
Finding and Analyzing Compiler Warning Defects

Chengnian Sun Vu Le Zhendong Su
Department of Computer Science, University of California, Davis, USA

{cnsun, vmle, su}@ucdavis.edu

ABSTRACT
Good compiler diagnostic warnings facilitate software development
as they indicate likely programming mistakes or code smells. How-
ever, due to compiler bugs, the warnings may be erroneous, superflu-
ous or missing, even for mature production compilers like GCC and
Clang. In this paper, we (1) propose the first randomized differential
testing technique to detect compiler warning defects and (2) describe
our extensive evaluation in finding warning defects in widely-used
C compilers.

At the high level, our technique starts with generating random
programs to trigger compilers to emit a variety of compiler warn-
ings, aligns the warnings from different compilers, and identifies
inconsistencies as potential bugs. We develop effective techniques
to overcome three specific challenges: (1) How to generate random
programs, (2) how to align textual warnings, and (3) how to reduce
test programs for bug reporting?

Our technique is very effective — we have found and reported 60
bugs for GCC (38 confirmed, assigned or fixed) and 39 for Clang
(14 confirmed or fixed). This case study not only demonstrates
our technique’s effectiveness, but also highlights the need to con-
tinue improving compilers’ warning support, an essential, but rather
neglected aspect of compilers.

CCS Concepts
•Software and its engineering → Compilers; Software testing
and debugging; •Human-centered computing→ Usability test-
ing;

1. INTRODUCTION
Compiler warnings are diagnostic messages emitted during com-

pilation on questionable constructs in language conforming code. A
warning message describes the reason of the warning and contains
the location information of the problematic code fragment (e.g.,
column number, line number and affected file). Developers use
warning messages to detect bugs at compile time by matching their
code against certain patterns, which are either behaviors undefined
in programming language standards or have been found to be likely
programming mistakes. For example, the Security Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884879

1 /* file=s.c */
2 int f(int a) {
3 int i = 0;
4 if (a) {
5 i++;
6 } else; /* a stray semicolon here */
7 i *= 2;
8 return i;
9 }

GCC 5.0 Output:
s.c:6:9: warning: suggest braces around empty body in an ‘else’

statement [-Wempty-body]
} else; /* a stray semicolon here */

^

Figure 1: Bug #18877 of Clang. The function has an empty
else branch. The statement i *= 2 on line 7 is not controlled
by the else branch due to the semicolon on line 6. GCC emits
a warning on this issue whereas Clang misses it.

group at Microsoft utilizes compiler warnings to discover poten-
tial security exploits in the process of security code reviews [18];
the maintenance engineers at Hewlett-Packard improve the quality
of code base in routine maintenance by correcting code on which
compilers warn [31].

Although compiler diagnostics is widely used and important, it
can still have bugs, similar to the other compiler components (e.g.,
optimizers and code generators). These bugs can negatively affect
a compiler’s usability and developer productivity. Figure 1 shows
an example of such a warning bug in Clang 3.6. In the code snippet
of Figure 1,1 there is an inadvertent semicolon placed immediately
after the else branch on line 6, which makes the statement i *= 2
on line 7 unconditionally executed. GCC emits a warning on this
case, whereas Clang considers this code snippet free of problems.
This warning bug of Clang delays the discovery of the coding error
to the testing stage, while it could have alerted the developer to the
error earlier at compile time. More details on compiler warning
defects will be discussed in Section 2.3.

Although there has been extensive work on software testing and
analysis, little attention has been devoted to testing compilers’ diag-
nostic support. This paper introduces the first effort in this direction:
(1) a practical differential testing approach for validating warning
support in compilers, and (2) an extensive evaluation in testing two
production C compilers, GCC and Clang. Our technique and its

1This accepted test program was reported at https://llvm.org/bugs/
show_bug.cgi?id=18877#c5, which is different from the initial test
program reported in the description of this bug report.

accompanying tool, Epiphron2, leverage programs generated by a
random program generator to detect inconsistent warning messages
from different compilers under test. The central assumption of our
approach is that production compilers are mature and reliable, and
should emit same/similar warnings on the same given program. Any
inconsistent warning behavior indicates a likely compiler bug.

To effectively identify/report compiler warning defects, Epiphron
overcomes three key technical challenges: (1) How to generate
adequate test programs to stress test compiler warning diagnostics,
(2) how to align textual warnings from different compilers to identify
inconsistencies, and (3) how to reduce test cases that trigger warning
inconsistencies before reporting them to compiler developers?
Challenge 1: Generating Effective Test Programs. Testing
compiler warning diagnostics mainly targets compiler front-ends,
whereas traditional compiler testing [21–23, 37] focuses on the cor-
rectness of compiler optimizers and code generators. This difference
induces different requirements on the generated test programs. For
our purpose, test programs should cover various language constructs
to fully exercise the warning diagnostics, yet it is unnecessary to
execute them. Therefore, we do not need to ensure that the test
programs are free of undefined behaviors, a critical requirement
for traditional compiler testing [21–23, 37]. Furthermore, to better
design a program generator, we have empirically studied the charac-
teristics of all the historical warning bugs in GCC and Clang fixed
before 2014. We observe that most of these bugs are unrelated to
the bodies of conditional statements, and not within obviously dead
code regions (e.g. unreachable conditional branches). We leverage
this finding in our program generator, which significantly reduces
false positives in differential testing.
Challenge 2: Aligning Warnings. We cannot directly compare
the warning messages from different compilers to identify incon-
sistent warning behaviors, because the messages are in natural lan-
guage and different compilers may present them quite differently. To
tackle this challenge, for each compiler, we design specific parsers
to extract computer-recognizable warning records from its natural
language warning descriptions. We also design a warning taxonomy
to assign each warning record a type. Based on the types of and the
information in the extracted records, we align the warning records
from the two compilers. Any aligned pair with inconsistent records
indicates a potential warning defect.
Challenge 3: Reducing Test Cases. Once we find a warning
bug, before reporting it, we need to reduce the bug-triggering test
program by removing parts of the program irrelevant to the bug.
The reduced program helps developers triage/fix the bug. However,
reducing warning bugs is much more complex than reducing regular
compiler bugs. In particular, reducing miscompilation or crashing
bugs only requires testing the behavior of the compiled executables
or the exit code (an integer) of compilers [28, 33, 38]. However,
reducing warning bugs involves processing the textual warning
output of compilers, and needs expressive predicates to specify
the inconsistency of interest which we would like to preserve after
each iteration of reduction. We base our reduction process on the
alignment algorithm, and further design a set of generic predicates
over the aligned warning pairs.

We have applied Epiphron to GCC and Clang, two mature and
widely used production compilers. Our evaluation shows that Epiphron
is very effective in finding warning bugs, even though both compil-
ers’ code bases for C programming language standards C89 and C99
have already been stable. We have found and reported 60 bugs to
GCC (38 accepted), and 39 bugs to Clang (14 accepted).
Contributions. Below summarizes our main contributions:
2Epiphron was the Greek god of prudence and shrewdness.

• We introduce an effective random testing technique to validate
the warning support of compilers, and have realized it as a prac-
tical tool Epiphron for testing C compilers. Epiphron includes a
program generator specifically designed for testing warning diag-
nostics, an alignment tool analyzing textual warnings to identify
warning inconsistencies between compilers, and a test program
reducer to facilitate bug reporting.

• Epiphron has helped discover and report 60 bugs to GCC and 39
bugs to Clang, both of which are widely-used and well-tested
production compilers. Specifically, for GCC, 38 bugs have al-
ready been accepted/fixed and 12 bugs are pending developers’
response; for Clang, 14 bugs have been accepted/fixed and 25
bugs are pending developers’ response.

• Our evaluation itself (i.e. reported bugs) serves as a convincing
empirical evidence, calling for more attention on testing compiler
warning diagnostics. It opens up a new research direction to
improve the usability of compilers to benefit both novice and
experienced developers.

Paper Organization. Section 2 presents the definition of warn-
ings and how they are identified. Section 3 introduces our approach
for finding compiler warning defects, while Section 4 presents the
detailed results on our efforts in finding GCC and Clang warning
defects. Section 5 discusses Epiphron’s false positive rate and appli-
cability of static analysis checkers to detect warning bugs. Finally,
we survey related work (Section 6) and conclude (Section 7).

2. COMPILER WARNINGS
A good compiler not only compiles source code correctly, but also

emits useful warnings to alert developers to potentially problematic
code fragments. A warning should contain the location information
of the problematic code fragment (i.e., file name, line number and
column number), and a message describing the potential problem.
Some modern compilers may produce extra information, such as the
warning type and suggestions to eliminate the warning.

Let us take the code in Figure 1 as an example. GCC 5.0
warns that the body of the else statement is empty. The prefix
“s.c:6:9:warning:” indicates that the current message is a warn-
ing, and the problematic code is on line 6, column 9 of file “s.c”.
The potential problem is an else statement with an empty body.
The postfix “[-Wempty-body]” is the name of the warning checker
that emits this warning, which can also serve as the warning type.
GCC also prints the problematic code fragment to help developers
identify the problem easily. It also provides a suggestion to silence
this warning. If the code is intended, developers may suppress the
warning by following the suggestion.

2.1 Compiler Warning Mechanism
Matching code against certain patterns at the compilation stage

underlies the mechanism of compiler warning generation. These
patterns can be classified into two general classes:

• Bad Practice This type consists of patterns that have been
found to be likely programming mistakes in practice. The exam-
ple in Figure 1 belongs to this category because although the code
conforms to the C standard, it is usually a bug or at least code
smell in practice.

• Undefined Behavior This type consists of behaviors that are
undefined according to the programming language standard. Ex-
amples include using an uninitialized variable, accessing an array
index that is out-of-bound, and dereferencing a NULL pointer.

1 // file = s.c
2 char a[] = {0xFFFF, 4, 0xEFF};

GCC 4.9 Output:
s.c:2:1:warning:overflow in implicit constant conversion
s.c:2:1:warning:overflow in implicit constant conversion

(a) Erroneous message (GCC Bug #60455)

1 // file = s.c
2 int f(unsigned char a, unsigned char b) {
3 const unsigned l = 4294967295u;
4 return (l ^ a) != b;
5 }

GCC 4.9 Output:
s.c:4:18:warning:comparison of promoted ~unsigned with unsigned

(b) Spurious warning (GCC Bug #60090)

1 // file = s.c
2 int f(unsigned a, int *b) {
3 return a > (~(95 != *b));
4 }

GCC 4.9 Output:
s.c:3:12:warning:comparison between signed and unsigned

integer expressions

(c) Missing warning (Clang Bug #18504)

Figure 2: Three Compiler Warning Bugs

Compilers need different levels of program information to cor-
rectly generate warnings. While some types of warnings only require
syntactic information (e.g., the one in Figure 1), many others depend
on semantic information only available via static program analysis.

2.2 Importance of Compiler Warnings
Compiler warnings are important to both novice and experienced

developers. Allain suggests that compiler warnings should be treated
carefully, because they provide a means to catch bugs early, includ-
ing those that are difficult to find during testing [8]. Indeed, large
software companies have been using compiler warnings to improve
code quality for years.
Software Maintenance. Software engineers at Hewlett-Packard
use compiler warnings to clean up source code in their routine
maintenance [31]. During a maintenance activity, they increase the
level of compiler diagnostics to obtain a large number of compiler
warnings. A team of engineers is then assembled to resolve each
warning. Doing so not only helps refactor buggy, dangerous or
wasteful code, but also makes the system ready for new compilers.
Security Code Review. The Security Engineering group at Mi-
crosoft utilizes compiler warnings to discover potential vulnera-
bilities during security code reviews [18]. They enable compiler
diagnostics at the highest level to identify areas of code that require
extra scrutiny. Their experience has shown that some warnings are
actually bugs or at least hide real bugs, which may be exploitable
vulnerabilities.

2.3 Categories of Compiler Warning Bugs
Compiler warning bugs can negatively impact developers’ pro-

ductivity, and we categorize them into three general classes:
Erroneous Messages. Warning messages can be wrong. The
compiler may use a misleading or confusing sentence to describe

Figure 3: Overall Framework of Our Approach

the underlying problematic code fragment, or produce an incorrect
location. Figure 2a shows a GCC bug where the compiler emits
two overflow warnings with incorrect locations. Incorrect or bogus
warning messages frustrate developers, wasting their effort in realiz-
ing that the warnings are incorrect. Modern integrated development
environments (IDEs) are also impacted because they rely on com-
piler output to render errors/warnings. For example, Eclipse C/C++
Development Tooling3 parses the compilation output of GCC or
Clang to highlight problematic code. This type of warning bugs will
make Eclipse behave bizarrely.
Spurious Warnings. Compilers emit superfluous warnings for
benign code fragments. In Figure 2b, GCC emits a sign comparison
warning (i.e., “comparison of promoted ∼unsigned with unsigned”)
in the returned expression. However, there is no bitwise not opera-
tion (∼) in the expression. Spurious warnings waste development
time and resource. For instance, during a routine maintenance activ-
ity at Hewlett-Packard, a subsystem generated 499 new warnings,
which took a team of engineers to resolve. If a considerable number
of warnings are superfluous, a large amount of developers’ time will
be wasted. Moreover, bogus warnings may even cause the software
build process to fail if the compiler is configured to treat warnings
as errors (i.e., the flag -Werror of GCC and Clang).
Missing Warnings. Compilers may overlook a potentially buggy
code fragment and thus miss a warning. Figure 2c shows a Clang bug
where the compiler fails to report a problematic comparison between
a signed integer and an unsigned integer. Note that a missing warn-
ing is not necessarily a feature request. This example is a real bug as
confirmed and explained by the developer.4 Missing warnings can
prevent developers from finding bugs at early development stages.
For example, the design decision of GCC not to warn on declared
but unused static constants [3] hides a bug in GDB [4]. In contrast,
Clang has added a new warning flag -Wunused-const-variable to
catch such unnoticed bugs.

All three types of warning defects above are exacerbated when
novice developers are involved, because they are usually unfamiliar
with the programming language (as stated by Peter Norvig [30]).

3. APPROACH
Our approach is based on the concepts of random and differential

testing. It takes as input a pair of compilers C = {c1, c2} and
a random program generator P , and outputs inconsistent warning
behaviors between c1 and c2. Figure 3 shows the overall framework
of the proposed technique, which contains two major steps:

3https://eclipse.org/cdt/
4http://llvm.org/bugs/show_bug.cgi?id=18504#c1

• Random Testing We first use P to generate a random program
p. The two compilers c1 and c2 compile p and emit two raw
warning output m1 and m2, which are parsed into two sets of
warnings w1 and w2.

• Differential Testing We compute the symmetric difference
between the two warning sets w1 and w2 (i.e., w1 \w2∪w2 \w1)
as potential warning defects for further investigation.

This process should be repeated indefinitely until reaching a global
fixpoint (i.e., all inconsistencies are known) or having exhausted the
resource budget.

Because the warning messages m1 and m2 are in natural language
and have different natural language descriptions across different
compilers, it is difficult to directly compute set difference on m1

and m2. Therefore, we first invoke a compiler-specific parser to
process the warning messages into a set of records (m1 to w1, and
m2 to w2). Each record stores a warning’s location, type and other
relevant information.

Next, the component “Warning Aligner” aligns w1 and w2 into
a list of pairs based on the parsed records, and computes the sym-
metric difference between w1 and w2 as potential warning bugs in
either c1 or c2. The component “Filter” removes known inconsis-
tencies (i.e., false positives and reported bugs). Finally, we reduce
the test program that triggers each remaining inconsistency to obtain
a minimized test program that still triggers the same inconsistency,
and report it if it is indeed a warning bug.

3.1 Generating Test Programs
Testing compiler warning diagnostics mainly targets compiler

frontends, whereas traditional compiler testing [21, 23, 37] usually
focuses on the correctness of compiler optimizers and code genera-
tors. This difference induces different requirements on the generated
test programs. For our purpose, test programs should cover various
language constructs to fully exercise the warning diagnostics, yet
it is not necessary to execute them. Therefore, we do not need to
ensure the test programs free of undefined behaviors, a property
otherwise critical to traditional compiler testing [21, 23, 37].
Observations from Historical Warning Bugs. To design an
effective program generator, we empirically studied all historical
warning bugs that were fixed before January 2014. In total we
investigated 150 bugs of GCC and 80 of Clang. After analyzing
the associated test cases, we have the following two findings on the
problematic statement s on which compilers warn:

1. s is not within an obviously dead code region. In other words,
there is no warning bug on an unreachable statement.

2. s is usually not control-dependent on a conditional statement
(e.g., if, for and while). That is, compilers only analyze state-
ments locally to emit warnings. It does not matter whether the
statements are within the body of a conditional statement or not.

Epiphron Program Generator. We design the Epiphron program
generator that supports nearly all the language constructs of the C
language. It produces random compilable test programs by unrolling
the grammar of the C language. At each step it picks a random,
viable grammar production to generate a construct (e.g., a statement
or an expression). Epiphron generates much more diverse programs
than Csmith [37] and Orion [21].

We further improve Epiphron by leveraging the two findings above
to reduce false positives of differential testing. In particular, when
Epiphron generates a conditional statement, it intentionally con-
structs warning-free body such as an empty statement “;” for if
statements, and “break” for loop statements.

1 char* g() {
2 char *p = "hello";
3 p[0] = ’d’; /*Segmentation fault here.*/
4 return p;
5 }

Clang 3.4 Output:
s.c:2:9:warning: initializing ‘char *’ with an expression

of type ’const char [6]’ discards qualifiers
[-Wincompatible-pointer-types-discards-qualifiers]

Figure 4: Bug #18801 of Clang discovered by CVS. The func-
tion tries to modify a string literal via a pointer referencing
the literal. According to the C standard [19], the string literal
“hello” always has static storage duration and is immutable on
most architectures. The statement on line 3 modifies it, which is
undefined behavior and causes an illegal memory access on x86
Linux. In Clang 3.5, the command option -Weverything does
not enable -Wwrite-string, thus missing the warning.

The above design is quite effective at differentially testing GCC
and Clang because it helps avoid certain false positives by construc-
tion. Indeed, it is a compiler vendor’s design decision whether to
warn on problematic code in obviously dead code regions, thus
warning inconsistencies on dead code are often not confirmed as
real bugs. For example, GCC might emit various warnings on dead
code, while Clang only produces one warning that the code region
is unreachable.

3.2 Selecting Reference Compilers
The assumption of our approach is that provided that the two

compilers c1 and c2 are mature and defect-free, ideally they should
emit the same set of warnings (i.e., w1 = w2) for the same program
p. This assumption is vital for effective differential testing, which
states that any discovered inconsistent warning behavior between c1
and c2 is likely a bug in either c1 or c2 (or both).

The selection of c1 and c2 for differential testing is very important
in our approach, because a bad selection can cause many false
positives that require manual investigation. In this paper, we adopt
the following three strategies for choosing the right compilers for
effective differential testing.

3.2.1 Differential Testing Strategies
Cross-Compiler Strategy (CCS). This strategy selects two dif-
ferent compilers that have been developed independently. Given a
programming language, we can select two of its mature and com-
peting compilers for warning inconsistency checking. GCC and
Clang are a good example here. Both compilers are mature and
under active development for years. In particular, Clang is designed
to be a drop-in replacement for GCC and supports all of the GCC
command arguments and their semantics. The motivating example
shown in Figure 1 is uncovered using this strategy.
Cross-Version Strategy (CVS). This strategy selects different
versions of a compiler for differential testing. It specifically targets
regressions in compiler warning support, which correspond to bugs
introduced in the newer version. For example, we can use Clang 3.4
as a reference compiler to test Clang 3.5.5

Figure 4 shows a bug in Clang 3.5 that is discovered by this
strategy. Clang has a command option -Weverything which enables
all diagnostics [1]. However, in Clang 3.5, this invariant is broken,

5Clang 3.7 is the current development version of Clang; the latest
stable release is Clang 3.6.

1 int *const a = 0;
2 unsigned fn1() {
3 unsigned short s = ~0x4578ADBCAA1DE677LL ^ (a == 0);
4 return s;
5 }

(a) A function with an integer overflow at line 3

s.c:3:23:warning: negative integer implicitly converted
unsigned type [-Wsign-conversion]

s.c:3:23:warning: negative integer implicitly converted
to unsigned type [-Wsign-conversion]

(b) Duplicate warnings by GCC -O0 (non-optimized)

s.c:3:23: warning: large integer implicitly truncated
to unsigned type [-Woverflow]

(c) A warning by GCC -O1 (optimized)

Figure 5: Bug #60083 of GCC discovered by COS. GCC
-O0 emits two duplicate warnings, whereas GCC -O1 correctly
emits only one warning

as -Wwrite-string is excluded from -Weverything, which warns
if an immutable string literal is assigned to a mutable pointer, e.g.
char *p = “hello”;. The function g tries to modify a string literal
via a non-const pointer p, which triggers a segmentation fault on
line 3. In order to fix the bug, the developer should use an array to
copy the string literal, instead of using the pointer p to reference it,
i.e. char p[] = “hello”;. Clang 3.4 is able to detect this problem
with -Weverything, and outputs the warning as shown below the
function g. In contrast, Clang 3.5 deems that the code is benign.
Cross-Optimization Strategy (COS). This strategy selects the
same compiler, but compiles the generated random program p under
different optimization levels. For example, given GCC to test, we
can instruct GCC to compile p without optimizations (with flag -O0)
as c1 and compile p with optimizations (with flags -O1, -Os, -O2 or
-O3) as c2.

This strategy is inspired by discussions within the GCC and Clang
communities, which state that warnings/errors should be indepen-
dent of optimization levels. To quote some compiler developers:

“We generally don’t like for program validity (or warnings) to depend
on the chosen optimization level” —by a Clang developer6

“I believe we strive for the warnings be independent of the optimiza-
tion level” —by a GCC developer7

This strategy aims to find inconsistent warnings among different
optimization levels. Figure 5 shows a bug in GCC discovered by
COS. For the integer overflow on line 4 in Figure 5a, GCC -O0
(without optimization) emits two duplicate warnings, whereas GCC
-O1 (with optimization enabled) correctly emits a single warning.

3.2.2 Relationship among the Strategies
CCS targets a general scope of warning defects, CVS targets

regressions of a single compiler, and COS targets inconsistent warn-
ings of a single compiler across different optimization levels. Each
has a unique ability in finding compiler warnings defects.

In general, CVS and COS have lower false positive rates because
different versions and optimization levels of the same compiler are
usually quite consistent in producing warning messages. CCS can
detect more types of warning defects than the other two, but it can
also report more false positives. In particular, it fails if the compilers
c1 and c2 support different sets of warning types. Although GCC and

Algorithm 1: Parsing the warning output of a compiler
Input: text, the textual warning output of a compiler
Output: a set of parsed warning records

1 Function Parse (String text)
2 msg_parsers← a compiler-specific set of warning message parsers
3 list← split the string text into a list, in which each element is a string

representation for a single warning
4 result← ∅
5 foreach warning w ∈ list do
6 foreach message parser p ∈ msg_parsers do
7 if p.accept(w) then

/* If w is parsable by p, parse w to a record

*/
8 record ← p.parse(w)
9 result← result ∪ {record}

10 break

11 return result

Clang share a majority of flags, they still have incompatibilities. For
example, GCC has a command option -Wunused-but-set-variable
to warn on variables that are set but never used, whereas Clang does
not. As a result, we cannot use differential testing to validate the
correctness of this warning diagnostic. In this regard, the CVS and
COS strategies may serve as good complements to CCS, because
they test the compiler warnings from different perspectives and only
require a single compiler.

3.3 Parsing Warnings
Since compiler warnings are in natural languages and different

compilers describe warnings in different ways, it is difficult/impossi-
ble to directly compute the symmetric difference of w1 and w2. To
tackle this challenge, we design a specific parser for each compiler
to parse its warning messages.

Algorithm 1 presents the general workflow of parsing the warning
output of a particular compiler. Initially, we obtain a string text
containing all the warning messages, and then split it into a list
where each element is a textual representation of an individual
warning. For each type of textual warnings, we devise a specific
message parser. Each message parser has two functions:

• accept() This function tests whether a string warning is parsable
by this message parser. For each type of warnings, we design a
regular expression (RE) as a signature of the warning type. If a
warning message matches this RE, then it falls into this type. The
design of REs is based on the warning messages embedded in the
compiler source code. For example, we design the following RE
to parse the warning message component in Figure 5c: "large
integer implicitly truncated to .+ type"

• parse() This function parses the warning string to a structured
record by extracting the location (i.e., which file, which line,
and which column), the warning description, and the type of the
warning. For example, the warning in Figure 5c can be parsed by
a GCC message parser into the record in Table 1.

Table 1: The warning record parsed from Figure 5c

File s.c Line 3
Column 23 Type overflow
Message large integer implicitly truncated to unsigned type
Misc. Target=unsigned

In total, we implemented 118 distinct warning message parsers
for GCC and 107 ones for Clang, covering 106 distinct types of

Algorithm 2: Aligning two sets of warning records
Input: w1 and w2, warning records parsed from two compilers
Output: symmetric difference between w1 and w2

1 Function Align (Set w1,Set w2)
2 rm1 ← ∅ /* a set of elements to remove from w1 */
3 rm2 ← ∅ /* a set of elements to remove from w2 */

/* Step 1. remove equivalent pairs */
4 foreach (a, b) ∈ (w1 × w2) do
5 if (a, b) is an equivalent pair then
6 rm1 ← rm1 ∪ {a}, rm2 ← rm2 ∪ {b}

/* Step 2. compute pairs with unmatched columns */
7 columns = ∅ /* a set of pairs with unmatched columns */
8 foreach (a, b) ∈ ((w1 \ rm1)× (w2 \ rm2)) do
9 if (a, b) has only unmatched columns then

10 columns = columns ∪ {(a, b)}
11 rm1 ← rm1 ∪ {a}, rm2 ← rm2 ∪ {b}

/* Step 3. compute pairs with missing records */
12 missing = ∅ /* a set of pairs with missing records */
13 foreach a ∈ (w1 \ rm1) do
14 missing = missing ∪ {(a,⊥)}
15 foreach b ∈ (w2 \ rm2) do
16 missing = missing ∪ {(⊥, b)}
17 return (columns, missing)

warnings. All parsers are precise at parsing target warnings as we
design them by referring to the warning message templates encoded
in the compiler source code. Our parsers also allow certain degree
of variations/flexibilities (e.g., different variable names in warning
messages), which significantly reduces the number of parsers we
need to implement.

3.4 Aligning Warnings
Inconsistencies among compilers, compiler versions, or optimiza-

tion levels are identified by aligning the warnings in w1 and w2.
The result of alignment is a list of pairs, of which the first element is
either a warning in w1 or ⊥ (i.e., nothing), and the other is either a
warning in w2 or ⊥. The alignment process produces the following
three categories of pairs (a, b):

• Equivalence a ∈ w1∧b ∈ w2, and both have the same warning
type and the same location (i.e. file, line, and column). This
category is not of interest.

• Unmatched Columns a ∈ w1 ∧ b ∈ w2, and both have the
same warning type and are on the same line, in the same file but in
different columns. This category may indicate bugs of incorrect
column numbers in warnings.

• Missing Records (a ∈ w1 ∧ b = ⊥) ∨ (a = ⊥ ∧ b ∈ w2).
This category constitutes the main body of inconsistencies for
users to investigate.

Algorithm 2 describes the alignment process. It first removes all
equivalent pairs from w1 and w2 (between lines 4 and 6). It then
computes pairs with unmatched columns (between lines 7 and 11).
Finally, it constructs the inconsistent pairs from the remaining warn-
ings in (w1 \ rm1) and (w2 \ rm2) (between lines 12 and 16).

3.5 Filtering Warning Inconsistencies
After reporting an inconsistency to compiler developers, we need

to temporarily stop testing this type of inconsistencies until it is
fixed. We also need to eliminate false positive warnings to avoid
unnecessary human inspection. The “Filter” component discards
such warning pairs produced by the “Warning Aligner” component.
The filter determines whether to remove a warning pair (a, b) based
on its signature — a triple (Pa, Pb, category) defined as follows,

Algorithm 3: Reducing a Test Program
Input: p, a test program
Input: c1 and c2, two compilers under testing
Input: pred, a predicate over the aligned warnings of c1 and c2 specifying the

symptom of a warning difference between c1 and c2
Output: min, a minimal test program reduced from p satisfying the predicate

pred

1 Function Reduce (p, pred, c1, c2)
2 min← p
3 while true do

// use C-Reduce [33] or Delta [28,38]
4 temp ← reduce(min)
5 if temp = min then /* cannot be further reduced */
6 break

7 w1 ← Parse(c1.warn(temp))
8 w2 ← Parse(c2.warn(temp))
9 alignment← Align(w1, w2)

10 if pred(alignment) then min = temp

11 return min

Pa: the warning message parser that successfully parses a

Pb: the warning message parser that successfully parses b

category: the category of this warning pair, i.e., equivalence, un-
matched column or missing records

This triple signature is able to precisely differentiate warning pairs
because the parsers Pa and Pb capture the exact information of the
warnings a and b (e.g., types, content). The filter component in
Figure 3 maintains a set S of signatures of warning pairs to filter. If
a newly discovered warning pair matches any signature in S then it
is removed.

3.6 Reducing Test Programs
We generate large programs to increase the likelihood of trigger-

ing bugs. Once a test program p triggers a warning inconsistency
(a, b) between two compilers c1 and c2, it is necessary to reduce p
to a smaller size by removing program elements irrelevant to the
inconsistent pair (a, b). This step is important, as it not only helps
us understand the bug and avoid reporting a duplicate, but also as-
sists developers in triaging/fixing the bug. This reduction process
is generally more complex than the reduction process of compiler
miscompilations and crashes [21, 37]. Test reduction for a miscom-
pilation or a crashing bug only requires testing the behavior of the
executables or exit statuses (integers) of compilers, whereas in our
case, we need to tackle the textual warning output of compilations
and need more expressive predicates to specify the symptoms of
(a, b).

Algorithm 3 describes the overall procedure to reduce p. The
invariant throughout the reduction process is that after reduction
both compilers c1 and c2 still output the same inconsistent warning
pair for the reduced program min. This invariant is encoded in the
parameter pred, a predicate for testing whether the alignment of
two warning sets w1 and w2 still preserve the inconsistency. The
reduce() function on line 4 can be implemented with standard
reduction tools such as C-Reduce [33] or Delta [28, 38]. We encap-
sulate all the parsing and aligning functionalities as a library and
specify the invariant predicate as a Boolean method in a modern
programming language on top of the library. Our reduction process
is effective. A test program with several thousand lines of code can
usually be reduced to a few lines (usually within five lines).

4. EMPIRICAL EVALUATION
We have been experimenting with Epiphron on GCC and Clang

for six months. Although the two compilers are mature and stable,

in the past six months, we are still able to report 60 bugs to GCC,
of which 38 have been confirmed, assigned or fixed; and 39 bugs to
Clang, of which 14 have been confirmed or fixed.

4.1 Testing Setup
Hardware and Compiler. Our evaluation has been conducted on
a Linux PC with Intel(R) Core(TM) i7 CPU@2.67GHz and 12GB
RAM. For each compiler (i.e. GCC and Clang), we test its daily
built development trunk, because developers fix bugs in trunk more
promptly than in stable versions. This reason further enables us to
remove the filter on the reported bugs (described in Subsection 3.5)
timely so that we can stress test more warning types. Moreover,
developers usually implement new languages features or fix bugs
in trunk, yet the source code of warning diagnostics is much more
stable than other components. Therefore, the development trunk is
not necessarily more buggy than stable versions in terms of warning
diagnostics. All our reported bugs except three affect the latest
stable versions. In the cross-version strategy, we use GCC 4.8.2 and
Clang 3.4 as reference compilers.
Warning Flags. By default, both GCC and Clang do not enable
all warnings. For Clang, we use the following command flags to
compile each source file:

clang -Weverything -pedantic -std=c<89|99|11>

The flag -Weverything enables all the diagnostics available in
Clang [1], -std specifies which version of the C standard should be
used for checking and compiling code, and -pedantic instructs the
compiler to adhere strictly to the C standard. GCC does not have
a flag to enable all warning diagnostics. Even -Wall and -Wextra
together only enable a subset of warnings. We have to manually
specify other warning flags of interest. The whole command line of
flags of GCC is shown below; the interested reader may refer to [5]
for more information.

gcc -Wall -Wextra -pedantic -std=c<89|99|11> -Wpadded -Wundef\
-Wformat=2 -Winit-self -Wuninitialized -Wpacked -Wconversion\
-Wfloat-equal -Wlogical-op -Wswitch-default -Wshadow -Wvla \
-Wmissing-prototypes -Wcast-qual -Wcast-align -Wswitch-enum\
-Wsign-conversion -Wwrite-strings -Wredundant-decls \
-Wmissing-field-initializers

Testing Period and Testing Strategies. We spent non-continuous
six months on this project, of which over four months was devoted
to studying the characteristics of historical warning bugs, designing
algorithms, and developing various tools (e.g., program generator,
aligner, reducer). The rest of time was spent in testing GCC and
Clang. Initially, we tested all the three strategies — CCS, CVS and
COS. All of them detected bugs. However, later we started to focus
on CCS as both CVS and COS became saturated. This is expected
as discussed in Subsection 3.2.2

4.2 Quantitative Results
We next discuss some statistical properties of the discovered bugs.

Detected Bugs. Table 2 shows the details of all the bugs we
reported so far. In total, we have reported 99 bugs, of which 52 are
confirmed by developers and 21 are already fixed. There are still
33 bug reports pending developers’ response. Note for Clang, we
only have 14 out of 39 confirmed, which is likely due to limited
human resources as we were told by active members of the LLVM
community that some Apple developers went to work on Swift.8

8https://developer.apple.com/swift/

Table 2: Information of All Reported Bugs

GCC Clang Total
Reported 60 39 99
Confirmed 38 14 52
Pending 12 25 37
Rejected 10 0 10

Table 3 further lists the details of all confirmed bugs, including
their identities, bug-triggering command flags, priorities and severi-
ties assigned by developers, current report statuses, bug types, and
the differential testing strategies.
Bug Types. We categorize warning defects into three classes as
mentioned in Section 1: Erroneous Message, Spurious Warning and
Missing Warning. Table 4 shows the breakdown of the bug types of
all the confirmed bugs.
Bug Importance. In GCC and Clang’s bug repositories, the
importance of bugs is described as the combination of two fields,
priority and severity. Priority is used by developers to prioritize
bugs to fix; severity measures the impact of bugs, ranging from the
most severe, release blocker to the least enhancement. Both fields
are adjusted by developers when they confirm bugs.

As shown in Table 3, all our confirmed bugs have the default
priority P3, and none of them is downgraded to P4 or P5. Only two
of our bugs are labeled as minor by developers, and the rest have
the normal severity. This demonstrates the importance and necessity
of detecting compiler warning bugs. Compiler developers also care
about warning bugs, and in fact 21 are already fixed in the latest
GCC and Clang releases.
Size of Reported Test Cases. All of the test programs that we
reported to GCC and Clang bug tracking systems are under five lines
of code. The size of the original test programs generated by Epiphron
is around 2,000 lines of code on average. This demonstrates that our
reduction process is quite effective at minimizing test programs.

4.3 Assorted Confirmed Bug Samples
This section samples some bugs detected by Epiphron to demon-

strate its ability to find a broad range of warning defects. These
bugs have real impact on developers and some are even related to
security-critical problems, such as Clang bug #18905 discussed in
Section 4.3.3.

4.3.1 Erroneous Messages
GCC bug #60350. GCC emits two warnings suggesting that the
variables pf and pv may be used before they are initialized. However,
both warnings point to a wrong location: line 5, containing neither
pf nor pv.

1 void a(int i) {
2 int (*pf)[2]; int (*pv)[i + 1];
3 (i ?
4 pf
5 : // <-- two warnings here.
6 pv);
7 }

4.3.2 Spurious Warnings
GCC bug #60036. The following function triggers a regression
since GCC 4.8. GCC emits a conversion warning on the expression
‘f ^= fn1() > a’ on line 4 suggesting that there is a conversion
from unsigned int to int and it may cause the signedness of
the result to change. However, as the sub-expression ‘fn1() > a’

Table 3: Confirmed Bugs

ID Flag Priority Severity Status Bug Type Strategy

1 GCC 59520 pedantic P3 Minor Confirmed Spurious CCS
2 GCC 59846 Wtype-limits P3 Normal Fixed Erroneous Msg CCS
3 GCC 59871 Wunused-value P3 Normal Fixed Missing CCS
4 GCC 59932 Waggressive-loop-optimization P3 Normal Confirmed Spurious CCS
5 GCC 59940 Wconversion P3 Normal Fixed Erroneous Msg CCS
6 GCC 59963 Woverflow P3 Normal Fixed Erroneous Msg CCS
7 GCC 60018 Wconversion P3 Normal Confirmed Spurious COS
8 GCC 60021 Wsign-compare P3 Normal Confirmed Spurious COS
9 GCC 60036 Wsign-conversion P3 Normal Fixed Spurious CVS

10 GCC 60083 Wsign-conversion P3 Normal Confirmed Spurious COS
11 GCC 60087 Wsign-compare P3 Normal Fixed Erroneous Msg CCS
12 GCC 60090 Wsign-compare P3 Normal Confirmed Spurious COS
13 GCC 60103 Wsequence-point P3 Normal Confirmed Missing COS
14 GCC 60114 pedantic P3 Normal Fixed Erroneous Msg CCS
15 GCC 60129 enabled by default P3 Normal Assigned Erroneous Msg CCS
16 GCC 60139 pedantic P3 Normal Fixed Erroneous Msg CCS
17 GCC 60170 Wtype-limits P3 Normal Confirmed Missing COS
18 GCC 60257 Woverride-init P3 Normal Fixed Erroneous Msg CCS
19 GCC 60279 Wuninitialized P3 Normal Confirmed Erroneous Msg CCS
20 GCC 60350 Wmaybe-uninitialized P3 Minor Confirmed Erroneous Msg CCS
21 GCC 60351 enabled by default P3 Normal Fixed Erroneous Msg CCS
23 GCC 60439 Wswitch P3 Normal Fixed Missing CCS
22 GCC 60440 Wreturn-type P3 Normal Confirmed Spurious CCS
24 GCC 60455 Woverflow P3 Normal Fixed Erroneous Msg CCS
25 GCC 61852 Wimplicit-function-declaration P3 Normal Fixed Erroneous Msg CCS
26 GCC 61854 pedantic P3 Normal Fixed Missing CCS
27 GCC 61861 Wdiscarded-qualifiers P3 Normal Confirmed Erroneous Msg CCS
28 GCC 61864 Wcovered-switch-default P3 Normal Confirmed Missing CCS
29 GCC 64423 Wchar-subscripts P3 Normal Fixed Erroneous Msg CCS
30 GCC 64440 Wdiv-by-zero P3 Normal Fixed Missing CCS
31 GCC 64577 Wpadded P3 Normal Confirmed Missing CCS
32 GCC 64609 Wbool-compare P3 Normal Confirmed Missing CCS
33 GCC 64610 Wbool-compare P3 Normal Fixed Missing CCS
34 GCC 64637 Wunused-value P3 Normal Confirmed Erroneous Msg CCS
35 GCC 64639 Wunused-value P3 Normal Confirmed Missing CCS
36 GCC 64648 Wunused-value P3 Normal Confirmed Erroneous Msg CCS
37 GCC 65430 Wsequence-point P3 Normal Confirmed Missing CCS
38 GCC 67243 Wvla P3 Normal Confirmed Erroneous Msg CCS
39 Clang 18504 Wsign-compare P3 Normal Confirmed Missing CCS
40 Clang 18796 Wtautological P3 Normal Confirmed Missing CCS
41 Clang 18801 Weverything P3 Normal Confirmed Missing CVS
42 Clang 18803 Wsequence-point P3 Normal Confirmed Missing CCS
43 Clang 18877 Wempty-body P3 Normal Confirmed Missing CCS
44 Clang 18905 Wformat P3 Normal Fixed Missing CCS
45 Clang 18923 Wc++-compat P3 Normal Confirmed Missing CCS
46 Clang 22059 Wshift-count-negative P3 Normal Fixed Missing CCS
47 Clang 22318 Wuninitialized P3 Normal Confirmed Missing CCS
48 Clang 22899 Winteger-overflow P3 Normal Fixed Missing CCS
49 Clang 23903 Wstrict-overflow P3 Normal Confirmed Missing CCS
50 Clang 24026 Wshift-negative-value P3 Normal Fixed Missing CCS
51 Clang 24238 Wtautological-overlap-compare P3 Normal Confirmed Missing CCS
52 Clang 24451 error P3 Normal Confirmed Spurious CCS

Table 4: Bug Types of Confirmed Bugs

GCC Clang Total
Erroneous Message 18 0 18

Spurious Warning 8 1 9
Missing Warning 12 13 25

Total 38 14 52

returns either 1 or 0, the scenario reported in the warning will never
happen.

1 extern int fn1();
2 unsigned fn(int a) {
3 unsigned f = 9;

4 f ^= fn1() > a;
5 return f;
6 }

4.3.3 Missing Warnings
Compared to erroneous messages and spurious warnings which

may take developers extra time to analyze, missing warnings some-
times have a severe negative impact on software development, as
they hide bugs from developers and delay bug-fixing.
Clang bug #18796. In the following code, the compiler is ex-
pected to emit a warning indicating that the expression ‘a < 0L’
is always false, because the parameter a is unsigned, and thus its
minimum value is 0. However, as the two operands of the operator

< are of different types, the parameter a is automatically promoted
to a signed long, of which the minimum value becomes a negative
number. As a result, Clang misses this warning.

int fn(unsigned a) { return a < 0L; }

Clang bug #18905. The following program has a bug which may
lead to illegal memory access. The problem is that the format string
s is not null-terminated (i.e. not ending with ‘\0’), and the function
printf prints it. The consequence of such a bug can be severe, as it
is also a type of software vulnerability, which could be potentially
used in security exploits. Clang fails to identify this problem.

void fn() { const char s[1] = "format"; printf(s); }

4.4 Unconfirmed Bugs
We still have a number of bugs pending developers’ confirmation.

This is especially true for Clang. The following shows two of them,
which we believe will be eventually accepted.
Clang bug #18875. This bug is a missing warning. In the follow-
ing program, the function foo on line 1 accepts a parameter of type
double*. But it is first cast to a function pointer, which accepts a
parameter of type int* defined on line 2, and then is called through
this pointer on line 6. This behavior is undefined in the C standard,
and is implementation-dependent.

1 int foo(double *x) {return (int)*x;}
2 typedef int (*F)(int*);
3 int main() {
4 int x = 9;
5 // incompatible pointer cast
6 return ((F)foo)(&x);
7 }

GCC bug #60256. This bug is a missing warning of GCC. The
function call to strcpy on line 5 uses the uninitialized variable s.
However, GCC does not warn on it, as this call is optimized away
based on its semantics (i.e., copying a string to itself is redundant)
before a warning can be generated. This “clever” behavior hides the
fact that the code is problematic and not portable. When we compile
it with Clang, the compiled program triggers a segmentation fault at
runtime.

1 #include<string.h>
2 void f(void) { char* s; strcpy(s, s); }

4.5 Debatable Cases (or Compiler Smells)
This section discusses two bugs that were not accepted, but we

believe that fixing them is still beneficial and can further improve
the usability of compilers.
GCC bug #60121. The following code snippet has an obvious
undefined behavior — accessing an array with an index out of its
bound. However, when GCC compiles it with an optimization level
under -O2 (i.e., at -O0 or -O1), no warning is emitted on the illegal
access on line 2. The reason is that GCC needs to perform value
range propagation analysis in order to emit the warning, but the
analysis is only enabled above -O1. In contrast, Clang has a better
design that separates warnings from optimizations, and thus the
problem in the code is always alerted.

1 int b[1];
2 int f() { return b[9999]; }

GCC bug #59939. The following code snippet raises some de-
bate whether to emit warnings for unreachable code. The problem
is at the function call ‘fn1(a, b)’ on line 3. It expects two un-
signed parameters, but the actual arguments are both of signed

type. Moreover, the code is also unreachable, as the left operand
of the logical or operator || is 1. The current behavior of GCC
just simply emits nothing for the code, whereas Clang emits three
warnings, two for the signedness changes of the parameters, and
one for the unreachable code. A reasonable fix of GCC is to warn
on the dead code, but it is nontrivial and takes time as discussed at
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=4210#c22.

1 int a, b;
2 int fn1(unsigned, unsigned);
3 unsigned int fn2() { return 1 || fn1(a, b); }

This example also demonstrates the importance and necessity of
the program generator of Epiphron. The developers of both GCC
and Clang communities are aware of this difference between the two
compilers and stand for their current designs. Therefore, avoiding
dead code in test programs can prevent such inconsistencies from
reaching human investigation.

5. DISCUSSIONS
In this section, we discuss the precision of our technique (i.e.,

its false positive rate), whether static rule checkers can help detect
these warning bugs we have found, and the comparison between
Epiphron program generator and Csmith.
False Positive Rate. The false positives of our technique are the
warning inconsistencies that are rejected by compiler developers.
They generally originate from two sources: (1) the inconsistency is
duplicate to an existing bug report; (2) the warning diagnostics of
the inconsistency is not supported by both compilers.

As mentioned in Section 3.5, for the first case, after reporting a
bug, we temporarily disable checking the same type of inconsisten-
cies until the bug has been fixed; for the second case, we design a
list of filters to weed out these known inconsistencies. Moreover, the
program generator of Epiphron is designed to reduce false positives
by generating warning-free code in bodies of conditional statements
(cf., Subsection 3.1).

These two mechanisms work well in practice. Therefore, we
compute the false positive rate as a value within the following range,[

rejected

reported
,
rejected+ pending

reported

]
In our evaluation, the range is [10

99
, 10+37

99
] = [10%, 47%]. Note that

47% is simply an upper bound of the false positive rate, which is
mainly due to a relatively large number of pending bugs (especially
for Clang). When reporting a bug, we have carefully checked its
validity. We believe some of the pending bugs will eventually be
accepted.
Static Analysis Checker. Static analysis checkers use static
analysis to detect bugs in source code, e.g., FindBugs [10], Clang
Static Analyzer [2] and PMD [6]. They can catch common program
flaws and bugs at the early stage of development. However, all the
bugs reported in this paper are not detectable for them, as these
bugs are semantic bugs and specific to compilers. That is, in terms
of warning diagnostics, the manifestation of these bugs is just a
symptom that the behavior of the compiler does not conform to the
developers’ intention. Even though these tools were able to detect
the type of these bugs, the large code base and the complexity of
GCC and Clang would make the checkers hardly scale.
Comparison with Csmith. Csmith is a program generator aim-
ing to stress test compiler optimizers and code generators. It only
supports a limited set of C language features. For example, it does
not support enumerations or switch statements. Epiphron program
generator outperforms Csmith in terms of warning bug detection,

as it supports nearly all features of C language. We have already
found 14 warning bugs that Csmith cannot detect. For example,
Epiphron detected GCC #61864 that involves enumerations and
switch statements.
Cascaded Compiler Warnings. A compiler emits an error if
the program under compilation does not follow the grammar or
the typing rules. This error often results in other related errors,
referred to as cascaded errors. Differently, compiler warnings
are usually not cascaded. Each warning is generated locally and
independent of others. As the focus of our work is detecting bugs
in compiler warning diagnostics rather than compiler errors, all our
test programs are syntactically valid and compilable. Therefore
Epiphron is not affected by this complex scenario (i.e., cascaded
compiler warnings/errors).

6. RELATED WORK
This section surveys related work on validating/testing compiler

and improving warning/error message systems.

6.1 Compiler Testing
Compiler testing still remains the dominant technique for vali-

dating the correctness of production compilers. Besides internal
regression test suites, compiler developers may use commercial
test suites for conformance checking and validation [7, 32]. Since
it is expensive to maintain and develop such manually written
test suites, people recently leverage randomized testing to com-
plementarily generate massive test cases to further validate com-
pilers [11, 21, 29, 37, 39]. Among them, two notable efforts are
Csmith [13, 33, 37] and Orion [21]. Both are proved to be very ef-
fective in practice; each has found several hundreds of crashing and
miscompilation bugs in production compilers (GCC and LLVM).

Csmith [13, 33, 37] is based on differential testing [27] (which
has also been applied to test virtual machines [25] and CPU emu-
lators [26]). Csmith generates random C programs and checks for
inconsistent behavior across different compilers or compiler ver-
sions. It has also been applied to find bugs in static analyzers, such
as Frama-C [15]. The major contributions of Csmith are the number
of C language constructs that it supports, and the ability to generate
complex programs that are free of undefined behavior most of the
time. Orion [21] presents a novel technique to systematically modify
existing code (either real or randomly generated) and generate many
test cases that are semantically equivalent to the original program
w.r.t. an input set. Instead of verifying different compilers (or com-
piler versions) behave exactly the same on a program, it verifies that
a compiler must behave the same on all test cases generated from a
program under an input set.

Although Epiphron shares the same theme of differential testing,
it targets a different class of compiler bugs: compiler warnings. This
brings up new technical challenges, as we need to design a new pro-
gram generator to stress-test warning diagnostics—a component in
the frontend, define the “equivalence” of compiler warnings across
different compilers, compiler versions, and compiler optimization
flags. In contrast, Csmith and Orion aim to test compiler optimizers
and code generators with less focus on the diversity of language
constructs used in test programs. They pay more attention on va-
lidity of the semantics of test programs, and only need to check
for equivalence of the execution output, which is well-defined for
integer programs.

Another related program generator is CCG [11], which produces
random compilable programs to look for crashing bugs in C compil-
ers. However, it only supports a limited set of C features. Therefore
it is not as effective as Epiphron in detecting compiler warning bugs.
Mutation testing is also related [9, 20]. In particular, we can mu-

tate test programs so that more compiler warnings can be triggered.
However, it is not clear how to design effective mutation operators
yet. We leave it as future work.

6.2 Compiler Errors and Warnings
The general problem of building good warning/error message

systems has been long acknowledged [35]. Shneiderman [34] pre-
sented a few guidelines on building such systems, and showed that
a good system could improve user productivity and satisfaction.
Brown [12] articulated the concern that little interest was paid by
the community to error message design. His analysis on Pascal
compilers showed that the messages were generally disappointing
and did not clearly show suggestions for correction. This problem
is even more important in the context of learning and teaching, as
novice developers may spend hours on a simple error [16].

There have been some efforts to alleviate this problem. For
instance, when a program is ill-typed, the compiler (instructed by
its type checker) often reports error locations far away from the
source problem [36]. Lerner et al. [24] proposed a simple solution:
instead of reporting imprecise error messages provided by type-
checkers, they search for a similar programs that do type-check
and present them to users. Coull [14] developed a database with
common compilers errors together with their likely solutions. When
an error is encountered, the system shows both the original message
and its solution. The authors demonstrated that the system has
positive impact on the learning of students. Alternatively, users may
also look at how their peers fixed the warnings/errors in the similar
context, and apply similar changes to their programs [17].

Epiphron is complementary. Despite having the same general goal
— to improve warning/error systems — with previous work, Epiphron
has a completely different execution. It finds defects in such systems
by finding their inconsistencies under the same configuration.

7. CONCLUSION
We have described an approach based on randomized differential

testing to finding compiler warning defects and implemented it in the
Epiphron tool. Our empirical evaluation has shown that Epiphron is
very effective in detecting warning bugs in mature compilers. Within
only six months of testing (including four-months development), we
have reported 99 bugs, of which 52 have been confirmed, assigned
or fixed to-date.

Our work is the very first extensive effort in testing compilers’
warning support. We believe that it opens up a new direction of
research to improve the correctness and usability of compiler warn-
ings and errors. We are actively pursuing future work to (1) extend
the proposed technique to other languages such as C++, (2) design
a grey-box approach to testing compiler warnings by incorporating
coverage of compilers and (3) support the testing of compiler error
messages. The data and source code used in this paper are publicly
available at http://chengniansun.bitbucket.org/projects/epiphron.

Acknowledgments
We are grateful to the anonymous reviewers for their insightful com-
ments. We also would like to thank the GCC and Clang/LLVM
developers for analyzing and fixing our reported bugs. Our eval-
uation benefited significantly from the Berkeley Delta [28], and
University of Utah’s Csmith [37] and C-Reduce [33] tools.

This research was supported in part by the United States National
Science Foundation (NSF) Grants 1117603, 1319187, 1349528,
and 1528133. The information presented here does not necessarily
reflect the position or the policy of the Government and no official
endorsement should be inferred.

8. REFERENCES
[1] Clang Compiler User’s Manual 3.5. http://clang.llvm.org/

docs/UsersManual.html#diagnostics-enable-everything,
accessed: 2014-03-04.

[2] Clang Static Analyzer. http://clang-analyzer.llvm.org/,
accessed: 2015-08-10.

[3] GCC Bug #28901.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=28901,
accessed: 2014-03-04.

[4] GDB Bug. https:
//sourceware.org/ml/gdb-patches/2014-02/msg00342.html,
accessed: 2014-03-04.

[5] Options to Request or Suppress Warnings – GCC.
http://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html,
accessed: 2014-03-04.

[6] PMD. http://pmd.github.io/, accessed: 2015-08-10.
[7] ACE. SuperTest compiler test and validation suite.

http://www.ace.nl/compiler/supertest.html.
[8] A. Allain. Why Bother with Compiler Warnings. http:

//www.cprogramming.com/tutorial/compiler_warnings.html,
accessed: 2014-12-10.

[9] P. Ammann and J. Offutt. Introduction to Software Testing.
Cambridge University Press, New York, NY, USA, 1 edition,
2008.

[10] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and
Y. Zhou. Evaluating static analysis defect warnings on
production software. In Proceedings of the 7th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 1–8. ACM, 2007.

[11] A. Balestrat. CCG: A random C code generator.
https://github.com/Merkil/ccg/.

[12] P. J. Brown. Error messages: The neglected area of the
man/machine interface. Commun. ACM, 26(4):246–249, Apr.
1983.

[13] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide,
and J. Regehr. Taming Compiler Fuzzers. In PLDI, pages
197–208, 2013.

[14] N. J. Coull. SNOOPIE: development of a learning support
tool for novice programmers within a conceptual framework.
Ph.d. thesis, University of St Andrews, St Andrews, Scotland,
UK, Oct. 2008.

[15] P. Cuoq, B. Monate, A. Pacalet, V. Prevosto, J. Regehr,
B. Yakobowski, and X. Yang. Testing Static Analyzers with
Randomly Generated Programs. In A. Goodloe and S. Person,
editors, NASA Formal Methods, volume 7226 of Lecture Notes
in Computer Science, pages 120–125. Springer Berlin
Heidelberg, 2012.

[16] T. Flowers, C. Carver, and J. Jackson. Empowering students
and building confidence in novice programmers through
gauntlet. In Frontiers in Education, 2004. FIE 2004. 34th
Annual, pages T3H/10–T3H/13 Vol. 1, Oct 2004.

[17] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer.
What Would Other Programmers Do: Suggesting Solutions to
Error Messages. In CHI, pages 1019–1028, 2010.

[18] M. Howard. A Process for Performing Security Code Reviews.
IEEE Security & Privacy, 4(4):0074–79, 2006.

[19] International Organization for Standarization. ISO/IEC
9899:201x:Programming Languages–C. http://www.open-std.
org/JTC1/SC22/WG14/www/docs/n1570.pdf, May 2011.

[20] Y. Jia and M. Harman. An Analysis and Survey of the
Development of Mutation Testing. IEEE Trans. Softw. Eng.,
37(5):649–678, Sept. 2011.

[21] V. Le, M. Afshari, and Z. Su. Compiler Validation via
Equivalence Modulo Inputs. In PLDI, 2014.

[22] V. Le, C. Sun, and Z. Su. Finding Deep Compiler Bugs via
Guided Stochastic Program Mutation. In Proceedings of the
2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2015, pages 386–399, New York, NY,
USA, 2015. ACM.

[23] V. Le, C. Sun, and Z. Su. Randomized Stress-testing of
Link-time Optimizers. In Proceedings of the 2015
International Symposium on Software Testing and Analysis,
pages 327–337, 2015.

[24] B. S. Lerner, M. Flower, D. Grossman, and C. Chambers.
Searching for Type-error Messages. In PLDI, pages 425–434,
2007.

[25] L. Martignoni, R. Paleari, G. Fresi Roglia, and D. Bruschi.
Testing System Virtual Machines. In ISSTA, pages 171–182,
2010.

[26] L. Martignoni, R. Paleari, A. Reina, G. F. Roglia, and
D. Bruschi. A methodology for testing cpu emulators. ACM
Trans. Softw. Eng. Methodol., 22(4):29:1–29:26, Oct. 2013.

[27] W. M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1):100–107, 1998.

[28] S. McPeak, D. S. Wilkerson, and S. Goldsmith. Berkeley
Delta. http://delta.tigris.org/.

[29] E. Nagai, A. Hashimoto, and N. Ishiura. Scaling up size and
number of expressions in random testing of arithmetic
optimization of C compilers. In SASIMI), pages 88–93, 2013.

[30] P. Norvig. Learning Programming (by Humans, by Machine).
http://vimeo.com/69631070, accessed: 2014-03-04.

[31] T. Pearse and P. Oman. Maintainability measurements on
industrial source code maintenance activities. In Software
Maintenance, 1995. Proceedings., International Conference
on, pages 295–303. IEEE, 1995.

[32] Plum Hall, Inc. The Plum Hall Validation Suite for C.
http://www.plumhall.com/stec.html.

[33] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang.
Test-Case Reduction for C Compiler Bugs. In PLDI, pages
335–346, 2012.

[34] B. Shneiderman. Designing computer system messages.
Commun. ACM, 25(9):610–611, Sept. 1982.

[35] V. J. Traver. On compiler error messages: What they say and
what they mean. Adv. in Hum.-Comp. Int., 2010:3:1–3:26, Jan.
2010.

[36] M. Wand. Finding the Source of Type Errors. In POPL, pages
38–43, 1986.

[37] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
Understanding Bugs in C Compilers. In PLDI, pages 283–294,
2011.

[38] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. Software Engineering, IEEE
Transactions on, 28(2):183–200, 2002.

[39] C. Zhao, Y. Xue, Q. Tao, L. Guo, and Z. Wang. Automated
Test Program Generation for an Industrial Optimizing
Compiler. In AST, pages 36–43, 2009.

