
Empirical Evaluation of Smart Contract Testing: What Is the
Best Choice?

Meng Ren
Tsinghua University

Beijing, China
rm19@mails.tsinghua.edu.cn

Zijing Yin
Tsinghua University

Beijing, China
Aurora@europe.com

Fuchen Ma
Tsinghua University

Beijing, China
mafc19@mails.tsinghua.edu.cn

Zhenyang Xu
University of Waterloo

Waterloo, Canada
zhenyang.xu@uwaterloo.ca

Yu Jiang*
Tsinghua University

Beijing, China
jiangyu198964@126.com

Chengnian Sun
University of Waterloo

Waterloo, Canada
cnsun@uwaterloo.ca

Huizhong Li
WeBank

Shenzhen, China
wheatli@webank.com

Yan Cai
State Key Laboratory of Computer

Science, Institute of Software, Chinese
Academy of Sciences

ABSTRACT

Security of smart contracts has attracted increasing attention in

recent years. Many researchers have devoted themselves to devis-

ing testing tools for vulnerability detection. Each published tool

has demonstrated its effectiveness through a series of evaluations

on their own experimental scenarios. However, the inconsistency

of evaluation settings such as different data sets or performance

metrics, may result in biased conclusion.

In this paper, based on an empirical evaluation of widely used

smart contract testing tools, we propose a unified standard to elim-

inate the bias in the assessment process. First, we collect 46,186

source-available smart contracts from four influential organizations.

This comprehensive dataset is open to the public and involves dif-

ferent code characteristics, vulnerability patterns and application

scenarios. Then we propose a 4-step evaluation process and sum-

marize the difference among relevant work in these steps. We use

nine representative tools to carry out extensive experiments. The

results demonstrate that different choices of experimental settings

could significantly affect tool performance and lead to misleading

or even opposite conclusions. Finally, we generalize some problems

of existing testing tools, and propose some possible directions for

further improvement.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

Yu Jiang* is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464837

KEYWORDS

smart contract testing, evaluation, observations and solutions

ACM Reference Format:

Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang*, Chengnian Sun,

Huizhong Li, and Yan Cai. 2021. Empirical Evaluation of Smart Contract

Testing: What Is the Best Choice?. In Proceedings of the 30th ACM SIGSOFT

International Symposium on Software Testing and Analysis (ISSTA ’21), July

11–17, 2021, Virtual, Denmark. ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3460319.3464837

1 INTRODUCTION

Smart contracts are self-executing agreements that run on a block-

chain. It permits trusted transactions to be carried out among dis-

parate, anonymous parties. The original intention of using them

is to realize complete decentralization, resolving trust problems

through established rules and automated scripts. However, due to

the lack of logical rigor and the defects of the underlying execution

mechanism, various forms of vulnerabilities are easily hidden in

smart contracts. These vulnerabilities are hard to notice but can be

maliciously exploited by hackers.

To ensure the security of funds and privacy of all transaction

participants, there has been a proliferation of work focusing on

detecting vulnerabilities in smart contracts. Because of the different

experiment settings and measure metrics, the performance of the

same tool varies significantly across papers, and its real detection

ability is difficult to judge. Similar to traditional software testing,

in order to persuasively demonstrate that a new tool provides an

advantage over existing work, authors need to follow a standard

evaluation process [28], which generally consists of four parts:

• collecting target programs for testing – benchmark suite;

• choosing one ormore representative tools to compare against

– baseline;

• allocating identical and reasonable values for custom param-

eters before execution – runtime parameters;

• defining scientific and comprehensive metrics to measure

each tool’s performance – performance metrics.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang*, Chengnian Sun, Huizhong Li, and Yan Cai

The difference in any of these steps may lead to incomplete

conclusions. Taking Slither [16] and Smartcheck [51] as an example,

the authors of Slither said Smartcheck had a high false positive

rate of 73.6% while theirs was only 10%. However, in the large

experiment carried out by AsemGhaleb [17], 90% of Slither’s alarms

were false warnings. On the contrary, Smartcheck has reported no

false alarms. The main reason for this divergence is that the test

suites used for evaluation are different.

We examine 27 recently published papers that aim at smart con-

tract testing and have been accepted or cited in top-conference

proceedings (see Table 1). Unfortunately, according to their descrip-

tions in the paper, they did not share a unified setting within the

four steps. Using nine representative tools, we perform a variety of

tests from three aspects: test suites, runtime parameters and perfor-

mance metrics. The results show that individual evaluations which

treated these factors casually could easily lead to biased conclusions.

The main reasons are as follows.

The performance of tools is closely related to the target test

suite. More than 3
4 of the examined papers only use a single cate-

gory of dataset for evaluation, ignoring the biases caused by the dis-

tinctive vulnerability patterns. For example, in real-world contracts,

the only form of expression of reentrancy is call.value operation

without gas limit. But in contracts with artificially injected vulnera-

bilities, the form is more diverse, such as a call.value operation with

an exorbitant gas limit. In this case, it is difficult to draw universal

conclusions. Once the test suite is replaced, the result may be com-

pletely opposite. For instance, when using real-world contracts for

testing, Slither could report 56 unique bugs, where only 18% of them

were real. When switching to artificially constructed contracts, the

precision rate increased to 78%.

The runtime parameters also have a significant influence

on tools’ performance, especially for fuzzers and concolic ex-

ecutors. However, nearly half of the dynamic tools even ignore to

mention the setting of these parameters at all. During symbolic

execution, parameters such as maximum recursion depth will affect

the number of blocks that can be executed and the final execution

state. For example, with a depth limit of 30, Mythril wins the first

place with discovery of 94 real vulnerabilities. But when the depth

limit is extended to 100, Mythril only finds 43 real vulnerabilities,

which is less than half of Oyente’s or Osiris’s. Similarly, because

of the randomness of fuzzing, parameters such as number of trials

and execution duration also have a critical effect on fuzzing per-

formance. A prime example is ContractFuzzer. At the best time, its

precision rate can reach 100%; but at the worst time, both of its

precision and recall are zero.

Different choices of performancemetrics will affect the con-

clusion. In general, developers are most concerned about a tool’s

ability in finding “real” problems. Almost all of the examined pa-

pers have proved their effectiveness through the total number of

reported bugs, precision rates or recall rates. But nearly half (13

out of 27) of them only assess in parts of metrics. There are also 11

papers use different forms of coverage to illustrate testing effective-

ness. This is an intuitive metric, but in fact, there is no inevitable

relationship between the raise of coverage and improvement of vul-

nerability detection performance. In sFuzz’s coverage curve, only

one out of 22 rises results in the discovery of new vulnerabilities. In

addition, although its final coverage is 10% higher than ILF, it still

lags behind ILF in practical terms with two missed vulnerabilities.

Consequently, if we only use coverage to measure tool performance,

we may get wrong conclusions contrary to the reality.

In this paper, we propose a series of standards to assist in con-

ducting fair experimental evaluations. In order to comprehensively

review each tool’s ability in detecting different forms of vulner-

abilities, we collect 46,186 smart contracts from four influential

organizations. It not only contains real-world contracts used in

large-scale distributed projects, but also includes labeled contracts

that have been officially confirmed by experts, and artificially con-

structed contracts with injected vulnerabilities of specific patterns.

Using this unified benchmark suite, we can examine the vulnerabil-

ity detection ability of each tool in different scenarios, and eliminate

the bias caused by the test suites. Following the idea of variable-

controlling approach, we verify the impact of different runtime

parameters on tool performance. Then, we demonstrate that depth,

trials and timeout could have a significant influence on the num-

ber of discovered vulnerabilities. As to performance metrics, the

fundamental purpose of testing tools is to find real and harmful

vulnerabilities. In this work, we combine unique bugs, precision and

recall as the evaluation metrics, and evaluated each tool compre-

hensively. We also prove that these metrics were complementary

to each other. It is not accurate to show that a tool performs better

than the previous work only through a part of the metrics.

Contributions We mainly make the following contributions:

• We construct a unified benchmark suite for smart contract se-

curity testing, which integrates unlabeled real-world contracts,

artificially constructed contracts, and confirmed vulnerable con-

tracts. It is available to the public1.

• We conduct in-depth analysis from three aspects and propose a

principled way to make evaluation for smart contract vulnerabil-

ity detection tools.

• We carry out extensive experiments based on nine well-known

smart contract testing tools and demonstrated the impact of

improper settings on tool performance.

2 BACKGROUND

2.1 Smart Contracts

Smart contracts are self-executing, business automation applica-

tions that run on a decentralized network such as blockchain. Usu-

ally, they are a set of digital agreements with specific rules, and can

be enforced without the involvement of a third party. Multiple users

in the blockchain jointly participate in the formulation of smart

contracts. Once deployed, the smart contract will be uploaded to

the blockchain network and broadcast to all verification nodes.

However, as some researchers have pointed out [8, 14, 44, 47],

due to the characteristics of EVM, writing secure smart contracts is

far from trivial. Coupled with the restriction that a contract cannot

be modified after deployment, any vulnerability hidden in it can

cause huge financial losses once exploited.

Fig. 1 is a simplified version of DAO contract, which belongs to

a popular decentralized investment fund project and was attacked

in 2016. It uses a mapping named balances to store fund-raising of

1 https://github.com/renardbebe/Smart-Contract-Benchmark-Suites

Empirical Evaluation of Smart Contract Testing: What Is the Best Choice? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 contract BasicDAO {

2 mapping (address => uint) public balances;

3

4 // transfer the entire balance of caller

5 function withdrawBalance () public {

6 uint money = balances[msg.sender];
7 bool result = msg.sender.call.value(money)();
8 if (! result) { throw; }

9 // update balance of withdrawer

10 balances[msg.sender] = 0;

11 }

12 }

13

14 contract Attacker {

15 address public owner;

16

17 // Initiates the balance withdrawal.

18 function callWithdraw(address addr) public {

19 BasicDAO(addr).withdrawBalance ();

20 }

21

22 // Fallback function for this contract.

23 function () public payable {

24 callWithdraw(msg.sender);
25 }

26 }

Figure 1: A simplified DAO contract with reentrancy vul-

nerability inside withdrawBalance function and the attack

contract for exploiting reentrancy in BasicDAO.

each project. When a funding project have received enough support

from the community, the owner can call withdrawBalance function

to withdraw ether from the DAO. Unfortunately, the transfer mech-

anism in DAO allowed to transfer the ether to the external address

before updating the internal state. This gave the attacker a recipe

for stealing more ether from the contract via reentrancy. The at-

tacker could first ask for a legitimate withdrawal, and the call.value

method inside withdrawBalance function would trigger caller’s fall-

back function. Then another withdrawal happened. Since the stored

value in balances array had not been updated, the contract would

keep transferring ether to the attacker until the balance of contract

became zero. This attack caused a loss of $60 million and also led to

the hard fork of Ethereum, which brought many negative effects.

2.2 Testing Technologies and Tools

For ensuring the security of funds and privacy of all participants, a

proliferation of work devoted themselves in detecting vulnerabili-

ties hidden in smart contracts. Performing a literature review, we

filtered 27 papers published between 2016 and 2020, which apply

classic software testing technologies for smart contract security

analysis. Table 1 lists them in chronological order. In this section,

we will briefly summarize the principles of these tools, organized

by the detection method they are mainly based on. Eventually, we

will focus on how they evaluate their proposed methods, which

will be discussed in detail in the next section.

Static Analysis. Static analysis refers to a method of analyz-

ing the program without actually running it, which can be per-

formed at both source code and bytecode level. Static analysis tools

can scan the entire code base but also produce much false positives.

SolidityCheck [61] retrieves each function at the source code level

and checks the piece that matches the pre-defined vulnerability

patterns. Normally, other tools will first obtain binary bytecode,

and then use it to construct a custom intermediate representation,

which have a series of forms, like SSA used in Slither [16], Datalog

used in Securify [55] and MadMax [21], XML parsing tree used in

SmartCheck [51] and XCFG used in ClairvOyance [60]. Based on

this representation, vulnerability pattern definition and matching

are performed to screen out suspected code snippets. As a static

analysis method based on mathematical proof, formal verification

is also widely used to verify the logical integrity of smart contracts,

such as EtherTrust [22], VeriSmart [49] and Zeus [27]. Moreover,

static analysis can also be used for feature extraction, which can be

further used in training classifiers [31, 58].

Symbolic Execution. When using symbolic execution to an-

alyze a program, it will use symbolic values as input instead of the

specific values during the execution. When a fork is reached, the

analyzer will collect the corresponding path constraints, and then

use a constraint solver to obtain specific values that can trigger each

branch. Symbolic execution can simultaneously explore multiple

paths that the program can take under different inputs, but it also

faces unavoidable problems such as path explosion. In most cases,

the symbolic executor will first build a control flow graph based on

Ethereum bytecode, then design corresponding constraints based

on the characteristics of smart contract vulnerabilities, and finally

use the constraint solver to generate satisfying test cases. For exam-

ple, Oyente [32], Mythril [11] and their extensions [40, 53, 54, 62].

In recent years, there has been continuous research to optimize the

process of symbolic execution. Manticore [37] adds the support of

exotic execution environments, DefectChecker [7] extracts defect

related features to help improve efficiency, sCompile [6] identifies

critical paths which involve monetary transaction and VerX [45]

focuses on verifying effectively external callback free contracts.

Dynamic Fuzzing. Fuzzing is a method of discovering soft-

ware failures by constructing unexpected input data andmonitoring

the abnormal results of the target program during execution. It al-

lows developers to ensure a uniform standard of quality through

prepared tests, but does not narrow down the causes of detected

bugs. When applied to smart contracts, a fuzzing engine will first

try to generate initial seeds to form executable transactions. With

reference to the feedback of test results, it will dynamically adjust

the generated data to explore as much smart contract state space as

possible. Finally, it will analyze the status of each transaction based

on the finite state machine to detect whether there is an attackable

threat. ContractFuzzer [26] is the first to apply fuzz testing to smart

contracts. Later, other researchers start to study improvements to

different parts of fuzzing. ReGuard [30] and Harvey [59] are dedi-

cated to generating diverse inputs and transactions that are more

likely to reveal vulnerabilities, ILF [23] and sFuzz [39] target at

designing more effective generation or mutation strategy.

2.3 Related Work

In recent years, there have been many empirical surveys focus on

smart contract test suites and test methods. Some of them summa-

rized the traditional test methods, focusing on the limitations of the

test method itself, such as the instability of fuzzing [29, 34, 57] and

the state explosion problem of symbolic execution [2, 5]. Others

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang*, Chengnian Sun, Huizhong Li, and Yan Cai

were dedicated to constructing benchmarks that can be used for

evaluation through web crawling [14], bug injection [17], patch

enhancement [25], etc. They will also run some vulnerability detec-

tion tools to conduct preliminary experiments to demonstrate the

quality of their benchmarks.

Different from above work, we strive to systematically, compre-

hensively analyze different factors that can bias the evaluations of

smart contract testing tools, and have proposed a recommended

evaluation methodology to control biases in future evaluations

of similar tools. Different from empirical studies of fuzz testing

and symbolic executions, we focus on the neglected details when

these techniques are applied to smart contracts. More importantly,

most of our findings and the solutions to eliminate biases are spe-

cific to smart contracts, such as the recommended setting range

of search depth and the combination of multi-dimensional metrics.

Different from the work which proposed benchmarks, we not only

demonstrate that besides benchmarks there exist many other factors

that can introduce biases, but also propose a bias-less evaluation

methodology. Take SmartBugs [14] as representation, it provides

two datasets and only discusses the consistency of the execution

results, without analyzing the execution process or proposing a

better evaluation methodology.

3 OVERVIEW AND EXPERIMENTAL SETUP

Smart contract security has been widely discussed in recent years,

and related research papers have been continuously published in

high-quality journals. We have investigated 5 highly cited compre-

hensive surveys [10, 14, 17, 24, 43], and chased citations to and from

them to collect papers or tools related to smart contract testing. In

all, there are 46 papers falling in this field, but only 27 of them focus

on vulnerability detection. Others aimed at reverse engineering

[50, 63], interpretation and visualization [4, 35, 41, 42, 48, 56], gas

optimization [9, 33], etc., which are beyond the scope of this paper.

Our interest in this work is assessing the experimental evalua-

tion process of smart contract testing tools. As mentioned before,

to compare with previous work, the standard evaluation process

should consist of four steps. Table 1 summarizes the implementation

details of each work in these steps. For each tool, it indicates what

kind of detection method was used; whether the tool is available

to the public; which dataset was chosen as the benchmark suite;

which tools were selected as the baseline; the depth limit set for

each contract during execution; the number of trials performed per

configuration; what timeout was used per trial; the size of samples

used for bug verification; which indicators were used to group re-

lated bugs and what kind of code coverage was measured to judge

the tool performance.

During the evaluation process, all the work on the list showed

that they were superior to selected baselines or previous work.

However, with the emergence of a large number of empirical studies

on smart contract testing tools, the conclusions in some papers seem

to be biased, or even completely opposite to the actual situation.

The reason for this contradiction is the lack of unified benchmark

suite, scientific evaluation process and general performance metrics.

In this paper, we will demonstrate the importance of these factors

through extensive experiments and put forward suggestions for

follow-up research.

Testing
Tool

Parameter
Settings

Smart
Contract

Bug
Count

Constructing Test Suites

N

Precision

Recall

Quantitative Analysis

Static Analyzers

Symbolic Executors

Fuzzing Engines

Selecting Candidate Tools

Platform
Configuration

Unified Execution

Run

Bug
Verification

Figure 2: Overall experimental evaluation process.

The following part of this section will introduce the setup and

procedure for our experiments. The overall process is described in

Fig. 2. First, we build unified test suites and select candidate testing

tools. Then, we filter and set runtime parameters based on the type

of tools. Next, in a unified execution environment, each tool starts

to analyze the contract and generates bug reports. Finally, we count

the total number of alarms, manually confirm the authenticity of

each of them, screen out the missed vulnerabilities and calculate

the value of relevant metrics.

3.1 Constructing Test Suites

Due to the lack of standard benchmarks, such as LAVA-M [13] and

Google fuzzer test suite [18] used in C/C++ programs, researchers

have to crawl real-world smart contracts from Ethereum network,

or use some vulnerable contracts posted on GitHub for experiment.

This method mainly has two disadvantages: 1) Ethereum does not

provide a direct interface access to all contracts, repetitive crawl-

ing wastes a lot of manpower and time. Meanwhile, the type and

amount of vulnerabilities that may be contained in these contracts

are unknown. Without clear labels, it is very difficult to determine

the authenticity of detection results, and impossible to obtain the

missing reports; 2) The vulnerable contracts fetched from GitHub

have clear labels provided by experts, but they are often short and

have no complex business logic.

Table 2: Statistical analysis of smart contract benchmarks.

UR represents dataset of unlabeled real-world contracts; MI

represents dataset of contracts withmanually injected bugs;

CV represents dataset of confirmed vulnerable contracts.

Category # Contracts # Bugs # Bug Types # Reentrancy

UR 45622 - - 10
MI 350 ≥ 9369 7 119
CV 214 ≥ 214 35 10

To make up for the lack of a unified test set, we construct a

benchmark suite with contracts crawled from Etherscan [15], Solid-

iFI repository [17], Common Vulnerabilities and Exposures library

[36] and Smart Contract Weakness Classification and Test Cases li-

brary [38]. They can be classified into three categories: 1) unlabeled

real-world contracts; 2) contracts with manually injected bugs; 3)

confirmed vulnerable contracts, as shown in Table 2. We believe

that the evaluation results will generalize due to the size and diver-

sity of our benchmarks. For further analysis, with the assistance

of two experts in the field of smart contract security, we expose

and confirm the reentrant code pieces hidden in each contract in

Empirical Evaluation of Smart Contract Testing: What Is the Best Choice? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

tool method available benchmark baseline depth trials timeout samples bugs coverage

ClairvOyance[60] SA � E(17700) O, S, SL, M, SF - - >1000
N, TP, FP,

FN

CONFUZZIUS[52] DF � E(27)
H, I, O, M,
MT, OS

- 24 1H 100 N, TP, FP I

ContractFuzzer[26] DF � E(6991) O - 1 80H 500
N, TP, FP,

FN

ContractWard[58] SA, DL � E(14850) O, S - - >1000
N, TP, FP,
FN, TN

DefectChecker[7] SE �
E(587),

B(165621)
O, M, S 10 500

N, TP, FP,
FN, TN

I

EtherTrust[22] SA � O - -

Harvey[59] DF � E(27) - 24 1H 100 N P, I

HoneyBadger[54] SE � E(151935) 50 30M 500 N, TP, FP P

ILF[23] DF, DL � E(18496) MA, CF - 3H >1000 N, TP, FP I

MadMax[21] SA � E(91800) - - 20S 100 N, TP, FP

MAIAN[40] SE � B(970898) 3 300S >1000 N, TP, FP

Manticore[37] SE � B(100) 90M P

Mythril[11] SA, SE � 22 24H

Osiris[53] SE � E(1383),
B(1207335)

Z 50 30M 500 N, TP, FP P

Oyente[32] SE � B(19366) 50 30M 500 N, TP, FP P

ReGuard[30] DF � E(5) O - ? 20M 10 N, FP, FN

SASC[62] SA, SE � E(2952) O 10M N P, BL, I

sCompile[6] SE � E(36099) O, MA 3 1M >1000 N, TP, FP P

Securify[55] SA � E(24594),
U(100)

O, M - - 100
N, TP, FP,

FN

sFuzz[39] DF � E(4112) O, CF - 3 2M 500 N, TP, FP BR

S-gram[31] SA, DL � E(1500) RG - - N, TP, FP

Slither[16] SA � E(1000) S, SC - - 2M 1000 N, TP, FP

SmartCheck[51] SA � E(4603) O, S, M - - 10
N, TP, FP,

FN

SolidityCheck[61] SA � E(1363)
M, O, S, SC,
CF, OS

- - >1000
N, TP, FP,

FN

VeriSmart[49] SA � C(60), E(25)
O, M, OS, MT,

Z
- - 30M 100

N, TP, FP,
FN, TN

VerX[45] SE � E(138) O, M, MT 5 1H 100
N, TP, FP,

FN

Zeus[27] SA � E(1524) O - - 1M >1000
N, TP, FP,

FN

Table 1: Summary of published smart contract testing tools’ evaluations. Blank cell means the paper didn’t mention this item; -

means that this item is irrelevant; ?means that the papermentioned this item, but there is no accurate description. Method: SA

means static analysis, DFmeans fuzzing, SEmeans symbolic execution, DLmeans deep learning. Available:�means the tool is

open-source and freely available, � means closed-source. Benchmark: E means Etherscan, B means blockchain (only contains

bytecode), Umeans user-written contracts, Cmeans CommonVulnerabilities and Exposures database. The number in brackets

means the number of contracts used in evaluation. Baseline: O means Oyente, M means Mythril, S means Securify, H means

Harvey, I means ILF, SL means Slither, SC means SmartCheck, SF means sFuzz, MA means MAIAN, MT means Manticore, CF

means ContractFuzzer, RG means ReGuard, OS means Osiris, Z means Zeus. Depth: Maximum search depth. Trials: Number

of runs. Timeout: Time reported in seconds (S), minutes (M) or hours (H). Samples: Number of samples used for manual

verification. 10 means less than 10 samples, 100 means 10-100 samples, 500 means 100-500 samples, 1000 means 500-1000

contracts, >1000 means more than 1000 samples. Bugs: Indicators for vulnerability confirmation. N means total number of

alarms, TP means true positives, FP means false positives, FN means false negatives, TN means true negatives. Coverage: I, P,

BL, BR respectively means instruction/path/basic-block/branch coverage.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang*, Chengnian Sun, Huizhong Li, and Yan Cai

advance. The number of labeled reentrancy vulnerabilities is 10,

119 and 10 respectively.

URdataset collection and processing. The first category is col-

lected from Etherscan, which is the largest decentralized platform

for Ethereum smart contracts. All contracts stored on Etherscan are

indexed by unique addresses, so we first retrieve the addresses of all

contracts that have more than one transaction through Google Big-

Query [12]. Using the following query request, we obtain 1,511,925

distinct contract addresses:

SELECT contracts.address AS tx_count
FROM `bigquery -public -data.ethereum_block -chain.

contracts ` AS contracts
JOIN `bigquery -public -data.ethereum_block -chain.

transactions ` AS transactions ON (transactions.
to_address = contracts.address)

GROUP BY contracts.address
HAVING tx_count > 1
ORDER BY tx_count DESC

Then we write a script to obtain the bytecode and/or source

code through Etherscan’s API. Finally, we collect 765,928 contracts

with only bytecode, 4,063 contracts with only source code, and

741,934 contracts with both source code and bytecode. For further

analysis, we only retain source-available contracts2. Then we adopt

the method used in [14] to remove the duplicates, that is checking

whether the MD5 checksums of the two source files are identical af-

ter removing all the blank lines and comments. After deduplication,

we get 45,622 unique contracts. In order to verify the authenticity

of bugs reported by each tool, we add some labels to the UR dataset.

Specifically, we use all tools to check these contracts, and obtain

8,200 suspected vulnerable ones. Together with two experts from

our industry collaborator WeBank, we conduct manual inspection

for two months, and filter out 10 real vulnerabilities, which are

confirmed with exploitation.

Real contracts usually have more lines of code and more complex

internal logic. In addition, due to the existence of mechanisms such

as interface calls and inheritance, the interaction behaviors between

contracts are also more complicated. The possible vulnerabilities

contained in these contracts are unknown, and they are often hidden

in deeper branches, making them difficult to detect. Also, the pattern

of vulnerabilities contained in the UR category is single, and tools

can design targeted strategies to get better performance. Hence, we

need supplementary datasets with more diverse forms of bugs to

prevent overfitting.

MI dataset collection and processing. The second category is

a manually constructed benchmark designed to assist academic re-

search, named SolidiFI. It is a large library which is constructed by

injecting bugs into different potential locations to produce vulnera-

ble contracts with specific security vulnerabilities. SolidiFI supports

7 different bug types, namely, reentrancy, timestamp dependency,

unhandled exceptions, unchecked send, transaction order depen-

dency, integer overflow/underflow, and use of tx.origin. For each

category, there are 50 original bug-free contracts. After injection,

9,369 distinct bugs are scattered across all contracts.

These vulnerabilities are independent of each other and have no

interaction with other internal functions. Their code logic is rela-

tively simple, involving only a few obvious vulnerability patterns.

2In the future, we will add the support for analysis of contracts with only bytecode
through the Gigahorse decompiler [20].

In addition to the dataset of the modified contracts, the repository

also contains the injection logs that can be used to refer the location

and type of each bug.

CV dataset collection and processing. The last category con-

sists of vulnerable contracts that have been confirmed by CVE

reviewers or SWC registry. First, we use “smart contract” as the

keyword to query the CVE list and find 513 entries that matched

the search. We download all source code files and classify them

into six categories: arithmetic overflow/underflow, bad randomness,

access control, unsafe input dependency and others, as classified in

[49]. After removing duplicates, we obtain 124 distinct contracts.

Then, we visit the official website of SWC registry and crawl 90 con-

tracts related with 37 identifiers. Finally, we merge these vulnerable

contracts to form a dataset with the size of 214.

All vulnerabilities contained in each contract are professionally

confirmed, and clearly classified and labeled. Moreover, the average

number of code lines per contract in this dataset is under 200, and

there are no interface calls or interactions between contracts.

3.2 Selecting Candidate Tools

Our experiment used nine most frequently compared open-source

tools, three for each detection method (see Table 3). For static analy-

sis, we select Securify, SmartCheck and Slither; for symbolic execu-

tion, we select Oyente, Mythril and Osiris; and for dynamic fuzzing,

we select ContractFuzzer, sFuzz and ILF.

Table 3: List of selected smart contract testing tools, where

#Baseline indicates the number of times the tool is used as

a baseline, #Citation indicates the number of citations.

Tool Method #Baseline #Citation Publication

Securify SA 7 267 CCS’18
SmartCheck SA 2 147 WETSEB’18
Slither SA 1 43 WETSEB’19
Oyente SE 16 1008 CCS’16
Mythril SE 10 1500 White Paper
Osiris SE 3 56 ACSAC’18
ContractFuzzer DF 3 140 ASE’18
sFuzz DF 1 8 ICSE’20
ILF DF 1 22 CCS’19

Because each tool targets specific issues, the types of vulnerabil-

ities it supports vary greatly. For a fair comparison, we investigate

the types of vulnerabilities supported by each candidate tool. Then

we map them to a list of the most common vulnerability types that

have been reported for EVM-based smart contracts [14]. Lastly, we

find reentrancy is the only one that is supported by all of them. The

summary is shown in Table 4.

3.3 Unified Execution

A uniform execution environment is extremely important for dy-

namic executors, including the unified platform and consistency of

runtime parameters. In the experiment of each set of parameters,

we provide the same value for the corresponding parameter of each

tool and keep other environment variables consistent. Considering

that each tool has an arbitrary number of self-defined parameters,

for tools based on the same implementation method, we choose the

general parameters that they all support to carry out experiments.

In addition, in view of the randomness of the fuzzing procedure, we

Empirical Evaluation of Smart Contract Testing: What Is the Best Choice? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 4: A summary of vulnerability types supported by can-

didate tools. For each vulnerability type: AC means access

control; IO means integer overflow; DS means denial of ser-

vice; TO means transaction order dependency; RE means

reentrancy; TM means time manipulation; UE means un-

handled exception and LE means locked ether.

Tool
Vulnerability Types

AC IO DS TO RE TM UE LE
Securify � � � � �
SmartCheck � � � � � � �
Slither � � � � � �
Oyente � � � � � �
Mythril � � � � � � �
Osiris � � � �
ContractFuzzer � � � � �
sFuzz � � � � � �
ILF � � � � �

also add the number of trials as a parameter. The final parameter

list used by this paper is: depth limit, trials and timeout.

For each of the parameters, we prepare (at least) 20 values for

change. The minimum is 1, and the maximum is 2X of the mode

value3 that most tools use in the setting of this parameter. The

first two parameters only aim at evaluating symbolic executors

or dynamic fuzzers, so the interval between every two values is

fixed. When it comes to timeout, it is a parameter that shared by all

tools. In consideration of the divergence in execution speed among

different tools, we set increasing intervals in different ranges. For

example, in the first 5 seconds, the time interval is 2 seconds; from

the 5th to the 30th second, the interval increases to 5 seconds; from

the 30th second to the 3rd minute, the interval is 30 seconds; when

it comes to the 30th minute, the interval is 5 minutes; and after the

30th minute, the interval is 30 minutes. Table 5 shows the setting

of each runtime parameter in detail.

Table 5: Setting of each parameter in our experiment.

Parameter Method Mode Maximum Interval

Depth limit SE 50 100 5
Trials DF 24 48 -

Timeout (s) SA, SE, DF 1800 3600 2, 5, 30, 300, 1800

All experiments were performed atop three machines. Each of

them is equipped with 8 cores (Intel i7-7700HQ @3.6GHz), 24GB

of memory, and uses Ubuntu 16.04.6 as the host operating system.

In order to avoid possible variations among these machines, each

candidate tool is always tested on the same computer.

3.4 Quantitative Analysis

We select unique bugs, precision and recall as metrics to measure

performance. When the execution is finished, each tool will gener-

ate an output file that contains the results of the analysis in json

format. Then we use a python script to parse it, building a mapping

from vulnerability type to line numbers. By matching it with man-

ually tagged labels, we can calculate the total number of reported

bugs (Ns), true positives (TPs), false positives (FPs), and missed

samples (FNs) reported by each tool on each contract. Using these

data, we can calculate each metric with the methods below:

3The mode is the value that appears most often in a set of data values.

Unique bugs. It refers to the number of bugs reported by each

tool on each contract after deduplication. We regard the same type

of vulnerability reported in the same line as a duplicate, and keep

only one count. The total number of bugs after de-duplication is

the value of unique bugs (N). Using the same method, we can get

unique true positives (TP), false positives (FP) and missed samples

(FN), which are used in following formulas.

Precision. It is defined as a ratio of true positives and the total

number of positives predicted by a model. A higher precision value

indicates a higher percentage of correct alarms and fewer false

alarms, making it easier for bug verification and code modification.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

Recall. It is the fraction of total amount of relevant instances

that were actually retrieved. A higher recall value indicates that the

more real vulnerabilities can be found, the fewer hidden vulnerabil-

ities are missed, and the risk of unknown attacks is lower. Specially,

precision and recall are also irrelevant to magnitude, which grad-

uates that the conclusions in our paper will not be biased by the

absolute number of seeded bugs.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

4 RESULTS AND ANALYSIS

In this section, we will present the firsthand experimental results

and analyze the variation of tools’ performance on different test

suites, runtime parameters and evaluation metrics. Observing the

trends under different experiment settings, we have discovered

some problems that have been neglected in previous evaluations.

Then we will propose some guidelines to which future work should

adhere while comparing with other baselines.

4.1 Variation on Different Test Suites

Recent published work chose a wide variety of datasets as the test

suites, such as real-world contracts crawled from Etherscan or vul-

nerable contracts confirmed by CVE organization. However, none

of the existing benchmark choices met the demands of compre-

hensiveness. As shown in the fourth column in Table 1, 78% of

the tools (21 out of 27) only use a single category of dataset for

evaluation. In this situation, the code characteristics are limited,

and the tool can easily formulate some targeted detection rules to

achieve better performance in an over-fitting manner. Therefore,

conclusions drawn by these experiments may be one-sided and

cannot represent the capabilities of the tool in all scenarios.

Fig. 3 shows the variation of each metric under different test

suites. For each dataset, we repeatedly run each tool for 48 times

to collect final stable results. Most evaluated tools (6/9) are deter-

ministic, and each run produces the same result. The other tools

run for 12 hours to converge. From the horizontal direction, we can

see that the performance of each tool varies greatly across datasets.

After statistical analysis, we further illustrate that most differences

are statistically significant with p<0.021 in Wilcoxon test. Different

choices of datasets may lead to different experimental conclusions.

Taking SmartCheck and Slither as an example, it is reported in

Slither that SmartCheck had a large number of false positives due

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang*, Chengnian Sun, Huizhong Li, and Yan Cai

SecurifySmartCheckSlither Oyente Mythril Osiris CF sFuzz ILF
0

16

32

48

64

80

96

112

128

144

160

U
ni

qu
e

bu
gs

19
10

56

20 21 22

0
10 10

(a) Variation in unique bugs on UR dataset

SecurifySmartCheckSlither Oyente Mythril Osiris CF sFuzz ILF
0

16

32

48

64

80

96

112

128

144

160

U
ni

qu
e

bu
gs 90

143
148

112

63

112

0 3

23

(b) Variation in unique bugs on MI dataset

SecurifySmartCheckSlither Oyente Mythril Osiris CF sFuzz ILF
0

16

32

48

64

80

96

112

128

144

160

U
ni

qu
e

bu
gs

8

22
12

18
24

30

1 2 2

(c) Variation in unique bugs on CV dataset

SecurifySmartCheckSlither Oyente Mythril Osiris CF sFuzz ILF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

0.53

1.0

0.18

0.5

0.33

0.45

0

0.5 0.5

(d) Variation in precision on UR dataset

SecurifySmartCheckSlither Oyente Mythril Osiris CF sFuzz ILF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n
1.0

0.83
0.78

1.0

0.75
0.82

0

0.67

0.96

(e) Variation in precision on MI dataset

SecurifySmartCheckSlither Oyente Mythril Osiris CF sFuzz ILF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

0.88

0.41

0.67

0.39
0.33

0.23

1.0

0.5

1.0

(f) Variation in precision on CV dataset

SecurifySmartCheckSlither Oyente Mythril Osiris CF sFuzz ILF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ec

al
l

1.0 1.0 1.0 1.0

0.7

1.0

0

0.5 0.5

(g) Variation in recall on UR dataset

SecurifySmartCheckSlither Oyente Mythril Osiris CF sFuzz ILF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ec

al
l

0.76

1.0 0.97 0.94

0.39

0.77

0 0.01

0.18

(h) Variation in recall on MI dataset

SecurifySmartCheckSlither Oyente Mythril Osiris CF sFuzz ILF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ec

al
l

0.7

0.9

0.8

0.7

0.8

0.7

0.1 0.1

0.2

(i) Variation in recall on CV dataset

Figure 3: Variation in unique bugs, precision and recall on different test suites of all tools.

to a lack of in-depth understanding of Solidity [16]. However, our

experiment shows that this conclusion is not always valid. On UR

dataset, SmartCheck exactly finds 10 existing vulnerabilities and

gets full marks in precision rate, which is 5X higher than Slither.

When it comes toMI dataset, they are roughly the same. Only on the

last dataset, Slither has a 1.6X higher precision than SmartCheck.

The same situation can also be observed in Mythril and Osiris.

Either on real-world contracts or buggy contracts injected with

artificial bugs, Osiris is able to find more hidden problems more

accurately, which manifests through a 10% increase in precision

and 30% higher in recall. But surprisingly, on CV dataset where

code structures are far more simple, the observation is completely

reversed. Although Osiris finds 6 more bugs in total, it falls behind

Mythril by 10 percentage points in both precision and recall.

Deeper Analysis. Targeted rule designation for a specific vul-

nerability pattern and insufficient processing capabilities for deep

calls are the main reasons for the unstable performance of tools. In

addition, different judgment standards for real vulnerabilities also

lead to differences in tool performance evaluation. In this paper,

only vulnerabilities that can be attacked in practice are identified

as positive samples, which is more practical than the judgment con-

ditions in previous papers, but also leads to a decrease in precision.

Take Slither as an example, it will mark addr.transfer(), which has

a built-in gas limit of 2300 to prevent re-entering problems, as a

reentrancy bug. This kind of false positive samples were marked

as true bugs during the original evaluation of the published tools,

so most of them (22/27) had a high precision rate in their papers,

while performs poorly in reality.

Finding: The code size and vulnerability pattern of the

test suite have a great impact on tool performance. So

it is better to carry out the evaluation on a multi-type

integrated benchmark suite to eliminate the biases.

Empirical Evaluation of Smart Contract Testing: What Is the Best Choice? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Depth

0

20

40

60

80

100

120

140

160

180

200

U
ni

qu
e

bu
gs

Oyente
Mythril
Osiris

(a) Unique bugs vs. depth limit

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Depth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

Oyente
Mythril
Osiris

(b) Precision vs. depth limit

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Depth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ec

al
l

Oyente
Mythril
Osiris

(c) Recall vs. depth limit

Figure 4: Variation in unique bugs, precision and recall with different depth limit of Oyente, Mythril and Osiris.

ContractFuzzer sFuzz ILF

0

5

10

15

20

25

30

35

U
ni

qu
e

bu
gs

(a) Summary statistics of unique bugs

ContractFuzzer sFuzz ILF

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

(b) Summary statistics of precision

ContractFuzzer sFuzz ILF

0.00

0.05

0.10

0.15

0.20

R
ec

al
l

(c) Summary statistics of recall

Figure 5: Variation in unique bugs, precision and recall throughout 48 trials of ContractFuzzer, sFuzz and ILF.

4.2 Variation on Runtime Parameters

This section will experimentally demonstrate the impact of differ-

ent parameters on the performances of tools4. The execution of a

tool depends on the execution environment, which consists of the

generic platform and proper runtime parameters. For static tools,

they often construct an intermediate expression based on the byte-

code, and then perform pattern matching or data structure analysis

based on it. Therefore, after installing the correct dependency pack-

ages, user only needs to provide the source code or bytecode of

the contract and the maximum execution time. Dynamic tools are

more complicated, requiring the user to additionally set appropriate

values for runtime parameters, such as maximum recursion depth.

Most people use the same parameter values for all tools in the

evaluation process. However, this may not be the most appropriate

choice. Experiments based on values that are not suitable for them

may lead to inconsistent conclusions. Details are listed below.

Adjust Maximum Search Depth: Depth limit refers to the maxi-

mum depth that can be accessed along a single path. Most symbolic

executors adopt a depth-first strategy to visit nodes in the control

flow graph. Starting from the entry node, each instruction inside

a basic block will be executed symbolically. When finishing the

last instruction, the executor will enter the next block according

to the jump condition. This process will keep repeating until the

termination block is reached or the search depth reaches the limit.

Depth limit plays a critical role in detecting deeper vulnerabilities.

However, when it is set too large, blocks on other execution paths

4The experimental results in this section are displayed based on the mix collections,
and the detailed statistics of each dataset can be accessed at: https://github.com/renar
dbebe/Smart-Contract-Benchmark-Suites/tree/master/experiments-config.

will be inaccessible within a specified period of time, which will lead

to the omission of vulnerabilities. The depth settings of different

symbolic execution tools vary greatly. Among 10 recent papers

(see Table 1), MAIAN and sCompile set a depth limit of 3; VerX

and Mythril respectively increase it to 5 and 22; Oyente and its

derivatives, Osiris and HoneyBadger, set a large threshold of 50;

while others did not mention the depth limit in the paper.

We tested Oyente, Mythril and Osiris with different depth limits,

and the performance variations are shown in Fig. 4. As the search

depth increases, the path that each tool can access becomes deeper,

and the number of reported bugs, precision and recall continue to

rise. But when the search depth exceeds 50, it starts to hinder the

normal execution of the tool. Since too much time is wasted on deep

blocks of a single path, the performance of each tool experiences

varying degrees of decline. The choice of different depth limits

for evaluation may lead to different conclusions. As an example,

when the maximum search depth is set to 25, both Mythril and

Osiris report 110 unique bugs, but Mythril outperforms Osiris with

4% higher precision rate and 4 more real vulnerabilities. However,

when the depth limit is liberalized to 70, Mythril’s performance is

far behind Osiris’s. This time, Osiris reports 164 unique bugs, with

a precision rate of 66% and recall rate of 78%. While Mythril is only

able to find 104 suspected bugs, with a precision rate of 56% and

recall rate of 42%.

Increase Test Trials: As is known to all, the impact of randomness

on dynamic fuzzers cannot be ignored [64]. During evaluation, it

is insufficient to simply run each fuzzer only once and compare

their performances. One suggested solution is to carry out multiple

rounds of experiments to make statistically sound comparison [1].

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang*, Chengnian Sun, Huizhong Li, and Yan Cai

1 3 5 10 15 20 25 30 60 90 120 150 180 300 600 900 1200150018003600
Time (seconds)

0

22

44

66

88

110

132

154

176

198

220

U
ni

qu
e

bu
gs

Securify
SmartCheck
Slither

Oyente
Mythril
Osiris

ContractFuzzer
sFuzz
ILF

(a) Unique bugs vs. execution timeout

1 3 5 10 15 20 25 30 60 90 120 150 180 300 600 900 1200150018003600
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

Securify
SmartCheck
Slither

Oyente
Mythril
Osiris

ContractFuzzer
sFuzz
ILF

(b) Precision vs. execution timeout

1 3 5 10 15 20 25 30 60 90 120 150 180 300 600 900 1200150018003600
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ec

al
l

Securify
SmartCheck
Slither

Oyente
Mythril
Osiris

ContractFuzzer
sFuzz
ILF

(c) Recall vs. execution timeout

Figure 6: Variation in unique bugs, precision and recall with different execution timeout of all tools.

As to other testing tools based on fuzzing, this criterion should also

hold true. Unfortunately, Table 1 indicates that only 3 out of all

fuzzing tools perform experiments for more than one time.

We separately ran ContractFuzzer, sFuzz and ILF to verifywhether

the performance of each run is stable. Fig. 5 describes the overall

distribution of each tool’s performance throughout 48 separate runs.

For each tool, the data distribution is divided into four parts equally

and a box is used to indicate the positions of the upper and lower

quartiles. The orange line inside it represents the median value and

lines outside the box respectively indicates the minimum and maxi-

mum value. Outliers, which are generally extremely good or bad

points, are represented individually by small dots. It can be found

that under the same execution environment, the performance can

vary dramatically from run to run. Take ILF as the example. It can

find up to 35 unique bugs, which is nearly 2X more than the lowest

point. Its best precision rate is 100%, and it can find up to one-fifth

of real vulnerabilities. Meanwhile, in some rounds, its precision rate

drops to about 70%, and the recall rate is less than 10%. The result

obtained by a single run has a certain degree of contingency, and

the dominance relation reflected by it may be biased. In practice, it

is suggested to perform multiple trials and evaluate based on the

averages or the most frequently occurring results.

Extend Execution Timeout: Execution timeout refers to the long-

est time a tool can take to analyze a contract. For each tool, it

is a parameter that can be customized by the user. A commonly

accepted view is a longer time may illuminate a more stable perfor-

mance trend [46]. Meanwhile, it is also generally believed that more

execution time beyond a certain threshold is unnecessary and only

results in a waste of resources [28]. The reason is that they can only

cause small fluctuations in performance and will not change the

dominance relation between tools. These two assumptions leave a

large space for the setting of execution timeout. The column time-

out in Table 1 shows the dramatic difference in timeout settings

across prior evaluations, which ranges from 20 seconds to more

than 3 days. The most common choice is 30 minutes, which was

used by 4 papers. Nearly 70% of the rest set the timeout with an

arbitrary value between 2 minutes and 1 hour. MadMax, sCompile

and Zeus use a short timeout of less than 2 minutes, where most

of them are static tools. The remaining 4 papers run their tools for

more than 1 hour, where all of them are dynamic tools.

To identify the impact of execution timeout on tool’s perfor-

mance, we set up 20 different termination times and conducted

experiments on all selected tools. The trends are shown in Fig. 6.

Due to the difference in execution speed, dynamic tools often take

longer to report bugs and reach stability. For example, Contract-

Fuzzer did not enter the branch where the bug was located until

the 1800th second. Since it’s the only discovered bug, the precision

jumps from 0% to 100% and stays. In contrast, SmartCheck finished

the analysis of the entire code within two seconds, so the precision

fails to increase after that. Before reaching the upper bound, the

improvement in performance is non-linear. This will result in the

varying relative performance between tools over time. In this condi-

tion, using a short timeout for evaluation may yield an incomplete

conclusion. When running Mythril and Osiris with a timeout of 10

seconds, the total number of bugs reported by Mythril is 28, which

is 5 more than Osiris’s. In terms of precision and recall, Mythril is

also better than Osiris, with 21% and 6% higher respectively. But

running them longer seems to tell a different story. When the time-

out is set to 120 seconds, Osiris reports 164 unique bugs in all, 109

of which are real, accounting for 78% of all hidden vulnerabilities.

In contrast, Mythril only reports 64 unique bugs, half of which are

real, accounting for less than a quarter of vulnerabilities.

Deeper Analysis. The maximum benefit that each tool’s detec-

tion strategy can bring depends on the setting of a series of ex-

ecution parameters. Even tools based on the same implemented

method may show different sensitivity to parameters. For example,

the optimal search depth limit of tools based on breadth first search

may be greater than that of tools based on depth first search, since

the larger depth limit will not prevent breadth-first tools from dis-

covering shallow vulnerabilities in other branches, but will prevent

depth-first tools from entering other branches.

Finding: The configuration parameters at runtime have

a significant impact on tool’s performance. To make the

evaluation more fair and convincing, during the experi-

ment, reasonable and suitable values should be provided

for custom parameters of each tool.

4.3 Variation on Performance Metrics

In addition to benchmark suite and runtime parameters, the se-

lection of performance metrics also needs to be persuasive and

Empirical Evaluation of Smart Contract Testing: What Is the Best Choice? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

reasonable. Looking back on published work in recent years, there

are two commonly used performance metrics, namely the discovery

of real vulnerabilities and code coverage. The former can be further

subdivided into three metrics, total number of bugs, precision and

recall; the latter generally has three manifestations. As shown in

Table 1, the most commonly used is path coverage, which was used

by 6 papers, referring to the coverage of all feasible paths in the

code. Then comes instruction coverage used by 5 papers, which

counts the number of executed instructions. The remaining two

types are basic-block and branch coverage, which are calculated as

the percentage of the covered basic-blocks or branches.

It seems to make sense that coverage can represent the ability of

a tool to discover vulnerabilities: the more code a tool executes, the

more likely it is to find vulnerabilities [19, 28]. However, the rela-

tionship between them does not seem to be strong. Directly using

it to prove the bug finding ability of the tool (such as Manticore) is

also inadvisable and inadequate.

Take a real-world contract named ItemToken5 as an example. We

separately ran ILF and sFuzz on it, and recorded the variation in

instruction coverage6 and total number of reported vulnerabilities

over time. The results are shown in Fig. 7. After 30 seconds, neither

ILF nor sFuzz was able to find new vulnerabilities, and there was

no significant improvement in coverage. Therefore, we drew the

curves of the first 30 seconds for explanation.

0 5 10 15 20 25 30
Time / s

0

20%

40%

60%

80%

100%

C
ov

er
ag

e

ILF
sFuzz

(a) Instruction coverage vs. time

0 5 10 15 20 25 30
Time / s

0

1

2

3

Fo
un

d
B

ug
s

ILF
sFuzz

(b) Number of vulnerabilities vs. time

Figure 7: Variation in coverage and number of vulnerabili-

ties reported by sFuzz and ILF over time.

Although sometimes, the increase in coverage is accompanied

with the growth in vulnerabilities. For example, at the fifth second,

sFuzz succeeded in entering a new branch, and the coverage in-

creased from 61% to 71%, at the same time a new vulnerability was

discovered. But comparing the number of steps in (a) and (b), it can

be found that, in most of the time, while the coverage increases,

the number of vulnerabilities remains unchanged. In sFuzz’s cov-

erage curve, only one out of 22 rises results in the discovery of

new vulnerabilities. Same thing goes for ILF, the coverage curve

has raised 29 times, while the vulnerability discovery curve has

only changed three times. What’s more, higher coverage does not

guarantee a stronger ability in finding vulnerabilities. As shown

in Fig. 7 (a), the coverage rate of sFuzz reaches 91%, and ILF only

reaches 80%. However, as can be seen from (b), ILF finally finds

three unique bugs while sFuzz can only find one. In this case, it is

5Source code available at: https://etherscan.io/address/0x0a8b758bbc4a5791c5647ca80
351e008f1e3bca1#code.
6We extended sFuzz to support instruction coverage with additional instrumentation,
which did not affect the vulnerability mining ability of the tool.

biased to conclude that ILF performs better than sFuzz according

to a higher coverage.

Deeper Analysis. The most fundamental metric to measure tool

performance is the number and percentage of real vulnerabilities it

finds. As an indirect indicator, a higher coverage cannot stand for a

better performance of the tool. The increase in coverage may be

caused by some meaningless code, such as test code, which is not

directly helpful to vulnerability detection.

Finding: Different tools have different performance on

different metrics. To reach a rigorous conclusion, we need

to evaluate on more comprehensive metrics, including the

total number of unique bugs, precision, recall and coverage.

5 OBSERVATIONS AND SOLUTIONS

Though current testing tools can detect a significant amount of

potential security vulnerabilities in actual projects, we still find out

the following points worthy to be discussed:

It is necessary to have a unified evaluation standard. In this

paper, we have investigated 27 related papers and analyzed their

experimental methodologies. The description in paper showed that

they did not share a unified setting. Using nine representative tools,

we illustrated that individual evaluations with different experiment

settings could lead to misleading conclusions. We find that

• More than 70% of papers only used unlabeled real-world contracts

as the benchmark, where the distribution of vulnerabilities are

unknown and the vulnerability pattern is simple. This makes

it impossible to comprehensively evaluate the tool’s ability in

detecting each type of vulnerability and is easy to overfit, such as

the performance of SmartCheck in the UR dataset. At the same

time, without clear labels, it is also impossible to accurately tally

false negative samples. Our experiments showed that different

choice of test suites have a great impact on tool performance.

• Papers varied widely on the setting of runtime parameters, such

as maximum search depth. Our experiments showed that too

large threshold will hinder the normal execution of the tool.

• Most papers failed to take varying performance caused by runs

into consideration. Our experiments showed that it is necessary

to perform multiple trials with statistical tests to balance the

impact of randomness.

• Among all papers, the choice of execution timeout ranges from

20 seconds to 80 hours. Our experiments showed that a longer

timeout is needed to draw a full picture of a tool’s performance,

especially for the dynamic tools.

• Fewer than half of the papers evaluated tool’s performance from

all perspectives: unique bugs, precision and recall. Others only

selected one or two of them to illustrate their tools were the best,

or even only evaluated the performance based on the coverage.

Our experiments showed that using part of them is not sufficient.

To produce trustworthy and comparable conclusions, it is nec-

essary to standardize from the following three aspects: test suites,

runtime parameters and performance metrics. First, a solid, diverse

benchmark suite is needed to assess the vulnerability detection

ability of each tool in different applicable scenarios. It should not

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang*, Chengnian Sun, Huizhong Li, and Yan Cai

only be close to the contracts used in actual projects, but also have

annotations to help developers confirm false and missing reports.

Second, while comparing to other tools, the author should provide

the custom parameters with suitable values to ensure the best per-

formance of each tool. For example, during symbolic execution,

it is better to set the depth limit to around 50. Too deep or too

shallow will have a negative impact on the normal execution of

the tool. As for fuzzers, a longer timeout and multiple runs are

essential. Finally, the evaluation metrics should aim at finding as

many real vulnerabilities as possible, and should give attention to

both quantity and quality.

It is important to reduce the false positives reported by

static tools, although they can scan the code completely. Ac-

cording to direct pattern matching, some harmless operations will

be wrongly identified as vulnerabilities. For example, the false pos-

itive rate of Slither can be up to 82% on real-world contracts. To

eliminate the false alarms which can’t be reproduced in reality,

some work adopts the test method of combining dynamic and static

analysis. That is, the code snippets that may contain vulnerabilities

are screened out through static analysis first, and then the dynamic

tools are used to execute the suspected target code. If it can be

triggered successfully, it will be marked as a real bug.

To evaluate the performance of this method, we combine the

static tool with the highest false positives (Slither) and the dynamic

tool with best overall performance (ILF) for test. As shown in Table 6,

ILF filters out 74 code snippets that are mistakenly classified by

Slither, improving the precision by nearly 30%. Another method

is critical path filtering. In addition to control flow and data flow,

it is also meaningful to introduce the recognition and analysis of

money flow, filter out paths related to sensitive operations such as

transfers, and then perform rule satisfiability judgments based on

these money-flow sensitive paths, thereby reducing false alarms.

Table 6: Gains of dynamic and static combination.

Tool TP FP FN N Precision Recall

Slither 134 82 5 216 0.62 0.96
Slither + ILF 62 8 77 70 0.89 0.45

Furthermore, although in general, static tools have a high false

positive rate, some targeted static tools performwell in the detection

of a certain sub-set of vulnerabilities. For example, MadMax [21]

for out-of-gas errors and Ethainter [3] for composite vulnerabilities.

Integrating these tools can also increase the number of supported

vulnerability types while maintaining high detection accuracy.

More work is needed to further improve execution effi-

ciency of dynamic tools, though they aremore accurate.They

usually have a higher probability of finding real vulnerabilities,

which benefits from the simulation of real execution process. How-

ever, because of the randomness of execution path and the finiteness

of guidance information, these dynamic tools are often inefficient.

Within a limited time, they can only cover a small part of reachable

paths, and have a poor ability in handling complex logic. As an

example, both sFuzz and ILF reach a high false negative rate of 90%

on confirmed vulnerable contracts. In order to help dynamic tools

detect more vulnerabilities in a short time, the most commonly

used method is integration. The simplest way is to execute different

tools in parallel and take the union of their output results [14].

In order to verify the benefits of integration testing, we execute

three dynamic fuzzers in parallel, consolidate and de-duplicate

the reported warnings. Then we compare the integrated results

with those of a single tool. The differences are shown in Table 7.

We surprisingly find that, just after simple integration of output

results, false negative rate is reduced by an average of 10%. On

this basis, further seed synchronization and tester scheduling can

be performed. For example, establishing a shared seed pool, and

synchronizing the seeds with new coverage to each tester during the

execution process; or selecting applicable seed generation strategies

for different code blocks and calling different testers to check.

Table 7: Gains of integrated fuzz testing.

Tool TP FP FN N Precision Recall

Only ContractFuzzer 1 0 138 1 1.00 0.10
Only sFuzz 8 7 131 15 0.53 0.06
Only ILF 29 6 110 35 0.83 0.21
Integrate three fuzzers 30 8 109 38 0.79 0.22

In addition, most fuzzers cannot realize the automation of whole

process. Different from static analyzers and symbolic executors,

fuzzers need to deploy the contract to be tested on a local private

chain first, and then interact with the contract by sending transac-

tions in order. Taking ContractFuzzer as an example, it provides the

deployment script but requires a series of config files, like the abi

files and pairs of signatures. These files are regarded as the prepa-

ration work and need users to imitate the example and generate by

themselves, which is user-unfriendly and error-prone in practice.

6 CONCLUSION

Smart contracts have a wide range of applications, involving a large

amount of digital assets. For developers and transaction partici-

pants, security is critical. Though various testing tools for smart

contracts have emerged endlessly, the lack of a unified evalua-

tion standard makes it difficult to evaluate their performance in

a scientific, fair and comprehensive way. For assisting follow-up

researchers in carrying out comparative experiments more reason-

ably, we collect 46,186 diversified contracts, propose a systematic

evaluation process and perform extensive experiments. We recom-

mend that the evaluation process should take the following factors

into consideration: (a) a set of diverse test suites; (b) a unified ex-

ecution environment with suitable runtime parameters; (c) more

quantitative and multi-dimensional performance metrics.

During experiments, we also find some notable problems and

point out potential directions for future work. The first is to better

combine dynamic and static methods to reduce false positives. The

second is to develop more advanced integration models that can

give full play to the strengths of different tools. We hope this paper

can provide ideas and references to follow-up researchers, and help

them develop more reliable, powerful and friendly testing tools.

ACKNOWLEDGEMENT

This research is sponsored in part by theNSFC Program (No. 62022046,

U1911401, 61802223), National Key Research and Development

Project (Grant No. 2019YFB1706200), the Huawei-Tsinghua Trust-

worthy Research Project (No. 20192000794).

Empirical Evaluation of Smart Contract Testing: What Is the Best Choice? ISSTA ’21, July 11–17, 2021, Virtual, Denmark

REFERENCES
[1] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical

tests to assess randomized algorithms in software engineering. In 2011 33rd
International Conference on Software Engineering (ICSE). IEEE, 1–10.

[2] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A survey of symbolic execution techniques. ACMComputing
Surveys (CSUR) 51, 3 (2018), 1–39.

[3] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smarag-
dakis. 2020. Ethainter: a smart contract security analyzer for composite vulner-
abilities. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. 454–469.

[4] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. 2018. Vandal: A scalable security
analysis framework for smart contracts. arXiv preprint arXiv:1809.03981 (2018).

[5] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S Pasareanu, Koushik
Sen, Nikolai Tillmann, and Willem Visser. 2011. Symbolic execution for software
testing in practice: preliminary assessment. In 2011 33rd International Conference
on Software Engineering (ICSE). IEEE, 1066–1071.

[6] Jialiang Chang, Bo Gao, Hao Xiao, Jun Sun, Yan Cai, and Zijiang Yang. 2019. sCom-
pile: Critical path identification and analysis for smart contracts. In International
Conference on Formal Engineering Methods. Springer, 286–304.

[7] Jiachi Chen, Xin Xia, David Lo, John Grundy, Xiapu Luo, and Ting Chen. 2020.
DEFECTCHECKER: Automated Smart Contract Defect Detection by Analyzing
EVM Bytecode. arXiv:2009.02663 [cs.SE]

[8] Jiachi Chen, Xin Xia, David Lo, John Grundy, Xiapu Luo, and Ting Chen. 2020.
Defining Smart Contract Defects on Ethereum. IEEE Transactions on Software
Engineering (2020).

[9] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. 2017. Under-optimized
smart contracts devour your money. In 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 442–446.

[10] Ting Chen, Zihao Li, Yufei Zhang, Xiapu Luo, TingWang, Teng Hu, Xiuzhuo Xiao,
Dong Wang, Jin Huang, and Xiaosong Zhang. 2019. A large-scale empirical study
on control flow identification of smart contracts. In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). 1–11.

[11] ConsenSys. 2018. Mythril. https://github.com/ConsenSys/mythril-classic.
[12] A Day and E Medvedev. 2019. Ethereum in BigQuery: a public dataset for smart

contract analytics.
[13] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich,

and R. Whelan. 2016. LAVA: Large-Scale Automated Vulnerability Addition. In
2016 IEEE Symposium on Security and Privacy (SP). 110–121.

[14] Thomas Durieux, João F Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical
review of automated analysis tools on 47,587 Ethereum smart contracts. In Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engineering.
530–541.

[15] Etherscan. 2019. Etherscan. https://etherscan.io/.
[16] J. Feist, G. Grieco, and A. Groce. 2019. Slither: A Static Analysis Framework

for Smart Contracts. In 2019 IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB). 8–15.

[17] Asem Ghaleb and Karthik Pattabiraman. 2020. How Effective Are Smart Contract
Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug
Injection. In Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis (Virtual Event, USA) (ISSTA 2020). Association for
Computing Machinery, New York, NY, USA, 415–427. https://doi.org/10.1145/
3395363.3397385

[18] Google. 2018. Fuzzer Test Suite. https://github.com/google/fuzzer-test-suite.
[19] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code coverage for suite

evaluation by developers. In Proceedings of the 36th International Conference on
Software Engineering. 72–82.

[20] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019. Giga-
horse: thorough, declarative decompilation of smart contracts. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 1176–1186.

[21] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and
Yannis Smaragdakis. 2018. Madmax: Surviving out-of-gas conditions in ethereum
smart contracts. Proceedings of the ACM on Programming Languages 2, OOPSLA
(2018), 1–27.

[22] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A semantic
framework for the security analysis of ethereum smart contracts. In International
Conference on Principles of Security and Trust. Springer, 243–269.

[23] Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and Martin
Vechev. 2019. Learning to fuzz from symbolic execution with application to smart
contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 531–548.

[24] BinHu, Zongyang Zhang, Jianwei Liu, Yizhong Liu, Jiayuan Yin, Rongxing Lu, and
Xiaodong Lin. 2020. A Comprehensive Survey on Smart Contract Construction
and Execution: Paradigms, Tools and Systems. arXiv preprint arXiv:2008.13413
(2020).

[25] Sungjae Hwang and Sukyoung Ryu. 2020. Gap between theory and practice: An
empirical study of security patches in solidity. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. 542–553.

[26] Bo Jiang, Ye Liu, andW. K. Chan. 2018. ContractFuzzer: fuzzing smart contracts for
vulnerability detection. Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering - ASE 2018 (2018). https://doi.org/10.1145/
3238147.3238177

[27] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts.. In NDSS.

[28] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2123–2138.

[29] Jun Li, Bodong Zhao, and Chao Zhang. 2018. Fuzzing: a survey. Cybersecurity 1,
1 (2018), 1–13.

[30] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe. 2018.
Reguard: finding reentrancy bugs in smart contracts. In 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-Companion).
IEEE, 65–68.

[31] Han Liu, Chao Liu, Wenqi Zhao, Yu Jiang, and Jiaguang Sun. 2018. S-gram:
towards semantic-aware security auditing for ethereum smart contracts. In 2018
33rd IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 814–819.

[32] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016.
Making Smart Contracts Smarter. IACR Cryptology ePrint Archive (2016), 633.

[33] Fuchen Ma, Ying Fu, Meng Ren, Wanting Sun, Zhe Liu, Yu Jiang, Jun Sun, and
Jiaguang Sun. 2019. Gasfuzz: Generating high gas consumption inputs to avoid
out-of-gas vulnerability. arXiv preprint arXiv:1910.02945 (2019).

[34] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. 2019. The art, science,
and engineering of fuzzing: A survey. IEEE Transactions on Software Engineering
(2019).

[35] Anastasia Mavridou and Aron Laszka. 2018. Tool Demonstration: FSolidM for
Designing Secure Ethereum Smart Contracts. In Principles of Security and Trust,
Lujo Bauer and Ralf Küsters (Eds.). Springer International Publishing, Cham,
270–277.

[36] MITRE. 2018. Common vulnerabilities and exposures. https://cve.mitre.org/.
[37] Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco,

Josselin Feist, Trent Brunson, and Artem Dinaburg. 2019. Manticore: A user-
friendly symbolic execution framework for binaries and smart contracts. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1186–1189.

[38] MythX. 2019. Smart Contract Weakness Classification and Test Cases. https:
//swcregistry.io/. Accessed November 4, 2019.

[39] Tai D Nguyen, Long H Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020.
sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts. arXiv preprint
arXiv:2004.08563 (2020).

[40] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding the greedy, prodigal, and suicidal contracts at scale. In Proceedings
of the 34th Annual Computer Security Applications Conference. 653–663.

[41] Robert Norvill, Beltran Borja Fiz Pontiveros, Radu State, and Andrea Cullen. 2018.
Visual emulation for Ethereum’s virtual machine. In NOMS 2018-2018 IEEE/IFIP
Network Operations and Management Symposium. IEEE, 1–4.

[42] Trail of Bits. 2018. ethersplay. https://github.com/crytic/ethersplay.
[43] Reza M Parizi, Ali Dehghantanha, Kim-Kwang Raymond Choo, and Amritraj

Singh. 2018. Empirical vulnerability analysis of automated smart contracts
security testing on blockchains. arXiv preprint arXiv:1809.02702 (2018).

[44] Daniel Perez and Benjamin Livshits. 2019. Smart contract vulnerabilities: Does
anyone care? arXiv preprint arXiv:1902.06710 (2019).

[45] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. 2020. Verx: Safety verification of smart contracts. In 2020 IEEE
Symposium on Security and Privacy, SP. 18–20.

[46] Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. 2017.
Slowfuzz: Automated domain-independent detection of algorithmic complexity
vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. 2155–2168.

[47] Purathani Praitheeshan, Lei Pan, Jiangshan Yu, Joseph Liu, and Robin Doss. 2019.
Security analysis methods on Ethereum smart contract vulnerabilities: a survey.
arXiv preprint arXiv:1908.08605 (2019).

[48] Raine Revere. 2018. solgraph. https://github.com/raineorshine/solgraph.
[49] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. 2020. VeriS-

mart: A highly precise safety verifier for Ethereum smart contracts. In 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 1678–1694.

[50] Matt Suiche. 2017. Porosity: A decompiler for blockchain-based smart contracts
bytecode. DEF con 25 (2017), 11.

[51] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,
and Yaroslav Alexandrov. 2018. SmartCheck: static analysis of ethereum smart
contracts. In the 1st International Workshop.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Meng Ren, Zijing Yin, Fuchen Ma, Zhenyang Xu, Yu Jiang*, Chengnian Sun, Huizhong Li, and Yan Cai

[52] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State.
2020. Towards Smart Hybrid Fuzzing for Smart Contracts. arXiv preprint
arXiv:2005.12156 (2020).

[53] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting
for integer bugs in ethereum smart contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference. 664–676.

[54] Christof Ferreira Torres, Mathis Steichen, et al. 2019. The art of the scam: De-
mystifying honeypots in ethereum smart contracts. In 28th {USENIX} Security
Symposium ({USENIX} Security 19). 1591–1607.

[55] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais, Flo-
rian Buenzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis of
Smart Contracts. In ACM Conference on Computer and Communications Security.

[56] Patrick Ventuzelo. 2018. Octopus. https://github.com/pventuzelo/octopus.
[57] Mingzhe Wang, Jie Liang, Chijin Zhou, Yuanliang Chen, Zhiyong Wu, and Yu

Jiang. [n.d.]. Industrial Oriented Evaluation of Fuzzing Techniques. ([n. d.]).
[58] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su. 2020. ContractWard: Au-

tomated Vulnerability Detection Models for Ethereum Smart Contracts. IEEE
Transactions on Network Science and Engineering (2020), 1–1.

[59] Valentin Wüstholz and Maria Christakis. 2019. Harvey: A greybox fuzzer for
smart contracts. arXiv preprint arXiv:1905.06944 (2019).

[60] Jiaming Ye, Mingliang Ma, Yun Lin, Yulei Sui, and Yinxing Xue. 2020. Clairvoy-
ance: Cross-Contract Static Analysis for Detecting Practical Reentrancy Vulner-
abilities in Smart Contracts. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings (Seoul, South Korea)
(ICSE ’20). Association for Computing Machinery, New York, NY, USA, 274–275.
https://doi.org/10.1145/3377812.3390908

[61] Pengcheng Zhang, Feng Xiao, and Xiapu Luo. 2019. SolidityCheck: Quickly
Detecting Smart Contract Problems Through Regular Expressions. arXiv preprint
arXiv:1911.09425 (2019).

[62] Ence Zhou, Song Hua, Bingfeng Pi, Jun Sun, Yashihide Nomura, Kazuhiro Ya-
mashita, and Hidetoshi Kurihara. 2018. Security assurance for smart contract. In
2018 9th IFIP International Conference on New Technologies, Mobility and Security
(NTMS). IEEE, 1–5.

[63] Yi Zhou, Deepak Kumar, Surya Bakshi, JoshuaMason, AndrewMiller, andMichael
Bailey. 2018. Erays: reverse engineering ethereum’s opaque smart contracts. In
27th {USENIX} Security Symposium ({USENIX} Security 18). 1371–1385.

[64] Xiaogang Zhu, Xiaotao Feng, Tengyun Jiao, Sheng Wen, Yang Xiang, Seyit
Camtepe, and Jingling Xue. 2019. A feature-oriented corpus for understand-
ing, evaluating and improving fuzz testing. In Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security. 658–663.

