Tsmart-GalsBlock: A Toolkit for Modeling, Validation, and
Synthesis of Multi-clocked Embedded Systems

Yu Jiang'?, Hehua Zhang!, Huafeng Zhang?, Xinyan Zhao', Han Liu!, Chengnian Sun?,
Xiaoyu Song?, Ming Gu*, Jiaguang Sun*
School of Software, Tsinghua University, TNLIST, KLISS, Beijing, China'
Department of Computer Science and Technology, Tsinghua University, TNLIST, KLISS, Beijing, China?
Department of Computer Science, University of California, Davis, USA?

ABSTRACT

The key challenges of the model-driven approach to design-
ing multi-clocked embedded systems are three-fold: (1) how
to model local synchronous components and asynchronous
communication between components in a single framework,
(2) how to ensure the correctness of the model, and (3) how
to maintain the consistency between the model and the im-
plementation of the system.

In this paper, we present Tsmart, a self-contained toolkit
to address these three challenges. Tsmart seamlessly inte-
grates (1) a graphical editor to facilitate the modeling of
the complex behaviors and structures in an embedded sys-
tem, (2) a simulator for interactive graphical simulation to
understand and debug the system model, (3) a verification
engine to verify the correctness of the system design, and
(4) a synthesis engine to automatically generate efficient ex-
ecutable VHDL code from the model. The toolkit has been
successfully applied to designing the main control system of
a train communication controller, and the system has al-
ready been deployed and in operation. The evaluation of
Tsmart on this real industrial application demonstrates the
effectiveness and the potential of the toolkit.

The video demo and tool are available at the website:
https://sites.google.com/site/jiangyul98964 /home

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms

computer-aided software engineering

Keywords

multi-clocked embedded system, program synthesis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

FSE’14, November 16-21, 2014, Hong Kong, China

Copyright 2014 ACM 978-1-4503-3056-5/14/11...$15.00
http://dx.doi.org/10.1145/2635868.2661664

711

1. INTRODUCTION

Over the past decades, numerous programming models,
tools and frameworks have been proposed to design and opti-
mize embedded systems, in order to shorten the time to mar-
ket and ensure the correctness of applications. Tradition-
ally, these tools are based on abstract and rigorously defined
mathematical models with a single global clock. Such an as-
sumption of global synchronization significantly reduces the
complexity of system design. The class of tools supporting
global synchronous models mainly includes Esterel studio
based on the Esterel model [4], SCADE suite based on the
Lustre model [3], Polychrony toolset based on the Signal
model [8]. These formal design tools based on well-defined
mathematical models yield a rigorous methodological sup-
port for the trusted design, automatic validation, and sys-
tematic synthesis of global synchronised embedded systems.

Although those tools are effective for single-clocked sys-
tem design, they provide little support for the design of
systems with multiple clocks. The multi-clocked embedded
systems, increasingly used in today’s complex applications,
usually involve concurrent behaviors with different local con-
trol clocks. This feature leads to several challenges beyond
the abilities of the existing tools. The first is the model-
ing capability, that is, how to capture the behavior of the
local synchronous component belonging to different clock
domains, the asynchronous communications among compo-
nents, as well as the structure of the system in a single graph-
ical model. The second is the analytical capability, i.e., how
to ensure the correctness of the constructed multi-clocked
model, especially to check whether the model satisfies the
functional requirements or not. The last is the synthesis ca-
pability to maintain the consistency and overcome the gap
between the constructed multi-clocked model and the exe-
cutable implementation in the tool.

In this paper, we present a novel toolkit, named Tsmart!,
to support the model driven approach to the design of multi-
clocked embedded system. The toolkit consists of four parts.
(1) Graphical Model Editor: The editor is based on
a novel computation model GalsBlock [11, 12] and sup-
ports graphical modeling of hierarchical system decompo-
sition, synchronous concurrent process execution controlled
by different clocks, and data-oriented asynchronous signal
communication. It facilitates building GalsBlock models to
meet the system requirement and functional descriptions.
(2) Simulator: The simulator implements the operational
semantics of GalsBlock and provides interactive graphical

!This demo illustrates the implementation of the techniques
presented at FSE’13 [11] and TPDS’14 [12]

simulation of the system model under development. Users
can explore the properties and behaviors of the system dur-
ing simulation to check its correctness or debug the bugs in
the model. (3) Verifier: The verification engine translates
the graphical model to a labelled transition system (LTS),
and directly invokes the formal verification tool Beagle [9] to
validate the correctness of the model. Once a violation is de-
tected, the simulator can serve as a debugger to aid in under-
standing the violation. (4) Code Generator. This compo-
nent automatically generates efficient VHDL code from the
graphical model, which can be directly loaded into FPGA
processor for execution. These four components are seam-
lessly integrated together to form a complete tool chain to
support the whole life cycle of the model-based approach for
embedded system design.

The Tsmart toolkit facilitates the design and implementa-
tion of complex multi-clocked embedded systems. It is much
easier to use Tsmart to build and validate a GalsBlock model
at a high level than implement the system from scratch in
low-level programming languages such as C and VHDL. The
latter way usually needs more effort and is more error-prone.
The graphical model validation through simulation and ver-
ification helps us find problems in the early stage of system
design. After all properties are satisfied, we can generate the
executable implementation from the validated model auto-
matically. The synthesized implementation is compact and
usually has a smaller size than other VHDL code genera-
tors. For example, the size of the generated code is reduced
by up to 40% compared to Simulink VHDL code genera-
tor of Stateflow for a function that can be modeled by both
Galsblock and Stateflow with the same number of state.

We have applied Tsmart to the design of a multifunction
vehicle bus (MVB) control system used in the train com-
munication network (TCN), according to the specification
in the standard IEC 61375 [6]. Two critical bugs in the
standard are detected during the model validation process,
and the automatically generated implementation has been
deployed and in operation in real subway control.

2. RELATED WORK AND MOTIVATION

Besides the tools introduced in Section 1 for single-clocked
global synchronous system design, a large body of work has
been dedicated to the design of multi-clocked systems. Es-
terel studio supports the design of multi-clocked systems
based on MC-esterel v7 [4]. The major problem is that a
designer has to work at a relatively low level and therefore
the productivity is limited. Besides, the code generation
capacity is limited as many basic modeling constructs are
not supported, and the simulation based on a single basic
clock is not intuitive or effective. Its variants such as the
tool based on CRSM support graphical modeling, but the
translation-based simulation and verification are not effec-
tive [13]. Similar to MC-esterel, all clocks are also defined on
a single clock. Ptolemy supports modeling, and simulation
of mixed synchronous and asynchronous systems [5]. How-
ever, it is primarily used as a simulation environment but not
a verifier or program synthesizer. The Polis design environ-
ment based on CFSM model uses discrete events to model
the interaction between software and hardware components,
but does not support multi-clocked interactions [2]. Some
translation based frameworks are also proposed to solve the
analysis of multi-clocked systems. For example, in [7], F.
Doucet et al. use a mixture of synchronous descriptions in

712

Signal [1] and asynchronous descriptions in Promela [10] and
provide a translation from Signal modules to Promela pro-
cesses for simulation and verification. But all Sinal modules
share a single clock. These toolkits and frameworks do not
contain a complete tool chain and provide limited support to
the model based design of multi-clocked embedded systems,
motivating us to develop the Tsmart toolkit.

3. BACKGROUND ON GALSBLOCK

Fig 1 illustrates an example of GalsBlock computation
model. At the top level, the compound block Compound
Top consists of two sub-blocks (a compound block Com-
poundl and an atom block Atom1). The clock attached
to a compound block does not play a part, and just provides
a virtual interface for the control clocks of its inner atom
blocks. For example, the frequencies of real clock CLK3
and CLK4 are derived from the virtual clock CLK1, where
the derived rules such as double and triple frequency can be
configured according to different requirements. The bullet
attached on the right side of each block denotes the output
data port, while the bullet on the left side represents the
input data port. The input data ports of Compound Top
can be connected to the input ports of the two sub-blocks
(e.g., b = g, a — ¢), and the output ports of the sub-blocks
can be connected to the both input and output data ports of
other blocks (e.g., e = f, h — i). The expression on the con-
nection from port b to port g facilitates the data-oriented
behavior modeling.

g=b/3+b%2

- Q{xz]p <alfx=xe1]

riority £2<t3; g
erlodtyeaes _ _ _ _______ [

oma !

I

I

talfe=aii x o] I [N
[13)(i==a](x = 0;]) . 1

O I

E I

1

1

ciko

Figure 1: The example of GalsBlock computation
model, including compound and atom blocks.

With the hierarchical structure and dataflow presented
in the compound block, system behaviors are described by
parallel automata in the atom block. For example, the atom
block Atom2 is refined as two automata controlled by clock
CLK3, with a local shared variable and a transition priority
expression. The operation of each local block is controlled
and triggered by the local clock. More details about the
element definition and semantic interpretation of GalsBlock
are available in [11, 12].

4. OVERVIEW OF THE TOOLKIT

The toolkit provides a complete tool chain to support
the design of multi-clocked embedded systems. It is im-
plemented by 41,056 lines of Java code, and is downloadable
at [14], as well as the introductive video.

4.1 Graphical Model Editor

In this graphical editor, an engineer can edit a GalsBlock
model. It is implemented on Eclipse Rich Client Platform

with Eclipse Graphical Editing Framework. The editor con-
tains two interfaces, one for the construction of the system
structure, and the other for defining component behavior.

Figure 2: Structure interface for a system.

Fig 2 shows the interface to construct the hierarchical
structure and data connections between system components.
It contains six views. The package explorer (1) shows the
projects in the workbench and the models contained in the
current project. The editor view (2) shows the diagram of a
selected model and allows us to edit it by adding/removing
elements. The palette (3) provides the elements (data ports,
connection, idle atom block, idle compound block) that can
be dragged and dropped in the model shown by the editor.
The palette (4) provides reusable and common system com-
ponent models that can be dragged into the editor. The
properties view (5) allows us to view and edit the properties
of the element selected in the editor view, especially for the
frequency of the clock attached on the idle atom block. The
tool bar (6) allows us to simulate, verify, and synthesize code
from the selected blocks in the editor view.

Figure 3: Behavior interface for a component.

Fig 3 shows the interface to define component behaviors.
When the engineer selects an atom block in the editor view
of the structure interface, double clicks it, then this interface
will be opened. It provides four views, which are similar to
the views of structure interface except two differences. The
palette view (3) provides the elements (data ports, variables,
transition, states) that can be dragged to construct parallel
automata in editor. The properties view (4) allows us to
view and edit the properties of an element, especially for the
complex actions and priorities attached on each transition.

4.2 Graphical Model Simulator

Fig 4 shows the simulator, which interprets the constructed
model based on the operational semantics defined in [11, 12].
It provides four views. The input view (1) shows the name
of the input data ports, where the engineer can input the
values for each computation. The output view (2) shows
the name of the output data ports and the shared variables,

713

where the engineer can check the values after each compu-
tation. The editor view (3) shows the state of each automa-
ton contained in the selected blocks. The transitions in a
computation are executed visually, and the current active
states are highlighted in red. The tool bar (4) allows us
to do initialization, reset, execution forward, and roll back.
Through the interactive simulation, most of the functional
requirements can be checked.

Figure 4: Editor view for component behavior.

4.3 Verifier

For safety-critical functional requirements, the incomplete-
ness of simulation can be overcome through formal verifica-
tion. Based on the formal semantics of GalsBlock model
defined in [12], we translate the GalsBlock model into an
equivalent LTS and invoke the formal verification tool Bea-
gle [9] to verify its correctness. The details of translating
clocks, complex actions split, data port communication from
a hierarchical GalsBlock model to a flat LTS are described
in [12]. Engineers can choose the block to be verified in the
editor view of Fig 2, and press the button with the label for-
mal verification in the tool bar. The translation engine will
automatically translate the model to a set of files storing the
LTS accompanied with the assertion on safety critical prop-
erties, which can be verified directly by the tool Beagle. If
the assertion is violated, a counter example will be reported.

4.4 Code Synthesis Engine

The synthesis engine is based on the code generation algo-
rithm described in [12]. Engineers can select the block in the
editor view of Fig 3, and press the button automatic imple-
mentation in the tool bar to generate VHDL code. For each
atom block, a file with suffix *.vhd is generated, defining the
behavior of the block in VHDL. For each compound block,
a file with suffix *.vhd is generated to define the structure
decompositions and connections contained in VHDL compo-
nent map. The set of files can be synthesized and loaded into
the FPGA processor directly. In this way, the consistency
between the validated GalsBlock model and the implemen-
tation of real system can be maintained better. The pro-
ductivity and useability will be improved. Moreover, for a
function that can be modeled by both Galsblock and State-
flow, the size of the generated code is reduced by up to 40%
compared to Simulink VHDL code generator of Stateflow.

5. EVALUATION ON REAL APPLICATION

We apply the toolkit to the design of a real MVB con-
trol system in the TCN. Traditionally, the companies such
as Duagon and China North Railway (CNR) develop the
controller by writing VHDL code directly according to the

description of IEC 61375, which is time-consuming, error-
prone and difficult to verify its correctness. For example,
we have found several deadlocks in the VHDL code of CNR.

First, we build the GalsBlock model in the graphical edi-
tor strictly according to the algorithm and pseudo code de-
scriptions in the standard. The constructed model of MVB
controller system can be found at [14]. Unfortunately, the
first version of the constructed model can not accomplish
the process data communication service during model val-
idation. Through manual analysis, we locate the problem
in the atom block mf pool_ram_ctrl and send_device_status.
The problem in the model can be further traced back to the
pesudo code in Table 33 and 35 of IEC 61375. The con-
dition in the IF code segment is incorrect. The bugs have
been certified through our previous theoretical analysis and
engineering practice. The revised GalsBlock model passes
the simulation and verification.

enerated MVB
controller System

MVB system bus
for communication

D113 MVB
Controller system

Figure 5: Automatically Generated System Test.

Then, we generate VHDL code from the revised model
through the code synthesis engine, and load them into the
FPGA processor of the controller system. The generated
code is efficient. For example, the size of VHDL code for
the atom block mf_generator_ctrl is about 7 KB. If we use
Stateflow to model this function and generate the code by
Simulink, the size is about 12 KB, although the number of
states are the same for the two models. Then, we use the
most widely used MVB controller in the world — D113 from
Duagon — to test the useability and reliability of the gener-
ated controller system. As presented in Fig 5, we use the
application running on the industrial computer to monitor
the communication. Furthermore, we also use oscilloscope
to sample the data from the serial port that connected to
the system bus. Both methods show that the generated con-
troller system works well. In addition, the MVB controller
designed by the Tsmart toolkit has already been deployed
and in operation in railway control.

6. CONCLUSION AND FUTURE WORK

We developed the modeling, simulation, verification and
code generation toolkit Tsmart to support the GalsBlock
computation model for the design of multi-clocked embed-
ded system. A prototype of the toolkit and the correspond-
ing supporting files are available online [14]. Through the
graphical model editor, we can build the structure and be-
havior model easily, which can be simulated graphically and
verified formally to check the correctness. Another strength
is the automatic code generation. This is effective because
coding with low-level programming languages such as VHDL
and C according to the requirements directly is more difficult
and error prone. The toolkit will give a good guidance to re-

714

duce the complexity of the design of the complex embedded
systems. In the future, we will extend Tsmart to generate C
code, and generate test cases from the constructed model.
Moreover, we will make the tool open source.

7. ACKNOWLEDGEMENT

This research is supported in part by NSFC Programs
(N0.61202010, N0.91218302), National Key Technologies R&
D Program (No.SQ2012BAJY4052) and 973 Program (No.
2010CB328003), and Tsinghua University Initiative Scien-
tific Research Program (20131089331).

8. REFERENCES

[1] P. Amagbégnon, L. Besnard, and P. Le Guernic.
Implementation of the data-flow synchronous language
signal. In Proceeding of the ACM SIGPLAN PLDI,
volume 30, pages 163-173. ACM, 1995.

F. Balarin. Hardware-software co-design of embedded
systems : the POLIS approach. The Kluwer
international series in engineering and computer
science. Kluwer Academic Publishers, 1997.

Berry. Scade-synchoronous design and validation of
embedded control software. In Proceedings of the
workshop Next generation design and verification
methodologies for distributed embedded control
systems, pages 19-33. Springer, 2007.

G. Berry. Circuit design and verication with esterel
v7. In HLVDT, pages 133-136. IEEE, 2007.

C. Brooks, E. A. Lee, and S. Tripakis. Exploring
models of computation with ptolemy ii. In IEFE/ACM
CODES+ISSS, pages 331-332. IEEE, 2010.

I. E. Commission et al. Iec 61375-1. Train
Communication Network, 2011.

F. Doucet, M. Menarini, I. H. Kriiger, R. Gupta, and
J.-P. Talpin. A verification approach for gals
integration of synchronous components. Theoretical
Computer Science, 146(2):105-131, 2006.

P. L. Guernic, J. pierre Talpin, and J. christophe

Le Lann. Polychrony for system design. Journal for
Circuits, Systems, and Computer, 12:261-304, 2002.
F. He, L. Yin, and B.-Y. Wang. A Verifier for
Component-Based Systems, 11th automated
technology for verification and analysis edition, 2013.
G. Holzmann. The model checker spin. I[EEE
Transactions on Software Engineering, 23(5):279-295.
Y. Jiang and etc. Design and optimization of
multi-clocked embedded systems using formal
technique. In ESEC/FSE, pages 703-706. ACM, 2013.
Y. Jiang and etc. Design of mixed
synchronous/asynchronous systems with multiple
clocks. IEEE Transactions on Parallel and Distributed
Systems, Accepted to appear:1-14, 2014.

S. Ramesh, S. Sonalkar, V. Dsilva, N. Chandra, and
B. Vijayalakshmi. A toolset for modelling and
verification of gals systems. In Proceeding of the
International Conference on Computer Aided
Verification, pages 506—509. Springer, 2004.

J. Yu and etc. Mvb example, vedio, user manual and
toolkit download of tsmart.
https://sites.google.com/site/jiangyul98964 /home.

3]

[10]

[11]

[12]

[13]

[14]

