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Abstract
Coverage-guided fuzzers use program coverage measure-
ments to explore different program paths efficiently. The
coverage pipeline consists of runtime collection and post-
execution processing procedures. First, the target program
executes instrumentation code to collect coverage informa-
tion. Then the fuzzer performs an expensive analysis on the
collected data, yet most program executions lead to no in-
creases in coverage. Inefficient implementations of these steps
significantly reduce the fuzzer’s overall throughput.

In this paper, we propose RIFF, a highly efficient program
coverage measurement mechanism to reduce fuzzing over-
head. For the target program, RIFF moves computations orig-
inally done at runtime to instrumentation-time through static
program analysis, thus reducing instrumentation code to a
bare minimum. For the fuzzer, RIFF processes coverage with
different levels of granularity and utilizes vector instructions
to improve throughput.

We implement RIFF in state-of-the-art fuzzers such as AFL
and MOpt and evaluate its performance on real-world pro-
grams in Google’s FuzzBench and fuzzer-test-suite. The re-
sults show that RIFF improves coverage measurement effi-
ciency of fuzzers by 23× and 6× during runtime collection
and post-execution processing, respectively. As a result, the
fuzzers complete 147% more executions, and use only 6.53
hours to reach the 24-hour coverage of baseline fuzzers on
average.

1 Introduction

Fuzzing is an automated testing technique that attempts to
detect bugs and vulnerabilities in programs [1, 3, 9, 13, 14,
24, 27, 31, 35, 36]. Coverage-guided fuzzing improves bug-
detection ability of fuzzers by leveraging program coverage
measurements to guide fuzzing towards exploring new pro-
gram states [4, 8, 20, 29, 40]. These fuzzers perform the fol-
lowing steps: 1© the fuzzer selects an input from the corpus
and performs mutation operations to generate new inputs; 2©

the fuzzer executes the target program with mutated inputs
and collects coverage statistics of these runs; 3© the fuzzer
saves the input to the corpus if it can trigger bugs or find new
program states. With proper coverage guidance, fuzzers can
improve their efficiency by prioritizing mutation on interest-
ing inputs in the corpus and discarding inputs that do not
reach any new program states.

Generally speaking, the coverage pipeline of fuzzers con-
sists of two stages: runtime coverage information collection
and post-execution processing: first, the target program is
instrumented with coverage collection code, which updates
an array of counters to record the runtime execution trace;
after the completion of an execution, the fuzzer processes the
values in the array to check whether each execution reaches
any new program states.

An instrumented program executes many more instruc-
tions compared to a non-instrumented binary. Since fuzzers
continuously execute random inputs, a slight slow-down can
significantly impact overall fuzzing performance. We ana-
lyze the source of overhead using many microarchitectural
performance counters.

For the target program, fuzzers insert instrumentation code
for coverage collection at each basic block. The collection
code saves the current register context, loads the base address
for the counter region, computes the counter index, updates
the corresponding counter value, restores the context, and
transfers control back to the program logic (see Figure 2).
The code is executed frequently, and can contain dozens of
instructions encoded in around a hundred bytes. Furthermore,
modern processors use a multi-tier cache subsystem to reduce
memory latency. Because the collection code updates the
counter array, it adds many loads or stores to the instruction
stream. These memory accesses stress the memory subsystem
by competing with the program logic for instruction cache.
The extra memory latency reduces the overall execution speed
of programs.

For the fuzzer itself, the instructions which process cov-
erage do not uncover new states in most cases. While new
program states are extremely rare, fuzzers need to perform the

USENIX Association 2021 USENIX Annual Technical Conference    147



following operations: convert the raw coverage information
into features, then check the database of known features, and
update the database to add the newly discovered features [42].
This algorithm is implemented using memory write-, integer
comparison- and conditional branching instructions. The com-
plex nature of the code prevents the compiler from optimizing
it. Consequently, the instructions emitted by the compiler can-
not fully utilize instruction-level parallelism supported by the
processor’s execution engine.

In this paper, we propose RIFF to reduce instruction foot-
prints of coverage pipelines and improve fuzzing throughput.
RIFF utilizes compiler analyses and leverages low-level fea-
tures directly exposed by the processor’s instruction set archi-
tecture. Specifically, 1© RIFF reduces the amount of instruc-
tions executed for runtime coverage collection in the target
program. First, RIFF removes edge index computations at run-
time by pre-computing the edge transfers at instrumentation-
time. Next, RIFF eliminates the instructions for loading the
base of the counter region by assigning the region a link-time
determined static address. Thus, RIFF can use only one in-
struction encoded in 6 bytes per instrumentation site. 2© RIFF
removes unnecessary instructions when processing coverage
in fuzzers by dividing processing granularity into three stages,
where the first stage handles simple scenarios fast, while the
last stage is suited for more sophisticated scenarios. For the
most common case, RIFF scans the coverage region and skips
zero-valued chunks using vector instructions, analyzing 16,
32, or 64 counters per iteration on modern processors.

To demonstrate the effectiveness of our approach, we im-
plement RIFF by augmenting state-of-the-art fuzzers such
as AFL [40] and MOpt [29] and evaluate its performance on
real-world programs from Google’s fuzzer-test-suite [21] and
FuzzBench [30]. On the coverage collection side, RIFF re-
duces the average runtime overhead of instrumentation from
207% to 8%. On the post-execution processing side, RIFF
reduces coverage processing time from 217 seconds to 42
seconds with AVX2 instructions [10] and 31 seconds with
AVX512 instructions [34]. As a result, the enhanced fuzzers
can complete 147% more executions during the 24-hour exper-
iments, covering 13.13% more paths and 5.60% more edges.
Alternatively, the improved fuzzers need only 6.53 hours to
reach the 24-hour coverage of baseline fuzzers.

In summary, this paper makes the following contributions:

• We observe that the collection and processing of program
coverage measurements significantly affect the speed of
fuzzing. We break down the cost of instrumentation and
analysis code.

• We eliminate much of the runtime cost by using precom-
puting information statically, and we accelerate post-
execution processing using vectorization.

• We adapt RIFF to popular fuzzers and achieve signif-
icant speedup on real-world programs. The coverage

analysis algorithm of our work has been integrated into
production-level fuzzer AFL++ [23].

2 Background

2.1 Stages of a Coverage Pipeline

To guide fuzzing using coverage, fuzzers use a multi-stage
pipeline. Figure 1 takes AFL as an example to demonstrate
how fuzzers handle coverage:

Fuzzer Read

Coverage

Target Program

Read

Unknown...

afl_maybe_log(0x52a7);...

00 11 3C 0001 0A 00 00

Classify

1

1

1
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0x9888

...

...
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④ Detect

Figure 1: The coverage pipeline of the standard fuzzing tool
AFL. After collecting the coverage from the target program
(arrows labeled “instrument” and “update”), the fuzzer de-
termines whether the input triggers new program behavior
(“classify” and “detect”).

1© Instrument. At compile time, afl-clang allocates an
array of 65,536 counters to store coverage as 8-bit counters.
For each basic block of the target program, afl-as generates
a random number ID as its identifier, then inserts a call to
afl_maybe_log(ID) at the beginning.

After instrumentation, the fuzzer generates random inputs
and executes the program on each input. For each input the
fuzzer detects whether the input triggers new program states
by using a database, as follows:

2© Update. At run time, afl_maybe_log updates the cov-
erage counters to collect edge coverage. The logging function
hashes the identifier of the previously executed and the cur-
rent block, then uses the hash as an index into the counter
array to increment the pointed counter by one.

3© Classify. After the target program completes execu-
tion, AFL reads the coverage counters to classify them into a
bitmap of features. Each 8-bit counter with nonzero value is
mapped to 8 possible features. The features are represented
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as a bitmap, where each feature corresponds to one of the 8
bits inside the 8-bit counter. The classified result is written
back to the coverage region.

4© Detect. With the edge transfer counts classified as a
bitmap, AFL scans the database of unknown program states
to detect new program behaviors: if a previously-unknown
edge transfer is triggered, then the input will be labeled as
“new coverage”; if a known edge transfer has different features,
then it will be marked as a “new path”; otherwise, the current
input is discarded. After the scan, AFL removes the newly
discovered features by updating the database.

2.2 Variants of Coverage Pipeline
While the implementation varies for different fuzzers, the
design mostly follows the classic coverage pipeline first in-
troduced by AFL. Table 1 presents the instrumentation mech-
anism for popular fuzzers. Despite different tool chains and
compiler infrastructures, all the collection methods insert code
or callbacks to collect coverage. For example, although Sani-
tizerCoverage contains a set of instrumentation options and is
implemented in both Clang [7] and GCC [6], it uses callbacks
and array updates to report coverage. Note that FuzzBench
implements its own instrumentation for AFL [15], we only
list it for completeness.

Table 1: Methods for Collecting Coverage
Method Target Infrastructure

afl-{clang,gcc} Assembler N/A
afl-clang-fast Clang LLVM Pass
afl-fuzzbench Clang SanitizerCoverage
libFuzzer Clang SanitizerCoverage
honggfuzz Clang/GCC SanitizerCoverage
Angora Clang LLVM Pass

Table 2 summarizes post-processing methods of coverage
counters at fuzzers’ side. honggfuzz is a special case because
it processes coverage in real-time. Other fuzzers first classify
the counter array to a bitmap of features, then scan the bitmap
to detect the presence of new features.

Table 2: Methods for Processing Coverage
Method Classify Scan

AFL Batch Bit twiddling
libFuzzer Per Counter Statistics update
honggfuzz N/A N/A
Angora Distill Queued

For example, AFL implements a two-pass design. In the
first pass, it performs bitmap conversion in batch; in the sec-
ond pass, it applies bit twiddling hacks for acceleration. lib-
Fuzzer employs a one-pass design: for each non-zero byte,

libFuzzer converts it to a feature index, then updates the local
and global statistics with complex operations such as binary
search. Angora takes the queued approach: in the first pass, it
distills a small collection of counter index and feature mask
out of the original array; in the second pass, it scans the col-
lection to detect new coverage and pushes the modifications
to the write-back queue; in the third pass, it locks the global
database and applies the queued modifications.

3 Measuring Coverage Pipeline Overheads

To measure the overhead of the coverage pipeline, we se-
lect the classic fuzzer AFL as an example: as the forerunner
of coverage-guided fuzzing, most coverage-guided fuzzers
partially or completely inherit its design. As for the target
program and workload, we use libxml2 from FuzzBench.

3.1 Cost of Instrumentation
To evaluate the overhead of coverage collection, we select
all instrumentation methods provided by AFL, which cover
all compiler infrastructures listed in Table 1. To have a fair
comparison, we select afl-clang, afl-fuzzbench, and afl-clang-
fast, because they have the same coverage update method and
base compiler. We further decrease the optimization level of
afl-fuzzbench to -O2 to match with the other instrumentation
methods.

We collect performance metrics by running the target pro-
gram using perf tools. To remove the one-time cost of program
startup, we do a warm-up run of the program with 1 input,
then use 11 more inputs separately, then calculate the average
of per-execution cost. The Intel Intrinsics Guide [12] is used
as the XML input.

Table 3 lists the overhead of each collection method by
normalizing each metric to the non-instrumented baseline
program. Looking at the “duration” column, we can see that
the instrumentation significantly slows down program execu-
tion. For example, as soon as the fastest method, afl-clang-fast,
finishes executing its first input, the non-instrumented pro-
gram has executed more than half of the second input.

Table 3: Overheads of Instrumented Programs
Method Duration Instructions L1-I L1-D µops

afl-clang 3.50x 4.26x 102.36x 5.16x 4.72x
afl-fuzzbench 2.45x 2.83x 19.88x 2.53x 2.14x
afl-clang-fast 1.69x 1.79x 33.58x 2.88x 2.11x

The “instruction count” column explains the slowdown.
Figure 2 lists the instructions of afl-clang (the slowest
method), and afl-clang-fast (the fastest method). Take afl-
clang for example, for each basic block, it inserts 10 instruc-
tions encoded in 56 bytes. These instructions save the con-
text, invoke __afl_maybe_log, and restore the context. In
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__afl_maybe_log, instructions totaling 44 bytes are exe-
cuted, which update the last code location and increase the
counter. They even contain a conditional jump which checks
whether the coverage counters are initialized. The same prob-
lem is still applicable to the fastest method afl-clang-fast: of
all the 7 instructions it executes, only one instruction is used
to actually update the counter.

lea				-0x98(%rsp),%rsp										
mov				%rdx,(%rsp)															
mov				%rcx,0x8(%rsp)												
mov				%rax,0x10(%rsp)											
mov				$0xca5,%rcx
callq		__afl_maybe_log
lahf
seto			%al

add				$0x7f,%al
sahf
retq																										
mov				0x10(%rsp),%rax
mov				0x8(%rsp),%rcx
mov				(%rsp),%rdx
lea				0x98(%rsp),%rsp

mov				__afl_area_ptr(%rip),%rdx
test			%rdx,%rdx
je					near	__afl_setup

xor				__afl_prev_loc(%rip),%rcx
xor				%rcx,__afl_prev_loc(%rip)
shrq			__afl_prev_loc(%rip)

incb			(%rdx,%rcx,1)

mov				__afl_prev_loc,%rax
movslq	%fs:(%rax),%rcx
lea				__afl_area_ptr(%rip),%rdx
mov				(%rdx),%rdx
xor				$0x6956,%rcx

addb			$0x1,(%rdx,%rcx,1)

movl			$0x34ab,%fs:(%rax)

Save/Restore Context

Load Counter Base

Update the Counter

Compute Counter Index

afl-clang afl-clang-fast

Figure 2: Instructions inserted by afl-clang (22 instructions,
100 bytes) and afl-clang-fast (7 instructions, 39 bytes). Note
that only the instruction marked in red updates the counter.

The instrumentation code has a significant processor cost.
First, it starves the processor’s front end which translates
instructions to micro-ops. For each basic block, afl-clang
requires executing extra instructions totaling 100 bytes, i.e.
1/256 of all the available L1 instruction cache. As a result, afl-
clang experiences 101.36x more L1 instruction cache misses,
and the CPU executes 3.72x more micro-ops for afl-clang
produced programs.

3.2 Unnecessary Instructions in Fuzzer
Figure 3 presents the cost breakdown of afl-fuzz by sampling
its CPU usage. To reduce noise introduced by fuzzing, we
sample the user space CPU cycles for 5 seconds after afl-fuzz
has discovered 2,000 paths of libxml2.

Other 9.1%

Classify 37.81% Scan 39.00%

Mutate 9.31% Reset 7.67%

Coverage Pipeline 84.48%

Figure 3: Breakdown of execution costs for afl-fuzz: AFL first
mutates the input; after the execution completes, it classifies
the coverage to bitmap, scans the bitmap for new coverage,
and resets the memory for the next run.

From the figure we can see that afl-fuzz spends the majority

of its time on the coverage pipeline. To detect new program
states, AFL spends 84.48% of its valuable CPU time on the
coverage pipeline. The overwhelmingly high percent of CPU
usage implies significant problems behind the overall system
design, which inevitably leads to redundancy in executed
instructions.

Table 4 shows that most executions do not improve cover-
age. We call a counter “useless” if its value is zero, since a
zero-valued counter never maps to a feature. We call a pro-
gram execution “useless” if its bitmap does not contain any
new feature with respect to previous executions. After AFL
terminates, we collected the coverage of the first discovered
2,000 paths, and calculated useless counters (see the first row).
We also compute useless executions during a 5-second time
interval (see the second row). During the period, AFL had
executed 67,696 inputs, where each execution required pro-
cessing 64 KiB of coverage. Although it had processed over
4,231 MiB of coverage, it only discovered 2 new paths, and
none of the paths covered new counters.

Table 4: Number of Processed Counters and Executions
Total Useless Proportion

Counter 65,536 64,664.37 98.67%
Execution 67,696 67,694 99.997%

As the first row in Table 4 shows, for the coverage of the
first 2,000 discovered paths, 98.67% of the processed counters
were zero. In other words, executing an input only covers
871.69 counters, yet the total number of counters allocated by
AFL was 65,536. Angora’s instrumentation technique suffers
even more, because it allocates 1MiB of memory to store
coverage. The sparsity of the coverage array implies that
skipping zero counters quickly during coverage analysis can
be a major performance boost.

As the second row in Table 4 shows, although 99.997% of
the inputs did not trigger any new program behavior, AFL
still performed many computations: the first pass converted
the coverage to a bitmap, and the second pass re-read it to
compare with the database of unknown program states. The
same applies to libFuzzer, which maintains even more statis-
tics, including the minimum input size, the trigger frequency
of each feature, the list of the rarest features, and the list of
unique features covered by the current input. The analysis re-
quires complex computations involving table lookups, linear
searches, and floating-point logarithms.

The analysis logic cannot be efficiently optimized by com-
pilers. The high-level algorithm is scattered with side effects,
control-flow transfers, and data dependencies. Due to the
complexity of the analysis logic, the compiler cannot perform
important optimizations such as hardware-assisted loop vec-
torization. Only shallow optimizations, such as loop unrolling,
are performed.
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4 Design of RIFF

Figure 4 presents the overall design of RIFF. Similar to con-
ventional coverage pipelines, it consists of compile-time in-
strumentation, runtime execution trace collection, and cover-
age processing.

Single-Instruction Instrumentation

Coverage (Fixed at 0x40000)

Target Program
(*0x40000)++;
if	(...)	{
		(*0x40001)++;
		foo();
}	else	{
		(*0x40002)++;
}
(*0x40003)++;

1 1 10x0000

Hot-Path Vectorization

100% Vectorized
Scan

Masked
Compare

Infrequent
Update~5% ~0.003%

Source InstrumentPre-Computed
Counter Index

Control-Flow Analysis
Interprocedural Analysis

Fixed
Counter Base

Codegen
+ Link

Figure 4: System overview. RIFF first instruments the pro-
gram to log the execution trace at runtime. After the comple-
tion of execution, the fuzzer processes the coverage in three
stages, using vectorization on the hot-path.

At compile-time, RIFF performs control-flow analysis and
interprocedural analysis to pre-compute all possible control-
flow edges; each edge is statically allocated a fixed counter
index. The compile-time computation avoids performing the
address computation at runtime. Next, RIFF inserts code to
log the edge execution by incrementing the counter at the
corresponding address. Finally, RIFF generates machine code
with the help of the compiler’s backend, without requiring
runtime context saving or restoring. When the target program
starts, RIFF’s runtime maps the coverage counters at the fixed
address specified by the compiler. The simplified instrumen-
tation and aggregated coverage layout reduces the overhead
of coverage collection. We describe the optimized instrumen-
tation in detail in Section 4.1.

After the target program completes the execution of an
input, the fuzzer enhanced with RIFF processes the coverage
in three stages, where the first stage handles simple cases
quickly, and the last stage handles infrequent complex cases.
According to the simulation of collected coverage in Section
3.2, the first stage vectorized scan can eliminate 95.08% of
the analysis cases, leaving only 4.92% of the processing job
to the second stage, i.e. the masked comparison. The slowest
stage only processes 0.003% of all cases.

4.1 Single-Instruction Instrumentation
As shown in Figure 2, the instrumentation code that collects
coverage is expensive. Not only does it need to update the
counter for each basic block, but the instrumentation code
saves and restores registers around each counter update to
preserve program logic. Moreover, the code loads the counter
base address dynamically and computes the counter index
by hashing the block index. RIFF reduces this code to a
single instruction by performing much of this computation at
compile time.

Pre-Compute Counter Index AFL uses hashing-based
control-flow edge coverage. While edge-level coverage can
distinguish between execution traces where block-based cov-
erage cannot, maintaining the previous block’s identifier dy-
namically and computing hashes at runtime is expensive. Us-
ing the compiler infrastructure RIFF performs edge-coverage
computation at compile-time, and falls back to runtime com-
putation only if static information is insufficient.

7
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2

10 3

4
7 44 10

7
2

1

10 2

5
7 44 10

(b)(a)

A

C

B

Figure 5: Problems behind raw block coverage: (a) incom-
pleteness: multiple edge counts can map to the same block
count; (b) complexity: obtaining the hit count of edge AC
requires extra computation at fuzzer’s side.

Figure 5 illustrates the imprecision of block-level coverage.
Figure (a) shows two control-flow graphs that have different
edge counts but identical block counts. In theory, for a digraph
with |V | vertices, there can be |V ||V−1|

2 edges. Therefore, block
count alone cannot determine the exact edge counts. However,
in practice, the graph is very sparse, and in some cases, the
edge counts can be uniquely determined by the block counts.
However, calculating edge counts requires an expensive com-
putation to solve a system of equations. As Figure (b) shows,
there are three basic blocks (A, B, and C) and three edges
(AB, BC, and AC). Suppose that the instrumentation scheme
collects the count for basic block A, B, and C as a, b, and c
respectively. While the hit count for edge AB and BC can be
directly represented as a or c, the hit count of edge AC must
be computed (such as a−b). Solving the system of equations
will significantly slow down the processing at fuzzer’s side.

RIFF leverages static analysis to allocate one counter for
each edge. It does this by creating additional empty basic
blocks when needed. As Algorithm 1 shows, if the hit count
of an edge can be uniquely determined by its source or sink
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Algorithm 1: Control-Flow Edge Instrumentation
Data: A control-flow graph G = (V,E)
Result: A new control-flow graph G′ = (V ′,E ′) and a set of

target blocks to instrument T ⊆ 2V ′

T ← /0,V ′←V,E ′← E ;
for (x,y) ∈ E do

if δ+(x) = 1 then
The source vertex has only one outgoing edge (x,y),

thus the hit count of (x,y) equals to x ;
T ← T ∪ x ;

else if δ−(y) = 1 then
The sink vertex has only one incoming edge (x,y),

thus the hit count of (x,y) equals to y ;
T ← T ∪ y ;

else
No direct representation is available ;
Introduce a temporary vertex t(x,y) to represent the

hit count of (x,y) ;
V ′←V ′∪ t(x,y) ;
E ′← E ′/(x,y)∪ (x, t(x,y))∪ (t(x,y),y) ;
T ← T ∪ t(x,y) ;

end
end

vertex, then the block count is used for the edge. Otherwise, an
empty block is allocated to represent the edge. For function
calls, RIFF uses the hit count of the caller block to repre-
sent the hit count for the edge between the caller block and
the callee’s entry block because the counts are equal. After
collecting the blocks to instrument, RIFF assigns identifiers
sequentially for each block and removes instrumentation sites
whose hit counts can be represented by other counters. These
identifiers are used as runtime indexes for the counters in the
coverage array.

Fix Counter Base AFL uses a block of shared memory
for the counters. When the target program starts, the runtime
library maps the shared memory into its address space and
stores the base address as a global variable. While indirect
addressing is flexible, computing the counter address dynami-
cally for every basic block is inefficient. To remove extra ac-
cesses to the counter base, the address must be compile-time
constants for each instrumentation site. Counter allocation
with fixed addresses is done in two steps.

At the beginning of each basic block, the instrumentation
code should increment its associated counter. If the base ad-
dress is fixed, and the index of the array is already allocated
at compile time (see Section 4.1), the address of the counter
can be also computed at compile time. We can then directly
increment the counter pointed by the address, using e.g., incb
$ADDR. However, as Table 5 shows, directly encoding the tar-
get address inside the instruction requires a 7-byte instruction
(scale-index-base). RIFF uses a RIP-based addressing mode

1, requiring a 6-byte instruction. Moreover, the expensive
register save/restore code is no longer needed.

Table 5: Instruction Encoding of Addressing Modes
Assembly Length Opcode ModRm SIB Disp

incb $ADDR 7 0xfe 0x04 0x25 (4 bytes)
incb $OFFSET($rip) 6 0xfe 0x05 (4 bytes)

Before the target program runs, the memory shared by the
fuzzer should be correctly mapped to the address space of the
target program. To prevent the static and dynamic linker from
reusing the address for other symbols, RIFF fixes the binary’s
image base to the address 0x80000 (8 MiB), and reserves the
address range of 0x400000 to 0x80000 for the coverage.

Indirect Control Transfers While single-instruction instru-
mentation is efficient, this solution cannot be used for indi-
rect control transfers. These occur in the following instances:
GNU C extensions that allow taking the address of switch
labels [18], setjmp and longjmp [26], function pointers, and
unwinds on C++ exceptions.

RIFF uses interprocedural control-flow analysis to discover
such cases and falls back to dynamic computation. If the
start of an edge representing indirect control transfer is found
(e.g. setjmp), RIFF stores the source block ID in thread-
local storage before performing the transfer. At the target of
an indirect control transfer (e.g. longjmp), RIFF loads the
source block ID and computes the counter index by hashing.

4.2 Hot-Path Vectorized Analysis

As Table 4 shows, among all coverage counters, only a small
number of counters are updated by the target program; among
all executions, inputs which demonstrate new program behav-
ior are extremely rare. This observation implies that many
computations performed by the fuzzer do not produce useful
results. If the redundant computation is removed, the simpli-
fied logic can be accelerated using SIMD instructions (Ad-
vanced Vector Extensions on x86-64 and NEON on ARMv8).

Figure 6 demonstrates how this multi-stage processing de-
sign simplifies the logic. Stage 0 is the simplest one, which
just fetches 64 bytes chunks and discards all-zero chunks.
Stage 1 is invoked with the nonzero positions encoded as a
mask. In Stage 1 the counters are classified as a bitmap in reg-
isters then directly compared with the database for unknown
program states. The counters are discarded if no new features
are discovered. Only when it is determined that the current
input triggers new program behaviors is the original analy-
sis performed by AFL invoked, in Stage 2. While this stage
requires complex computations, it is rarely invoked.

1RIP is the instruction pointer.
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Stage 1: Masked Compare

Stage 0: Vectorized Scan
01 0A 11 3C

All Zero: Discard
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Write Back Path or Coverage?Update Virgin Bits

Compare

Figure 6: Processing coverage in three stages. Stage 0 filters
out large chunks of zero bytes; Stage 1 checks for new cover-
age using masked comparisons; Stage 2 is invoked only for
inputs that trigger new behaviors.

Vectorized Scan Although coverage-guided fuzzing can
discover lots of code during the whole fuzz session, the cov-
ered code for a single input is lower. Because most counters
are not accessed by the target program, their values stay zero
after execution. Filtering out these zero counters can remove
further processing stages, but the filtering operation itself
requires extra computation.

To filter the zero counters efficiently, we use instructions
that scan counters in parallel. Modern processors have vector
processing abilities. AVX512 is a typical single-instruction-
multiple-data design proposed by Intel in 2013, and it is
widely supported in modern server processors. Operating
on 512-bit vectors, it can compare 64 lanes of 8-bit integers
in parallel (vptestnmb). For example, on Skylake-X based
processors, it completes such a scan in 4 clock cycles. By
comparison, the scalar-based processing requires 64 testb
instructions with a latency of 1 cycle each.

The vectorized comparison encodes the comparison results
inside a mask register. Each bit inside the mask register rep-
resents whether a lane inside the vector is zero. For example,
if we treat 64 bytes of data chunk as 8 lanes of u64, then the
result mask register contains 8 bits. If the least significant
bit (0x1) is set in the mask, then the first (#0) lane is zero.
Similarly, if the most significant bit (0x80) is set in the mask,
then the last (#7) lane is zero. Consequently, we can skip the
following tiers if all the 8 bits are set (0xff), indicating that
all the lanes are zero.

Masked Compare If a chunk contains non-zero bytes, it
may represent a new program behavior. Therefore, vector-
ized scan cannot discard the chunk and should delegate the
computation to the next stage, masked compare. In this stage,
the coverage is classified then compared with the database to
detect new program behavior.

However, even for a non-zero chunk, it is very likely that
most of the lanes are zero because of the sparsity of coverage.
To remove unnecessary computation, the mask obtained from
vectorized scan is used to sift the nonzero lanes: only when
the mask indicates that a lane is non-zero, then the following
classification is used. Otherwise, the zero lanes are discarded
immediately.

For each nonzero lane, the corresponding counters are read
into a register. After classifying the raw counters into bitmap
using table lookups and bitwise operations, they are directly
compared with the database. In most cases, the comparison
will not find a difference and the bitmap is discarded. We
optimize for the scenario where the bitmap is discarded to
avoid updates to both the bitmap and the database.

Infrequent Update For inputs triggering interesting behav-
ior, the processing of its coverage will reach stage 2. This
stage is seldom invoked.

This stage performs the original analysis performed by
standard fuzzers: first, it classifies the original counters and
writes the bitmap back to memory; second, it reads the bitmap,
compares it with the database, and updates the database if
needed. While scanning the bitmap, it checks for changed
counters and declares the run to be a “new coverage” if any
are found. Otherwise, the run has discovered a “new path”.

5 Implementation

Because single-instruction instrumentation requires the pre-
cise counter address for each instrumentation point, instru-
mentation must be performed on the whole program, at link-
time. The compiler part of RIFF is implemented on LLVM.
Specifically, when compiling source files, RIFF instructs the
compiler to produce LLVM bitcode instead of object files.
These bitcode files are linked to the whole-program bitcode
for analysis use. Next, RIFF performs instrumentation on the
whole program leveraging the DominatorTreeAnalysis and
BasicBlockUtils analyses, then generates machine code as
a single object file. During code generation, LLVM prefers
to generate 7-byte addb instructions over the 6-byte incb
instructions, because the default configuration of LLVM is
optimized for old or mobile-first processors, where incb is
slower than addb. To force instruction selection to generate
incb instructions, we fine-tune the LLVM target attribute by
disabling the slow-incdec target feature.

As in conventional linking, the single object file is linked
with system libraries. After this step the compiler maps the
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symbol denoting the start of coverage counters at a fixed
address (SHN_ABS in st_shndx). As Listing 1 shows, the
generated machine code only requires 6 bytes for most cases.
Only on indirect transfers does RIFF fall back to the runtime
hashing.

# Single-instruction instrumentation
incb $INDEX(%rip) # fe 05 ?? ?? ?? ??

# Rare case: indirect transfer (source)
mov $PREV(%rip),%rcx # 48 8b 0d ?? ?? ?? ??
movl $BBID,%fs:(%rcx) # 64 c7 01 ?? ?? ?? ??

# Rare case: indirect transfer (destination)
mov $PREV(%rip),%rcx # 48 8b 0d ?? ?? ?? ??
movslq %fs:(%rcx),%rax # 64 48 63 01
xor $BBID,%rax # 48 35 ?? ?? ?? ??
incb $BASE(%rax) # fe 80 ?? ?? ?? ??

Listing 1: Assembly and machine code generated by RIFF.

Because vectorized coverage processing relies on the hard-
ware support of SIMD instructions, currently we implement
two variants on x86-64. If AVX512 Doubleword and Quad-
word Instructions (AVX512DQ) are supported, then 8 lanes
of 64-bit integers are processed as a chunk. If AVX2 is sup-
ported, then the 4 lanes of 64-bit integers are processed as a
chunk. Otherwise, Stage 0 is skipped entirely, and Stage 1 is
executed. We implement the algorithms via intrinsic functions
to take advantage of the compiler-based register allocation
optimization.

6 Evaluation

To demonstrate how the reduced instruction footprint accel-
erates fuzzing, we evaluate the performance of RIFF on real-
world settings.

For target programs, we select every program included
in both Google fuzzer-test-suite and FuzzBench. Carefully
picked by Google, they encompass a comprehensive set of
widely-used real-world programs. For fuzzers, we select the
classic industrial fuzzer AFL and the recently published
MOpt.

We compile the programs with afl-clang using the default
settings and compile RIFF’s version with our instrumentation
pipeline. For both cases we use Clang 11.0 with the same
configuration (e.g., optimization level). As for the fuzzers, the
baseline versions are built from the git repositories without
modification. We further apply RIFF’s hot-path acceleration
patch to the baseline fuzzers. Note that RIFF and AFL use
different instrumentation, we calibrate the raw metrics with
fuzzer-test-suite’s coverage binary for fairness. All the cover-
age used in the following analysis is based on the calibrated
data.

We perform the experiments on Linux 5.8.10 with 128 GiB
of RAM. The processor used is Intel Xeon Gold 6148. Its
Skylake-Server microarchitecture allows acceleration with
AVX2 and AVX512.

6.1 Overall Results
Figure 7 compares the time required by RIFF to reach the
same coverage as AFL and MOpt respectively running for
3h, 6h, 12h, and 24h. A bar below the red line indicates a
speed-up for RIFF.

The purple bars show the speedup of the long experiments
run for 24 hours, where fuzzing tends to saturate (discover-
ing few new paths). On average, to reach the final coverage
of AFL and MOpt running for 24 hours, RIFF’s improved
versions only require 6.23 and 6.82 hours respectively. For
individual programs, the improvements are consistent: even
for the worst programs (freetype2 for AFL and libjpeg for
MOpt), RIFF still reached the final coverage 2.1 and 0.8 hours
before the baseline versions. On average, RIFF accelerates
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Figure 7: Normalized execution time required by RIFF to reach the same coverage as AFL and MOpt. The X axis is programs,
the Y axis is the ratio between the execution times required for reaching the same coverage. A bar below the red line indicates a
speed-up.
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the 24-hour fuzzing by 268.74%.
The bars of 3h, 6h, and 12h show the speedup for shorter

experiments. In such scenarios, saturation is less likely, and
the randomness can lead to slowdowns (causing a different
set of inputs to be explored). Here we can see that RIFF is
still frequently performing best. For example, when fuzzing
freetype2 with AFL, RIFF-based version requires 1.22 hours
more to catch up with the baseline version, but its performance
gradually improves as we extend the experiment, and it leads
by 0.85, 1.56, and 2.10 hours at 6, 12, and 24h respectively.

Figure 8 presents the overall results after 24-hour experi-
ments. Inside the figure, the baseline metrics from AFL and
MOpt are normalized to the red horizontal line 1.0, while the
corresponding metrics from RIFF’s optimizations are drawn
as bars. Higher bars indicate better performance.

The “covered edges” graph from Figure 8 demonstrates the
overall improvement brought by RIFF. On average, RIFF im-
proves the coverage of AFL and MOpt by 4.96% and 6.25%
respectively. The improvement is consistent for individual
programs: among all the 28 experiments, RIFF is best for
27. Because RIFF accelerates both the fuzzer and the target
program, more executions can be completed in less time. De-
spite the trend of saturation for the long 24-hour trials, RIFF
still managed to cover rare edges requiring a large number of
executions.

The “total paths” graph from Figure 8 demonstrates that
RIFF has comparably good feedback signal as the baseline
versions. For most programs, RIFF improves the total num-
ber of discovered paths since it performs more execution: on
average, RIFF improves the number of discovered paths by
10.79% and 15.48% over AFL and MOpt respectively. Al-
though RIFF simplifies the computation of edge coverage,
its ability in providing fuzzing signal is not reduced because
of the compile-time analysis. Take re2 for example, both the
baseline versions seem to discover more paths; however, paths
only provide fuzz signals, thus more paths do not necessar-
ily lead to more coverage. When the fuzz-oriented coverage

is calibrated to fuzzer-test-suite’s canonical coverage, RIFF-
based fuzzers discover more edges.

The advantage of RIFF can be seen in the “total executions”
graph. RIFF increases the number of fuzzing executions in
the same amount of time to values ranging between 1.03%
to 541.38%. While the randomness introduced by fuzzing
algorithms can cause diminished coverage, the overall result
confirms that RIFF improves the execution in general. The
vastly increased number of executions can be attributed to the
reduced overhead, in both the target program and the fuzzer’s
side.

6.2 Simplified Coverage Collection

Single-instruction instrumentation reduces the overhead of
the instrumentation. To evaluate it fairly, we first fix a set of
inputs, and we reuse the same inputs for all measurements for
all fuzzers. For each program, we mix 1000 inputs discovered
by all fuzzers; while executing the programs, we measure the
time and normalize it against the non-instrumented version.

Figure 10 shows the instrumentation overhead for both
afl-clang and RIFF. The figure demonstrates that the widely
used instrumentation scheme afl-clang imposes heavy over-
head on all the programs. Compared to the non-instrumented
programs, programs instrumented by afl-clang the average
execution time increases by 206.83%. The reasons can be
explained by Figure 9: it executes 340.63% more instructions,
which translate to 338.47% more uops and require 242.97%
more L1 instruction cache refills.

RIFF reduces the footprint of instructions down to one in-
struction per site. On average, the coverage collection of RIFF
only requires 8.40% more time to execute, while afl-clang re-
quires 206.83% more time. In other words, RIFF reduces the
overheads by 23 times. The improvement can be explained
by the reduced instruction footprint: RIFF eliminates loads to
counter base, shifts computation of counter index to compile-
time, and removes the context saving or restoring code.
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6.3 Accelerated Coverage Processing

Hot-path vectorization accelerates the coverage processing
at fuzzer’s side. To cancel randomness from fuzzing loops
and irrelevant speedups from the target programs, we extract
the coverage processing routine as a library and evaluate it in
isolation.

As in Section 6.2, we fix a set of inputs, then run experi-
ments with these inputs to collect the raw coverage counter
arrays. However, because all the saved inputs are rare cases
which lead to new coverage, just running coverage processing
routine on the saved inputs one by one exaggerates the rate of
discovery. Instead, we calculate the average number of execu-
tions to discover a new input during the whole fuzz session,
and run coverage processing routine on the raw coverage re-
peatedly this many times on the first 50 inputs. We further
calculate the total processing time required to discover the
first 50 inputs; we present the normalized values in Figure 11.

Figure 11 shows the benefits of hot-path vectorization. The
processing time of AFL and MOpt is normalized to 1.0, shown
as the red horizontal line. The bars show the processing time
of RIFF.
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Figure 11: Coverage processing time (normalized against the
baseline algorithm). Lower bars indicate better performance.

The bars for AVX2 and AVX512 of Figure 11 demonstrate
RIFF’s improved efficiency in coverage processing. Leverag-
ing AVX2, RIFF uses one instruction to compare 32 coverage
counters in parallel; AVX512 further extends the parallelism
to 64 counters per comparison. With hardware-assisted pro-
cessing, the vectorized versions improve the efficiency of the
original scalar-based pipeline by 4.64x and 6.01x respectively.

7 Discussion

Currently, we only evaluated our work on x86-64 due to in-
sufficient fuzzer support on other platforms. For example,
AFL only provides experimental ARM support via QEMU.
While the implementation is target-dependent, the general
idea applies to all platforms: the minimal instrumentation
logic can be implemented with just 4 instructions on ARMv8
or RISC-V systems; the vectorized coverage processing can
use ARMv8 NEON ISA instead of AVX2 or AVX512.

As for the applicability of our improvement, we only ap-
plied our work to the industrial fuzzer AFL and the academic
work MOpt due to limited resources. While they use different
fuzzing algorithms, the improvements brought by RIFF are
similar (see Figure 7 and 8). Our work can be easily adapted
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Figure 9: Metrics for RIFF-Based Programs
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to more fuzzers. For example, developers of AFL++ [17] have
adapted our work to their code base and conducted indepen-
dent third-party evaluations with Google FuzzBench [30]. Ac-
cording to the result [5], our modification (labeled as “skim”)
was the best-performing one among all the 10 variants.

8 Related Work

8.1 Vectorized Emulation
Snapshot fuzzing [2, 16] tests the target program from par-
tially executed system states. The program is broken into
small pieces of code, and the execution of the code is em-
ulated by the hypervisor. Because the emulation simplifies
the logic to execute, multiple system states can be emulated
simultaneously with vectorization.

Rather than accelerating the emulation, RIFF is focused
on coverage pipeline: first, RIFF’s single-instruction instru-
mentation combined with vectorization-based emulation and
checkpointing accelerates the execution of target programs;
RIFFs hot-path optimization also accelerates fuzzer’s cover-
age analysis.

8.2 Enriching Semantics of Coverage
Since the coverage quality is crucial for input prioritization,
numerous approaches have been proposed by academia which
bring more semantics to coverage. For example, VUzzer [33]
stores call stack information to coverage, and Angora en-
hances coverage with search targets [11]. Sometimes, re-
searchers introduce data-flow features to conventional control-
flow-oriented coverage. For example, Steelix [28] stores
branch comparison operators, Dowser [22] records branch
constraints, GreyOne [19] imports constraint conformance
to tune the evolution direction of fuzzing, and [37] traces
memory accesses. While these techniques can help a fuzzer
to choose better inputs, the complexity introduces heavy over-
head and severely limits the execution speed.

8.3 Reducing Overhead of Coverage
Not instrumenting the program eliminates overhead altogether.
Researchers utilize debugger breakpoints to detect the first
time a block has been covered with hardware support [32,43];
in this scheme, only the first occurrence of a block has extra
cost. However, the information of the number of times that a
block has been covered is lost without any instrumentation;
on the contrary, RIFF does not reduce the quality of feedback.

Another idea is to reduce the number of instrumentation
points [25]. However, the cost of each instrumentation point
is still high because it still needs to maintain the edge infor-
mation by hashing. RIFF simplifies instrumentation points to
single instructions; it is not focused on reducing the amount
of instrumentation points.

8.4 Reducing Overhead of Operating System

Traditionally, fuzzing is targeted at utility programs where
each execution requires fork a new process and then execve
to the new binary. To remove the costly execve, AFL imple-
ments fork server mode [39]. To reduce the cost of fork, Xu
et al. [38] designs a new system call snapshot to restore the
execution state in-place. To further reduce the number of invo-
cations of fork, AFL implements persistent mode [41], where
a program runs continuously without restart. libFuzzer fur-
ther eliminates other expensive system calls with in-process
fuzzing: if the fuzz target is library, then the fuzzing is per-
formed in-memory.

With these operating system works, the major overhead in-
troduced by context switches of system calls has been greatly
reduced. Consequently, the cost of execution has become an-
other prominent problem. RIFF reduces the cost by reducing
the instruction footprint of the coverage pipeline.

9 Conclusion

In this paper, we present RIFF to reduce the instruction foot-
print for fuzzing. We first observe that the coverage pipeline
in fuzzing slows down the overall execution speed. We find
that the heavy instruction footprint is the root cause: for target
programs, the expensive instructions collect coverage ineffi-
ciently; for fuzzers, the unnecessary instructions cannot fully
exploit the processor’s ability. We implement RIFF to reduce
the instruction footprint and achieve a 268.74% speedup for
the 24-hour experiments. RIFF is being integrated by popular
fuzzers such as AFL and AFL++ for use in industry and has
shown significant improvements over the state of the art.
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