’s symmetries, though by the nature of his construction technique he tends to

obtain designs with global eightfold symmetry. Castéra’s designs reflect the Moroccan aesthetic of

complex patterns centered around a single large star, and not the large body of periodic star patterns

that I will address here.

The idea of using a tiling as a guide to the construction of star patterns is a common thread that

ties together the investigations of many scholars. Evidence of such a tiling-based (or at least tiling-

aware) construction can be found in the centuries-old Topkapı scroll [116]. In 1925, E. H. Han-

kin [70] wrote of his discovery of a Turkish bath where the star patterns on the walls were accom-

panied by a lightly-drawn polygonal tiling. Wade [134] elaborates on this construction, presenting

what he calls the “point-joining technique.” He specifies that a design should be developed from

a tiling by drawing line segments that cross the midpoints of the tiling’s edges. Referring to Han-

kin, Lee [99] mentions the “polygons in contact technique,” stating that new star patterns might be

constructed by searching for polygonal tesselations.

Jay Bonner, an architectural ornamentalist in New Mexico, has devoted considerable time and

energy to the classification and generation of Islamic star patterns. In an unpublished manuscript [13],

he details his techniques for producing star patterns, using a tiling-based construction technique very

much like the one presented in Section 3.4. He cites several pieces of evidence suggesting that this

approach was the predominant means by which star patterns were originally conceived. Section 3.8

discusses ways that his approach differs from the one presented in this chapter.

3.3 The anatomy of star patterns

Artistic and architectural renderings of Islamic star patterns are richly decorated, often made up

of coloured regions bounded by interlaced strands. Many of these lush renderings are expertly

reproduced in a nineteenth century collection by Prisse d’Avennes [31]. To understand them math-
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ematically, we must factor these artifacts into two pieces: an underlying geometric component, and

a decoration style that has been applied to it. The two pieces should be orthogonal, allowing one to

mix and match geometry with style.

Grünbaum and Shephard explain how one may extract from a rendered pattern the essential

geometric content, which they call the design[69]. We discard all colour information and reduce

thickened bands to lines. Where there is interlacing, we ignore it; as they point out, in a design that

admits interlacing the pattern of crossings is uniquely determined by the underlying geometry, up

to a global exchange of over and under. For designs derived from real-world artifacts, we must also

imagine this finite piece of geometry extended across the entire plane in a natural way. For periodic

designs, it is usually obvious how to carry out this extension. When precision is called for, I follow

the nomenclature of Grünbaum and Shephard, referring to a finished, decorated work as a “pattern,”

based on an underlying “design.”

A design is a collection of line segments in the plane that do not intersect each other except

possibly at their endpoints. We may regard such a collection as an infinite planar map. The map

consists of a set of vertices, each of which has a position in the plane, and a set of edges that

connect pairs of vertices. The valenceof a vertex is the number of edges that have it as an endpoint.

In the periodic case, this planar map can be conveniently represented by its restriction to a single

translational unit.

In what follows, I restrict my attention to the class of designs with the following two properties:

1. Every vertex has valence two or four.

2. The valence four vertices are perfect crossings. That is, the four edges that meet at the vertex

can be interpreted as two line segments that intersect at the vertex.

The first property allows us to view the design as a well-defined collection of strands, paths

through the design that ultimately form closed loops or extend to infinity. A vertex of degree two is

a bend in a strand; a vertex of degree four is a place where two strands cross.

This first property is also sufficient to ensure that a design admits an interlacing. At every

crossing, one strand can be chosen to pass over the other. When every vertex has degree two or

four, this assignment can be carried out globally in such a way that as one follows a given strand, it
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passes alternately over and under any strands it crosses. When the design is a connected graph, the

assignment can be made by choosing the over/under relationship at a single vertex, and propagating

the assignment throughout the planar map. The single boolean choice at the designated vertex

leads to two self-consistent, opposite assignments (when the map has multiple components, the

choice must be made once per component). As an aside, the redundancy implied by the equivalence

of these assignments can be formalized through the inclusion of a new symmetry operation, one

that leaves the plane fixed but exchanges the roles of over and under everywhere. Mixing this re-

weaving operation in with the regular isometries produces an enrichment of the usual symmetry

groups that can provide a finer classification of interlaced figures (see, for example, Cromwell [29]

and Shubnikov and Koptsik [127, Chapters 5 & 8]).

The second property is motivated more from aesthetic considerations than mathematical con-

straints. The crossing at a degree four vertex is most clearly rendered when the two strands that

meet there pass right through the intersection without changing course. There is evidence in the

literature on Gestalt psychology to support the aesthetic superiority of perfect crossings.

The space of star patterns that satisfy these two conditions is still very large. A quick survey

shows that approximately 70% of the designs reproduced by Bourgoin are admissible. And as I will

demonstrate, within this framework there is a vast space of designs to be explored.

3.4 Hankin’s method

I begin the process of developing a tiling-based star pattern construction method by discussing the

creation of motifs. Later, I will consider the tilings themselves.

The tiling-based approach seems to have first been articulated in the west by Hankin in the early

part of the twentieth century. In a series of papers [70, 71, 72, 73], he explains his discoveries

and gives many examples of how the technique can be used. Hankin’s description of his technique

provides an excellent starting point for an algorithmic approach.

In making such patterns, it is first necessary to cover the surface to be decorated

with a network consisting of polygons in contact. Then through the centre of each side

of each polygon two lines are drawn. These lines cross each other like a letter X and
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are continued till they meet other lines of similar origin. This completes the pattern [70,

Page 4].

Hankin’s description immediately suggests an algorithm based on “growing” edges out of every

tiling edge midpoint, and cutting those edges off where they intersect each other. His description

of a letter X at each edge midpoint precisely fits the requirement of perfect crossings. The places

where edges meet other edges and are cut off complete the design with bivalent vertices.

Given a tiling, Hankin’s recipe has one remaining degree of freedom: the angle formed by the

growing motif edges with the tiling edges they emanate from. I call this the contact angle(see

Figure 3.1). A software implementation of these growing edges should accept a tile and a contact

angle as input, and attempt to grow a motif for that tile using the given contact angle. When this

operation is run on every tile in a tiling, a star pattern emerges.

I have developed an interactive Java program that implements what I call “Hankin’s Method.”

At its core is an “inference algorithm”: a subroutine that takes a polygonal tile and a contact angle as

input and returns a motif for that tile. The inference algorithm runs quickly enough that the contact

angle can be varied in real time, with the changes to the resulting design displayed interactively.

In his manuscript, Bonner gives a systematic presentation of this technique over a vast space

of tilings (which he calls “polygonal sub-grids”). Although I became aware of the tiling-based

approach from Hankin’s writing, it is through Bonner’s work that I came to appreciate its importance

as a step leading up to the work in the rest of this chapter. Bonner’s library of results shows just how

large a space of star patterns may be obtained using just Hankin’s Method.

Bonner’s work is intended to provide a resource for designers, and not an algorithm for software

writers. Therefore, he does not present a formal algorithm for inferring motifs in template tiles.

Besides its use in the automatic generation of star patterns, the inference algorithm presented here

could ultimately help designers as well, by guiding their intuition in the construction of motifs.

Hankin’s method begins by identifying those places from which pieces of the design will origi-

nate. Given a tiling by polygons, we define the contact pointsof a tile to be the set of midpoints of

its edges. When the tiles are assembled into a tiling, neighbouring tiles will often have coincident

contact points. It is from these shared contacts that an X-shaped arrangement of edges will grow.

Consider a single tile, and let θ be the desired contact angle. To each contact point p we can
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Figure 3.1 In the first step of Hankin’s method, a pair of rays is associated with every
contact position on every tile. Here, a single contact position gets its two rays, each of
which forms the contact angle θ with the contact edge.

associate a pair of rays starting at p and making an angle of θ with the edge containing p. These

rays are illustrated in Figure 3.1.

To create a final motif, we will need to truncate every one of these rays somewhere along its

length. Because the goal is to create unbroken strands, every ray will have to be truncated where it

meets some other ray, either creating a bend, or occasionally an unbroken straight line segment. If

every ray meets up with some other ray, we have a complete motif. Based on this description, we

can specify a motif by giving a pairing of the rays, a set of unordered pairs of rays in which each ray

appears exactly once. The ultimate goal of any inference algorithm is then to choose from among

all possible pairings for the one that best satisfies some sort of aesthetic goal.

As an aesthetic goal, I choose the minimization of the cost of drawing the motif, measured as the

total length of all the line segments that make it up. This goal makes some amount of intuitive sense.

As was mentioned earlier, in Islamic star patterns we find an inevitability of design, a sense in which

the design’s geometry is expressed with the greatest possible economy. This economy can be seen to

arise by choosing the simplest completion of a motif that fits the global design rules. Furthermore,

the principle of minimizing drawing cost is borne out by many well-known examples. By developing

Hankin-like tilings for historical designs, motifs can in fact be seen to take the simplest route to

completion. An approach based on simplicity would seem to be predicated upon a certain amount

of intelligence in the choice of tilings. This issue will be raised again later in Section 3.8.
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Figure 3.2 A demonstration of Hankin’s method. The frame on the left shows the original
tiling. Rays are grown out of every contact position, and continue until they meet other
rays in a manner dictated by the inference algorithm. When the original tiling is removed,
the result is the Islamic star pattern on the right.

As a first attempt at inference, we might then proceed as follows. Iterate over all possible

pairings, evaluating the total cost of each. From among all pairings that use the most possible rays,

choose the one with the lowest total cost. Unfortunately, this algorithm is not practical. In an n-sided

tile, there will be 2n rays. The number of pairings between rays is the number of ways to partition

the 2n rays into disjoint pairs. This number works out to be n!
(n/2)!2n = 1 · 3 · 5 · 7 . . . (n − 1). We

would need to evaluate more than half a billion possibilities for a region with 10 sides.

A simpler approach is to use a greedy algorithm. Given a list of rays, we first build a list of all

pairs of rays that intersect, sorted in order of increasing cost. We then traverse the list, incorporating

the segments induced by every pair in order provided both of the rays that make up that pair are still

unused.

In practice, this algorithm performs very well on many of the typical tile shapes that arise in

template tilings. It certainly performs perfectly on regular polygons, where it constructs star-shaped

motifs. In the cases where it fails, it usually does so not because it is greedy, but because the

underlying idea of using edge midpoints and a single contact angle is overly simplistic. Bonner

demonstrates some cases of template tilings for which contact positions must be moved slightly off-

center and contact angles changed. These special cases are discussed in greater detail in Section 3.8.

Figure 3.2 illustrates the process of growing rays from contact positions. Figure 3.3 shows some

typical designs that can result from using my implementation of Hankin’s method.

There are some cases where simple modifications to the basic inference algorithm can improve
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(4.82) θ = 22.5◦ θ = 45◦ θ = 67.5◦

(4.6.12) θ = 45◦ θ = 60◦ θ = 75◦

(3.4.3.12; 3.122) θ = 35◦ θ = 60◦ θ = 75◦

Altair θ = 30◦ θ = 45◦ θ = 72.5◦

Figure 3.3 Examples of star patterns constructed using Hankin’s method. Each row shows
a template tiling together with three designs that can be derived from it using three differ-
ent contact angles. The bottom row features an amusing tiling by nearly regular polygons.
It is reproduced from Grünbaum and Shephard [68, Page 64], where it serves as a reminder
of the danger of over-reliance on figures. A related design also appears in Bourgoin [16,
Plate 163].
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(a) (b) (c) (d)

Figure 3.4 A demonstration of two cases where an extension to the inference algorithm
can produce a slightly more attractive motif. In (a), a star pattern is shown with large
unfilled areas that were the centers of regular dodecagons in the template tiling. Adding
an additional layer of inferred geometry to the inside of the motif produces the improved
design in (b). The process is repeated with a different template tiling in (c) and (d).

the generated motif. Consider, for example, the star pattern given in Figure 3.4(a). This pattern

contains large regions, derived from regular dodecagons, that are left unfilled. A more attractive

motif can be constructed using a second pass of the inference algorithm, building inward from the

points where the rays from the first pass meet. The resulting design, shown in Figure 3.4(b), is more

consistent with tradition. In the inference algorithm, it is easy to recognize when the provided tile

shape is a regular polygon and to run the second round of inference when desired. An alternative

solution to this problem, based on an explicit parameterization of star shapes, is given in the next

section.

A further enhancement is to allow the contact position to split in two, as shown in Figure 3.5.

This splitting can be accomplished quite naturally by providing the inference algorithm with a sec-

ond real-valued parameter δ that specifies the distance between the new starting points of the rays.

The parameter δ can be allowed to vary from zero (giving the original construction) up to the length

of the shortest tile edge in the tiling. This construction gives what Bonner calls “two-point patterns,”

a set of designs that are historically important in Islamic art. Examples of two-point patterns con-

structed using the δ parameter are shown in Figure 3.6. The designs corresponding to two-point

patterns tend to be made up of very short closed strands, each one forming a loop around a single

tiling vertex in the template tiling.
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Figure 3.5 A visualization of how δ is incorporated into Hankin’s method. The con-
tact position is split in two, resulting in two rays whose starting points are separated by
distance δ. Motifs will still line up provided the same δ is used throughout the design.

Figure 3.6 Examples of two-point star patterns constructed using Hankin’s method. Each
row shows a template tiling, a star pattern with δ = 0, and a related two-point pattern with
non-zero δ. The structure of the tiling in the bottom row will be explained in Section 3.8.
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The success of a tiling-based approach in the construction of star patterns does not seem so sur-

prising given the foregoing discussion. When applied to a regular polygon, the inference algorithm

presented will always produce a star. When many regular polygons are assembled into a tiling, the

result is a pattern containing many stars. This simple process can therefore be applied to a wide

variety of well-known tilings to produce designs that are recognizably in the tradition of star pat-

terns. On the other hand, the first of the two extensions mentioned above suggests that for tiles that

are regular polygons, we might recognize the regularity and choose to insert a motif richer than that

provided by the inference algorithm alone. This observation is the basis for the system presented in

Section 3.5.

3.4.1 Islamic parquet deformations

Parquet deformations are a style of ornamental design created by William Huff, a professor of

architectural design, and later popularized by Hofstadter in Scientific American[83, Chapter 10].

They are a kind of “spatial animation,” a geometric drawing that makes a smooth transition in space

rather than time. Parquet deformations are certainly closely related to Escher’s Metamorphosis

prints, though unlike Escher’s work they are purely abstract, geometric compositions. They will be

discussed in more detail in Section 5.4.

Hankin’s method can be used as the basis for a simple but highly effective method of construct-

ing Islamic patterns in the spirit of parquet deformations. I lay out a strip of the template tiling

and then run a modified inference algorithm where the contact angle at every contact point is de-

termined by the location of that point in the strip. Smoothly varying the contact angle results in

a gently changing geometric design that is still recognizably Islamic. The construction process is

illustrated in Figure 3.7; two more examples appear in Figure 3.8. These parquet deformations oc-

cupy an interesting place in the world of Islamic geometric art. They have enough overall structure

and balance to satisfy the Islamic aesthetic, but they would not have been produced historically be-

cause very little repetition is involved. The effort of working out the constantly changing shapes by

hand would have tested the patience of any ancient designer.
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Figure 3.7 The construction of an Islamic parquet deformation based on Hankin’s
method. The top rows shows the effect of continuously varying the contact angle of a
ray depending on the x position of the ray’s starting point in the design. When the process
is carried to all other tiles, the design in the second row emerges.

Figure 3.8 More examples of Islamic parquet deformation based on Hankin’s method.
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Figure 3.9 The discovery of a complex symmetric motif in a star pattern. The original
design was constructed by placing six-pointed stars in a regular tiling by copies of the
smaller hexagon. Around each star, we find a larger d6 motif by adjoining the six neigh-
bouring regular hexagonal regions. An example of the larger motif, called a rosette, is
outlined by the larger blue hexagon. The entire design can be seen as constructed from
copies of the rosette.

3.5 Design elements and the Taprats method

Hankin’s method, described in the previous section, can produce a wide range of well-known and

unknown Islamic star patterns. The method is based on a kind of Occam’s razor of aesthetics: in

deciding on a motif for a tile shape, the simplest possible motif is the best choice. When the tile is

a regular polygon, that simplest motif will be a star shape.

Yet in surveying the many historical examples of star patterns we can see the repeated occurence

of radially symmetric motifs more complex than mere stars. We already encountered one example in

Figure 3.4, where many-pointed stars are given an additional inner layer of geometry to help fill the

large areas of otherwise empty space. It might be possible to give a contrived tiling that accounts for

these more complex motifs, but ultimately we are better off hypothesizing that the original designers

of star patterns understood higher-level motifs directly.

Once we make this hypothesis, many other recurrent motifs assert their identities as first-class

objects. A classic example is given in Figure 3.9. Here, a pattern composed of six-pointed stars with

hexagonal holes can be reinterpreted by adjoining to a star its six neighbouring hexagons. Copies

of this rosettefit together to recreate the original pattern, now leaving behind stars as holes. It is
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reasonable to assume that these rosettes were well understood in their own right, and not merely as

an incidental by-product of constructing star patterns.

I build upon Hankin’s method by giving a general theory of radially symmetric motifs (motifs

with symmetry group dn, in the language of Section 2.2) that can be associated with regular poly-

gons. I then use this theory to build a set of design elements, parameterized families of historically

important motifs. The design elements represent our opportunity to interpret most explicitly the

features of traditional designs. A design element is a “clipping” from history, a fragment of a pat-

tern that has been abstracted from its surroundings and endowed with some number of degrees of

freedom.

The design elements can take the place of the default inference algorithm in the construction

of motifs for regular polygons. I combine the design elements and the inference algorithm in an

interactive tool called Taprats that has been used successfully to design, render, and execute many

traditional and novel star patterns.

3.5.1 Path-based construction of design elements

Let P be a regular n-sided polygon with center O, inscribed in a circle of radius r. Designate the

midpoint of one of the polygon’s sides by M , and for convenience orient the polygon so that M lies

due east of O. A design element can then be represented as as a piecewise-linear path that starts at

M and wanders around inside P . A dn-symmetric motif can then be constructed by combining all

images of the path under the symmetries of the surrounding polygon. The process of turning a path

into a symmetric motif is illustrated in Figure 3.10.

During this replication process, the original path will intersect rotated and reflected copies of

itself. The intersections occur on successive lines of reflection of P . As shown in Figure 3.10, the

integer parameter 0 < s ≤ n/2 controls how many of these subpaths to keep. The number s turns a

single path into a family of related motifs. It is generalized from its standard use in describing star

polygons [99].

Using this path-based description of design elements, we can now define a family of higher-level

procedural models that generate motifs common to star patterns. Given n and r as above, such a

model produces a path inside P , starting at M . The replication process above, combined with the
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(a) (b) (c)

s = 1 s = 2 s = 3 s = 4

Figure 3.10 The path-based construction of Section 3.5.1 applied to a dn-symmetric motif
inscribed in a regular n-gon P . The initial path is shown in (a). That path is combined
with all its dn-symmetric copies in (b). In (c), the original path is divided into subpaths
by intersections with its copies. The bottom row shows how the parameter s can be used
to control how many of the subpaths to keep.

s parameter, can then be applied to the path to obtain a planar map representing the finished motif.

Every design element will include n, r, and s as variables. Naturally, the procedural model may

include its own additional degrees of freedom.

I have created parameterized design elements for stars and rosettes, which together capture the

majority of symmetric motifs found in star patterns. I have also developed a generic “extension”

mechanism that wraps an additional layer of geometry around any other motif. These models know

only how to construct a piecewise-linear path starting at M . All models share a common imple-

menation of the algorithm above that turns a path and a value of s into a radially symmetric planar

map.
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3.5.2 Stars

At the very heart of Islamic star patterns we find the star. Islamic art features stars with many

different numbers of points, up to a remarkable 96 [19, Page 220]. We have already seen how a star

can arise naturally by running the inference algorithm on a regular polygon. It can also be useful to

express stars as higher-level design elements, in order to exert more direct control over them.

Grünbaum and Shephard [68, Section 2.5] show how star polygons may be specified using the

notation {n/d}, where n and d are integers, n ≥ 3, and 1 ≤ d < 	n/2
. The star is constructed

by placing points v1, . . . , vn at the vertices of a regular n-gon, and joining every vi to vi+d, where

indices are taken modulo n. For the purposes of ornamental design, Lee [99] adds an s parameter

equivalent to the one presented above, arriving at the final description {n/d}s.

Instead of relying on {n/d}s notation, it is more convenient to parameterize stars by giving the

contact angle θ directly. My implementation of Hankin’s method is based fundamentally on the

user’s choice of contact angle, and so making this angle the basis of design elements allows for

smoother integration with the construction technique already given.

In Taprats, a star is constructed from a path consisting of a single line segment that effectively

acts as a ray. The segment begins at M and has length 2r. It is parameterized by a single degree of

freedom, the contact angle θ. Some examples of stars constructed this way are given in Figure 3.11.

The parameterization, based on the tuple (n, r, s, θ), generalizes the original star notation in a

straightforward way. Given a star {n/d}s and a radius r, a little trigonometry shows that this star

can be reparameterized as (n, r, s, πd/n). As an extension, the angle θ can take on any real value

in the range (0, π/2) (as Lee mentions [99], a similar extension can be carried out on the original

notation by permitting non-integral values of d).

For a given regular n-gon of radius r and a contact angle θ, we can now see that the infer-

ence algorithm used to implement Hankin’s method will produce (n, r, 1, θ). Moreover, the special

case illustrated in Figure 3.4, where a star receives an extra internal layer of geometry, is simply

(n, r, 2, θ). In general, an appropriate value of s can usually be decided for stars automatically from

n and θ: typically, s = 2 when n > 6 and θ > 2π/n, and s = 1 otherwise.
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θ = 46◦, s = 1 θ = 46◦, s = 2 θ = 72◦, s = 1 θ = 72◦, s = 2 θ = 72◦, s = 3

Figure 3.11 Examples of stars constructed using the technique of Section 3.5.2. Each
example is of the form (10, 1, s, θ) for varying choices of θ and s.

Figure 3.12 Examples of eight-, ten-, and twelve-pointed rosettes. The eight-pointed
rosette on the left is partially decomposed into an internal {8/3}2 star and the eight sur-
rounding hexagons.

3.5.3 Rosettes

The rosette is one of the most characteristic motifs of Islamic art. We may hypothesize that rosettes

were first observed in the design of Figure 3.9, and that through experimentation they were gradually

adapted to more general contexts. A rosette may be viewed as a star to which hexagons have been

attached in the concavities between adjacent points (see Figure 3.12). Each hexagon straddles a line

of reflection of the star, and thus has bilateral symmetry.

A rosette can be represented as a two-segment path. Referring to the labeling shown in Fig-

ure 3.13, the first segment, MG, becomes part of the outer edge of a hexagon. The path bends at

G, what Lee calls the “shoulder,” and continues in a segment through C that becomes the hexagon’s

flank and forms the inner star. Because the second segment effectively acts as a ray, its length is

irrelevant, and the four degrees of freedom implied by the path are reduced to three. The problem
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then is to encode these degrees of freedom in a way that makes it easy to express rosettes with mean-

ingful, intuitive properties. As usual, we choose the contact angle as a first parameter. To derive two

more parameters, we first must understand what an “ideal” rosette might look like, and then provide

as parameters deviations from this ideal.

Lee [99] provides an ideal construction, demonstrated in Figure 3.13. Given the surrounding

polygon, point C is found as the point on OA with AC = AM , and G is found as the intersection

of MM ′ with the line through C parallel to
←−→
OM . The result is a motif where GC = GM and

∠ACG = ∠AMG.

Before generalizing Lee’s construction, let α be the “natural” height of point G in the ideal

rosette, as a fraction of the surrounding polygon’s side length. Referring to Figure 3.14(a), let point

H be the projection of G onto segment OM . Then α = GH/AM . The value α provides a scale-

independent measure of the default height of G.

The three degrees of freedom in the generalized rosette model are now encoded as deviations

from the ideal path implied by Lee’s construction. As shown in Figure 3.14(b), a rosette is specified

via six parameters: (n, r, s, θ, h, φ). Parameters n, r, and s are as given for all path-based motifs.

The shoulder G is defined as point with height hα above line OM such that |∠GMA| = θ. The

second point in the path is then chosen so that the resulting ray leaving G forms an angle φ with

the horizontal. Observe that as usual, θ is chosen to encode the desired contact angle, which allows

for easy integration with Hankin’s Method. Also note that under this parameterization, Lee’s ideal

rosette can be recovered as (n, r, s, π/n, 1, 0). Figure 3.15 shows some examples of the effect of

varying θ, h, and φ.

Every rosette contains a central star. As was mentioned, in constructing stars there is usually a

natural value for s, determined from n and θ. The same is true here: the choice of s can be obtained

by determining the correct value for the central star and adding 1 to account for the additional

geometry of the surrounding hexagons. Accordingly, most large rosettes will have s = 3.

3.5.4 Extended design elements

When the contact angle of a design element is sufficiently small, it is possible to connect contact

edges from adjacent contacts until they meet outside the tile as in Figure 3.16, forming a larger
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Figure 3.13 A diagram used to explain the construction of Lee’s ideal rosette [99]. The
construction is explained in Section 3.5.3.

(a) (b)

Figure 3.14 Two diagrams used to explain the construction of generalized rosettes as
presented in Section 3.5.3.

motif with dn symmetry. We refer to this process as extension. It is important to offer an extension

facility, as “extended rosettes” figure prominently in many historical examples.

The procedural model for extension takes as input any other procedural model that includes the

contact angle θ as a parameter and constructs directly an extended version of that model’s elements
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θ = 20◦

h = 1
φ = 0

θ = 10◦

h = 1
φ = 0

θ = 20◦

h = 0.8
φ = 0

θ = 20◦

h = 1
φ = 10

Figure 3.15 Examples of rosettes constructed using the technique of Section 3.5.3. Each
example has n = 9, r = 1, and s = 3, and shows the effect of varying θ, h, and φ.

Figure 3.16 The extension process for design elements. The contact edges of the inner
element are extended until they meet to become the contacts of the outer element.

inside a given polygon.1 Given n, r, s, and θ, a little trigonometry shows that if we take

θ′ =
θ

2
, r′ = r

[
1

cos π
n

−
sin θ tan π

n

cos
(

π
n − θ

)
]

then an inner motif with contact angle θ′ inscribed in a polygon of radius r′ can be extended into a

motif that fits perfectly in the outer n-gon. The child model is passed n, r′, s− 1, and θ′, along with

unchanged values for any remaining parameters. The resulting motif must be rotated by π/n about

its center in order to bring the motif into alignment with the outer polygon’s contact points.

1Extension might be considered a higher-order model, i.e., a function from models to models.
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3.5.5 Taprats

I have taken the tiling-based approach of Hankin’s method, the inference algorithm presented in the

previous section, and the parameterized design elements, and combined them in a single Java-based

program called Taprats. Taprats provides an interactive interface for creating, editing, decorating,

and rendering star patterns. The system can operate on any periodic tiling, and has a number of

common Islamic template tilings built in, derived from experimentation and examination of histor-

ical sources. Taprats has been available on the internet since 2000 as an applet, and more recently

as a downloadable application. Both versions have received a great deal of positive feedback and

interest from computer scientists, artists, architects, and educators.

Given a periodic tiling, Taprats presents a user inferface featuring an editor for the motifs in each

tile shape. For regular polygons, that editor allows the user to choose from among stars, rosettes,

and extended rosettes, and to edit the degrees of freedom in the design elements directly. For the

remaining irregular tile shapes, the system runs the inference algorithm discussed in the previous

section. It also allows the user to edit inferred motifs directly in case the inference algorithm pro-

duces an unacceptable result. The line segments that make up the motifs are then assembled into

planar maps that are joined to cover a region of the plane. The final map can be decorated in various

ways (a discussion of decorating star patterns will be postponed until Section 3.7) or exported to a

number of manufacturing processes (see Section 3.9). A visualization of how Taprats assembles a

star pattern is shown in Figure 3.17. Some other examples of patterns generated by Taprats appear

in Figure 3.18.

3.6 Template tilings and absolute geometry

In the previous sections, I have developed a set of tools that can be used to construct a wide range

of Islamic star patterns. However, one aspect of the process remains unexplained. Each design is

ultimately based on a template tiling, and nothing has been said so far about how these tilings might

be specified. In theory, we could simply stop here, and rely on a large body of hand-coded tilings

derived from collected examples and the work of researchers like Bonner. This approach was taken

in writing Taprats, with acceptable results. But stopping here seems unsatisfying since there is then

no rhyme or reason to the set of available tilings, no abstraction that encompasses them. In effect,
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Figure 3.17 A visualization of how Taprats assembles a star pattern. On the top left, a
tiling is selected. Each different tile shape is assigned a motif. In this case the dodecagons
and enneagons receive rosettes; the bowtie’s motif is inferred. When the motifs are copied
into the tiles and the tiling is erased, the design on the upper right is revealed. That design
can then be decorated and turned into a final rendering as shown below. The decoration
process is described in Section 3.7.
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Figure 3.18 Examples of designs constructed using Taprats. Each example shows part of
the template tiling from which the design was produced.
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the resulting system embodies a model that has many continuous degrees of freedom, but is limited

to a multiway switch in the choice of tiling. In this section, I demonstrate how the design space of

Islamic star patterns can be fleshed out to include a parameterized model for the template tilings.

We know from the theory developed so far in this chapter that tilings containing many regular

polygons as tiles make particularly good templates for Islamic star patterns because the regular

polygons lead directly to stars or other traditional motifs. The tiling may contain other tiles that

are not regular polygons, as long as they are not so oddly-shaped that inference fails on them. The

main contribution of this section is a parameterized family of template tilings based on the explicit

placement of regular polygons. Any leftover space is then divided into irregular tiles as necessary.

The most exciting fact about the tilings I present here is that they are carefully developed in

a way that avoids any dependence on the parallel postulate; nothing in their construction is tied

to Euclidean geometry. Looked at the right way, these tilings are constructions in the absolute

geometry presented in Section 2.1.3 (the truth of this statement requires some logical precision

and will be examined at the end of this section). From this specification of a tiling, a geometry-

agnostic construction technique can then be applied seamlessly to produce Islamic star patterns in

the Euclidean plane, the hyperbolic plane, and on the sphere.

The creation of non-Euclidean Islamic star patterns has been explored to some extent in the

past. There is at least one historical case where a well-known Euclidean star pattern was reinter-

preted in spherical geometry.2 More recently, several designers have produced star patterns on the

surfaces of the regular and Archimedean polyhedra [2, 98]; the most popular of these are Bonner’s

Geodazzlers [12], a commercially-available set of foldable polyhedral models. These polyhedral

models are closely related to symmetric patterns in spherical geometry. Fewer examples exist of

hyperbolic Islamic star patterns. When Lee wrote about star patterns in 1995, he knew of no such

examples [99]. Among the star patterns Abas displays in his online gallery, there is a single, some-

what cumbersome hyperbolic design [1]. Building on his considerable experience with hyperbolic

patterns, Dunham has recently produced numerous hyperbolic interpretations of Islamic geometric

patterns [42], though he does not consider star patterns in particular. In most of these cases, the non-

Euclidean patterns are found through a modification of an initial Euclidean pattern. By developing

2Jay Bonner, personal communication.
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designs in absolute geometry, I take a more unified approach, constructing non-Euclidean designs

directly without a translation step through the Euclidean plane. The result is more elegant in terms

of both the patterns that are produced and the mathematical theory that underlies them.

Non-Euclidean star patterns represent a fairly valuable addition to the body of Islamic art.

Islamic culture has always been interested in the beauty and elegance of mathematics, and non-

Euclidean patterns are a fairly direct visualization of deep truths in geometry. Furthermore, although

I am an outsider to Islam, I would speculate that non-Euclidean patterns sit well with the intent of

star patterns in general to proclaim the crystalline perfection of Allah. The sphere is a marvelous

visualization of boundlessness, and the hyperbolic plane of infinity (we will see in Section 4.7 how

Escher exploited this fact in his tilings).

In this section, I present my family of tilings using only facts from absolute geometry. I then give

revised design elements that have all reliance on parallelism removed. This generalized technique is

then implemented in a C++ program called Najm (pronounced Nazhm, arabic for “star”). I discuss

the implementation of Najm and techniques for decorating star patterns. Finally, I examine in more

detail the statement that Najm is a construction in absolute geometry.

3.6.1 Template tilings

Although regular polygons in a template tiling represent regions of higher local symmetry than

is describable using a wallpaper group, those regular polygons still tend to interact closely with

the group’s symmetries. Regular polygons will tend to be centered on the rotational axes. I use

this observation to build a system of tilings where regular polygons are explicitly placed around

rotational axes of a symmetry group.

The construction presented here adapts itself to any symmetry group of the form [p, q], as pre-

sented in Section 2.2. Accordingly, let p and q be given, with p, q > 2.

The regular tiling {p, q} has centers of p-fold, 2-fold, and q-fold rotation at its face centers, edge

midpoints, and vertices, respectively. When the tiling’s symmetry group [p, q] is visualized through

copies of its generating triangle, these rotational axes correspond exactly to triangle vertices A, B,

and C as labeled in Figure 3.19. These vertices will serve as the set of potential centers for regular

polygons.
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Figure 3.19 The canonical triangle used in the construction of Najm tilings.

Consider a single p-fold rotational axis A0. For a regular n-gon to be compatible with the local

symmetry at A0, n must be a multiple of p. Furthermore, there are only two orientations of the n-gon

that make it compatible with the p lines of reflection that pass through A0. Given a distinguished ray

starting at A0 and lying on a line of reflection, the n-gon can intersect the ray either at a vertex or

an edge midpoint, as shown in Figure 3.20. We are therefore left with the following free parameters

in defining an on-axis polygon at A: the multiplier mA = n/p, the choice of vertex- or edge-

orientation oA relative to some ray, and the radius rA of the circle in which to inscribe the polygon.

The same parameters are available at the q-fold and twofold axes, with the exception that we do not

permit mB = 1, which would result in a degenerate two-sided polygon.

To record the orientations oA, oB and oC unambiguously, we use the designated rays
−−→
AB,

−−→
BC,

and
−→
CA respectively at vertices A, B, and C. The symbols v and e can then be used to determine

whether a polygon should present a vertex or an edge midpoint on its designated ray.

Given a symmetry group [p, q], we represent a given set of multipliers and orientations using

the notation ([p, q]; mAoA, mBoB, mCoC). We allow any of the multipliers to be zero (indicating

that polygons should not be placed at that set of rotational axes), in which case the orientation is

irrelevant and can be omitted from the notation. This symbol tells us that a regular polygon with

pmA sides should be centered on vertex A, oriented according to oA. The polygons at B and C are
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mA = 1 mA = 2

Figure 3.20 Examples of valid orientations for on-axis polygons around a fivefold ro-
tational axis. The first and third examples have edge midpoints lying on the designated
ray (marked by an arrow). The second and fourth have vertices on the ray. The notation
oA = e and oA = v refers respectively to these two cases.

similarly determined.

We are left with the choice of how to record the radii rA, rB , and rC . Ultimately, we will aim

to link together motifs inscribed in the on-axis polygons. Therefore, we will usually want to choose

values for the radii that force the polygons to come into contact with one another. Although it would

be possible to give explicit radii that achieve contact, these scaling operations are fundamental

enough that we make them an integral part of the notation.

I refer to the scaling process applied to the regular polygons as “inflation.” When it is a polygon’s

turn to be inflated, we center it at the appropriate vertex of the generating triangle, orient it relative

to its designated ray, and scale it until it is as large as possible without overlapping any other inflated

polygons. We also do not permit the inflating polygon to cross the triangle edge opposite its center;

if it did, it would then overlap its own symmetric copy erected on a neighbouring triangle.

We determine the three radii by adjoining to the above notation an “inflation symbol,” describing

how and in what order the on-axis polygons should be inflated. The symbol mentions every polygon

with a non-zero multiplier exactly once. An optional first part of the symbol, fixing the radii of one

or more of the polygons, takes one of the following seven forms. In each case the letters A, B, and

C refer to the polygons centered at those vertices of the generating triangle.
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Figure 3.21 An example showing step by step how the tiling ([6, 3]; 2e, 0, 3e) is con-
structed. The inset on the left shows the labels on a single fundamental region. Next,
dodecagons and enneagons are placed at vertices A and C, respectively. The polygons are
then scaled until they meet and have the same edge length. These polygons can be copied
to all other fundamental regions, leaving behind a set of bowtie-shaped holes. Finally, the
holes are filled in using additional tiles.

A = r, B = r, C = r (r ∈ R): Set the radius of the corresponding polygon to r.

AB, BC, AC: Inflate the two polygons simultaneously until they

meet one another, subject to the constraint that

their edge lengths are the same.

ABC: Inflate all three polygons simultaneously until

each one contacts the other two.

Once the radii of one or more polygons are known, any remaining polygons can be inflated. The

order in which to inflate them is specified by naming the polygons in a comma-separated list, again

using the vertex names of the generating triangle.

The equations required to carry out all these inflations rely on the formulae of absolute trigonom-

etry. Radii for the three on-axis polygons can be solved for in closed form, though it is typically
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more straightforward (and nearly as precise) to solve them numerically.

Some definitions simplify the presentation of the formulae to follow. As always, let�ABC be

the generating triangle of [p, q] with right angle at B, and let ([p, q]; mAoA, mBoB, mCoC) be given

as above. Let variables α, β, and γ represent a permutation of the triangle vertices A, B, and C. If

mα is nonzero, let Pα be the regular polygon centered at vertex α.

The boundary of Pα intersects the two triangle edges αβ and αγ; define the extentof Pα on a

triangle edge to be the length of the part of the edge that is contained inside Pα. For every ordered

pair (α, β) of triangle vertices, we can consider the extent of Pα on triangle edge αβ, which we

denote by lαβ . There are therefore six possible extents to consider: lαβ , lαγ , lβα, lβγ , lγα, and lγβ}.

If mα is nonzero, then Pα is a regular n-gon centered on vertex α with some radius rα. The

extent lαβ can take on one of two possible values. If Pα has a vertex lying on edge αβ, then

lαβ = rα. Otherwise Pα has an edge midpoint lying on αβ, in which case the extent can be

obtained from T(lαβ) = T(r) cos π
n (the function T(x) is defined in Section 2.1.4). Note that this

calculation can be reversed as well; given one of a polygon’s extents, we can determine the radius.

Given these definitions, there are four inflation operations to solve:

1. Inflating a polygon to another polygon. In this case we have Pα, a regular nα-gon with

fixed radius rα centered at vertex α, and Pβ , a regular nβ-gon at vertex β. We wish to scale

Pβ until it touches Pα. Let d be the length of triangle edge αβ.

From the definitions above, this is a fairly simple relationship to solve algebraically. We can

easily determine the value lαβ , and then we solve for the value of rβ that gives lβα = d− lαβ .

2. Inflating a polygon to the generating triangle. Here, the inflation of regular nα-gon Pα

centered at α is not constrained by any other regular polygon, and so we inflate it until it

touches βγ, the edge of the generating triangle opposite α. Let d be the perpendicular distance

from α to the opposite edge of the triangle. We assume that α is A, or C, since we then have

the simpler case that d is the length of one of the triangle edges. The case α = B is more

complicated. It could also be solved numerically, although I omit the details because this case

is less useful in constructing practical tilings.

Suppose α = A. Then d = AB because of the right angle at B and we can simply set rα so
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that lαβ = d. By the definition of extent, we will either have rα = d or T(rα) = T(d)/ cos π
n .

A similar argument yields the solution for the case α = C.

3. Simultaneous inflation of two polygons.Here, we have regular polygons Pα and Pβ with

nα and nβ vertices, and we wish to scale the two polygons until they touch, subject to the

constraint that they have the same side length. Again, let d be the length of the shared triangle

edge αβ.

Once the two polygons are scaled, they will have the same side length; let this length be rep-

resented by x. Using some trigonometry, we can give formulae for lαβ and lβα in terms of x.

Specifically,©(lαβ) = ©(x)/ sin π
nα

or©(lαβ) = T(x)/ tan π
nα

when Pα respectively has

a vertex or an edge midpoint on αβ. One of two identical formulae determine lβα from x and

nβ . Since nα and nβ are given, the equation lαβ + lβα = d has x as its single unknown. A

solution for x could be used to back out final values for rα and rβ .

In my implementation, I observe that the expression lαβ + lβα−d is monotonic in x and solve

for x numerically using binary search. It is also possible to solve for x algebraically. For

instance, if Pα and Pβ both meet αβ at edge midpoints, we have

©−1

(
T(x)

tan π
nα

)
+©−1

(
T(x)

tan π
nβ

)
= d

which, after some manipulation, gives

x = T−1


©(d)

(
1

tan2 π
nα

+
1

tan2 π
nβ

+
2E(d)

tan π
nα

tan π
nβ

)− 1
2




The complexity of the algebraic solution casts a solid vote for the practicality of finding x

numerically.

4. Simultaneous inflation of all three polygons.In this most complicated case, we have only

the inflation symbol ABC, indicating that all three polygons should be inflated until each one

touches the other two. Our goal is to calculate radii rA, rB , and rC for regular polygons PA,

PB , and PC .
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Although it is possible to solve this problem in closed form, the algebra involved is quite

grueling. Instead, observe that we can build a numerical solution using the results of previous

cases. Given some value for rA, we can inflate both PB and PC until they meet PA as in

case 1, yielding candidate values for rB and rC . We can then decide how close PB and PC

come to touching each other by computing lBC + lCB − d, where d is the length of triangle

edge BC. This expression is a monotonic function of rA, and so we can search for a solution

to lBC + lCB − d = 0 numerically using binary search. The final value for rA determines the

values for rB and rC .

When the inflation process is complete, the result will be one or more regular polygons centered

on the vertices of a single generating triangle. By the definition of a generating triangle for [p, q],

we can extend the placement of regular polygons to the whole plane simply by applying successive

reflections across triangle edges. The symmetry group of the resulting tiling is [p, q].

As an example of this notation, consider the tiling ([6, 3]; 2e, 0, 3e; AC), the construction of

which is shown step-by-step in Figure 3.21. Here, we have mA = 2 in symmetry group [6, 3],

meaning that we will place regular dodecagons at every center of sixfold rotation. Because oA = e,

these dodecagons will be oriented so that an edge midpoint lies on the ray
−−→
AB. We also have

mC = 3 and oC = e, and so a regular enneagon will be placed at every center of threefold rotation,

oriented so that an edge midpoint lies on
−→
CA. The inflation symbol AC indicates that we should

inflate the dodecagons and enneagons until they meet and have equal edge lengths. This inflation

is possible because there are two equations (one causing the polygons to meet, one equating their

edge lengths) in two unknowns (the radii rA and rC). Once the inflation is performed, the remaining

empty space in the plane is consumed by additional bowtie-shaped tiles, and the tiling construction

is complete. The resulting tiling can then be used to create numerous star patterns. An example

using rosettes appears in Figure 3.17. Other examples of tilings produced by this notation are given

in Figure 3.22.

This notation for tilings is very flexible and can express a large number of the tilings that underlie

Islamic star patterns. However, it was chosen for its adaptability to non-Euclidean geometry and

not for its universality in the Euclidean plane. As a result, there are some simple, well-known

Euclidean tilings such as the one in Figure 3.2 that cannot be represented via this notation. They are
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primarily the ones that do not have symmetry group [4, 4] or [6, 3]; every Euclidean tiling produced

by Najm will have one of these two as its symmetry group. Such tilings can still be used in Taprats,

which provides a convenient user interface for drawing periodic Euclidean template tilings by hand.

Alternatively, it may be possible in some special cases to extend the notation above to symmetry

groups other than those of the form [p, q].

At the start of this section, I pointed out the relationship between polyhedra and patterns in

spherical geometry. When p and q are chosen to yield a spherical symmetry group in the notation

above, many of the resulting tilings can easily be converted into polyhedra simply by taking the

convex hull of the vertices of all generated regular polygons. George Hart and I have experimented

with these polyhedra, which we call “symmetrohedra.” This class of polyhedra contains all of

the Platonic and Archimedean solids except for the snubs [84], and generalizes them to provide a

family of symmetric convex solids with many, but not necessarily all, regular faces. Examples of

symmetrohedra are given in Figure 3.23. Hart and Leigh Boileau have also executed some of the

novel symmetrohedra as sculptures in wood and metal.

3.6.2 Motifs in absolute geometry

Now that I have a geometry-neutral source of tilings to use in the creation of Islamic star patterns,

we must reexamine the way motifs are generated to make sure that the same algorithms apply in ab-

solute geometry. Certainly there is no problem expressing planar maps in absolute geometry; points

and line segments still exist. However, parts of the construction process might require modifications

to remove dependencies on the parallel postulate.

As a first step, observe that the inference algorithm of Section 3.4 can be applied unmodified

in absolute geometry. We may still speak of rays emanating from contact points, forming given

contact angles with a tile edge. Rays may or may not intersect, and if they do we can still calculate

the length of the line segments that join the contact points to the intersection point.

The path-based construction of symmetric motifs still works. And although the design element

model for stars requires no modification, the formula for converting between {n/d} notation and

the contact angle θ requires some additional work in absolute geometry. Using some trigonometric

manipulation, it can be shown that the star {n/d}s, inscribed in an absolute circle of radius r, has
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[4, 3] [6, 3] [7, 3]

[3, 3] [4, 4] [5, 5]

[4, 3] [4, 4] [4, 5]

Figure 3.22 Examples of tilings that can be constructed using the procedure and notation
given in Section 3.6. The tilings are of the form ([p, q]; 4e, 3v, 3e; ABC) in the first row,
([p, q]; 3e, 0, 0; A) in the second row, and ([p, q]; 3e, 2e, 3v; A = 0.85, B, C) in the third.
The symmetry group is indicated under each tiling.
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([5, 3]; 2e, 0, 3e, AC) ([4, 3]; 3v, 0, 2e, AC) ([5, 3]; 1v, 2v, 0, AB) ([5, 3]; 0, 3v, 2v, BC)

Figure 3.23 Examples of symmetrohedra, symmetric polyhedra based on the tilings de-
scribed in Section 3.6.1. Each solid is derived from its given tiling symbol by building the
spherical tiling and taking the convex hull of the tiling vertices.

contact angle θ = π/2− φ, where φ is given from the equation tan(φ) = 1/(E(r) tan πd
n ).

The rosette model presents the first major change in moving to absolute geometry. The con-

struction shown in Figure 3.13 computes point G as lying on the line through point C parallel to

line OM . The existence of this line relies on a direct application of the parallel postulate! Fortu-

nately, we can sidestep Euclid by noting that to have GC = GM , vertex G must lie on the bisector

of ∠CAM . Point G can therefore be found as the intersection of that bisector with MM ′. Even

better, this construction adapts to any contact angle θ by intersecting the bisector with MA′, where

A′ is obtained by rotating A by an angle of θ around M . The value of θ that yields the ideal rosette

is then simply |∠AMM ′|, which depends only on n and r.

Extended motifs require some special treatment as well. As in the Euclidean case, we are given

n, r, and a contact angle θ, and must produce r′ and θ′ so that when extension is applied to an inner

motif with contact angle θ′ inscribed in a regular polygon of radius r′, the result is a larger motif

with contact angle θ and radius r.

Once again it is possible, but complicated, to obtain an algebraic solution for r′ and θ′, but

relatively easy to solve for these values numerically. The solution is illustrated using the diagram

in Figure 3.24. The outer polygon is a regular n-gon of radius r. We can determine the location of

point B as the intersection of the two blue rays
−−→
AB and

−−→
A′B, in much the same way that we would

in the inference algorithm. We can then compute θ′ from the observation that 4θ′ +2∠ABA′ = 2π.

Furthermore, if d is the length of segment OB, then we can obtain r′ from T(r′) = T(d)/ cos π
n .
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Figure 3.24 A diagram used to build extended motifs in absolute geometry. See the text
in Section 3.6.2 for more details.

3.6.3 Implementation

The preceding construction for template tilings, together with the geometry-neutral versions of the

inference algorithm and the design elements, have been implemented as a C++ program called

Najm. The architecture of Najm is sufficiently interesting to warrant detailed description.

In many ways, the large-scale structure of plane geometry mimics the behaviour of classes and

instances in an object-oriented language A geometry as a formal system is like the declaration of an

abstract data type, with the model of that system acting as the data type’s implementation. Absolute

geometry is then very much an abstract base class with Euclidean, spherical, and hyperbolic sub-

classes. Each of the subclasses adds behaviour (specifically, the behaviour of parallel lines), but we

can still do a great deal of geometry by accessing only those behaviours present in the base class.

Najm is divided into two layers. The lower layer is an independent library that provides an

abstract interface to absolute geometry. Tools are then written in a geometry-independent way on

top of the lower layer. By hiding all specific knowledge of the Euclidean, spherical, and hyperbolic

planes behind the abstraction of absolute geometry, we need only write the application layer once.
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This factoring has helped to clarify the nature of star pattern design by shielding the top-level code

from unnecessary detail and repetition.

The expression of this abstraction layer must be carefully designed so that the interface is as easy

to work with as a familiar set of classes implementing Euclidean geometry. At the same time, the ex-

pressibility should not come at the expense of runtime speed or efficient storage. In a language like

Java, where all non-primitive data types are heap-allocated, we must immediately accept the perfor-

mance hit of indirection. On the positive side, we might then implement, say, an AbsolutePoint

class with subclasses EuclideanPoint, SphericalPoint, and HyperbolicPoint. In

this case, branching to the appropriate model (implementation) of geometry is carried out at runtime

through casting and dynamic dispatch. The resulting library would be expressive, but relatively

inefficient.

Instead, I implement the absolute geometry library in an efficient, typesafe, and expressive man-

ner by using explicit specialization of templated classes in C++ [104, section 16.9]. Three “tag”

classes are defined: Euclidean, Spherical, and Hyperbolic. These classes have no mem-

bers, and act effectively as constants that branch to the proper implementation at compile time. The

familiar objects of geometry such as points, lines, line segments, and symmetry groups are declared

as templated classes parameterized on a single type variable. I then give specialized versions of

those classes with the type variable set to one of the three tag classes. Whereas the decision to

branch to a particular implementation is made at runtime in a language like Java, here we can make

the decision at compile time.

For example, a generic point<T> class is declared but not defined. The generic declaration

is then overridden by three specialized classes point<Spherical>, point<Euclidean>,

and point<Hyperbolic>. A client can write generic code that manipulates objects of type

point<T> (in the same way that a Java programmer might manipulate only AbsolutePoints),

and at compile time the code will be instantiated with one of the concrete implementations. This

architecture is the compile-time analogue of a small class hierarchy, but without the speed or space

overhead of indirection. This example is illustrated in Figure 3.25.

Clients that are parameterized on the tag types above can carry out any construction in absolute

geometry. The concrete implementation of that construction is then written out by the compiler

when the client code is instantiated with Spherical, Euclidean, or Hyperbolic. There
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is no run time penalty in using this abstraction layer, although the heavy use of C++ templates

increases compilation time and the sizes of generated object files.

3.6.4 Replication

One important aspect of the library implementation that changes drastically from geometry to geom-

etry is the algorithm that fills a region of the plane with copies of a symmetry group’s fundamental

unit. Each geometry has a specialized structure that calls for a tailored algorithm:

• The sphere permits the simplest replication process. There are three regular spherical sym-

metry groups: [3, 3], [3, 4] ∼= [4, 3] and [3, 5] ∼= [5, 3].3 These three groups are finite, so we

precompute rigid motions for all copies of the generating triangle and store them in tables.

No fill region is specified; the sphere is simple enough that we always draw the entire pattern.

• The Euclidean groups [3, 6] ∼= [6, 3] and [4, 4] are infinite, so we need an algorithm that

fills only a region. We assemble fundamental units into a translational unit, a region that

can be repeated to fill the plane using translations alone. This translational unit consists of

twelve triangles in a hexagon for [3, 6] and eight triangles in a square for [4, 4]. Copies of the

translational unit can then be replicated to cover any rectangular region, using the algorithm

discussed in Section 4.4.3.

• Replication in the hyperbolic groups presents the greatest challenge. Fortunately, efficient

algorithms already exist, including remarkable table-driven systems based on the theory of

automatic groups [47, 101]. We base our code directly on the pseudocode presented by Dun-

ham et al. [40, 43]. The regions we fill are discs centered at the origin in the Poincaré model.

3.6.5 The meaning of Najm

At first glance, the implementation of Najm may seem somewhat mysterious. After all, the con-

struction of star patterns relies on concrete mathematics like measurements of distances and angles,

intersections between lines, even the construction of planar maps. How can all these calculations be

carried out in absolute geometry, a logical system where concepts like distance exist only formally?

3Although the prismatic groups[2, q] and [p, 2] are also regular and spherical, we are not interested in them for the
purposes of creating Islamic star patterns.
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// Define the three tag classes
classEuclidean {};
classSpherical {};
classHyperbolic {};

// Any definitions provided in this ’abstract base class’ are purely
// for documentation purposes, since they will never be called.
template<typenamegeo> classPoint {

double distance( constPoint<geo>& other ) { return 0.0; }
};

// A point in two-dimensional Cartesian coordinates
classPoint<Euclidean> {

double distance( constPoint<Euclidean>& other ) {
return sqrt( (x-other.x)*(x-other.x) + (y-other.y)*(y-other.y) ); }

double x, y;
};

// A point in the hyperboloid model of the hyperbolic plane
classPoint<Hyperbolic> {

double distance( constPoint<Hyperbolic>& other ) {
return acosh( z*other.z - x*other.x - y*other.y ); }

double x, y, z;
};

// A point on the sphere
classPoint<Spherical> {

double distance( constPoint<Spherical>& other ) {
return acos( x*other.x + y*other.y + z*other.z ); }

double x, y, z;
};

// An example of a geometry-independent client function.
template<typenamegeo> double perimeter( constvector<Point<geo>>& pts ) {

double total = 0.0;
for ( size t idx = 0; idx < pts.size(); ++idx ) {

total + = pts[idx].distance( pts[(idx+1)%pts.size()] );
}
return total;

}

Figure 3.25 An excerpt from the absolute geometry library underlying Najm, showing
the class specialization technique. C++ templates allow code to be parameterized over a
choice of geometry without incurring the runtime overhead of a class hierarchy. Here, I
demonstrate the declaration of a simple point class, together with its specializations and a
sample client function.
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Figure 3.26 Samples of Islamic star patterns that can be produced using Najm. To provide
a basis for comparing patterns across geometries, each page presents a single conceptual
design interpreted in each of the three different geometries.
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Figure 3.26 (continued)
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Figure 3.26 (continued)
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Figure 3.26 (continued)
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The simple answer is that such calculations cannot be carried out. The shuffling of numerical

values and the representation of objects like points using coordinates are properties of a modelof

geometry, not of geometry itself. That the distinction between the two is hard to visualize is a by-

product of the categoricalness of Euclidean geometry. As was mentioned in Section 2.1.3, we need

not make a mental distinction between the axioms of Euclidean geometry and the Cartesian plane,

because the latter is (up to isomorphism) the only way to represent the former.

The implementation still manages to carry out computation, though, because it makes an ex-

plicit allowance for the substitutability of models in absolute geometry. The key is that a client of

the absolute geometry library is parameterized on the choice of model. This parameterization takes

the form of the template argument geo in the perimeter function of Figure 3.25. This seemingly

inocuous parameter is shorthand for a whole collection of data structures and algorithms that im-

plement geometry in the Euclidean plane, the hyperbolic plane, or the sphere. That implementation

is pulled in by consistently using the geo parameter in the client implementation, for example by

referring to points as point<geo>.

Although the implementation itself is strong evidence that this approach works, the explanation

still suffers from a subtle but interesting logical hole.

In geometry, a construction is really just a theorem, a theorem stating that the construction is

possible. In some sense, the elaborate method of star pattern construction presented here is then just

a very long-winded theorem of absolute geometry. What is that theorem?

The construction of star patterns is controlled by a set of parameters: the notation describing the

tiling (which includes the symmetry group [p, q], multipliers mA, mB , and mC , and so on), and the

parameters that assign motifs to the tile shapes. Let us extract from this collection the numbers p

and q, and lump all remaining parameters together into a set S.

An initial attempt to state the “theorem of star patterns” might read as follows: “for all p, q,

and S, we can construct a star pattern with symmetry group [p, q], as dictated by the parameters

in S.” Unfortunately, this statement is absolutely untrue! For any given p and q, the existence of

symmetry group [p, q] is equivalent to one of the three versions of the parallel postulate, and is

therefore independent from the axioms of absolute geometry. Worse still, asserting the existence of

[p, q] for all values of p and q simultaneously is like trying to have a single geometry where all three

parallel postulates hold, an obvious impossibility.
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The existence of symmetry group [p, q] is the geometric fact that gets the entire construction

process off the ground, but it is the one fact we cannot prove in absolute geometry. The way out

of this quandary is to supposethat [p, q] exists as a condition of the theorem: “for all p and q, if

symmetry group [p, q] exists then for all S we can construct a star pattern with symmetry group [p, q],

as dictated by the parameters in S.” This subtle change eliminates all inconsistency because the

theorem does not assert that any of the groups [p, q] actually exist, but should one exist, star patterns

can be constructed from it. This view of star pattern construction comes closest to expressing the

mathematical “meaning” that underlies the implementation of Najm.

3.6.6 Results

Examples of rendered star patterns in the three planar geometries are given in Figure 3.26. In each

case, a single choice of motifs and rendering style is applied across related Euclidean, hyperbolic,

and spherical symmetry groups. This consistency makes clear the similarity between related sym-

metry groups. Typically, the change is that one of the stars in the Euclidean design will have fewer

points in the spherical design, and more points in the hyperbolic design.

3.7 Decorating star patterns

Although I have already given some examples of decorated star patterns, I have postponed the

discussion of how these decorations are carried out until now so that I can describe the algorithms

once and for all in the absolute geometry framework presented in the previous section.

I distinguish between two kinds of decoration styles for star patterns. Ornamentationis the

addition of non-geometric figures, such as curvilinear floral motifs, to the underlying design. I do

not attempt to generate such motifs, although they could in principle be supplied by the user (and

perhaps generated to fit the design by adapting the technique of Wong et al. [139]). My focus is on

geometric rendering: purely mathematical operations on the vertices, edges, and faces of the planar

map itself.

We can use the high degree of symmetry of Najm’s template tilings to simplify decoration and

rendering. We compute the restriction of the overall design to a single generating triangle. That

restricted map, which I call the “fundamental map,” contains all geometric information necessary to
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Figure 3.27 Examples of decoration styles. The undecorated fundamental map is shown
on the left, followed by the filled, outline, interlaced, and outlined-interlace decoration
styles. To make the over-and-under patterns consistent in the two interlaced cases, the
decoration must be carried out on two adjacent fundamental maps.

render any amount of the final design. To create a decorated design, it suffices to apply a decoration

style to only one or two copies of the fundamental map. Figure 3.27 shows examples of decorated

fundamental maps.

3.7.1 Filling

A simple and effective decoration style is to colour the faces of the fundamental map, including faces

bordered by the generating triangle. This style emulates the many real-world examples executed

using coloured clay tiles.

Because the designs produced by Najm have only 2-valent and 4-valent vertices, the map can

be 2-coloured. My implementation automatically 2-colours the fundamental map as a basis for user

selection of face colours. Following tradition, one set of faces in the 2-colouring will typically be

left white and the other set will receive a range of colours, chosen interactively by the user.

3.7.2 Outlining

We can choose instead to simulate the “grout” of a real-world tiling by thickening the edges of the

fundamental map. In the Euclidean plane, this operation is straightforward; to endow a line l with

thickness w, construct the two parallels at distance w/2 to l. Unfortunately, these parallels are not
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Figure 3.28 A diagram used to compute the mitered join of two line segments in absolute
geometry. The diagram is used in the text of Section 3.7.2.

well-defined in absolute geometry.

As was discussed in Section 2.1, the solution is to move from parallel lines to equidistant curves,

the two loci of points of constant perpendicular distance w/2 from l. Equidistant curves can be

manipulated with ease in absolute geometry, although they cannot, for example, be assumed to be

straight (another property equivalent to the Euclidean parallel postulate).

The other operation that must be translated to non-Euclidean geometry is the mitered join of

two thickened absolute line segments. The situation is shown in Figure 3.28. Suppose two segments

(in blue) meet at a point O, where they create an angle of θ. The mitered join depends on the two

points A and A′, which we know lie on the bisector of of the blue lines and are equidistant from O.

It remains to determine the distance l = OA = OA′. This distance can be found via a direct

application of one of the identities of absolute trigonometry: ©(l) =©(w)/ sin θ
2 .

3.7.3 Interlacing

The interlaced decoration style can be derived from the outline style by drawing additional curves at

every crossing to suggest an over-and-under relationship. This style is of great importance both in

Islamic art and in the ornamental traditions of other cultures, such as Celtic [29] and Byzantine [91].



93

As shown in Figure 3.27, the over-and-under relationship must be determined over two copies

of the fundamental map, a map together with a copy reflected along one of the edges of the gener-

ating triangle. This larger map covers a fundamental region of [p, q]+, the orientation-preserving

subgroup of [p, q] [26, section 4.4]. This group can cover the plane using only direct (non-reflecting)

symmetries, which allows the interlacing to be carried to the whole plane consistently. The repli-

cation algorithm discussed in Section 3.6.4 must be modified slightly so that it does not draw any

reflected fundamental regions.

3.7.4 Combining styles

In practice, designs are rendered using some combination of the styles above. The most common

combinations are the superposition of an outlined or interlaced rendering over a filled rendering.

In some cases, we may also think of composing various styles. Consider that an interlaced

rendering can itself be considered a kind of planar map (it is not a planar map because some vertices

are connected by equidistant curves, not straight lines). This new map can now be outlined. The

result is a composed outline-interlace style. This style is particularly effective when executed as a

real-world object by a computer-controlled manufacturing system. Examples appear in Figures 3.35

and 3.37.

3.8 Hankin tilings and Najm tilings

A quick visual inspection shows that the tilings presented in this chapter fall loosely into two camps.

There are simple tilings such as the ones defined using the notation of Section 3.6, which for the

purposes of discussion I call “Najm tilings.” They are mostly made up of regular polygons with

hole fillers completing the tiling as needed. Then there are “Hankin tilings,” the more complex

tilings introduced by Hankin and used in Section 3.4. In a Hankin tiling the regular polygons are

often surrounded by rings of irregular pentagons. And yet, once higher-level design elements such

as rosettes are added to the construction method in Section 3.5, it seems as if the two families of

tilings can produce similar (and sometimes identical) designs. Figure 3.29 gives two examples of

how distinct tilings can lead to the same design.

Bonner uses both kinds of tilings to create star patterns, and he too observes that a single design
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Figure 3.29 Examples of distinct tilings that can produce the same Islamic design. In
each case, the tilings on the left is filled in using a combination of design elements and
inference, and the tiling on the right uses inference alone. They meet in the shared design
in the center.

may originate from two very different tilings (he makes this observation in the context of the tilings

in the top row of Figure 3.29). In fact, there is a deep connection between the two tilings, one that

should not be dismissed as coincidence. In this section, I explain the relationship between Hankin

tilings and Najm tilings and discuss situations in which it might be preferable to use one family over

the other.

I define an operation on Euclidean tilings called the rosette transform. The algorithm for the

rosette transform is reminiscent of the inference algorithm: given a tiling, it constructs a planar map

for each distinct tile shape. The planar maps are then assembled, this time into a new template tiling

rather than a final design. The map for each tile shape is constructed in one of the following two

ways:

• If the tile is a regular n-gon P of radius r with five or more sides, then the map is constructed
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Figure 3.30 The rosette transform applied to a regular polygon. Here, a regular 10-gon
of radius r (shown in black) is inscribed with a smaller regular 10-gon of radius r′ (shown
in blue) together with segments that join the vertices of the inner polygon to the edge
midpoints of the outer one. The inner radius is chosen so that the marked edges have the
same length.

Figure 3.31 The rosette transform applied to an irregular polygon. On the left, a perpen-
dicular bisector is drawn for every tile edge as a ray pointing to the interior of the tile. The
rays are cut off when they meet each other, as with the inference algorithm.

as in Figure 3.30. We build a new regular n-gon P ′ with radius r′ < r and place it concen-

trically with the original polygon but rotated by π/n relative to it. We then add line segments

connecting the vertices of P ′ to the edge midpoints of P . The inner radius r′ is chosen so

that the length of each of these new segments is exactly half of the side length of P ′. Some

trigonometry shows that given n and r, the correct value of r′ is

r′ = r

(
cos

π

n
− sin

π

n
tan

(
π(n− 2)

4n

))

The map returned is P ′ together with the segments joining it to the edge midpoints of P .
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(a) (b)

Figure 3.32 Two demonstrations of how a simpler Taprats tiling is turned into a more
complex Hankin tiling. The simpler tiling is shown in black, and its rosette transform
superimposed in blue.

• If the tile is a polygon P that does not satisfy the conditions above, we extend perpendicular

bisectors of the sides of P towards its interior, as shown in Figure 3.31. The bisectors are

truncated where they meet each other. The result is returned as the map for this tile shape.

This step is similar in spirit to running the inference algorithm with a contact angle of 90◦ and

is subject to the same pitfalls. We do not expect it to return a meaningful answer for every

possible polygon, but in the cases of polygons that occur in Najm tilings, the map it discovers

is “correct.” Some heuristics also work here that do not apply in the inference algorithm. One

moderately successful heuristic is to consider the intersection points of all pairs of rays and to

cluster those points that lie inside the tile. The clusters can then be averaged down to single

points that all rays contributing to that cluster can use as an endpoint.

When this algorithm is run on Najm tilings, it tends to produce Hankin tilings. For instance,

the two black tiles in Figures 3.30 and 3.31 correspond to the Najm-like tiling in the top row of

Figure 3.29. When assembled into a complete rosette transform tiling, the result is the corresponding

Hankin tiling. The two tilings are shown superimposed in Figure 3.32(a), along with the rosette
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transform of the bottom row of Figure 3.29 in (b).

As Figure 3.29 shows, when the Najm tiling is turned into a design by putting rosettes inside all

the regular polygons and using inference elsewhere, the design is similar to the one obtained from

the related Hankin tiling through inference alone. When the tilings are superimposed, we see that a

regular polygon will generally be converted into a similar regular polygon surrounded by a ring of

irregular shapes, mostly pentagons. Inference will produce a large star inside the regular polygon

and five-pointed stars in the surrounding pentagons. Adjacent five-pointed stars conspire with the

large inner star to create the hexagons characteristic of rosettes. The rosette transform is motivated

by (and named after) the goal of making the pentagons as close as possible to regular, producing

rosettes that are nearly ideal.

Although the rosette transform is given above for the Euclidean plane, it could easily be adapted

to absolute geometry, thus providing a means of producing more elaborate star patterns in the hyper-

bolic plane and on the sphere. The only change would be a generalization of the formula for scaling

regular polygons to absolute geometry. The presentation here is confined to the Euclidean plane for

simplicity and to highlight the relationship with Bonner’s work.

Given the seeming equivalence between these two families of tilings, why not simply choose

either Najm tilings or Hankin tilings and develop star patterns based on them alone? It turns out that

each approach can handle cases that the other cannot. There is a tradeoff in choosing one kind of

tiling over the other. The simpler Najm tilings rely on the design elements, which allow for more

direct control over the appearance of complex motifs. Design elements can occasionally produce

designs that are aesthetically superior to the design related through the corresponding Hankin tiling.

On the other hand, the more complex Hankin tilings need only a single inference algorithm to

produce a complex design.

Consider the Archimedean tiling (4.82). Running the Taprats algorithm on this tiling, using

eightfold rosettes for the octagons, produces the design shown in Figure 3.33(b). If instead we

first compute the rosette transform of the tiling, and run Hankin’s method on the result, we get the

very similar design in Figure 3.33(d). Although these designs have the same general structure, the

former can be considered superior because the rosette hexagons all have the same size and line up

cleanly. Bonner handles the problem with rosette hexagons in (d) by moving the contact positions

on the pentagons away from the edge centers. This sort of adjustment proves to be necessary when
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(a) (b) (c) (d)

Figure 3.33 An example where the simpler tilings of the Taprats method, combined with
more complex design elements, can produce a better overall design than the more complex
tilings of Hankin’s method. The tiling in (a) produces the design in (b) by placing rosettes
in the octagons. The corresponding Hankin tiling in (c) produces a similar design in (d),
but this new design is unsatisfactory because the rosette hexagons have different sizes.

applying Hankin’s method to some tilings, but it is not clear how such a correction can be formalized

and applied generally. In cases like this one, it seems simpler to use the equivalent Najm tilings and

the parameterized design elements.

On the other hand, the Hankin tilings can be useful for expressing designs featuring stars with

unusual numbers of points. Bonner exhibits several such designs including unlikely combinations

like a periodic design with 11- and 13-pointed stars, reproduced in Figure 3.34. These remarkable

designs work because the extra layer of smaller tiles such as irregular pentagons can absorb the error

in attempting to reconcile the incompatible angles of these regular polygons. The template tiling

that produces the design with 11- and 13-pointed stars is not the rosette transform of any Najm

tiling. The more complex tilings are therefore essential in some cases for creating designs that are

impossible to express using Najm. Of course, the rest of the system can operate on either sort of

tiling — design elements can still be placed in the regular polygons if desired, and the inference

algorithm can be run everywhere else.

3.9 CAD applications

I now diverge temporarily from the development of new families of star patterns to discuss some of

the CAD and manufacturing applications of the patterns presented so far. In the next section, I will
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Figure 3.34 An unusual star pattern, reproduced from Bonner’s manuscript, featuring 11-
and 13-pointed stars.

return to the creation of novel designs one last time, creating star patterns based on aperiodic tilings.

The primary historical use of star patterns is as architectural ornamentation. Star patterns can be

found on walls, floors, and ceilings of buildings all across Europe, Africa, and Asia. Traditionally,

they are executed in a variety of media: assembled from small terracotta tiles (a style known as

“Zellij”), carved as a bas-relief into stone or wood, built from wooden slats into latticework, or

simply painted onto a surface. All of these methods are highly costly and laborious, which might

account for a modern decline in the application of star patterns. Sometimes a compromise is reached,

where a square translational unit is extracted from a pattern and stamped onto large square tiles.

Though pretty, this approach has only a small fraction of the visual impact of Zellij, where each

coloured region is fabricated as a separate tile.

The patterns created by the programs in this chapter cry out to be made into real world artifacts.

The good news is that the capability of computer graphics to invent and visualize shapes is now

being matched by an incredible array of devices that can manufacture those shapes in the real world.

These CAD devices hold great promise for a revitalization of ornament in everyday architecture. We
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(a) (b) (c)

Figure 3.35 Examples of laser-cut star patterns.

have become accustomed to the featureless grey urban towers of the previous century. With tools

that design and fabricate ornamentation quickly and at a reasonable cost, perhaps we can reawaken

our primordial urge to decorate.

Islamic star patterns are ideally suited to experimentation with computer-aided manufacturing.

They are geometric rather than image-based, meaning that precise information is available to guide

the paths of cutting tools. Though tied to Islamic culture, star patterns are appreciated around the

world for their harmony and simplicity. Finally, they have been used extensively in architecture

already, and so we have a large library of real-world artifacts to guide the aesthetic of an automated

approach.

I have used star patterns as a test case in experimenting with a variety of manufacturing processes

and media. The results of some of those experiments are presented here.

One general class of devices, similar to plotters, are those in which a computer-controlled tool

moves over a plane, selectively cutting or scoring parts of the material. These devices can cut

away the lines that make up a star pattern, resulting in a screen resembling a traditional piece of

latticework.

For thin materials like paper, the simplest approach is to use a CO2 laser cutter. This machine

is quite effective at cutting paper and mylar, as shown in Figure 3.35. I have used the laser cutter

to create prototype business cards, which have proven to be very popular but time consuming to
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produce. The laser cutter I used was not practical for mass production, though there are larger

industrial systems that can cut objects on an assembly line. One might also imagine cutting star

patterns using metal die cutting; I have not attempted this approach because of the prohibitive cost

of die fabrication.

CNC milling machines have been around for some time. Here, the cutting tool is a drill bit,

allowing the milling machine to automate many of the tasks performed by hand-operated power

tools. Figure 3.36 shows an example of the use of the milling machine. Using a router bit, I cut

star patterns into blocks used for linocut printing. The blocks were then hand printed onto paper.

The result combines the rigidity of computer-generated geometry with the handcrafted quality of

the printing process.

It might also be possible to address the problem of fabricating metal dies for paper cutting by

machining a die using a milling machine.

At the high end of the plotting devices is the waterjet cutter. These machines cut by directing a

high-pressure stream of grit-impregnated water at the material. They have an incredible range, able

to cut through materials ranging in toughness from foam to titanium, even able to handle delicate

materials like glass. As part of a collaboration on an architectural project, I have had access to

a waterjet cutter, and have fabricated several prototype artifacts in different media. Examples are

shown in Figure 3.37.

Another exciting class of manufacturing devices are rapid prototyping machines. These tools use

a variety of processes to build any watertight three-dimensional model, usually by slicing the model

into layers and fabricating one layer at a time from a synthetic material. Two common processes

are fused deposition modeling, where a nozzle extrudes a stream of liquid ABS plastic to print each

layer, and the ZCorp process, where a stream of liquid selectively bonds a powder substrate.

Rapid prototyping machines are not especially practical for executing Euclidean patterns; these

are much more effectively manufactured using any of the plotting machines described above. But

they are excellent at fabricating spherical patterns, which otherwise would be very difficult to ma-

chine or carve accurately by hand. Figure 3.38 shows some manufactured spherical patterns. Ideally,

these models could be used to create molds for metal sculptures; Grossman has used rapid proto-

typing to fabricate models suitable for bronze casting via a lost-wax method [63].
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(a) (b)

Figure 3.36 Examples of star patterns created using a CNC milling machine. The milling
machine was used to route star patterns into linoleum printing blocks, from which hand
prints were made.

(a)

(b) (c)

Figure 3.37 Examples of star patterns cut using a waterjet cutter. The pieces are cut from
particleboard and steel in (a), from MDF (a versatile wood composite) in (b), and from
plexiglass in (c).
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(a) (b) (c)

Figure 3.38 Examples of star patterns fabricated using rapid prototyping tools. The first
two were built using fused deposition modelling, and the last using ZCorp. Models (b)
and (c) are based on the same design.

3.10 Nonperiodic star patterns

As a final excursion in the world of Islamic art, I would like to consider the construction of nonpe-

riodic star patterns in the Euclidean plane. Although it may seem as if such an idea would have to

be an exclusively modern one, there are in fact many historical examples of Islamic ornament based

on a nonperiodic arrangement of elements. For example, the placement of Muqarnas (a system of

ornamental corbelling, usually installed under domes or arches) is typically guided by a symmetric

but not periodic patch of squares and 45◦ rhombs [19, Page 289]. Many domes are also decorated

with star patterns that cannot be extended periodically.

These wonderful historical artifacts do not imply that Islamic artisans understood the mathemat-

ics of aperiodic tilings. With some experimentation, it is easy to cover a large region of the plane

with a radially symmetric arragement of squares and 45◦ rhombs or Penrose rhombs. The deeper

fact that these shapes are related to inherently aperiodic prototile sets need not play a role in the

experimentation process.

On the other hand, it is reasonable to exploit the modern theory of quasiperiodic tilings in con-

structing star patterns, provided the results do not stray too far from the aesthetic of Islamic geomet-

ric art. Here, I explore several ways of deriving novel quasiperiodic template tilings, and the star
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patterns that can be generated from them.

3.10.1 Lattice projection tilings

One well-known method for creating quasiperiodic tilings is the “lattice projection method,” best

demonstrated by the Geometry Center’s online Quasitiler application [18]. In this method, an n-

dimensional integer lattice is sliced through by a carefully rotated two-dimensional plane. Edges of

the lattice that touch the plane are projected orthogonally onto it. The network that ends up inscribed

on the plane is a quasiperiodic tiling by rhombs.

By themselves, these rhombic tilings are not suitable for use as template tilings. Rather, they

can be seen as a guide for the placement of regular polygons in the formation of a new tiling. The

rhombs act like fundamental regions for the tilings described in Section 3.6.1. When run on an

n-dimensional lattice, the lattice projection method will yield only rhombs with smaller interior

angles in the set {π/n, 2π/n, . . . , �n/2�π/n}. For example, the 5-dimensional lattice produces

rhombs with interior angles of π/5 and 2π/5, which are none other than the rhombs of Penrose’s

aperiodic set P3. Castéra has demonstrated a star pattern based on Penrose rhombs that is very

similar to the ones developed here [20].

As with a tiling construction based on fundamental regions of symmetry groups, the structure

of angles around tiling vertices in a lattice projection tiling permits regular polygons to be placed at

those vertices in a principled way. The placement of regular polygons might leave behind holes that

are then filled with additional tiles. In a rhombic tiling derived from an n-dimensional lattice, we

can, for every integer k ≥ 1, place a regular 2kn-gon at each tiling vertex and inflate them (in the

same way as was done in Section 3.6.1) until they meet.

Inspired by this observation, I consider the simplest case of placing a regular 2n-gon at every

rhomb vertex. Each regular polygon is oriented so that it has an edge midpoint on the two rhomb

edges that are adjacent to the vertex. They are scaled so that they meet at the center of every rhomb

edge (as in the “simultaneous inflation of two polygons” in Section 3.6.1). As with the other families

of tilings given in this chapter, this process will leave behind holes, which are filled as needed with

new tiles. The resulting tiling can then be turned into a design for a star pattern by applying the

usual inference algorithm and design elements.
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(8, 2) (9, 2) (10, 3)

Figure 3.39 Examples of (n, c)-monsters for n = 8, n = 9, and n = 10.

Unfortunately, there is a slight problem with this technique. When applied to the thinnest rhomb

in the tiling, the placed regular polygons will overlap in the middle of the tile, as shown in Fig-

ure 3.41(a). If the motifs for the two overlapping polygons are simply superimposed, the result is

not aesthetically pleasing. Instead, we must fuse these overlapping regular polygons into a larger

entity that astronomer Johannes Kepler called a monster(at the end of this section, I will discuss a

monstrous tiling due to Kepler). But then we encounter another problem: the inference algorithm

performs poorly on monsters. It tends to produce large empty areas that ought to be filled with

additional geometry. In order to proceed with Quasitiler-based star patterns, we need a taxonomy of

monsters and the motifs that can be associated with them.

For every n > 6 and 2 ≤ c ≤ �n/2� − 2, define the (n, c)-monsteras the union of a pair of

regular n-gons arranged so that exactly c full edges of each polygon lie inside the other. Note that

the cases c = 0 and c = 1 are meaningful — they correspond to two polygons that share a single

vertex and a single edge, respectively. But these cases do not need to be dealt with specially when

designing motifs, and so we ignore them for the rest of this discussion. Figure 3.39 shows some

examples of monsters for n = 8, n = 9, and n = 10.

Clearly, a large part of a monster looks like parts of regular polygons, and so we should strive as

much as possible to place parts of star-like motifs in those regions. It is only in the overlapping area

that the star motifs interact and need to be modified.

Monsters are somewhat special, in that the motif chosen to deal with the region where the poly-

gons overlap is usually specially tailored to that situation. In some cases, a solution will generalize

to other values of n, c, and the desired contact angle. In his manuscript, Bonner provides motifs

for the (10, 2)-monster under various choices of contact angle. For the contact angle 2π/5, Castera
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Figure 3.40 A menagerie of monsters and their motifs. This table shows a collection
of (n, c)-monster motifs useful for n ≤ 12. Each row depicts monsters with a different
value of c. The columns depict varying contact angles (I consider only multiples of π/n).
Except where otherwise noted, the entry given in a cell applies for all legal values of
n ≤ 12.

provides an alternate solution to Bonner’s [20] that is somewhat less visually pleasing. Inspired by

their efforts, I present in Figure 3.40 a small menagerie of motifs for some of the more frequently

occuring monsters. I concentrate on values of n up to 12 and contact angles that are multiples of

π/n (i.e., contact angles corresponding to integral values of d in the traditional {n/d} star notation).

This library of monster motifs can now be used to create a variety of quasiperiodic designs.

Some examples are shown in Figure 3.42. In this case I have not written a tool to deal with these

tilings directly. Instead, I rely on Taprats to draw and edit the individual motifs, and then import

the motifs into Adobe Illustrator for decoration and assembly. I simply invoke Quasitiler to obtain

a quasiperiodic patch of rhombs that then guide the placement of motifs. There is no reason why
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(a) (b)

(c)

Figure 3.41 The development of design fragments for a Quasitiler-based Islamic star
pattern. In (a), the two fivefold rhombs (identical to the Penrose rhombs) are shown su-
perimposed over decagons centered at their vertices. In (c), the template tiles are given
motifs, with the (10, 3)-monster receiving the motifs shown in Figure 3.40. Finally, in (c),
the collected motifs are restricted to the rhombs and assembled into a star pattern. The
rhombs are randomly coloured in the final pattern to show the structure of the underlying
quasiperiodic tiling.
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(a) (b)

(c) (d)

Figure 3.42 Examples of Quasitiler-based Islamic star patterns. The examples in (a) and
(b) are based on 6- and 5-dimensional lattices, respectively. The examples in (c) and
(d) are both based on 4-dimensional lattices. The designs in (b) and (d) are based on
rosette transforms of tilings (as defined in Section 3.8), leading to the stronger presence
of rosettes.
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these individual steps could not be combined into a single program; the manually-assembled results

here are presented primarily as a proof of concept of the approach.

3.10.2 Kepler’s Aa tiling

I close this journey through Islamic star patterns with an example based on a single unusual and

very elegant tiling.

The frontispiece of Tilings and Patternsreproduces a set of tilings from Kepler’s seventeeth

century Harmonice Mundi. Most of Kepler’s tilings are well known, or at least easily understood.

But one tiling, labeled “Aa,” does not succumb to analysis so readily. Kepler seems to be attempting

to fill the plane exclusively with shapes possessing fivefold symmetry, though his scheme eventually

produces what we can recognize as (10, 2)-monsters (it was in fact Kepler who suggested the term

“monster” for these fused polygons). Interestingly, it is still unknown whether such a tiling exists

(with uniformly bounded tiles) [30], or indeed whether a tiling exists with cn-symmetric tiles for

n = 5 or n ≥ 7 [28, Page 93].

The difficulty with Kepler’s drawing of his Aa tiling is that it is far from obvious how the patch

of tiles given might be extended to cover the whole plane in an orderly manner. Indeed, it is not

even clear that Kepler had a specific extension in mind. Nevertheless, one possible approach was

discovered by Dessecker, Eberhart and others [68, Page 89]. Their ingenious construction fills a

36◦ rhomb with tiles from Aa. These rhombs can then be laid out in two different ways, each

preserving the consistency of the contained tiles. Rhombs can fit together edge-to-edge, or offset by

the golden ratio of the rhomb edge length. The two possible configurations are exploited by filling

the plane with a radially symmetric arrangement of rhombs that overlap around a pentacle at the

origin. When the tiles are assembled according to this arrangement of rhombs, the result is a truly

remarkable nonperiodic tiling of the plane with global fivefold symmetry. Figure 3.43 shows the

steps in the construction of the Aa tiling.

Kepler’s tiling is made up of regular pentagons, regular decagons, (10, 2)-monsters, and penta-

cles (stars of the form {5/2}1). Except for the pentacles, all of these tiles are now familiar ground,

and motifs can be given for them easily. The one remaining obstacle in building a star pattern based

on Aa is to figure out what to do with the pentacles.
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(a) (b) (c)

Figure 3.43 The construction of Kepler’s Aa tiling, reproduced from Grünbaum and
Shephard [68, Figure 2.5.10]. The arrangement of tiles inside one rhomb is shown in
(a). Two distinct ways to place rhombs are shown in (b). In (c), both of these ways are
used to cover the plane with rhombs, five of which overlap. When the smaller tiles are
placed according to this arrangement of rhombs, a consistent aperiodic tiling of the plane
is produced.

The pentacle is not particularly well-suited to the task of being a template tile. The inference

algorithm produces a motif, but that motif is rather unsuccessful, leaving a large empty region

that cries out for more geometry. We can observe, however, that in Kepler’s tiling the pentacle is

always surrounded by a ring of five pentagons. We can modify these configurations of six tiles

to permit more satisfying motifs in the regions they cover. Two possible modifications are shown

in Figure 3.44, along with motifs they can be used to generate. In the second of those cases, the

inference algorithm is still inadequate in expressing a suitable motif; the motif given was developed

by hand, inspired by consideration of traditional solutions in similar contexts.

These slightly modified versions of the original tiling can now serve as template tilings for star

patterns. Two examples are shown in Figure 3.45. These star patterns are particularly satisfying as

they bring together the insights of mathematicians from across centuries of time and vastly different

cultures. They seem to reach close to the heart of the geometric aesthetic.
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Figure 3.44 Proposed modifications to the region surrouding the pentacle in Kepler’s Aa
tiling that permit better inference of motifs.

3.11 Future work

This chapter has explored the riddle of Islamic star patterns. I propose one possible solution to that

riddle, in the form of a sequence of algorithms and constructions that produce star patterns. Moving

beyond the work presented here, there are still tremendous opportunities for future work centered

on the use of computers in creating star patterns. I conclude this chapter by discussing some of the

most exciting future directions.

3.11.1 Better decoration tools

The decoration tools provided by Taprats and Najm are quite flexible, but still require manual inter-

vention in many cases. Some of these cases might be automated by borrowing from traditional rules

of star pattern design.

For example, Castéra points out that for certain classes of star pattern, there is a “correct” choice

of band width for the outlined and interlaced decoration styles [19]. The best width achieves a

pleasing visual balance between the thickened bands and the spaces between them. Some additional

analysis of historical artifacts might lead to formulae for these band widths.
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Figure 3.45 Two examples of star patterns based on Kepler’s Aa tiling.
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The default behaviour for the filled decoration style is to 2-colour the design. More than two

colours are almost always used in traditional renderings of star patterns, and there are conventions

that govern the choice of colours and their distribution over the regions of the design. Some automa-

tion could be applied to the colouring of regions by encoding these conventions in software. The

automation would rely on the ability to “parse” the regions in a design into well-known categories.

3.11.2 The use of optimization

There are cases where the simple inference algorithm of Section 3.4 fails to discover what is histor-

ically the “correct” motif for a template tile. In his manuscript, Bonner discusses these situations as

they arise, pointing out special cases where a contact angle must be changed or a contact position

moved slightly away from the center of a tile edge. While layers of heuristics might be heaped

upon the basic inference algorithm to account for these special cases, it is always more satisfying to

discover general principles.

The inadequacies of the inference algorithm may be surmountable through the use of optimiza-

tion. Given a template tiling, we might imagine using the algorithms presented in this chapter to

construct an initial design, one that at least has the correct topology. An optimization procedure,

with an aesthetic evaluation as its objective function, might then be used to improve the design,

seeking a configuration that has better visual balance. Bonner has suggested that rigorous aesthetic

goals for star patterns could be derived from experience with historical examples.4 Alternatively,

the aesthetic objective could be based on measuring the visual appeal of the design according to

principles from Gestalt psychology.

3.11.3 Moroccan star patterns

This chapter presents techniques for constructing a wide class of designs, but there is a completely

separate historical tradition for star pattern construction that came out of Morocco and Spain. The

majority of examples in Castéra’s book [19] are not intended to be periodic patterns. They are

presented as finite designs centered around a single, large star (with as many as 96 points). In some

cases, the designs could be extended into periodic patterns, but the repeated large stars would be a

4Jay Bonner, personal communication.
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distraction rather than a focal point. These finite designs are often installed in fountains, doors, and

other clearly delimited planar regions.

As was mentioned in Section 3.2, Castéra’s method is based fundamentally on the placement

of a skeleton made up of stars and safts. The skeleton delineates the broad structure of the design.

Then, he uses a kind of inference step to fill the regions outlined by the skeleton. His inference step

seems to rely on a great deal of intuition, although some computer assistance may be possible. In

particular, he always aims to create inferred regions in the shapes of well-known tiles from the Zellij

style. Inference may then be regarded as a kind of puzzle assembly problem (where each piece may

be used multiple times).

The more remarkable of Castéra’s examples are those featuring stars with many points. An

interesting challenge would be to develop a system that draws such designs automatically. This is a

difficult problem; the designs are highly specialized, relying on a great deal of trickery to interface

a large star with the lower-order symmetry of the area that surrounds it. Perhaps optimization could

be used here to carry out this trickery with a minimum amount of disturbance to the surrounding

geometry.

The quasiperiodic technique of Section 3.10.1 seems like another fruitful approach to producing

large stars, as the rhomb tilings produced by Quasitiler can have a global center of high rotational

symmetry. A region of the design around the rotational center could be replaced with a single large

star or rosette. Again, optimization might better integrate the star into the rest of the design. Alter-

natively, a different means of producing quasiperiodic tilings, such as the overlay-dual described by

Stampfli [128] and Zongker [142], might play a role in creating Moroccan-style patterns.

3.11.4 Strange stars

For what sets of integers can we construct attractive periodic star patterns in which there are k-

pointed stars for every k in the set? Many simple combinations, such as the sets {8, 12}, {9, 12},

and {9, 18} follow immediately from the tiling notation of Section 3.6 or a review of historical

examples. But we can accept a little flexibility by considering polygons that are “nearly regular,” in

which we can inscribe motifs that are not-quite-perfect stars. Many designs containing rosettes, for

instance, might also be seen to contain distorted 5-pointed stars. A more dramatic example is the
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near-miss Altair tiling given in Figure 3.3, inducing a star pattern with 4-, 5-, 6-, 7-, and 8-pointed

stars.

The development of attractive patterns based on unusual sets of star orders is a fascinating chal-

lenge that balances mathematics with an intuition for covering up distortion. Historical artisans

seemed to delight in discovering such designs; one wonderful example shown by Bonner contains

11- and 13-pointed stars (see Figure 3.34). It is hard to imagine that a general algorithm underlies

the creation of these unusual designs, but it would be interesting to search for some heuristics that

could intelligently guide the placement of star centers and invent plausible hole-filling motifs to take

up the space between the stars.
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Chapter 4

ESCHER’S TILINGS

4.1 Introduction

Figure 4.1 M.C. Escher in a self-
portrait. M.C. Escher’s “Self-portrait”

c©2000 Cordon Art B.V. – Baarn – Holland.

All rights reserved.

M. C. Escher, more than any other individual through-

out history, brought forth the great beauty that lies at

at the intersection of art and mathematics. The im-

mense popularity of his graphic art shows no signs of

waning, and his imagery continues to appear regularly

everywhere people casually place eye-catching art. Al-

though he downplayed his abilities as artist and as math-

ematician, his work has always been a source of pro-

found inspiration to both. It drives the artist to seek

out the aesthetic possibilities of geometry and pushes

the mathematician to invent new machinery to explain

the designs he created through what he considered non-

technical means.

Bruno Ernst provides a classification of the many

ways that mathematics played a role in Escher’s work.

Any one of these suggests a fruitful avenue for exploration of the geometric aesthetic. I have chosen

to focus on the regular division of the plane, on the many tesselations he created.

Escher had a lifelong obsession with the regular division of the plane, an obsession that in

part can trace its lineage back through the Islamic star patterns of the previous chapter. Escher

made several visits to the Alhambra and other monuments in Spain. He was deeply inspired by

the interlocking geometric forms of the Moors but felt it a pity that they were forbidden by their
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religion from depicting real-world objects in their art [50].1 He undertook as a personal quest the

reinvention of geometric art, substituting easily-recognized motifs such as animal forms for the

purity of the Moorish rosettes and polygons.

By the time Escher began studying the regular division of the plane in the first half of the twen-

tieth century, tiling as an art form had passed mostly into history, to be replaced by the growing

development of a systematic mathematical theory. Escher came along at the right time. He was

born just as physicists and mathematicians were beginning to categorize the sorts of symmetries

he used. One of his first exposures to the mathematics of symmetry was when his half brother, a

geologist, pointed him at a paper by Polyà.

Escher arrived at each of his interlocking animal forms after a great deal of tinkering and ma-

nipulation. Over the years, he became more proficient at inventing new arrangements of motifs,

developing his own “layman’s theory” of tilings to track the ground he had covered and suggest new

directions for exploration. He managed over his career to produce a notebook with more than a hun-

dred of these ingenious, playful designs. His notebooks are lovingly reproduced by Schattschnei-

der [124].

Most of Escher’s work is not ornamental in the traditional sense. The regular division drawings

in his notebook were either intended purely as exercises, or as studies for future prints. Later in

his life, when Escher attained a certain measure of celebrity, he did receive several commissions

for ornamental installations around Holland, and he covered architectural surfaces with patterns

in paint, inlaid wood, and ceramic tile (see the notes in Schattschneider [124] for photographs of

some of these installations). Often he took a periodic pattern and wrapped one of the directions

of periodicity into a circle, resulting in a cylindrical pattern that could be used to cover a column.

Schattschneider also points out that even if Escher did not focus his efforts on ornamental design,

his work has had a great influence in the decorative arts [124, Page 281].

In this chapter, I develop a suite of mathematical and software tools that enable the construction

and manipulation of Escher-style tilings of the plane. The mathematical tools are based on the

theory of isohedral tilings, as developed by Grünbaum and Shephard and presented in Section 2.4.

1As Section 3.1 points out, the prevalence of geometric patterns in Islamic art is not fully explained by a simple
religious prohibition. However, this misunderstanding was common in Europe at the time that Escher was exposed to
Islamic art.
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The main focus of the chapter is Escherization: an algorithm that, given an arbitrary polygonal

shape, attempts to find a tiling of the plane using a prototile that resembles the shape. Escherization

takes over the task of searching through the complex space of tilings, providing an outline that

an artist can manipulate and decorate. I then adapt Escherization to handle more complex cases,

namely where there are two goal shapes and the objective is to create a dihedral tiling of the plane. I

also consider the problem of creating Escher-like tilings using Penrose’s aperiodic tile sets, tiles that

Escher might very well have enjoyed working with had they been discovered during his lifetime.

4.2 Related work

Software specifically geared towards the construction of tilings of the plane has been around for

at least twenty years. Chow had a very successful FORTRAN program [21] that let the user input

the portion of a tile’s boundary that is “independent,” i.e., not constrained to some other part of the

boundary through a symmetry of the tiling. The program then filled in the remaining part of the tile

and replicated it in the plane.

For many years, Kevin Lee has offered a commercial software package called TesselMania! that

makes it easy to draw and decorate Escher-like tilings. His system is geared towards the use of

tilings as a tool for mathematics education, and the most recent version of TesselMania! includes

tutorials, games and puzzles designed for teaching concepts of geometry.

Tupper’s Tess [87] has traditionally allowed the user to create drawings belonging to the frieze

and wallpaper groups, in a manner similar to the Geometry Center’s Kali [5]. Recently, he modified

Tess to support a set of tilings directly. Like TesselMania!, Tess is geared towards pedagogical use.

The three programs above are all based on the 28 Heesch types[80], which are in some sense

precursors to the isohedral tilings that do not take into account the additional internal symmetries

that a prototile may be forced to have. Roughly speaking, each Heesch tiling represents a set of

isohedral types related through a hierarchy of increasingly symmetric tile shapes, and so the Heesch

tilings are just a coarse-grained view of the isohedral tilings. Schattschneider reproduces a table

of the 28 Heesch types in her book [124, Page 326]. In principle, much of the work in this chapter

could have been based on the Heesch types rather than the isohedral types. However, the availability,

thoroughness, and clarity of Grünbaum and Shephard’s presentation of the isohedral tilings make
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them the preferable choice for this research.

Escher created a small number of carved wooden sculptures featuring spherical interpretations

of his tesselations. Using these as a starting point, Yen and Séquin [140] created an “Escher Sphere

Construction Kit,” a system that allows the user to design ornamental spherical tilings much as one

could create Euclidean tilings in the systems above. As an added feature, the tilings they create

can be exported to rapid prototyping hardware and constructed as real artifacts, as was done with

spherical Islamic star patterns in Section 3.9. They have created many attractive spherical patterns.

Some are fabricated in one piece, others tile by tile, assembled by gluing each tile to the surface of

a ball.

4.3 Parameterizing the isohedral tilings

We now return to the subject of the isohedral tilings first described in Section 2.4.1. The isohedral

tilings turn out to have a balance of mathematical, algorithmic, and aesthetic properties that make

them an excellent choice in the search to create new designs in the spirit of Escher. We use them as

the basis for almost all of the work in this chapter.

Escher rarely strayed from the isohedral tilings when developing his tesselations. Mathemat-

ically, every monohedral tiling produced by his “layman’s theory” is isohedral. Only one of his

roughly 140 notebook drawings is anisohedral, and that drawing was based on a tiling that Penrose

showed to Escher specifically to demonstrate the existence of an anisohedral prototile [118]. Even

his periodic tesselations with multiple motifs are ultimately based on the isohedral tilings, for he

constructed such tilings by splitting an isohedral prototile into multiple pieces. As a further justifi-

cation for our decision to use IH, we may appeal to Grünbaum’s argument that in building a pattern,

artists and designers focus on the relationship between a motif and its neighbours, rather than that

between a motif and the whole [64]. The isohedral tilings are precisely those monohedral tilings

in which a tile’s relationship to its neighbours completely determines the complete structure of the

tiling.

On the practical side, the combinatorial structure of the isohedral tilings allows us to construct

simple data structures to represent them and efficient algorithms to manipulate them. Building upon

the mathematical treatment of the isohedral tilings given in Section 2.4.1, this section and the next
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IH1 IH64 IH58 IH17

Figure 4.2 Examples (from left to right) of J, U, S and I edges. In each case, the tiling
edge with the given shape is highlighted in red.

one develop the computational tools needed to work with IH, the space of isohedral tilings. I begin

here by providing a parameterization of the space of shapes of isohedral prototiles. In the next

section, I will use that parameterization to construct a software library.

Within the tilings of a single isohedral type, prototiles are distinguished from each other by their

shapes, determined by the positions of the tiling vertices and the shapes of the curves that join them.

In order to move from the combinatorial description of isohedral tilings to a geometric one, we

must understand how incidence symbols dictate the range of possible prototile shapes for a given

isohedral type. We parameterize the space of isohedral tilings by giving, for each type, an edge

shape parameterizationand a tiling vertex parameterization. The former encodes the minimal non-

redundant geometric information sufficient to reconstruct the tiling edges. The latter determines the

legal configurations of tiling vertices.

4.3.1 Edge shape parameterization

The constraints on the shapes of tiling edges in an isohedral tiling are simple to describe. Although

the underlying choice of how to represent a curve is left open, the tiling’s symmetries imply a great

reduction in the tiling edges’ degrees of freedom. These constraints can be extracted directly from

the tiling’s incidence symbol. We enumerate the four cases for the structure of a tiling edge. For

each case, Figure 4.2 shows a tiling with such an edge.

If some directed edge is adjacent to itself without a flip, then a tile’s neighbour across that edge

is adjacent through a half-turn. This rotation forces the edge shape to itself be symmetric through a

half-turn about its centre. We call such an edge an S edge as a visual mnemonic. Only half of an S
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edge is free; the other half must complete the rotational symmetry.

An undirected edge must look the same starting from either end, meaning it must have a line of

mirror symmetry through its midpoint. If the edge is adjacent to any edge other than itself, it is free

to take on any curve with this bilateral symmetry. We call it a U edge. Again, only half of a U edge

is free.

If an undirected edge is adjacent to itself, or if a directed edge is adjacent to itself with a change

in sign, that edge must have both S symmetry and U symmetry. The only shape that has both is a

straight line, leading us to call such an edge an I edge.

The remaining case is when a directed edge is adjacent to some other directed edge. Such an

edge is free to take on any shape, and we call it a J edge.

Note also that if an edge x is adjacent to an edge y, then x and y have the same shape (even

though they have different names). In this case, we need only represent one tiling edge, since the

other is entirely constrained to it. Thus, referring back to the derivation presented in Figure 2.16,

the tiling edges of IH16 can be summarized by one curve: the shape of the edge labeled b. Edges

labeled a are I edges and have no degrees of freedom, and edges labeled c are constrained to b.

4.3.2 Tiling vertex parameterization

Like the shape vertices, tiling vertices cannot move entirely independently of each other. Moving

one tiling vertex forces the others to move to preserve the tiling. The exact nature of this movement

depends on the tiling type in question. The incidence symbol for a tiling type implies a set of

constraints on the tiling polygon’s edge lengths and interior angles. Any tile of that type will have a

tiling polygon that obeys those constraints.

If we hope to build a generative model of isohedral tilings, it is not sufficient merely to recognize

the constraints on the shape vertices: we need a way to explicitly navigate the space of legal tiling

polygons. For each isohedral type we need a parameterization of the tiling vertices for tilings of

that type. The parameterization should be complete, in the sense that for every legal configuration

of tiling vertices, there is a set of parameters that generates that configuration. We also require it to

be consistent, in the sense that every set of parameters generates legal tiling vertices.

We have developed a set of parameterizations for the isohedral types that we believe to be
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Figure 4.3 The complete set of tiling vertex parameterizations for the isohedral tilings.
In each tile, the edge marked with a red line is the first edge in the tiling type’s incidence
symbol. When that first edge is directed, the red line has an arrowhead. Labelled dotted
lines represent parameter values, and are horizontal or vertical (with the exception of one
guide line in the diagram for IH30). Since the diagrams are scale independent, distances
that do not depend on parameters can be taken to have unit length. Tile edges cut with
the same number of short lines have the same length, and edges cut with chevrons are
additionally parallel. A single arc, a small square, and a double arc at vertices represent
60◦, 90◦, and 120◦ angles, respectively.
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Figure 4.3 The complete set of tiling vertex parameterizations for the isohedral tilings
(continued).

consistent and complete, though the history of IH has certainly experienced its share of flawed

analyses [68, Section 6.6]. The parameterizations were derived by determining angle and length

constraints from the incidence symbols and parameterizing the unconstrained degrees of freedom.

In some cases, parameterizations are shared between tiling types: nine tiling types have squares as

tiling polygons (implying a parameterization with zero parameters), and seven have parallelograms

(implying two parameters). These easy parameterizations are balanced by tiling types with one-

of-a-kind structure that can take some thought to derive. In all, the 93 isohedral types require 45

different parameterizations. Diagrams of the parameterizations appear in full in Figure 4.3.

To our knowledge, no tiling vertex parameterizations have ever been given specifically for IH.

They represent a nontrivial extension to the table of information about IH found in Grünbaum

and Shephard. Previously, Heesch and Kienzle provided tiling vertex parameterizations for the 28

Heesch tiling types [80]. Our parameterizations can be seen as an elaboration of theirs; each Heesch

type is identical to one of the isohedral types, and for those types the parameterizations coincide.
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Figure 4.4 The diagram used to establish a tiling vertex parameterization for IH16. For
simplicity, the arrows indicating edge direction have been left out of the diagram.

The remaining isohedral types have parameterizations where degrees of freedom are coalesced to

yield more symmetric tiling polygons. Because our parameterizations provide information directly

tied to each individual isohedral type, they are still useful in applications of tiling theory.

Often, determining the tiling vertex parameterization for an isohedral type is easy. Take, for

example, IH41. The table provided by Grünbaum and Shephard tells us that every tiling of this

type will have symmetry group p1, consisting simply of translations in two directions. Furthermore,

each translational unit contains a single aspect. These two facts imply that the tiling polygon must

be able to function as a translational unit of the tiling, meaning that it must be a parallelogram.

To give the flavour of a more complicated parameterization, here is a sketch of the derivation for

IH16 (see Figure 4.4). We begin by placing at least enough tiles to completely surround one central

tile, and marking up the tiles with the labels from the tiling’s incidence symbol. Now consider the

situation at tiling vertex A. This vertex is surrounded by three copies of the same angle from three

different tiles, namely ∠FAB, the angle between the a edges. It follows that the tiling polygon

must have a 120◦ angle at that vertex. The same observation applies to vertices C and E. Thus,
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v0 = 1
2 v0 = 1 v0 = 2√

3
v0 = 2

Figure 4.5 Some examples of IH16 with different values for the single parameter in its
tiling vertex parameterization.

�FAB, �BCD, and �DEF are all 120◦ isosceles triangles. Because these isosceles triangles

can be constructed given only the edge opposite the 120◦ angle, the tiling polygon depends entirely

on the “skeleton” triangle �BDF . Furthermore, the incidence symbol reveals a line of bilateral

symmetry in the tile across AD, forcing �BDF to be isosceles. The only degrees of freedom left

in the tiling polygon are the lengths of AD and BF . However, we are not interested in capturing

the absolute size of the tiling polygon, merely its shape up to similarity. We can factor out the

dependence on scale by fixing BF = 1 and keeping just a single parameter: v0 ≡ AD. Figure 4.5

shows tilings of type IH16 that can result from different values of this single parameter.

4.4 Data structures and algorithms for IH

Using the parameterization given in the previous Section, I have developed a computer represen-

tation of isohedral tilings. The representation is expressed as a self-contained C++ library. I have

written a number of large applications and small utilities that use this library to generate tilings, edit

them, render them in various ways, and extract information from them.

At the top level, the library provides two classes: IsohedralTemplate, an abstraction of

an isohedral tiling type, and IsohedralTile, an abstraction of a specific prototile. The template

contains information about a tiling type in general, information that doesn’t change from instance

to instance. The prototile refers to a template and contains the information needed to determine the

locations, shapes, and colours of tiles. I describe each of these components in detail, and then show

how they can be used to support efficient editing and viewing.
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template IH16 {
1 topology 3ˆ6
2 symbol [a+b+c+c-b-a-;a-c+b+]
3 colouring (1 2 3) (1 2 3) (1 2 3)
4 aspects 3
5 rules
6 aspect 2 1
7 aspect 3 6
8 translate T1 1,5
9 translate T2 1,3

}

Figure 4.6 The tiling type information stored for IH16

4.4.1 Isohedral templates

The templates are computed once ahead of time, and stored in a master file (isohedral.ih) de-

signed to be computer-readable. This file has been publicly available [92] on the World Wide Web

for about two years, and has been extensively debugged in that time. When the tile library is initial-

ized, the file is parsed and an IsohedralTemplate instance is created to hold each template.

Other programmers using isohedral.ih have written software to generate code directly from

the file, potentially leading to better performance, at the expense of the ease of debugging that was

necessary as the templates were first being developed.

The template file contains one record for each isohedral type. A sample of such a record ap-

pears in Figure 4.6. It reproduces some of the information tabulated by Grünbaum and Shephard,

such as the topological type (line 1), the incidence symbol (line 2), and the number of aspects (line

4). It also gives a default colouring (line 3). The remaining information, the rules section (lines

5–9), is symbolic description of how to compute the tiling’s translation vectors and transform ma-

trices for its aspects. We execute the symbolic description and cache the resulting transforms in an

IsohedralTile to permit efficient rendering of tilings. In what follows, I provide more details

about the colouring field and rules section.

The colouring field provides a default rule for assigning colours to tiles (colourings of tilings

are described in Section 2.5). An IsohedralTile may override this default with its own colour-
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Figure 4.7 A demonstration of how the colouring information in the isohedral template
(for IH21 in this case) is used to apply colours to tiles. The translational units (each con-
taining six aspects) are outlined in bold. There are three symbolic colours, {1, 2, 3}, and
they are associated respectively with gray, pink, and blue. On the left, the permutations
for the two translation vectors are indicated by showing with arrows the mapping from
original to permuted colours; the permutation’s textual desciption can be read off of the
bottom row of this mapping. On the right, the permutations are applied when moving
between translational units. The colouring for this tiling can be read from the diagram as
colouring 3 (1 2 1 2 1 2) (3 1 2) (2 3 1).

ing. Here we follow Escher’s lead and aim to provide perfect colourings. Recall that in a perfect

colouring, every symmetry of the tiling is a permutation of the set of colours.

The actions of all the symmetries can be summarized by giving the permutations associated with

the two translation vectors of the tiling and a default assignment of colours to the aspects in a single

translational unit. Successive translations will permute this default assignment appropriately. The

colouring field in the template gives, in order, the number of colours, the assignment of colours

to aspects in a translational unit, and the permutations of the assignment associated with the two

translation vectors. A permutation ρ of the numbers {1, . . . , n} is very simply represented as a

sequence (s1 . . . sn), with ρ(k) = sk.

In particular, consider a tiling with translation vectors
−→
T1 and

−→
T2 and their associated colour
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Figure 4.8 A visualization of how aspect transforms and translation vectors are computed
for IH16, using the information in the rules section of the isohedral template (see Fig-
ure 4.6). In the order that they are referenced in the template, the aspects are coloured
blue, pink, and gray. The edges are numbered as they are given in the incidence symbol.
Each red arrow represents a single hop, a rigid motion that brings a tile into coincidence
with one of its neighbours. The end of every sequence of hops is labeled with the corre-
sponding rule from the template for IH16 (see Figure 4.6).

permutations ρ1 and ρ2. Let the tiling have n aspects, with the default colours in a translational

unit given as (c1, . . . , cn). Then aspect k in the translational unit located at a
−→
T1 + b

−→
T2 will have the

colour ρb
2(ρ

a
1(ck)). This encoding can in fact express a superset of the perfect colourings, but it is

easy to check empirically whether a given colouring is perfect.

The rules section gives a collection of rules that, when applied to a tiling polygon, yield rigid

motions (in the form of transformation matrices) for all the aspects of a translational unit, as well as

for the two translation vectors. These transforms cannot be computed ahead of time, as they depend

on the tiling polygon. We speed up the drawing of the tiling by storing these transform matrices in

the IsohedralTile instance, and recomputing them only when the tiling vertices move.

Every tile in an isohedral tiling is surrounded in a consistent way by its neighbours, and so for
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every tiling edge there is a well-defined rigid motion that carries the tile on one side of that edge to

the tile on the other side. The motion will either be a half-turn around the edge’s center (in the case

of an S edge), a reflection across the edge (in the case of an I edge), or a translation (in the cases of J

and U edges). The kind of transform that applies can be determined from the tiling type’s incidence

symbol, and the numeric values in the transform matrix depend on the positions of the tiling vertices

that delimit the edge. We call such a rigid motion a “hop” across a tile edge. In a tile with n edges,

we can label the hops unambiguously as H1, . . . , Hn. Each rule encodes a sequence of hops that,

when chained together, transform a tile to a new aspect or to the same aspect in a neighbouring

translational unit.

Aspect 1 is always given the identity matrix as its transform, and the other aspect transforms are

computed from it. In the example, the first rule (line 6) says that the transform for creating aspect 2

from the first aspect is the hop across edge 1 of the first aspect — that is, a reflection across the

first edge, labelled a+, in the incidence symbol. We will store H1 as the aspect’s transform matrix.

Similarly, the second rule (line 7) says that the transform for creating aspect 3 from the first aspect

is H6, a reflection about the edge labelled a-.

The two translation vectors are specified in the same way. Here, we can obtain translation vector
−→
T1 in two hops, first from the first aspect across edge 1 into some neighbouring tile, and from that

tile across edge 5. The resulting transform matrix would be H1H5. Note, however, that this matrix

does not necessarily represent a translation, and so we cannot just take
−→
T1 to be the translational

component of that matrix. The problem is that the matrix may contain internal symmetries of the

tile shape, which were accumulated when composing the hops together. Fortunately, we can still

extract the translation in a simple way as the vector joining the centroids of the transformed and

untransformed tiling vertices. This calculation works because the centroid is independent of internal

tile symmetries, operations that merely permute the vertices.

In general, a rule may specify any number of hops to get from the first aspect to another aspect

or a translation. Each step in the rule names an edge of the tile, and the transform is computed by

composing together the associated hops.

One piece of per-tiling-type information missing from the template file is the set of tiling vertex

parameterizations. The parameterizations are more easily described in code than in a table-driven

format, and are embedded in the source code, each as a C++ class. A Python file params.py that
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def ih16_params( v0 ):
m = 0.5 / math.sqrt( 3.0 )
T1 = match( Point( 0.5, v0 ), Point( 1, 0 ) )
T2 = match( Point( 0, 0 ), Point( 0.5, v0 ) )

return (
Point( 0.5, -m ),
Point( 1, 0 ),
T1 * Point( 0.5, m ),
Point( 0.5, v0 ),
T2 * Point( 0.5, m ),
Point( 0, 0 ) )

Figure 4.9 Sample Python code implementing the tiling vertex parameterization for
IH16. When called with a single real parameter v0, the function returns a tiling poly-
gon. The function match takes two points as arguments and returns a direct rigid motion
that maps the unit interval onto the line segment given by the two points.

implements the parameterizations is available on the World Wide Web along with isohedral.ih.

An example from params.py is given in Figure 4.9.

This representation of isohedral tilings suffers from a flaw related to degenerate edges in the

tiling polygon. If two consecutive tiling vertices are made to coincide, then the hop across their

shared edge is undefined, and any rules that use the degenerate edge give invalid transforms.

In a purely mathematical treatment of the subject there is no problem, because there is no such

thing as a degenerate edge in the tiling polygon. As two adjacent tiling vertices merge, they fuse

into a single vertex and the tiling as a whole slips into a different (but related) isohedral type, as

shown in Figure 4.10. The representation given here can manipulate non-degenerate tiles without

any difficulty, but it cannot handle these discontinuous transitions. We will return to the subject

of these discontinuities in Section 5.4. An interesting extension to the library would be to classify

these isohedral types that are related through degeneracy, and transparently slip from type to type as

tiling vertices move through each other.

Note also that in the tiling vertex parameterizations given, some adjacent tiling vertices simply

cannot be brought into coincidence. These correspond to the edges of the tiling polygon that are

assumed to have unit length. Any enhancement allowing degenerate edges would have to provide



131

Figure 4.10 An example of how a degenerate tile edge leads to a related tiling of a dif-
ferent isohedral type. As parameter v0 goes to zero in this IH9 tiling, the tiles deform
continuously. But at the instant that v0 becomes zero, pairs of tiling vertices fuse and the
tiling passes through a topological discontinuity to type IH59.

alternate parameterizations in which any edge of the tiling polygon not otherwise constrained could

become degenerate.

4.4.2 Isohedral prototiles

All the information related to a specific isohedral prototile is stored in the IsohedralTile class.

A great deal of data is stored in every IsohedralTile:

• Geometry information includes the parameters for the tiling vertex parameterization, a cached

tiling polygon, and the cached aspect transforms and translation vectors derived from the

rules section of the IsohedralTemplate.

• Shape information contains polygonal paths that make up the non-redundant portion of the

tile’s outline (called the “fundamental edge shapes”). The shape information also includes a

cached copy of the tile’s outline for fast drawing.

• Colouring information contains a colouring (like the one that appears in isohedral.ih)

and actual RGB triples for each symbolic colour.

A callback mechanism ensures that when part of the tile’s description changes (for example,

when a vertex parameter is adjusted), all cached information that depends on it is automatically

updated.
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The IsohedralTile class is designed to be extensible, flexibly storing additional informa-

tion supplied by client code. One example of such an extension is a prototype system for associating

vector-based artwork with the tile. The artwork is made up of a set of “markings,” shapes that have

familiar properties such as line width, line colour, and fill colour.

An instance of IsohedralTile can be written out to a “tile file,” an XML document that

contains the non-cached information in the tile object. Each extension is also given the opportunity

to serialize itself into the tile file.

Each fundamental edge shape is an array of points representing a path starting at (0, 0) and

ending at (1, 0). By default, the points are interpreted as a sequence of line segments, but to increase

the aesthetic appeal of our tilings we have implemented the ability to treat them as control points

for a subdivision curve. As a further enhancement, each control point has an associated weight.

The higher the weight, the more subdivision steps will go by before that point is averaged with its

neighbours. In effect, the weight controls the sharpness of the curve near the control point, with

maximum weight yielding a sharp corner that interpolates the control point. (This approach is a

curve-based analogue of the “hybrid subdivision” technique of DeRose et al.[35].) The subdivision

weights are not built in to IsohedralTile, but implemented using the extension mechanism

described above.

The shape information in the prototile contains a hierarchical model of rigid motions whose

leaves are the fundamental edge shapes. The model makes multiple references to fundamental edges

to express the redundancy inherent in the tile’s outline. To rebuild the tile shape, we apply the tiling

vertex parameterization to obtain the positions of the tiling vertices and use the hierarchical model

to construct edge shapes between them.

There are at most three levels in the hierarchical model between a fundamental edge shape and

a point on the outline of the tile. The first level takes into account the symmetries of U and S edges.

Half of the U or S edge comes directly from the fundamental edge. The other half is derived from

the first half as needed through rotation or reflection. J edges are passed unmodified through this

level, and since I edges are immutable, all tiles share a single system-wide copy of an I edge.

At the next level up, we recognize that edges with different names in the incidence symbol may

still have related shapes. In IH16, for example, the edge named b+ is adjacent to c+, forcing the

two edge shapes to be congruent. In this case, the two edges share the same shape passed up from
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the level below.

Finally, the topmost level maps the unit interval to an edge of the tiling polygon; this mapping

will move an edge shape from its normalized coordinate system into a portion of the tile’s outline.

At this level, all edges with the same label in the incidence symbol share a lower-level shape object.

4.4.3 Interactive viewing and editing

Using the library described above, we have implemented a number of programs that read, edit, and

write isohedral tilings. For simple editing of tilings, the most important of these programs is Tactile,

an interactive editor and viewer for tile files. Tactile is highly responsive, running at interactive rates

on an off-the-shelf Linux system with no graphics acceleration. A screenshot of Tactile is given in

Figure 4.11. Because of the deep sharing of information in the tile representation, when a part of the

tile is edited, the system provides immediate feedback by showing all parts of the tile (and tiling)

that are affected by the change.

When subdivision is enabled, we provide a novel gauge-based interface for

editing weights on control points. The gauge pops up at the vertex location and

is set with a radial motion. Setting weights integrates very comfortably with

the general process of editing the vertices.

The viewer portion of the interactive system relies on an algorithm for fill-

ing a region of the plane with copies of the prototile. Given a tile shape in its

local coordinate system and a viewing region, we need to find the set of rigid motions that replicate

the tile to cover the region.

To find these motions, we compute the coordinates of the viewing region’s corners in the basis

formed by the tiling’s translation vectors. In that coordinate system, the translational units become

lattice squares; we draw the translational units corresponding to the lattice squares that intersect the

projection of the viewing region. For each needed translation, we iterate over the tiling’s aspects,

placing a tile relative to the rigid motion formed by composing the translation with the aspect’s

transform. This algorithm is demonstrated in Figure 4.12. The figure shows that the algorithm is

only approximate — it can leave a border of the viewing region unfilled. However, it is adequate

for the purposes of the work presented here. When it is vital that the viewing region be completely
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Figure 4.11 A screen shot from Tactile, the interactive viewer and editor for isohedral tilings.

Figure 4.12 The replication algorithm for periodic Euclidean tilings. The left image
shows the tiling to be replicated, with a superimposed black square representing the de-
sired viewing region. The red parallelograms delineate translational units of the tiling,
based on vectors T1 and T2. In the middle image, the whole diagram is shown in a co-
ordinate system where T1 and T2 are an orthonormal basis. In this coordinate system,
translational units are lattice squares, and it is easy to choose the squares that overlap the
viewing region. The chosen units are drawn in the untransformed image on the right.
Note that the algorithm is imperfect (it leaves part of the viewing region unfilled) but it is
suitable for the purposes of interactive design.
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filled with tiles, a simple solution is to inflate the region into a larger rectangle, and apply the filling

algorithm on it instead. The filling rectangle can be made large enough that any unfilled part of its

border will still lie outside the viewing region.

As was mentioned above, there is a prototype implementation of vector-based artwork for tiles,

but it is rarely used because of the engineering work that would be needed to create an interface for

designing and editing the artwork effectively. Doing so would be tantamount to re-implementing

great drawing software like Adobe Illustrator. One future solution would be to implement a mark-

ing system as an Illustrator plug-in that takes advantage of their easy-to-use interface and exports

artwork compatible with tile files.

In the meantime, I make much more frequent use of image-based tile artwork. I have im-

plemented an image-based tiling renderer based on libart, a free image manipulation library that

provides a sophisticated imaging model [100]. The renderer takes a tile file and a set of images

(one for each colour in the tiling’s colouring) to serve as backdrops. For each tile in a region, it

starts with the image backdrop for that tile’s colour, optionally applies a semi-transparent wash of

the tile colour, rasterizes any markings that are present, draws the tile’s outline, and transforms the

composited tile into its position in the final rendering. Note that in this model, the user can still

incorporate vector-based artwork from an external tool by rasterizing the artwork and feeding the

resulting image to the renderer. This approach is not ideal, but it produces satisfactory renderings in

most cases (see, for example, Figures 4.15(d) and 4.26(b)).

4.5 Escherization

Our goal in this chapter is to understand Escher’s tesselations with the ultimate aim of creating

new imagery in the same style. Based on the tools described so far, this goal is already possible.

We can use Tactile just as we would use commercial products like TesselMania! or Tess to design

ornamental tilings and render them with decorations. These tools are a boon to artists because the

computer can absorb all the tedium of replication and the difficulty of accounting for the constraints

on a tile’s shape. The artist is free to explore and to develop an intuition for the aesthetic ranges of

different tiling types.

This design process might be called a “forward tiling process”: we start from a simple shape
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that is known to tile and evolve it until the outline sparks the imagination, evoking some real-world

form. At that point we can tweak the shape to better convey the form, and paint the tiles. The

Escher-like tesselations by contemporary artists are for the most part developed using a forward

process. One must imagine that Escher himself worked this way, though he was certainly gifted

with an uncommon intuition. His son recalls Escher’s singular ability to tease animal forms and

faces from the random patterns of clouds, wood grain, and random swirls of paint [49, Page 7].

The suggestive use of the word “forward” above implies that there ought to be an “inverse”

tiling design problem. Whereas in the forward process we start with a mathematically simple shape

and evolve it to create an artistic result, here we would start with a desired form and “devolve” it,

imposing the mathematical constraints necessary to make that shape tile. The constraints will force

some deformation upon the original shape, but with luck the change will be small enough that the

result will still be recognizable.

We formalize the inverse tiling design problem as the “Escherization problem”:

Problem (“ESCHERIZATION”): Given a closed plane figure S (the “goal shape”), find

a new closed figure T such that:

1. T is as close as possible to S; and

2. T admits a monohedral tiling of the plane.

As Section 2.3 points out, little is understood about monohedral tilings in general. To make

Escherization tractable, we immediately retreat from the fully general problem statement and restrict

our attention to IH (later, we will consider Escherization over some other families of tilings). The

previous sections have shown how to parameterize the space of isohedral tilings and implement that

parameterization as a software library. We also know (as was mentioned at the start of Section 4.3)

that the isohedral tilings are a good match for the sorts of tesselations Escher created.

The nature of a solution to the Escherization problem hinges on the interpretation of the word

“find.” We may imagine a space S formed by the set of all possible shapes in the plane, together

with some sort of metric that measures the “closeness” between two shapes. The prototiles of

isohedral tilings form a subspace T of shape space. A given goal shape S is a point somewhere

in S. Optimistically, an analytic solution to Escherization would project shape space onto its tiling

subspace, moving S to a closest point T ∈ T .
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Though appealing to the mathematical aesthetic, such an approach is infeasible. However, the

mental model provided by S and T , and the idea of closeness as a metric, provide the intuition

needed to formulate an attack on Escherization. We envision starting from some known prototile

and trying to move through T in a way that brings us ever closer to S. In other words, our proposed

solution will be based upon continuous optimization, a common technique in computer science for

solving problems that are not easily invertible. Using optimization, we may never reach a prototile

that is globally optimal with respect to S, but perhaps we can get close enough to satisfy the artistic

intent of S.

A continuous optimization problem consists of a configuration spaceand an evaluation function

that maps configurations to real numbers. The goal is to find the configuration that minimizes (or

equivalently, maximizes) the value of the evaluation function. In the optimization procedure for

Escherization, the configuration space is R
n; the parameters that describe the shape of an isohe-

dral prototile can readily be expressed as a tuple of real numbers, as will be shown below. Other

optimizers (see, for example, the work of Agrawala on route maps [4]) maintain a more abstract

configuration space and rely on a user-defined function to suggest perturbations to configurations.

The evaluation function in Escherization is precisely the closeness metric in shape space — by

decreasing the value of that metric (for some formal definition of closeness), we find tiles that are

more like the goal shape.

The remainder of this section formalizes the Escherization algorithm by providing an efficient

closeness metric and a framework in which the continuous optimization takes place. The imple-

mentation is able to find reasonable-looking tiles for many real-world shapes (see, for example, the

“Escherized” version of Escher’s own self-portrait, shown in Figure 4.15(a)). Subsequent sections

will then build upon the ideas presented here by showing other forms of Escherization.

4.5.1 The shape metric

The Escherization problem raises the difficult question of how to compare two shapes. An answer

should be in the form of a metric that would take two outlines and return a nonnegative real number;

zero would mean that the outlines are identical, and higher positive values would denote shapes

that are increasingly dissimilar. We would also like the metric to be insensitive to rigid motions or
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uniform scaling of either of the shapes.

Fortunately, such metrics have been developed by computer vision researchers. We use the met-

ric devised by Arkin et al. for comparing polygons [6]. Their metric represents the input polygons

as turning functions, functions that map fraction of arc length in a polygon to the angle of the poly-

gon at that point (with respect to the positive x axis). Turning functions are naturally translation-

and scale-independent. Vertical and horizontal translation of a turning function correspond respec-

tively to rotation of the polygon and movement of the point where the measurement of arc length

begins. They show that the minimal L2 distance between all possible translations of the two turning

functions satisfies the mathematical definition of a metric and corresponds to an intuitive measure of

closeness. It turns out that this minimum is achieved at one of a relatively small number of transla-

tions of the turning functions, allowing for an efficient algorithm that searches these configurations

for that minimum. They provide an implementation that compares two polygons with m and n

vertices in time O(mn log n).

This algorithm has the drawback that detail is assumed to be directly proportional to arc length.

In other words, two pieces of a polygon’s boundary with the same length carry the same amount of

detail even if one piece packs that detail into a much smaller space. It helps to keep this fact in mind

and aim for a consistent level of detail when creating a goal shape to be Escherized. I have also had

some success running a low-pass filter over the goal shape to smooth out local areas of high detail.

I use the polygon comparison metric for both polygons and subdivision curves. A subdivision

curve is simply approximated by a polygon with a large number of vertices.

4.5.2 Optimizing over the space of tilings

Armed with a set of tilings, parameterizations over those tilings, and a good shape metric, we are

now ready to address the problem of building an optimizer that can search over the space of those

tilings to find an instance whose prototile is close to the goal shape.

Our optimizer is based on simulated annealing. It works roughly as follows:
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function FINDOPTIMALTILING(GOALSHAPE, FAMILIES):

INSTANCES← CREATEINSTANCES(FAMILIES)

while ||INSTANCES|| > 1 do

for each i in INSTANCES do

ANNEAL(i, GOALSHAPE)

end for

INSTANCES← PRUNE(INSTANCES)

end while

return CONTENTS(INSTANCES)

end function

The optimizer takes as input a goal shape and a set of isohedral families in which to search for an

optimal tiling. The optimizer begins by creating a set of multiple IsohedralTile instances for

each isohedral type. The “default” tiling for each isohedral type is chosen to be the type’s underlying

Laves tiling. The Laves tiling can always be expressed within the parameterization space of any

isohedral type of the same topology. So each new instance starts with the Laves tiling and applies a

small random perturbation to its shape.

The optimizer then calls a re-entrant simulated annealing procedure to improve each one of

these instances. (This ANNEAL() procedure is discussed in more detail below.) After each of the

instances has been optimized to some degree, the instances are evaluated according to the shape

metric, and the worst ones are removed. The annealing is continued on the remaining instances.

This iterative process of alternately pruning the search space and then improving the remaining

instances is repeated until just a single IsohedralTile is left. This tiling is returned as the

output of the Escherization algorithm.

The set of tiling types to be passed to the optimizer is at the user’s discretion, but some guide-

lines can be used to drastically reduce the number of types that need to be checked. As has been

mentioned before, some isohedral types “subsume” others, in the sense that a tiling type with a

symmetric prototile can be seen as a special case of a related tiling type with no prototile symme-

try. The more symmetric type, being more constrained, can get no closer to the goal shape than

its asymmetric counterpart, and so it need not be included in the optimization. The best possible

solution can be found by optimizing only over the 28 types with asymmetric prototiles (correspond-
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ing to the 28 Heesh types). Once a solution is found, it is always possible to re-run the optimizer

with the symmetric children of the solution’s tiling type, in search of a solution with more prototile

symmetry.

The annealer is a re-entrant procedure, which works roughly like this:

procedure ANNEAL(TILING, GOALSHAPE):

loop

while T > Tmin do

OPTIMIZETILING(TILING, GOALSHAPE, T )

T ← REDUCE(T )

suspend

end while

SMOOTHEDGESHAPES(TILING)

SPLITEDGESHAPES(TILING)

(T, Tmin)← UPDATESCHEDULE(T, Tmin)

end loop

end procedure

The annealer takes a given tiling instance and a goal shape as input. It acts like a coroutine,

periodically suspending itself while maintaining its state, so that it can be resumed seamlessly later.

FINDOPTIMALTILING runs each annealer for a few hundred iterations at a time, so that they can be

compared against each other to track progress. The ANNEAL procedure takes a number of cooling

steps, reducing the “temperature” at each step. Within this inner loop, it makes a call to a procedure

called OPTIMIZETILING(). This procedure implements the continuous multidimensional simulated

annealing algorithm described by Press et al. [120, Section 10.9]. Their algorithm is based on a

fuzzy version of the “downhill simplex method,” where a simplex of proposed solutions evolves

towards a global minimum by pushing the worst solution through the hyperplane formed by the re-

maining ones.2 The procedure attempts to improve all of the parameters of the tiling, comprised of

the parameterization of the tiling vertices and the positions of the shape vertices. The procedure al-

ways accepts a downhill step (one that brings the tile shape closer to the goal shape) and sometimes

accepts an uphill step, with probability depending on the temperature T . Once the temperature has

2This technique should not be confused with the simplex method of linear programming.
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cooled to some minimum temperature Tmin, the inner loop terminates. At this stage, the algorithm

runs through the vertices of the tile and removes any vertices that are nearly collinear with their

neighbors; these vertices are not being used by the optimizer to improve the tile shape, and are

needlessly slowing down the optimization. Next, the edges of the tile are subdivided, reintroducing

vertices where detail might get added as the optimization continues. (Note that during this process,

the dimensionality of the annealing problem may change, and we must ensure that OPTIMIZETIL-

ING can cope with the change.) The cycle of smoothing and subdividing edges is highly effective

in keeping degrees of freedom only where they are needed. Finally, the cooling schedule restarts,

generally with slightly lower values of T and Tmin.

One additional part of the optimization, which is not shown in the pseudocode and which is

optional, is to automatically convert the vertices of the tiles into control points for subdivison curves

after a certain stage in the optimization. The annealer can then incorporate the weights on the

subdivision control points as additional degrees of freedom.

The use of simulated annealing is subject to the usual practicalities. First, the success of the

optimization for a single instance of a single tiling type depends to some extent on the initial shape

of the tiling polygon and the initial positions of the shape vertices. I therefore generally start with

multiple, randomly perturbed instances for each tiling type. An interesting alternative would be to

seed the initial tiles with segments from the goal shape’s outline. As with any simulating annealing

algorithm, the choice of cooling schedule can also make a difference. I use a very simple approach

where the temperature T is multiplied by a factor of φ after every N iterations, with T = 0.1, N =

250, and φ = 0.9 to start. When the temperature reaches 5% of its initial value (Tmin = 0.05T ), the

optimization resets, lowering the starting and minimum temperatures by a factor of 0.6, increasing

the number of iterations N by a factor of 1.2, and reducing the temperature multiplier φ by a factor

of 0.1. I did not spend a lot of time “optimizing” this cooling schedule, so other reasonable choices

would probably work equally well or better.

4.5.3 Results

Figure 4.13 shows snapshots from two sample runs of the Escherizer. The goal shape in the first

run is a simple test polygon, part of a series used to verify and tune the optimizer. The second goal
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Figure 4.13 Timelines for two sample Escherization runs. Each step shows the current
best tile in the system (in red) overlaid on the goal shape. The caption indicates the elapsed
time, the score for that tile, and its isohedral type.

Figure 4.14 A comparison between the tile returned by the optimizer and the same tile
with user modifications. Note also that the second tile has subdivision enabled.

shape is a more typical real-world outline. The more complicated shape takes longer to run, and the

convergence is not quite as complete (as should be expected from a real-world outline).

The optimizer does not require user intervention, but it does run interactively so that its progress

may be watched. In practice, some constructive intervention is possible while watching the running

Escherizer. If it is clear that the goal shape will simply not work as a tiling, the process can be

interrupted. On the other hand, if one particular tiling type seems to be performing very well on the

goal shape, the program can be stopped and restarted with many instances of that type, resulting in

a narrower and deeper search.

Figure 4.14 shows the tile result produced by the optimizer for a teapot image, followed by the
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(a) Escher’s Escher Escherized(IH1)

(b) Pigs in 2-Space(IH3)

Figure 4.15 Some examples of Escherized images and the tilings they generate. Hamm
the pig appears courtesy of Disney/Pixar.
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(c) Dogs; Dogs Everywhere(IH4)

(d) Weiner Dog Art(IH5)

Figure 4.15 (continued)
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(e) Tea-sselation(IH28)

(f) Twisted Sisters(IH86)

Figure 4.15 (continued).
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(g) Sketchy Dogs(IH6)

(h) A Plague of Frogs(IH6)

Figure 4.15 (continued). Sketchy dog appears courtesy of Disney and Pixar.
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(i) Tux-ture mapping(IH6)

(j) Bubbles the Cat(IH1)

Figure 4.15 (continued). Tux the penguin appears courtesy of Larry Ewing.
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tile after a small amount of hand-tweaking in the interactive editor. For the results shown here,

the edits took a minute or two to perform and were fairly typical of the experience of creating

tilings using Escherization. In general, hand editing of Escherized outlines should be expected

and even welcomed. The success of Escherization does not lie in its ability to replace an artist

with a black box tool that produces tilings from thin air. An artist will have a specific intent in

mind, expressed roughly (but perhaps not precisely) with a goal shape. The Escherization algorithm

achieves a “quantum leap of aesthetics” by proposing a tiling with a prototile that roughly resembles

the goal shape, a feat that exceeds the grasp of most human intuition. Still, a result that is perfectly

sound mathematically might lack in artistic merit. All Escherization sees of the artist’s goals is the

imperfect communication of those goals as a shape to approximate. As part of the process of turning

the Escherized tiling into a finished drawing, it is only natural that the artist would want to start by

examining the tile shapes themselves.

The Escherization workflow starts with the user defining a goal shape. Typically, this goal

shape is specified by tracing a feature in an image (say, the outline of a favourite pet). An obvious

enhancement would be to incorporate computer-assisted tools such as intelligent scissors to extract

contours in an image [114].

The natural choice for decorating an Escherized tile is to use the interior of the goal shape in the

image that was originally traced. Using the correspondence provided by the comparison metric, I

do a Beier-Neely style image warp [8] to deform the interior of the goal shape in the source image

into the interior of the Escherized tile shape. When the deformation is not too great, the result is an

attractive tiling out of motifs that resemble the original image. When the automatically-determined

correspondence produces too much distortion (which can happen when the goal shape and tile shape

differ in level of detail), it can be edited by hand to create a better match. This use of image warping

to decorate tiles is valuable in a somewhat sneaky way as well: it can help to cover up deficiencies

in the tile shapes. The eye latches onto features of the decoration, and is willing to forgive a certain

lack of believability in the shapes of tiles. Escher himself was no stranger to this technique. His

deft addition of features as simple as circles for eyes could turn even the most abstract form into

a whimsical creature. (In Understanding Comics, McCloud eloquently illustrates this point in the

context of comics [110, Page 32].)

To further increase the appeal of an image-based rendering, I apply various filters and effects to
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the warped tile image before replication. This post-processing step gives the artist creative control

over the appearance of the final tiling. Alternatively, as was discussed in Section 4.4.3, the original

image can be discarded entirely in favour of vector-based art created using a commercial drawing

package. The artwork is then rasterized and re-inserted into the rendering pipeline. The user can also

create multiple versions of the decorated tile, which are placed according to the tiling’s colouring.

I have used the Escherization algorithm and decoration tools to produce a number of ornamental

tesselations from various sources of imagery. These results can be seen in Figure 4.15. The vector-

based art for Bubbles the Cat(j) was created using the prototype marking system. The decorations

for Weiner Dog Art(d), on the other hand, are a combination of line art created in Adobe Illustrator

and textures and colouring created in the GIMP [53]. Pigs in 2-Space(b) uses various artistic filters

from Adobe Photoshop.

4.6 Dihedral Escherization

The Escherization algorithm described in the previous section is limited to producing monohedral

tilings, and while an artist can use the system to produce a variety of designs in the style of M. C.

Escher, we have only scratched the surface in terms of the complete set of tesselations he created.

In addition to the monohedral tesselations that make up his collected symmetry drawings [124], we

also find many tesselations with two or (less frequently) more motifs.

Although these multihedral tilings make up the minority of his drawings, they are a very im-

portant aspect of his work. Some of his most famous prints (for example, Sky and Water, Verbum,

and Metamorphosis II) make use of one or more dihedral tilings. Furthermore, the use of multiple

motifs agrees with Escher’s predisposition to imbue his work with narrative structure (most clearly

expressed in the Metamorphosisprints [49, Page 48]). A single motif, unchanging forever except

for colour, is largely incapable of telling a story. With two or more motifs, suddenly there is the

opportunity for contrasts, for harmony or discord, for interaction and drama. In symmetry drawing

45 [124, Page 150], better known as “Heaven and Hell,” or “Angels and Devils,” Escher plays with

the balance that exists between good and evil, light and dark. Drawing 63 [124, Page 165], later

immortalized in the print Encounter, depicts smiling optimists and frowning pessimists attempting

to work out their differences.
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Naturally, we would like to rework the Escherization algorithm to handle two goal shapes simul-

taneously and produce dihedral tilings as output. We can immediately formulate a revised version

of the original Escherization problem:

Problem (“DIHEDRAL ESCHERIZATION”): Given closed plane figures S1 and S2 (the

“goal shapes”), find new closed figures T1 and T2 such that:

1. T1 and T2 are as close as possible to S1 and S2, respectively; and

2. T1 and T2 admit a dihedral tiling of the plane.

The success of the monohedral Escherization algorithm suggests that we should take a similar

approach here. I structure the dihedral Escherization algorithm as a continuous optimization over

some space of dihedral tilings. At every step in the optimization, the parameters will somehow be

converted into a pair of tile shapes, whereupon I can use the original polygon comparison metric

(twice) to see how similar these tile shapes are to the two goal shapes. Some combination of the two

comparisons will act as an evaluation function for the dihedral optimization.

The majority of the work is therefore limited to the definition of an appropriate space of tilings

to plug in to the optimization. In this section, I present two spaces of dihedral tilings that yield

satisfactory results. The first consists of the split isohedral tilings, which naturally capture the sorts

of two-motif tesselations Escher created. The second set of tilings is made up of generalizations of

Penrose’s aperiodic tile sets P2 (kites and darts) and P3 (rhombs).

4.6.1 Split isohedral Escherization

Our search for a space of useful dihedral tilings begins with Escher himself. A meticulous note-

taker, he documented his exploration of two-motif systems [123, 124]. In every case, he starts with

one of his monohedral systems and draws a path through the prototile to break it into two shapes.

When that division is copied symmetrically to all other tiles, the result is a dihedral tiling.

Escher’s splitting process was carried out consistently for every tile, yielding a dihedral tiling

with two prototiles A and B. It follows that the resulting dihedral tiling will have exactly two

transitivity classes, one containing all the A tiles and the other containing all the B tiles. In other
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Figure 4.16 A 2-isohedral tiling with different numbers of A and B tiles. The two pro-
totiles, a square and an irregular dart, are shown on the left. The tiling on the right has
four times as many darts as squares in every translational unit.

words, Escher’s two-motif systems are just 2-isohedral tilings. We can conclude that to create

dihedral tesselations in the spirit of Escher, we need to parameterize at most the 2-isohedral tilings.

On the other hand, Escher focused on only a small part of all possible 2-isohedral tilings. His

tilings always have equal numbers of A and B tiles (in each translational unit), whereas there exist

many 2-isohedral tilings that do not (an example is given in Figure 4.16). Moreover, his base tilings

and splitting paths were always chosen to give a tiling that could be coloured using only two colours.

As Schattschneider points out, this decision was motivated partly by the practicality of working in

the medium of printmaking, which in its simplest form produces pictures with two colours: the ink

colour and paper colour. Our space of tilings should be at least broad enough to contain Escher’s

understanding of two-motif designs.

Delgado-Friedrichs et al.carry out a complete enumeration of the 2-isohedral tilings [33]. They

prove a general result that every (k+1)-isohedral tiling can be constructed from a k-isohedral tiling

through a combination of two operations: SPLIT and GLUE. The SPLIT operation corresponds with

Escher’s use of a splitting curve, and they show that any fundamental(asymmetric) prototile of a

(k + 1)-isohedral tiling can be derived from a fundamental prototile of a k-isohedral tiling through

a single SPLIT. The GLUE operation erases the edge between two adjacent tiles, producing tilings

with symmetric prototiles, some of which have different numbers of A and B tiles. Using SPLIT
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Figure 4.17 A summary of our process for split isohedral Escherization. On the left, two
goal shapes S1 and S2 are traced from images. Next, the isohedral tile and splitting path
are shown at a late stage in the optimization. The quality of this configuration is judged
by breaking the tile into two shapes T1 and T2, which are then compared with S1 and S2.
The optimization attempts to minimize the value at the right, the maximum of the two
comparisons.

and GLUE, they show that there are over a thousand 2-isohedral tiling types, making a dihedral

Escherization algorithm based on this full classification impractical. Instead, I look for an approach

that exploits the work already done on the isohedral tilings.

For the purposes of dihedral Escherization, I concentrate on the split isohedral tilings, tilings that

can be derived from an isohedral tiling through a single application of SPLIT. This family of tilings

contains all of Escher’s two-motif systems. It fails to distinguish those tilings that can be coloured

with only two colours, though in some sense this fact is not critical because results can easily be

printed in multiple colours. (Alternatively, from Escher’s notes it would be possible to derive the

necessary restrictions on tiling type and splitting path that would produce exactly his two-motif

systems.) Later, in Section 4.6.2, we will encounter an even stronger restriction that yields a special

family of dihedral Escher tilings dubbed “Heaven and Hell” patterns [38].

A split isohedral tile is represented by a class SlicedTile, a subclass of IsohedralTile.

I augment the isohedral prototile with a splitting path, which is embodied by a new set of parameters:

two parameters that control the path’s start and end positions along the boundary of the isohedral

prototile, and the degrees of freedom that control the path’s shape.



153

The optimization process works in exactly the same way as the monohedral case, except that the

evaluation function must be modified to handle two goal shapes instead of just one. The splitting

path in a SlicedTile divides the isohedral prototile into two shapes T1 and T2. The evaluation

function uses the shape metric defined in Section 4.5.1 to compare T1 with S1 and T2 with S2,

and returns the maximum of the two comparisons as the optimization’s evaluation function. By

returning the maximum (a kind of L∞ norm), we ask both tile shapes to approximate their goal

shapes as closely as possible. This process is illustrated in Figure 4.17.

Let S′
1 and S′

2 denote reflections of S1 and S2. To find the best split isohedral tiling correspond-

ing to two goal shapes S1 and S2, two instances of the Escherization algorithm are required: with

S1 and S2, and with S1 and S′
2 (or S′

1 and S2). Although the shape comparison metric is insensitive

to translation and rotation, it does distinguish between a polygon and its reflection. It might happen

that S1 and S2 interact more favourably if one is reflected.3

Figure 4.18 shows some examples of Escherization using split isohedral tiles. One might guess

that because of the need to match two goal shapes simultaneously, dihedral Escherization would

have a lower success rate than monohedral Escherization. I have found that the additional degrees

of freedom offered by the splitting edge more than compensate for the added complexity of the prob-

lem, and that the dihedral objective function performs comparably to or better than the monohedral

one.

4.6.2 Heaven and Hell Escherization

Some of Escher’s dihedral tesselations, such as Heaven and Hell[124, Page 150], have additional

geometric structure that sets them apart from the rest. Not only is the tiling colourable using only

two colours, but each colour is the exclusive domain of one of the classes of tiles; in Heaven and

Hell, every angel is white and every devil is black. This sort of colouring is possible when every

tiling vertex is surrounded by an alternating sequence of A and B tiles, or equivalently, when every

A tile shares edges only with B tiles (and vice versa).

Aesthetically, such tilings are particularly effective because each transitivity class of tiles plays

3Note that only the relative parity matters; the flexibility of the isohedral tilings guarantees that (S1, S2) is equivalent
to (S′

1, S
′
2), and that (S′

1, S2) is equivalent to (S1, S
′
2).
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(a) Strange ’Tractors(IH28)

(b) Gödel, Bach (Braided): an Eternal Escherization(IH2)

Figure 4.18 Examples of dihedral Escherization using the split isohedral tile method.
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(c) Pen/Rose Tiling(IH1)

(d) Rembrandt and Mrs. van Rijn(IH1)

Figure 4.18 (continued)
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(a) The complete history of computer graphics(IH27; 11
2 , 4)

(b) The Owl and the Pussycat(IH27; 11
2 , 4)

Figure 4.19 Examples of Heaven and Hell Escherization.
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the role of ground to the other’s figure: the A tiles exactly fill the negative space created by the B

tiles. Moreover, the fact that the colours can be unambiguously associated with tile shapes allows

them to become part of the identities of those shapes, as in the white angels and black devils of

Heaven and Hell. Escher used this particular space of tilings to produce some of his best-known

prints, several of which are mentioned at the beginning of this section.

The class of 2-isohedral tilings with this additional structure were enumerated by Dress [38],

who dubbed them “Heaven and Hell” patterns. Based on an analysis using Delaney symbols, he

classified the Heaven and Hell patterns into 37 distinct types. As always, we can develop an Escher-

ization algorithm tailored to this particular classification, allowing us to construct these especially

satisfying tesselations.

Twenty-nine of Dress’s types can be constructed by applying the SPLIT operation to an isohedral

tile and are therefore special cases of split isohedral tilings. The additional structure comes from a

careful choice of locations for the endpoints of the splitting path. Analysis of Dress’s classification

(and examination of the diagrams in his paper) reveals that for these twenty-nine types, the path’s

endpoints are limited to a small number of possible locations. An endpoint will always be either

one of the tiling vertices of the underlying isohedral prototile, or the midpoint of one of its tiling

edges. If the isohedral prototile has n tiling vertices, we can enumerate this set of locations as

L = {1, 11
2 , 2, 21

2 , . . . , n, n + 1
2}, where a whole number k refers to a tiling vertex and k + 1

2 refers

to the midpoint of the edge from k to k + 1. The numbering of the tiling vertices can be taken from

the ordering of the edges in the tiling type’s incidence symbol, as given in isohedral.ih (see

Section 4.4). Each of the 29 types based on splitting can then be given the notation (IHm; a, b),

where IHm denotes one of the 93 isohedral types, and where a, b ∈ L.

I represent the Heaven and Hell tiling (IHm; a, b) using a slightly modified version of the class

SlicedTile. Under this modification, the endpoints of the splitting path are not treated as degrees

of freedom in the optimization but fixed according to the locations a and b. Once the two endpoints

are fixed in this way, the remainder of the dihedral Escherization algorithm can be applied as is.

As has been mentioned before, tiling types can often be placed in a hierarchy, where types with

asymmetric prototiles subsume their more symmetric children. Dress discusses this ordering, and

his diagram shows the 37 Heaven and Hell types laid out according to their heirarchy. His explicit

ordering makes it easy to recognize that of the 29 types based on splitting, we need only optimize
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over 12, as the remaining 17 are subsumed under them by prototile symmetry. Using the notation

given above, the 12 types are as follows:

(IH1; 1, 4), (IH2; 2, 5), (IH3; 2, 5), (IH5; 1, 4), (IH27; 11
2 , 4), (IH31; 1, 3)

(IH33; 1, 3), (IH41; 1, 3), (IH43; 1, 3), (IH47; 21
2 , 41

2), (IH52; 1, 3), (IH55; 2, 4)

The remaining eight types in Dress’s classification require the use of the GLUE operation and

produce tilings with different numbers of A and B tiles. Escher did not create any two-motif patterns

with this property. In principle, it would be simple to add these types to the Escherization process,

although it would require the implementation of a new class of tiling. I choose not to consider these

types in the present work.

Figure 4.19 gives two examples of Heaven and Hell Escherization. The special figure-and-

ground relationship maintained by the two prototiles is best depicted by using only two colours: one

colour each for the A tiles and B tiles.

4.6.3 Sky and Water designs

Escher’s print Sky and Wateris a very special application of Heaven and Hell tilings. What starts

out in the center of the print as a dihedral tiling of stylized fish and birds evolves towards the top and

bottom into realistic drawings: birds above, and fish below. Escher used this device in many prints

and sometimes multiple times in a single print (as in Verbumand Metamorphose II).

It is critical that the central tiling where the birds and fish interface be a Heaven and Hell tiling,

and not just a split isohedral tiling. The stylized birds evolve into the background for the realistic

fish (and vice versa), and so the tiling needs to be colourable with one colour for each tile shape.

Heaven and Hell Escherization seems very well suited to the construction of Sky and Water

designs because the realistic goal shapes are already part of the process that leads to the stylized tile

shapes. To turn a Heaven and Hell tiling into a Sky and Water design, it suffices to gradually blend

the tile shape into the goal shape as tiles are placed successively farther from a given “interface line.”

I have embedded the basic Heaven and Hell Escherization algorithm into a suite of interactive

tools for constructing Sky and Water designs. One tool lets the user specify a set of tiles to draw

and an interface line. Another tool lets the user add decorations to tiles with monochromatic vector-

based strokes. Each stroke is a sequence of Bézier curves with user-specified widths; the curves are
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Figure 4.20 An example of a Sky and Water design, based on the goal shapes of Figure 4.18(d).
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fit to the user’s drawing gestures using the method of Schneider [125]. Additionally, each stroke is

given a “priority” that determines how far from the interface line the tile must be before the stroke

is drawn. This approach allows for a prioritized sequence of strokes ordered by their importance in

expressing a stylized version of the goal shape.

Finally, a renderer assembles the final drawing (in Postscript), taking the output of the other

two tools as input, together with colours for the A and B tile shapes. For every tile, the renderer

interpolates that tile with its corresponding goal shape by an amount determined from its distance

to the interface line. The interpolation is carried out so that any tiles that touch or cross the line are

set to the tile shape, and maximally distant tiles are set to the goal shape. The A tiles are then drawn

over a solid background of the B tile colour, and vice versa. Finally, the strokes are warped into

place and drawn if they have sufficiently high priorities.

Figure 4.20 shows an example of an Escherized Sky and Water design.

4.6.4 Escherization using Penrose tiles

In Section 3.10, I showed how to construct quasiperiodic Islamic star patterns based on a lattice-

projection method that produces tilings by rhombs. It happens that a suitably-chosen lattice projec-

tion yields the Penrose set P3, consisting of a thin and a thick rhomb. Here, we return to the subject

of Penrose tiles and consider the question of creating Escher-like tilings based on Penrose sets P2

and P3.

Unfortunately, Escher did not live to see the development of Penrose tilings, and so we can

only imagine what sorts of creatures he might have discovered in them. Penrose himself, who

corresponded regularly with Escher, expresses his regret at the missed opportunity [118]. He also

gives an example of what Escher might have drawn: a modification of the aperiodic tile set P2

where the kites and darts have been turned into chickens. Over time, other artists have created

Escher-like designs based on Penrose tiles, though traditional periodic designs are still much more

popular. This discrepancy can be explained at least partly by the fact that the range of legal shapes

of Penrose tiles is far from obvious. Whereas any layperson can quickly grasp the structure of the

simpler isohedral types, understanding the Penrose tiles requires some awareness of the underlying

mathematics.
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As was pointed out in Section 2.3.3, the basic kite and dart shapes are not an aperiodic tile

set; many different periodic tilings can be constructed from them. In order to enforce aperiodicity,

the tiles must be augmented with matching conditions that determine the legal ways one tile may be

placed next to another. These matching conditions are expressed in several different ways. Symbolic

colours can be assigned to the tile’s vertices, in which case every tile that shares a tiling vertex must

have the same colour there. Or the edges can be labeled, in which case two tiles that share an

edge must label it the same way. Most importantly, the edges can be deformed so that tiles only fit

together in the desired ways. Grünbaum and Shephard give such geometric matching conditions for

Penrose’s aperiodic sets P2 and P3 [68, Section 10.3]. In both cases, the matching conditions are

boiled down to two non-congruent J edges and the way they are arranged around the two tiles in the

set.

The geometric matching conditions immediately give rise to an Escherization algorithm for

Penrose tiles. The tiling vertices remain fixed, and the optimization operates on the degrees of

freedom in the two fundamental edge shapes. These edge shapes are assembled into two tile shapes

that are then compared against two goal shapes as usual.

Unfortunately, this interpretation of the possible shapes of Penrose tiles is rather limited, as can

be seen in Grünbaum and Shephard’s reproduction of Penrose’s aperiodic chicken tiling [68, Figure

10.3.13]. They overlay the chickens with the corresponding unmodified tiling. The registration of

these two tilings reveals that the chickens have tiling vertices that are different from those of the

original tiling! There are additional degrees of freedom to the Penrose tilings that must be explored

and exploited if we are to extend the reach of aperiodic Escherization. Accordingly, I derive a

parameterized space that generalizes the aperiodic set P2, the Penrose kite and dart. The same

arguments apply to set P3, the Penrose rhombs.

The additional degrees of freedom are wrapped up in the positions of the tiling vertices, and so

we seem to be looking for yet another set of tiling vertex parameterizations. But some care must

be taken when thinking about the tiling vertices. The Penrose tilings make no guarantee about the

transivity of tiles, meaning that in a given tiling, different instances of the same prototile will be

surrounded differently. As a result, two tiles with the same shape may nevertheless have different

tiling vertices. In that case, it makes little sense to speak of parameterizing a prototile’s tiling vertices

once and for all.
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Figure 4.21 An illustration of how a tiling vertex parameterization can be derived for the
Penrose kite and dart. The original edges are modified using Grünbaum and Shephard’s
edge matching conditions [68, Page 539]. When adjacent edges coincide, they are re-
moved, displacing the tiling vertices between the edges. The kite and dart each have one
unconstrained tiling vertex. The others are all implied by the original matching conditions.

By experimenting with the geometric matching conditions, I have discovered an extended set

of points that can be parameterized like the tiling vertices of an isohedral tiling. I call these points

the prototile’s quasivertices. The quasivertices include all the points on a prototile’s boundary that

act as tiling vertices somewhere in a Penrose tiling, and some additional points that are forced into

existence by the creation of these new tiling vertices.

Figure 4.21 shows how one may use the ordinary geometric matching conditions to derive the

new set of parameterizable points for the kite and dart. The fundamental edge shapes are modified

so that they partially overlap. The overlapping regions can then be excised from the tiles, producing

new tiles that no longer share all of the tiling vertices of the original kite and dart. This process

necessarily introduces other vertices into the shapes of the two tiles.

From Figure 4.21, we conclude that the quasivertices of the kite and dart can be parameterized

using four real-valued parameters, determined by the positions of the tiling vertices created at the

tips of the two excised regions. Similarly, four parameters suffice to parameterize the Penrose

rhombs. Once the free parameters are understood, we can derive explicit formulae for the positions

of the quasivertices. Formulae are given for the kite and dart in Figure 4.22, and for the rhombs in

Figure 4.23.

This additional effort at parameterization may at first seem superfluous, because once portions of
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10 )
H = rotate(C,− 2π

5 ,H)
I = rotate(C,− 2π

5 , G)
J = rotate(A,− 4π

5 , G)
K = rotate(A,− 4π

5 , F )

A′ = (0, 0)
B′ = (− cos π

10 , sin π
10 )

C ′ = (0,−1)
D′ = (cos( π

10 ), sin( π
10 ))

E′ = A′ + r2(cos(θ2 + π
2 ), sin(θ2 + π

2 ))
F ′ = B′ + r1(cos(θ1 − π

10 ), sin(θ1 − π
10 ))

G′ = C ′ + r2(cos(θ2 + 7π
10 ), sin(θ2 + 7π

10 ))
H ′ = rotate(C ′,− 2π

5 , G′)
I ′ = rotate(C ′,− 2π

5 , F ′)
J ′ = rotate(A′,− 4π

5 , F ′)
K ′ = rotate(A′,− 4π

5 , E′)

Figure 4.22 A tiling vertex parameterization for generalized Penrose kites and darts, con-
trolled by four real-valued parameters r1, θ1, r2, and θ2. The vertices are enumerated
in counterclockwise order starting at A for the kite and A′ for the dart. The function
rotate(p, θ, q) rotates point q by angle θ about point p.
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A = (sin π
5 , 0)

B = (0, cos π
5 )

C = (− sin π
5 , 0)

D = (0,− cos π
5 )

E = A + r1(cos( 7π
10 − θ1), sin(7π

10 − θ1))
F = A + r2(cos( 7π

10 − θ2), sin(7π
10 − θ2))

G = rotate(B,− 2π
5 , F )

H = rotate(B,− 2π
5 , E)

I = D + r2(cos(π
2 − θ2), sin(π

2 − θ2))
J = D + r1(cos(π

2 − θ1), sin(π
2 − θ1))

K = rotate(D,− 2π
5 , J)

L = rotate(D,− 2π
5 , I)

M = rotate(D,− 2π
5 ,H)

A′ = (sin π
10 , 0)

B′ = (0, cos π
10 )

C ′ = (− sin π
10 , 0)

D′ = (0,− cos π
10 )

E′ = A′ + r1(cos( 6π
5 − θ1), sin(6π

5 − θ1))
F ′ = B′ + r2(cos( 7π

5 − θ2), sin(7π
5 − θ2))

G′ = rotate(C ′,− 4π
5 , F ′)

H ′ = D′ + r1(cos( 3π
5 − θ1), sin(3π

5 − θ1))
I ′ = D′ + r1(cos(π

5 − θ1), sin(π
5 − θ1))

J ′ = rotate(A′, 4π
5 , F ′)

K ′ = rotate(A′, 4π
5 , E′)

Figure 4.23 A tiling vertex parameterization for generalized Penrose rhombs, controlled
by four real-valued parameters r1, θ1, r2, and θ2. The vertices are enumerated in counter-
clockwise order starting at A for the thick rhomb and A′ for the thin rhomb.
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Figure 4.24 Edge labels for the tiling edges of the two sets of Penrose tiles, in the spirit
of the incidence symbols used for the isohedral tilings. The kite and dart are shown on the
left, and the two rhombs on the right. (The edge labels are not related between the two
sets.) Pairs of labels correspond as described in the text.

the tile boundaries are made to overlap, the tiling is indistinguishable from the one created with the

overlapping edges excised. The problem is that although tiles with degenerate regions are visually

indistinguishable from those without, they are very different from the point of view of the shape

metric. The degenerate regions still occupy part of the tile’s arclength, and become quite visible

when the tile shape is converted into a turning function. We choose to solve this problem at the level

of the original tiles, rather than attempting to extend the shape metric with heuristics to detect and

discount such regions.

Now that we have grown our original set of tiling vertices to this new set of quasivertices, some

additional work needs to be done to give new matching conditions on the edges that join quasiver-

tices. Taking inspiration from the use of incidence symbols in isohedral tilings [68, Section 6.2],

the possible edge shapes can be specified by labeling the edges around each tile and indicating adja-

cency rules for the labels. The edges of the kite and dart can be labeled abcdaefghd and ghefgcdabf

respectively, where the enumerations start at the edges marked with arrows in Figure 4.22. To

enforce matching between adjacent tiles, we require that the pairs (a, d), (b, h), (c, e), and (f, g)

interlock. In effect, a given kite and dart will have only four non-congruent edge shapes between

them. Similarly, we can label the edges of the thick and thin rhombs respectively as abcdefegabhg

and afcdegabhg, with the requirement that pairs (a, g), (b, e), (c, d), and (f, h) interlock. These

labelings of the edges of the Penrose tiles are shown in Figure 4.24.
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The edge shapes, combined with the four parameters controlling the tiling vertices, yield a space

suitable for Penrose Escherization. As with the split isohedral case, I optimize over this space, at-

tempting to minimize the maximum of the pairwise shape comparisons. Note that this parameteri-

zation cannot in general represent both a particular pair of tiles shapes and the reflections of those

shapes, and that in each of the Penrose sets P2 and P3 the two prototiles are fundamentally different

shapes. For these reasons, given two goal shapes S1 and S2 and their reflections S′
1 and S′

2, we must

optimize for the eight combinations {(Sj , Sk), (S′
j , Sk), (Sj , S

′
k), (S

′
j , S

′
k)}j,k∈{1,2},j �=k (where S′

is a reflection of S, as in Section 4.6.1).

Rendered drawings based on Penrose tilings are given in Figure 4.25 and Figure 4.26. In general,

it is much more difficult to discover satisfactory Escherizations using Penrose tilings. The range of

possible tile shapes is limited and somewhat peculiar, always having many sharp angles. More

obviously, the number of Penrose “tiling types” is much smaller than with the isohedral tilings:

we no longer have the luxury of hunting over many quite different types for one that happens to

be particularly well suited to a given pair of goal shapes. The results are therefore less successful

than in the isohedral and 2-isohedral cases, but interesting nevertheless for their connection to the

interaction (both mathematical and personal) between Escher and Penrose. On the other hand, the

interactive editor for Penrose tiles still allows profitable forward exploration of the space of tilings.

Figure 4.26(b) shows an example of a tiling that was not Escherized but developed from scratch in a

few minutes, and then decorated in a cartoon style. As always, Escherization is but one possible step

in the design of decorative tilings. The remaining steps, divorced from the Escherization algorithm,

may still be used to create attractive tesselations.

4.7 Non-Euclidean Escherization

Our search for methods to create Escher-like tesselations brings us finally to non-Euclidean geome-

try.

One of Escher’s personal artistic quests was the representation of infinity. The infinite mani-

fested itself in many ways in his art — as the infinity of three dimensional perspective in Depthand

Cubic Space Division, as the infinity of endless spirals in Path of Lifeand Sphere Surface with Fish,

and as the implied infinity of strange loops in Ascending and Descendingand Waterfall.
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(a) Dogs and Cats Living Together(P2)

(b) Busby Berkeley Chickens(P2)

Figure 4.25 Examples of dihedral Escherization using Penrose kites and darts. Because
of the more limited search space, kites and darts enjoy fewer successful Escherizations
than split isohedral tilings.
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(a) A Walk in the Park(P3)

(b) The Pentalateral Commission(P3)

Figure 4.26 Examples of ornamental tesselations based on Penrose rhombs. The top
image was Escherized in the usual sense; the bottom one was developed from scratch in a
few minutes using an interactive editor.
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It was in his regular divisions of the plane that Escher searched the hardest. There, the artistic

infinity might find expression in a mathematical infinity, and the totality of an imagined world might

be realized on a single piece of paper.

Certainly, his notebook drawings offer the suggestion of infinity, though only in a theoretical

sense. We can imagine the tiles of a tiling being extended out in all directions but any drawing of the

tiling can only contain a small patch. Escher worked hard at surmounting this obstacle, devising a

number of clever systems of tiles that interlocked with scaled-down versions of themselves, creating

an ever-diminishing pattern that crept toward a limit. Often, that limit was the center of a circle (as

seen for example in Smaller and Smaller). Escher found these designs unsatisfying because there

was no natural boundary to the drawing. New tiles could always be added to the outer edge, implying

that infinity had still not been reined in. Truly capturing infinity in a single drawing would require

a limit along the drawing’s outer edge; that way, an entire universe of tiles would be completely

contained in a finite region with no logical room for additions [49, Page 41].

Escher finally achieved his goal when he learned of the work of Coxeter. Coxeter’s books on

geometry contain visualizations of hyperbolic symmetry groups in the Poincaré model, visualiza-

tions that were precisely the kinds of tilings Escher was searching for. With Coxeter’s guidance, he

managed to produce a small number of remarkable Circle Limit prints. Each one is a testament not

only to Escher’s artistry and intuition, but also to his tenacity — he tirelessly pushed the design as

close as possible to the bounding circle, down to the physical limits of his tools, his medium, and

his body.

Escher also created several lovely spherical interpretations of his tesselations. They are beauti-

fully carved bas-relief wooden sculptures, sometimes stained in multiple shades. These spheres are

a clear expression of boundlessness, an intellectual and aesthetic cousin of infinity.

I would of course like to create Escher-like tesselations in the hyperbolic plane and on the

sphere. There are two approaches that might be taken to accomplish this goal. We could rewrite the

Escherization algorithm to operate directly in hyperbolic or spherical geometry (or, as was done in

Chapter 3, perhaps we could write a single algorithm in absolute geometry). Alternatively, we could

adopt the approach that Dunham uses to great effect [40, 43], taking existing tilings and adapting

them to other geometries (or other symmetry groups in the same geometry).

The first option, though theoretically possible, is infeasible in practice. This section will ul-
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timately present tools based on the second option, but beforehand some discussion is warranted

concerning the challenges involved in expressing the Escherization algorithm in non-Euclidean ge-

ometry.

As always, the natural approach to an Escherization algorithm is to view it as an optimization

process and to provide a suitable parameterized space and evaluation function.

The definition of an isohedral tiling carries over into non-Euclidean geometry, and so our first

step would be to parameterize the space of non-Euclidean isohedral tilings. The combinatorial

structure of these tilings is well understood. Grünbaum and Shephard give a classification of the

spherical isohedral tilings in the same spirit as their Euclidean classification [67]. Delaney symbols

can be used to enumerate the hyperbolic types [86]. Although there are infinitely many isohedral

tiling types in the hyperbolic plane, it would be possible to enumerate a manageable set of them that

are suitable for Escherization.

Deriving the tiling vertex parameterizations would be the next challenge. As before, for each

tiling type we can write down a set of constraints that must be satisfied by the angles and edges of the

tiling polygon. Unfortunately, in non-Euclidean geometry those constraints will not have solutions

that are linear in some real-valued parameters. The tiling vertex parameterizations will therefore be

more complex.

The main problem would be in adapting the shape comparison metric. “Shape” does not mean

the same thing in Euclidean and non-Euclidean geometry. Arkin’s metric takes for granted the fact

that shape is to be considered independent of a polygon’s absolute size. But in the hyperbolic plane

and on the sphere, size is intimitely tied to shape. A triangle with a given set of interior angles will

necessarily have a uniquely-determined size. Factoring out scale does not make sense outside of

the Euclidean plane (rotation, too, would present difficulties). New shape metrics would have to be

developed for the hyperbolic plane and on the sphere, metrics that do not require ambient space to

be affine.

We therefore take Dunham’s approach, and look for a way to re-map a preexisting tiling into

another geometry. The technique and results presented here are similar to his and are included as

a proof of concept, in the interest of completeness. One difference from Dunham’s method is that

I demonstrate how to render hyperbolic designs from images, yielding non-Euclidean image-based

results. Dunham works only from vector-based art. I also demonstrate a technique for mapping



171

some Euclidean tilings to the sphere.

The translation into non-Euclidean geometry begins with the identification of a region of a Eu-

clidean tiling called a “swatch,” which is suitable for adaptation. Typically, the swatch will be a

square or an equilateral triangle (the examples in this section use a square).

Then, a transformation maps the swatch into a region of the Poincaré model of the hyperbolic

plane that plays an equivalent role in a hyperbolic symmetry group. If the mapping is well-behaved,

then the transformed copy of the original region can be replicated to cover the hyperbolic plane,

elaborating a tiling similar to the Euclidean source. An analogous process maps Euclidean swatches

onto the surface of a sphere.

Not every Euclidean tiling can be adapted in this way, and not every non-Euclidean symmetry

group can serve as the target of translation for some given source region. The periodicity of the

isohedral tiling is a Euclidean property, defined in terms of translational symmetries. A translation

to non-Euclidean geometry must be made based on properties of tilings that do not depend on

translation.

We do have one well-known family of symmetry groups at our disposal that span Euclidean

and non-Euclidean geometry. These are the groups of the form [p, q] and [p, q]+ (the latter were

mentioned in Section 3.7.3). We have already seen in the case of Islamic star patterns how small

changes to p or q can create a family of related designs in different geometries: see Figure 3.26

for examples. It seems reasonable therefore that Euclidean tilings with symmetry groups [4, 4],

[4, 4]+, [6, 3], and [6, 3]+ could be adapted to produce closely related non-Euclidean interpretations.

In the usual international notation for wallpaper groups, these groups are known respectively as

p4m, p4, p6m, and p6. We can look for isohedral tiling types with these symmetry groups as

sources for experimentation. Groups p4m and p6m are only associated with tiling types that make

for uninteresting Escher tilings. The remaining isohedral types worth considering in this approach

are IH11, IH21, IH28, IH31, IH34, IH39, IH55, IH61, IH62, IH79, IH88, and IH90. Of course,

other types can be given non-Euclidean analogues, as Dunham consistently demonstrates. The types

above are those that apply directly in the simple method presented here.

For the moment, we will ignore the problem of colouring, and focus on translating an uncoloured

tiling. Let us consider the tiling called “Tea-sselation,” shown in Figure 4.15(e). It is of isohedral

type IH28, which has symmetry group [4, 4]+ as discussed above. In this symmetry group, centers
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Figure 4.27 A visualization of the symmetry group for Tea-sselation. Red and blue
squares indicate two inequivalent families of fourfold rotational symmetries. Green
lozanges indicate twofold rotational symmetries. The highlighted square can be extracted
from the tiling and used to construct related designs in non-Euclidean geometry.

of fourfold rotation come in two inequivalent families. By joining up one set of centers into square

units as shown in Figure 4.27, we can think of any pattern with p4 symmetry as being expressed by

a collection of square swatches. In “Tea-sselation,” there are two ways to build this region: we can

join together the meeting places of the handles, or of the spouts. I choose the former. By varying

q, we can translate the teapots to hyperbolic tilings with symmetry groups [4, 5]+ and [4, 6]+ (and,

more generally, any [4, q]+ for q > 4). We can also translate the tiling to [4, 3]+ (the symmetry

group of the cube).

It is relatively easy to map the tiling onto a sphere, using the symmetry group of the cube. Given

a point on the sphere, we project that point onto the surface of a concentric cube. Each face of the

cube is square and can be covered with a copy of the swatch. When those pixels are mapped back

onto the spherical surface, the result is a spherical interpretation of the original tiling. This mapping

process is illustrated in Figure 4.28.

For the hyperbolic plane, we can transfer the design to symmetry group [4, q] for any q > 4. We



173

(a) (b) (c)

Figure 4.28 A visualization of how a texture is mapped onto the surface of a sphere via
the faces of a cube. In (a), we see how each face of the cube relates to a portion of the
sphere. The same mapping is repeated in (b), but with the texture mapped to the cube
faces. The resulting spherical tiling is shown in (c).

Figure 4.29 Six steps showing how a square Euclidean texture can be warped to fit a given
equiangular quadrilateral in the hyperbolic plane. The first step shows the quadrilateral.
We use a hyperbolic rigid motion to move it to the origin in step 2, and reproject into the
Klein model in step 3. In the Klein model, the quadrilateral is drawn as a square, allowing
the texture to be mapped into it easily in step 4. We then undo the reprojection and rigid
motion in steps 5 and 6, yielding the final mapped quadrilateral.
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Figure 4.30 An uncoloured interpretation of “Tea-sselation” mapped into the hyperbolic
plane with symmetry group [4, 5]+.
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tile the hyperbolic plane with the tiling {4, q}. Each tile is a regular 4-gon. For each tile, we can

rigidly move the tile until it lies centered at the origin of the unit disk in the Poincaré projection.

We then switch to the Klein projection, where the regular 4-gon must get mapped to a square. This

square can receive the original swatch, and we can then undo the transformations to move the pixels

back up to the original 4-gon. The sequence of transformations is visualized in Figure 4.29. An

interpretation of “Tea-sselation” in the hyperbolic symmetry group [4, 5]+ is shown in Figure 4.30.

It is also possible to add colour to these designs. The notion of perfect colouring works fine in

non-Euclidean geometry. I create coloured designs by constructing multiple swatches that express

all the colour combinations I wish to use in the non-Euclidean interpretation, and assembling those

swatches according to a selection rule that embodies a perfect colouring. For spherical designs in

[4, 3]+, it is easy enough to place the six swatches manually; an example using teapots is shown

in Figure 4.32. In the hyperbolic plane, I implement colouring as described by Dunham [39]. He

extends the data structure representing a rigid motion to include a permutation of the set of colours.

Each primitive rigid motion (rotations around the p-centers and q-centers) get initial permutations.

As rigid motions are composed, their associated permutations are composed as well. The colour of

every tile in the resulting tiling can be read out as the first element of the transformed permutation.

Figure 4.31 gives a perfectly 5-coloured hyperbolic teapot tiling in [4, 5]+. Moving to [4, 6]+ allows

for a simpler perfect colouring with only three colours, as shown in Figure 4.33.

Other tilings can serve as a source for translation to non-Euclidean geometry. As a final example,

I turn to Escher’s own notebooks. His well known symmetry drawing number 104 features black

and white lizards in a tiling of isohedral type IH55. Once again, we can translate this design from

the Euclidean [4, 4]+ to the hyperbolic [4, 6]+ to simulate a new member of Escher’s Circle Limit

series. The resulting design, “Circle Limit V,” is shown in Figure 4.34. Because the original tiling

is of topological type 44, the hyperbolic interpretation can be perfectly coloured using only two

colours.

4.8 Discussion and future work

Most polygons are not tiles. For just about any goal shape, an Escherizer will have to produce an

approximation, and a better Escherizer will produce a closer approximation. When the shape metric
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(a) (b)

Figure 4.31 A hyperbolic interpretation of Tea-sselationusing symmetry group [4, 5]+.
This realization contains almost seven thousand tiles. The tiling is perfectly coloured
using five colours, mapped in pairs onto the five swatches shown in (b). The choice of
swatch is dictated by the colouring shown in (a).
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Figure 4.32 Teapots mapped onto a sphere, together with spheres mapped onto a teapot.
The sphere features a perfectly 3-coloured teapot tiling in the symmetry group [3, 4]+.

Figure 4.33 Teapots in the hyperbolic symmetry group [4, 6]+. This symmetry group
permits a perfect colouring of the tiling using only three colours.
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Figure 4.34 A simulated successor to Escher’s Circle Limit drawings, constructed by
translating Escher’s symmetry drawing number 104 into the hyperbolic symmetry group
[4, 6]+. M.C. Escher’s symmetry drawing number 104c©2000 Cordon Art B.V. – Baarn – Holland. All

rights reserved.

Figure 4.35 A goal shape for which Escherization performs badly, and a tiling that it admits.
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is used as the measure of closeness, a perfect Escherizer would determine the smallest distance over

all possible tile shapes, and return the tiling that achieves that bound. Our imperfect optimizer, by

contrast, coarsely samples the space of isohedral tilings in a directed fashion and returns the best

sample it finds. Consequently there are seemingly easy cases, such as the one in Figure 4.35, that

our algorithm cannot successfully Escherize.

In practice, our Escherization system performs well on convex or nearly convex shapes. The

shapes that tend to fail are the ones with long, complicated edges between the tiling vertices. It is

difficult for the optimizer to come up with just right the sequence of vertex adjustments to push a

tendril of detail out, especially when constrained by the “no non-uniform noise” condition of the

metric. A shape metric for Escherization should not be sensitive to local deformations. As a tendril

of detail is pushed out, its contribution to the overall perimeter of the tile shape compresses the rest

of the tile’s turning function horizontally, potentially worsening the overall comparison. The metric

of Arkin et al. seems to resist these local changes in detail.

Furthermore, in the shape comparison metric used, the importance of a section of outline is

directly proportional to its length as a fraction of the perimeter of the goal shape, even if from

an aesthetic point of view outlines may obey different measures of significance. For example, the

precise profile edge of a face in silhouette, descending along eyes, nose, and mouth, is much more

important than the hairline. But to the current shape metric these might be relatively insignificant

details. It would be valuable to investigate an extension to the polygon comparison metric wherein

a section of outline could be assigned a measure of importance, a weight controlling which parts of

the polygon should match more closely.

Although Escher’s tiles are almost always immediately recognizable as particular kinds of ani-

mals, they generally bear little actual resemblance to a real image: they are more like convention-

alizations, or cartoons. The results presented here inherit a distinctive three-dimensionality from

the goal images they capture. My algorithm does not “understand” the shapes it is manipulating,

so it has no way to deform them while preserving their essential recognizability. It must instead

rely on a purely geometric notion of proximity. A powerful extension to the algorithm would be to

add degrees of freedom that control the goal shape as well as the tile shape. In a lizard outline, for

instance, these new parameters might allow the legs, head, and tail to bend. The optimization could

proceed as before, but now instead of having only the tile evolve to approximate the goal, we would
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have both shapes work towards a common meeting point. A very coarse version of this enhancement

would be to assemble a collection of related goal shapes, any of which satisfies the artist’s intent,

and optimize over all of them simultaneously. In the dihedral case, we might for example have a set

of bird outlines and a set of fish outlines, and attempt dihedral Escherization on all pairs of a bird

and a fish.

Another way to add degrees of freedom to the goal shape would be to begin with a three dimen-

sional model as a goal, and include rotation parameters in the optimization. The model is converted

into a polygon by rotating it and taking the silhouette. Some care would be needed here to keep

the model from rotating into a position that tiles very well by hiding all of its interesting geometry

inside the silhouette. For additional guidance, we might turn to Escher’s writing. He points out [49,

Page 106] that certain living forms are most easily recognized when viewed from certain character-

istic angles: “Four-footed mammals are usually best recognized by looking at them from the side.

Reptiles and insects, on the other hand, generally present their most typical aspect when seen from

above, while the human figure is at its most characteristic when viewed from the front.”

This chapter has presented Escherization algorithms for a few different families of tilings: the

isohedral, split isohedral, and Heaven and Hell tilings, and tilings from Penrose sets P2 and P3.

There are always more families of tilings to explore, allowing us to slowly move beyond the math-

ematical structures Escher worked with. The logical extension of the work with transitive tilings

would be to run Escherization on tilings encoded by Delaney symbols, in which case the user might

in theory supply any number of goal shapes and have the system discover a k-isohedral tiling that

approximates all of them. The number of combinatorial types to be searched grows very quickly

with k, but perhaps some small subset of those types could be determined automatically ahead of

time. As a benchmark for k-isohedral Escherization, we might take Escher’s symmetry drawing 71,

a remarkable periodic tesselation featuring twelve distinct bird motifs.

Escher’s final symmetry drawing, number 137, hints at an extension to k-anisohedral prototiles

(recall that a k-anisohedral prototile is a shape that can only form monohedral tilings with at least

k tile transitivity classes). The k-anisohedral tilings are still not very well understood, although

Berglund has begun a classification of the case k = 2 [9]. The desire to create Escherized anisohe-

dral shapes might help further motivate (and even aid) the search for anisohedral tiles.

Finally, we can consider aperiodic tiling types other than Penrose’s. Perhaps by parameterizing
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the shapes of other well-known tile sets such as those of Ammann [68, Section 10.4], we might

discover candidates for Escherization that can produce more successful tile shapes.

Escherization is merely one powerful tool to be applied to the creation of ornamental tilings. It

is no substitute for the mathematical insight or artistic know-how of Escher himself, but it can help

the designer of a tiling to take a large step towards a solution. The artist still plays an important

role in the process and must harness the power of Escherization to bend it to their aesthetic goals.

In creating art by computer, Escherization is simply one means of communication in the dialogue

between human and machine.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

This dissertation has aimed to explore the possibility of using modern mathematics and com-

puter science to develop new ways of analyzing and synthesizing ornament. Although I chose to

focus specifically on Islamic star patterns and Escher’s tilings, the underlying goal was to develop

general ideas and principles that might then be applied to other ornamental styles. The range of

possible styles to investigate is huge, as evidenced by a quick look through a treasure trove like The

Grammar of Ornament[91]. We should also consider moving on with new forms of ornament that

are inseparably tied to the computer. What new vistas in ornamentation will be opened up by the

increasing power of computer graphics?

What follows are some further ideas for future work that are not directly related to the work of

Chapters 3 and 4.

5.1 Conventionalization

Conventionalization refers to the creation of stylized, iconic interpretations of natural forms, most

commonly plants. There is a general trend in the ornamental traditions of many cultures for con-

ventional representations to evolve over time. Wong et al. point out that one goal of conventional-

ization is to distill a naturalistic form down to an abstract essence, freed from the idiosyncracies of

any specific instance of the form [139]. Another reason for simplified designs might simply be the

practicality of working with certain materials.

Over time, a conventionalized form begins to take on a life of its own, forming its own visual

language that evolves as it is passed through history from designer to designer. Gombrich, writing on

“The Etymology of Motifs” [60, Page 180], discusses some examples of this progression, including

conventionalized representations of the lotus and the acanthus. In another fascinating example,

Christie shows how many medieval European frieze patterns evolved from conventionalization of
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Arabic calligraphic inscriptions on earlier silk weavings [22, p. 20].

Conventionalization plays an important role in Islamic star patterns. A star pattern is not always

depicted as an isolated arrangement of geometric forms. Frequently, the polygonal regions defined

by the lines of a star pattern are filled not with solid colours, but with elegant floral designs that

extend more or less to the boundary of the region. The wonderful drawings of Prisse d’Avennes, re-

cently reprinted [31], illustrate many examples. The designs are closely associated with arabesques,

another form of Islamic ornamentation. Typically, each distinct shape of region has a floral motif

assigned to it, and the motif has the same symmetries as its surrounding region. It should be pos-

sible to extend the work of Wong et al. [139] to create symmetric ornament inside of symmetric

boundaries, and to then use this extension to produce appropriate floral motifs for every distinct cell

shape in a given star pattern.

Escher’s tilings also rely heavily on conventionalization, this time of animal forms. Nobody

would mistake the outlines in Escher’s sketchbook for real-world animals. Each form is a cartoon,

a highly stylized interpretation that nevertheless is highly suggestive of an animal. In some cases,

conventionalization gives way to outright invention: shapes are decorated with suggestive eyes and

appendages, but are not meant to depict any real animal. Escher uses stylization to great advantage.

In freeing his cartoon animals from constraints of realism, he can distort them into shapes that tile

the plane without sacrificing the “meaning” of the finished design. His success suggests another

direction for future work in conventionalization. To aid the Escherization algorithm, we might turn

real-world outlines into conventionalized representations endowed with new degrees of freedom.

By varying the degrees of freedom, we might locate a version of the shape that lends itself more

readily to tiling the plane.

The long-term goal in this direction would be to devise an algorithm that produces convention-

alizations from real-world objects (images or three dimensional models) without any guidance. I

believe we are still a long way from fully automatic conventionalization. Since abstraction relies on

true understanding of the object being abstracted, an automated process would seem to require real

machine intelligence. A feasible intermediate goal would be to investigate what sorts of high level

tools might be uniquely qualified to aid the user in the process of conventionalization. Recently, San-

tella and DeCarlo demonstrated a system that evaluates salience in an image based on eye-tracking

data from a human user [32]. They use the measure of salience to guide a painterly rendering
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algorithm, but perhaps eye-tracking data could also be used to determine “geometric salience,” a

measure of the relevance of parts of an object’s outline.

5.2 Dirty symmetry

Glassner argues that too much order can be just as unappealing as not enough [54]. A floor covered

by a grid of square tiles is so featureless that perhaps it ought not be considered ornamental at all.

We have already seen ways to tamper with the global order of symmetry. Rigid motions are lost

in translation from the hyperbolic plane to the Poincaré model, but the projected design still has

order. Expanding the horizons of symmetry to include quasiperiodic tilings or fractals questions but

ultimately reaffirms our perception of order.

The perfection of symmetry can be tampered with even more easily. For example, the entire

plane can be passed through a displacement field based on procedural noise [44]. Motifs in a pattern

are distorted slightly, obliterating every symmetry. However, when the magnitude of the displace-

ment is not too great, we have no difficulty whatsoever seeing both the symmetric “essence” of the

pattern and the concrete deviation from that essence. The new pattern has the best of both worlds,

conveying an organic, loose appearance while hinting at a rigid underlying structure. Møller and

Swaddle cite psychoaesthetic and sociological evidence that this sort of imperfect symmetry is pre-

ferred over perfection [113].

The preference is well explained by Gombrich’s “sense of order” [60]. He adopts an outlook

on perception that is very much in line with information theory. We perceive structure in the world

by first forming a mental model that predicts perfect regularity, and then evaluating the perceived

deviation from this model. We can theorize that a randomly displaced pattern stimulates and engages

the perceptual system at both the model-forming and the deviation-measuring levels. Gombrich

claims that when the mental model completely explains what is actually seen, the act of perception

is made too easy and the result is boredom. On the other hand, a completely irregular pattern allows

for no model; robbed of the ability to make sense of such a pattern, the result is confusion. As

Gombrich says, delight lies somewhere in between these two extremes [60, Page 9].

It would be interesting to explore how this “dirty symmetry” affects aesthetic judgment of a pat-

tern, in terms of the variety and magnitude of the distortion. Computers are ideally suited to the task,
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allowing us to perform random distortions with ease. As Gombrich says, “Maybe the greatest nov-

elty here is the ability of computers not only to follow any complex rule of organization but also to

introduce an exactly calculated dose of randomness [60, Page 94].” We could use these “calculated

doses of randomness” to measure experimentally the aesthetic response to varying amounts of dis-

tortion. In image processing, a small amount of colour noise can improve the qualitative appearance

of an image. Can geometric noise be added to any design to increase its appeal?

5.3 Snakes

In Section 4.7, I discussed Escher’s lifelong quest to capture and represent infinity. Through his own

investigations, he discovered methods to make motifs diminish in size towards the center of a disk.

Later he found in Coxeter’s writings on non-Euclidean geometry the key to putting the limit on the

outer edge of the disk, thus capturing an entire universe on a finite page.

In his final print, Snakes, Escher fuses these two ideas with astonishing mathematical ingenuity.

Snakesfeatures an arrangement of interlocking rings that diminish in size both at the center and at

the outer edge of a disk. Here we have the infinities of both sorts of limiting patterns, still confined

to a finite space with no possibility for further extension.

Very little has been written about the geometry of Snakes. Ernst [47, Page 110] acknowledges

that the “Coxeter network” (a hyperbolic tesselation in the Poincaré model) describes the outer

rings. Ernst’s description is also valuable because it includes several of Escher’s many preliminary

sketches for this print; many more sketches can be found in a wonderful new catalog of Escher’s

work [105]. Rigby [122] goes into much more detail in describing the outer and inner rings.

In some of Escher’s preliminary sketches, we see a network of triangles made by drawing line

segments joining the centers of adjacent rings. Let us consider instead the dual of this network,

which can be constructed by joining the points where triplets of rings pass by each other in a weave.

This network will be a tiling where each tile corresponds to one ring. Rigby shows that in the outer

portion of the design, the tiling is just the hyperbolic (6.82), which can be constructed by truncating

the regular tiling (46).

Ernst does not attempt to describe the structure of the rings at the center of Snakes. Rigby de-

scribes the structure as a “radiating framework,” but does not give details on how such a framework
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(a) (b) (c)

Figure 5.1 A visualization of the geometric basis of Escher’s Snakes. In the three tilings,
the tiles represent rings from the original print. The tiling in (a) corresponds to the inner
portion of the design, where rings diminish in size towards the center of a disk. The tiling
in (b) is the hyperbolic tiling corresponding to the outer part of Snakes. In (c), the two are
roughly combined in a manner consistent with Escher’s design.

may be constructed. The answer can be found in Dixon’s “antiMercator” transformation [37], which

can be defined in the complex plane by f(z) = ez . The antiMercator operation transforms an infi-

nite horizontal strip of width 2π to the whole plane. Horizontal lines are mapped to lines radiating

out of the origin, and vertical lines to circles. Other lines are mapped to equiangular spirals.

Given any periodic tiling with minimal translation vectors
−→
T1 and

−→
T2, and any integers a and b

(not both zero), we can scale and rotate the tiling so that the vector a
−→
T1 + b

−→
T2 is vertical with length

2π. The antiMercator transformation of the scaled and rotated tiling is an attractive pattern that tiles

the plane with a single limit point (a place where infinitely many tiles meet) at the origin. In gen-

eral, antiMercator transforms of periodic tilings resemble phyllotaxis patterns, with counterrotating

spirals of tiles emanating from the origin. In the case of Snakes, the central arrangement of rings

can now be viewed as the antiMercator transform of the regular tiling by hexagons with a = 6 and

b = 6.

Of course, the trick lies not just in defining the outer hyperbolic and inner antiMercator tilings,

but in stitching the two together in a hybrid. Here Escher’s intuition guides him flawlessly. Rigby

shows how Escher makes the two parts of the design link up by turning some of the circular rings

into ovals. Examination of Snakesalso reveals one set of heptagonal tiles (or rings that are linked
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to seven others) in the stitched-together region of the design. For comparison, the antiMercator,

hyperbolic, and stitched-together tilings are shown in Figure 5.1. Some of the tiles in the crossover

region are more distorted than in Escher’s design, but the topology is correct relative to the original

print.

Is there a general theory that can produce these marvelous hybrid tilings? It seems as if many

pairs of antiMercator and hyperbolic tilings might be fused together to serve as a basis for new

doubly-infinite patterns. The challenge is to find a general theory for determining which pairs are

compatible, and for stitching the tilings together when they are. Aside from linked rings, we can

imagine using these tilings as a basis for other sorts of ornament, such as Escher tilings or Islamic

star patterns. I find this future direction particularly appealing, since Snakesis seemingly the only

artwork ever created with this geometry.

Snakesis just one example of a generalization of planar symmetry that is still highly regular.

Many other opportunities await for exploring similar kinds of hybrid structures and the ornamental

patterns that can be derived from them.

5.4 Deformations and metamorphoses

Many of Escher’s prints feature divisions of the plane that change or evolve in some way. The most

well-known is probably Metamorphosis II, a long narrow print containing a variety of ingenious

transitions between patterns, tilings, and realistic scenery. Escher was quite explicit about the tem-

poral aspect of these long prints. He would not simply describe the structure of Metamorphosis II–

he would narrate it like a story [49, Page 48].

A survey of Escher’s work (as collected by Bool et al. [15]) turns up sixteen pieces employing

some kind of transition device. By studying these sixteen pieces, I have identified six categories of

transition. Metamorphosis IIserves as a kind of atlas, as it incorporates all six varieties. They are

as follows:

T1. Realization: A geometric pattern is elaborated into a landscape or other concrete scene. In

Metamorphosis II, a cube-like arrangement of rhombs evolves into a depiction of the Italian

town of Atrani.
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T2. Interpolation: A tiling evolves into another tiling by smoothly deforming the shapes of tiles.

Escher used this device to change simple tilings into his familiar interlocking animal forms

(for example, squares into reptiles in Metamorphosis II, and triangles into a variety of forms

in Verbum).

T3. Sky and Water: Realistic shapes meet in a dihedral tiling. We have already encountered

this sort of transition in Section 4.6.2, in the discussion of Sky and Water designs. This sort

of transition starts with copies of some realistic shape A, ends in copies of another realistic

shape B, and moves between them by passing through a dihedral tiling whose tiles resemble

A and B. This device is used to produce single transitions, as in Sky and Water, and also as

part of longer structures, as in Metamorphosis II(the transitions in the latter are rotated ninety

degrees with respect to the former).

T4. Abutment: Two distinct tilings are abrubtly spliced together along a shared curve. The

transition works when the two tilings have vaguely similar geometry and can be made to abut

one another without too much distortion. Escher uses this device exactly once, to transition

from hexagonal reptiles to square reptiles in Metamorphosis II(later, he embedded the same

sequence into the larger Metamorphosis III).

T5. Growth: Motifs gradually grow to fill the negative space in a field of pre-existing motifs,

resulting in a multihedral tiling. Often, after a Sky and Water transition, the result is a pattern

of realistic motifs that do not tile. In several cases, Escher transitions back to tilings by

growing another set of motifs into the empty spaces of the pattern. The new motifs need not

occupy all the empty space; in Metamorphosis II, red birds grow to occupy half the space

between black birds. When the two sets of motifs finally fit together, they leave behind a

white area in the form of a third bird motif.

T6. Crossfade: Two designs with compatible symmetries are overlaid, with one fading into the

other. Escher also applies this device sparingly, using it only to transition from a rectilinear

arrangement of copies of the word “metamorphose” into a checkerboard (and later, to make

the reverse transition).
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Putting all these transition types together, the sequence of transitions in Metamorphosis IImight

then be read as

• T6 (copies of “metamorphose” into a checkerboard)

• T2 (a checkerboard into a square arrangement of reptiles)

• T4 (square reptiles into hexagonal reptiles)

• T2 (hexagonal reptiles into hexagons)

• T1 (hexagons into a honeycomb with bees)

• T3 (bees into fish)

• T3 (fish into black birds)

• T5 (black birds into birds of three different colours)

• T2 (birds into a cube-like arrangement of rhombs)

• T1 (rhombs into the town of Atrani, which then becomes a chessboard)

• T1 (a chessboard into an orthographic checkerboard — an elaboration in reverse)

• T6 (a checkerboard into copies of “metamorphose”)

By far, the most important transition type in Escher’s work is the Sky and Water device. We

have seen how the Heaven and Hell Escherization algorithm of Section 4.6.2 might be applied

to build Sky and Water designs. We might then consider that technique to be a first step in the

creation of a “Metamorphosis toolkit,” a system that would simplify the construction of images

like Escher’s. The other five transition types hold a collection of interesting challenges. Crossfade

seems to be primarily a matter of registration and image processing. Growth seems approachable,

though emulating Escher’s use of growth would require a means of representing 3-isohedral tilings.

Abutment is rather special, and would probably not be very widely applicable. Nevertheless, a

program could examine paths that follow tiling edges in the two tilings, in search of two paths that

resemble each other as much as possible. Elaboration seems like a fascinating but very difficult

problem. Given a tiling and, say, an image, an elaboration algorithm would have to search the

image for a region that could be expressed as a gradual geometric enrichment of the tiling. The

image might also need to be distorted in a very specific way to accommodate the tiling.

Interpolation is a beautiful mathematical problem that deserves a more extended discussion.

Given two tilings T1 and T2, we ask for a smooth geometric transition between the two tilings.
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Figure 5.2 Examples of parquet deformations.

Presumably, a one-to-one correspondence is established between the tiles of T1 and T2, and as a

parameter t moves from 0 to 1, each individual tile gradually deforms from its T1 shape to its T2

shape. The transition might be carried out spatially as in Escher’s art, or even temporally as a smooth

animation from T1 to T2.

As was mentioned in Section 3.4.1, the parquet deformations of William Huff are a kind of

spatial animation. Huff was inspired directly by Escher’s Metamorphoses. He distilled the style

down to an abstract core, considering only interpolation transitions, and favouring abstract geometry

rendered as simple line art to Escher’s decorated animal forms. As reported by Hofstadter [83,

Chapter 10], Huff decided further to focus on the case where T1 and T2 are “directly monohedral,”

in the sense that every tile is congruent to every other through translation and rotation only. We may

also assume he had only periodic tilings in mind. Finally, he asked that in the intermediate stages of

the deformation the tile shapes created could each be the prototile of a monohedral tiling (Hofstadter

amends this rule, pointing out that some deformation might be necessary to make the intermediate

shapes tile).

Inspired by parquet deformations and by Escher’s interpolation transitions, we may pose the
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related problem of finding a smooth transition between any pair of isohedral tilings. A solution to

this problem might then be expanded to encompass Escher’s work (by considering a k-isohedral

extension) or parquet deformations (by introducing the restrictions mentioned above). In any case,

the isohedral problem is sufficiently interesting, and the results sufficiently attractive, that it can be

fruitfully studied in isolation.

Besides choosing between temporal and spatial transitions, there is a succession of increasingly

difficult problems to solve, depending on the relationship between T1 and T2:

1. The two tilings are of the same isohedral type and have congruent arrangements of tiling

vertices.

2. The two tilings are of different isohedral types and have congruent arrangements of tiling

vertices.

3. The two tilings are of the same isohedral type.

4. The two tilings are of the same topological type.

5. The two tilings are isohedral.

The first two cases are trivial to solve. There is a rigid motion that maps the tiling vertices of T2

onto the tiling vertices of T1, and the registration afforded by this rigid motion reduces the general

interpolation of tilings to interpolation of tile edges. Any algorithm that interpolates continuously

between two paths can be applied to effect a smooth transition. Linear interpolation applied to

piecewise-linear tile edges can produce designs like the ones shown in Figure 5.2. Note that when

the two tilings are of different isohedral types, there may be several different intermediate shapes.

This situation arises when the aspects of the two tiling types do not match up, causing tiles with

different relative orientations to be identified. It is not clear how to resolve this problem if we wish

to satisfy Huff’s goal of having a single shape at every stage in the interpolation.

The third case is easy to carry out temporally. Because the two tilings are of the same isohedral

type, it is easy to create a one-to-one correspondence between their combinatoric features (tiles,

tiling vertices, and tiling edges). We can then interpolate tiling vertices by linearly interpolating

between the two tiling vertex parameters, and interpolate tile edges as described above. Though

continuous, this interpolation may cause the tiling to undergo an arbitrary affine transform (as in the
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case of squares deforming into parallelograms), which does not necessarily make for a very “stable”

animation.

The spatial variation of the third case is difficult. To draw the interpolation, we must first lay

down an arrangement of tiling vertices that gradually changes from that of T1 to that of T2. But

even within a single isohedral type, configurations of tiling vertices can change dramatically. The

problem is exacerbated by the fact that the interpolation is done in the same space that the tiling

is drawn. In the temporal case, there is no such interference. One possible solution is to use the

underlying correspondence between tiling vertices to linearly interpolate between a tiling vertex’s

positions in T1 and T2. In this case, it makes sense to minimize the global affine transform between

the two sets of tiling vertices, in order to make the line segment connecting any two corresponding

vertices as short as possible. This minimization can be achieved using an iterated closest point

algorithm such as Umeyama’s [133]. Again, once the tiling vertices are laid out, tile edges can

be interpolated. This approach can produce unsatisfactory results because even when the global

affine transform is minimized, the interpolation can still bend and bulge, destroying the clean linear

progression found in Huff’s deformations. More work is needed to determine how to align the two

tilings in such a way that the interpolation can be done cleanly in a strip.

The fourth case is very much like the third. Because the two tilings have the same topology,

the Laves tiling with that topology can be expressed in the parameterizations of the isohedral types

of both T1 and T2. This shared tiling can then be used to form the correspondence between tiling

vertices, from which the previous interpolation methods follow.

The general case is the trickiest; in addition to all the difficulties encountered so far, we must

account for a change in the very topology of the tiling. Thus, there can no longer be a clear corre-

spondence between tiling vertices. On the other hand, many of Huff’s examples achieve topological

transitions without much effort. It seems important to handle this case to some extent.

As was pointed out in Section 4.4, as a tiling edge degenerates in an isohedral tiling, the tiling

undergoes a discontinuous transition to an isohedral type of a different topology. Although the

transition is topologically discontinuous, it has a smooth appearance, and is therefore suitable for

parquet deformations. I hypothesize that these degeneracies might be used as “gateways” to make

the transition between topologies.

We can now imagine carrying out general interpolations. Given isohedral tilings T1 and T2 of
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distinct topological types, we could identify a gateway tiling TG that has the same topology as T1

and is also the degenerate case of a tiling with the same topology as T2. We could then build a

transition by concatenating (temporally or spatially) the transitions from T1 to TG and TG (viewed

now as degenerate) to T2.

Even when it is not clear how to transition directly between two topology types, it might be

possible to break the problem down into multiple steps to be assembled through concatenation.

We might then reduce all topological transitions down to a set of base cases, each one a smooth

transition from one Laves tiling to another. As long as any pair of Laves tilings is joined via a path

of base cases, we should be able to move between any two isohedral types. I have found topological

transitions that obey all the restrictions of parquet deformations and that unify all the Laves tilings

except for (4.6.12). These deformations are shown in Figure 5.3. I conjecture that no smooth

transition is possible into or out of that tiling. Fortunately, ignoring (4.6.12) leaves out exactly

one isohedral type: IH77. The unreachability of that type need not be considered a significant

shortcoming.

Finally, note that when multiple transitions are chained together, it has been assumed that the

chaining is done through simple concatenation. This approach limits the aesthetic range of interpo-

lation. In the temporal case, the passage through a gateway tiling may be continuous, but exhibit a

jarring derivative discontinuity. In the spatial case, we would like to pass from tiling T1 to tiling T2

without having to see all the intermediate steps used to make the transition. I hypothesize that in

addition to concatenatinginterpolations, we should be able to composethem, and have both inter-

polations occur simultaneously. Any sequence of interpolations could then be composed together,

yielding a smooth deformation directly from one tiling to another.

As an analogy, consider the motion of a point along a line segment. If we wish to move from

position p1 to p2 and then from p2 to p3, we might simply concatenate the two trajectories; this

new path will exhibit a discontinuous change in direction (and speed, if the segments have different

lengths). However, de Casteljau’s algorithm for drawing a quadratic Bézier curve with control points

p1, p2, and p3 short-circuits the linear trajectory and creates a smooth path that composes the two

original segments. I would like to search for a method of composing tiling interpolations in the spirit

of de Casteljau’s algorithm.
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(3.122)∗ (3.4.6.4) (3.4.6.4)∗ (34.6)

(63)∗ (34.6) (3.6.3.6)∗ (36)

(44)∗ (36) (44) (63)∗

(44)∗ (33.42) (44)∗ (32.4.3.4)

(44) (4.82)∗

Figure 5.3 A collection of parquet deformations between the Laves tilings. Each defor-
mation starts and ends at a Laves tiling, as marked under the diagram. Each one will nec-
essarily have a topological discontinuity somewhere along its length. The deformations
presented here all have discontinuities at one of the endpoints; this endpoint is marked
with an asterisk. By concatenating or composing these deformations, we should be able
to transition between any two Laves tilings other than (4.6.12).
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5.5 A computational theory of pattern

Symmetry is a kind of redundancy, but not all redundancy is symmetry. I have presented several

examples in this dissertation of mathematical or ornamental structures for which an analysis by

symmetry fails to capture some of the redundancy. Quasiperiodic tilings are a prime example; they

have a tremendous amount of structure and repetition but almost no symmetry. As another example,

in the construction of Islamic star patterns it was necessary to move from symmetry groups to a more

localized breakdown of the plane based on tilings. Grünbaum exhibits several more examples in a

paper that awakens mathematicians to the fact that symmetry is not a panacea in the study of repeated

patterns [64]. In another paper [65], he criticizes the “group theory cult,” a cadre of mathematicians

and historians who follow Speiser in believing that the only possible characterization of order in

ornament is via the group-theoretic methods of symmetry. Simply put, by expressing only the

global redundancy in a pattern, symmetry fails to discern any finer structure that occurs locally.

Following more recent writing by Grünbaum on the subject [66], we may use the imprecise term

“orderliness” to refer generally to structure or rules in a planar figure. Certainly, symmetry is one

possible form of orderliness, but Grünbaum explores several other possible conceptions of order

that do not coincide with symmetry. While it is unrealistic to seek a universal theory of orderliness,

there are certainly many specific avenues that may be explored. New descriptions of order can allow

us to account for more of the features of a design, and to provide a finer-grained classification of

patterns than that afforded by symmetry alone.

I believe that one powerful means of understanding orderliness may lie in the study of formal

languages. Symmetries are derived from a finished pattern, with no ability to see that pattern as

being built step-by-step, one motif at a time. I propose to use a formal language to represent the set

of legal motif placements, regarding each word in the language as actively placing a single motif

rather than describing some large-scale redundancy of the pattern as a whole.

Epstein et al. [46, Section 2.1] provide a bridge between formal languages and group theory

that can help us take the first steps away from symmetry (their development seems to owe a great

deal to combinatorial group theory [108]). We start with a group G, a set A of formal symbols,

and an injective map p from A to G. We can naturally define a function π from A∗, the set of all

words over A, to G by interpreting concatenation of symbols as group multiplication. If the set
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{p(x)|x ∈ A} generates G, then π is a surjection and we can also think of A as “generating” G.

We can now see languages over A as representing subsets of the group G. Of particular interest

are those languages L for which π is a bijection between L and G. The words of L then correspond

exactly to the elements of G. Working with G via L brings us closer to a computational view of

patterns, because in practice we often “assemble” a member of G by composing together a sequence

of generators (i.e., a word in L). If L is a particularly well-behaved language, it might even be

possible to enumerate the elements of L in a useful order, which could correspond to a program that

transforms a motif to every position in a pattern in a disciplined way (very much like the replication

algorithms of Section 4.4.3).

The theory of automatic groups [46] shows how certain groups have languages that can be dealt

with very efficiently by computer. In particular, for some groups there exists a finite automaton that

can be used to enumerate the elements of the group in order by length. This automaton can then

be converted into a table-driven algorithm that replicates motifs according to the [p, q] symmetry

groups of the hyperbolic plane [101].

The next step is to sever all ties with group theory and investigate patterns generated directly

from formal languages. We define a (discrete) pattern as a motif M and a language L over an

alphabet A, where each x ∈ A corresponds to an automorphism of the plane. Every word in L

maps to a transformation by composing the automorphisms associated with each symbol in the

word. Computational pattern theory is then the study of the properties of planar patterns that can be

determined from the behaviour of these languages. We can generally consider languages L that are

surjective on a given pattern (several words in L might map to the same transformation), or focus

more precisely on bijective languages. It is also easy to work with finite pieces of a pattern through

finite subsets of its language.

As an elementary example, consider the two patterns of Figure 5.4. Although clearly different,

these two patterns have the same symmetry group. In (b), pairs of adjacent flags with the same

orientation will be lumped together, because there is no way to recognize them as two independent,

congruent motifs using symmetry. On the other hand, if L1 is the language over alphabet A1 corre-

sponding to the pattern of (a), we can define A2 = A1∪{t}, where t maps to a horizontal translation

by half the distance between two flags in (a). It then follows that the language of the pattern in (b)

can be defined over A2 as L1 ∪ L1t (where for language L and symbol x, Lx = {wx|w ∈ L}).
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(a) (b)

Figure 5.4 Examples of two patterns for which symmetry groups fail to make a distinc-
tion, but formal languages might. The “egalitarian patterns” presented by Grünbaum [65]
are another form of orderliness sufficiently rich to distinguish between these patterns.

Note that this outlook on the structure of (b) also seems reminiscent of Leyton’s “generative theory

of shape,” [102] where a final shape (a pattern in our case) is expressed as a “control-nested struc-

ture.” An outer group called the control group, here corresponding to L1, operates on an inner fiber

group, here corresponding to the set {ε, x} (ε is the empty word over A2). In Leyton’s theory, the

two groups are combined using what is called a wreath product.

The isohedral tilings motivate a second example. In an isohedral tiling, every tile is surrounded

by its neighbours in a consistent way. If the prototile has k tiling edges, we can define an alphabet

H = {h1, . . . , hk} where hi maps to the hop across the ith tiling edge (as defined in Section 4.4).

Then the very simple language H∗ is surjective on the tiling. By contrast, a tiling that is not iso-

hedral cannot be of the form H∗ for any alphabet H . It is slightly more complicated, but still

straightforward, to give a bijective language for an isohedral tiling. Because the tiling is periodic,

we can define symbols t1 and t2 for the two translations, and symbols a1, . . . , am for the m aspect

transforms of the tiling (again as determined in Section 4.4). We also use T1 and T2 as “formal

inverses” of t1 and t2. The formal inverses are symbols that stand for the mathematical inverses

of the automorphisms associated with t1 and t2. A bijective regular language for the tiling is then
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given by the regular expression (t∗1 ∪ T ∗
1 )(t∗2 ∪ T ∗

2 )(a1 ∪ a2 . . . ∪ am). The first two factors select a

particular translational unit, and the third an aspect within that unit.

The languages that can be associated with orderly patterns are more numerous than the seventeen

wallpaper groups, and so it seems likely that more can be said about a pattern from its language than

from its symmetry group. One especially interesting question that might benefit from a language-

theoretic approach is that of measuring the information content of a pattern. The traditional tools

of information theory do not apply here. However, we might consider measuring the Kolmogorov

complexityof a pattern. Roughly speaking, the Kolmogorov complexity of a string of symbols is

measured as the length of the shortest program that emits that string (when run with no input) and

halts [103]. (As with classical complexity theory, we do not seek a numerical value for Kolmogorov

complexity. Rather, we are interested in asymptotic results and relative complexity of different

strings. Kolmogorov complexity is also useful in establishing the existence of a string with certain

properties from among a collection of strings.)

It seems as if Kolmogorov complexity could be extended to patterns by considering the shortest

program that loops forever, spitting out words from a language that correspond to a non-redundant

enumeration of the pattern’s motifs. Alternatively, it might be more fruitful to consider the shortest

decision procedure for the language (a decision procedure for a language is an algorithm that is

given a word and always halts, producing a yes/no answer depending on whether the word belongs

to the language).

The two tilings of Figure 5.5 are a kind of converse of Figure 5.4. Here we have two tilings

that are nearly the same, but for which the symmetries are vastly different. Kolmogorov complexity

might help quantify the meaning of “nearly the same” here. The tiling in (b) should have only

slightly more information than that of (a), because its language can be constructed by taking the

language of (a), removing the words for two tiles, and grafting in rotated versions. In a similar

vein, the tiling of Figure 2.10, derived in a contrived manner from the digits of π, ought to have a

Kolmogorov complexity that depends fundamentally on the complexity of π as a string.

The ideas of a computational theory of patterns and of the formal complexity of patterns raise

many deep and promising questions for future work. Here are some first challenges not mentioned

above:
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(a) (b)

Figure 5.5 Two tilings which would appear to have nearly the same information content,
but vastly different symmetries.

• What patterns correspond to different classes of language? Every transitive pattern (i.e., where

the pattern’s symmetries act transitively on the motifs) has a regular language. What patterns

might correspond to context-free languages and to context-sensitive languages? Given a pat-

tern, how can we determine the class of its language?

• How can we layer other traditional motif-specific information onto the language-theoretic

base presented here? We should at least be able to account for multiple motif shapes and

colours.

• What languages correspond to the placement of tiles in aperiodic tilings? One surjective

answer for cases like the Penrose tilings is to let the symbols of an alphabet correspond to

the deflation rules of the prototiles, and consider all words over the alphabet of some finite

length (mapping to a uniform level of deflation everywhere). Is there a simple language for

the Penrose tilings that doesn’t rely on scaling?

• Can a complexity measure be used to distinguish between well-known complexity levels in

patterns? In other words, if we order patterns as transitive, periodic, quasiperiodic, aperiodic,

and so on, are there well defined boundaries of complexity between these classes? Can a

measure of complexity help to manufacture new patterns with desired properties?
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