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ABSTRACT

Finding vulnerabilities in firmware is vital as any firmware vulner-

ability may lead to cyberattacks to the physical IoT devices. Taint

analysis is one promising technique for finding firmware vulnera-

bilities thanks to its high coverage and scalability. However, sizable

closed-source firmware makes it extremely difficult to analyze the

complete data-flow paths from taint sources (i.e., interface library

functions such as recv) to sinks.

We observe that certain custom functions in binaries can be used

as intermediate taint sources (ITSs). Compared to interface library

functions, using custom functions as taint sources can significantly

shorten the data-flow paths for analysis. However, inferring ITSs is

challenging due to the complexity and customization of firmware.

Moreover, the debugging information and symbol table of binaries

in firmware are stripped; therefore, prior techniques of inferring

taint sources are not applicable except laborious manual analysis.

To this end, this paper proposes FITS to automatically infer ITSs.

Specifically, FITS represents each function with a novel behavioral

∗Corresponding Author

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0394-2/23/03.
https://doi.org/10.1145/3623278.3624759

feature representation that captures the static and dynamic prop-

erties of the function, and ranks custom functions as taint sources

through behavioral clustering and similarity scoring.

We evaluated FITS on 59 large, real-world firmware samples.

The inference results of FITS are accurate: at least one of top-3

ranked custom functions can be used as an ITS with 89% precision.

ITSs helped Karonte find 15 more bugs and helped the static taint

engine find 339 more bugs. More importantly, 21 bugs have been

awarded CVE IDs and rated high severity with media coverage.
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1 INTRODUCTION

Internet of Things (IoT) devices have become increasingly perva-

sive in modern society; by 2025 the number of IoT devices in use

will reach 21.5 billion [50]. IoT devices have greatly facilitated our

daily lives, but meanwhile have gradually become the target of

various cyberattacks (e.g., botnets [2], privacy theft [31], extor-

tion [3], APT [32]) due to various bugs and design flaws in their

firmware. Among all IoT devices, Internet-connected embedded

devices such as routers, access points, and gateways are more vul-

nerable to attacks than other devices [9, 30]. This mainly because

the firmware of such devices directly exposes Internet services for

network access, which have complex implementations and often

contain exploitable vulnerabilities. Moreover, these devices serve

as entry points to the local network, and are often exploited as

bridges to launch attacks to other proximity communication and

simple-implemented IoT devices such as smart plugs and clean-

ing robots within the same network [61]. To this end, there is an

urgent need to design effective, scalable, and practical techniques

for automatically discovering vulnerabilities in the firmware of

Internet-connected embedded devices.

Static taint analysis is such a promising technique for finding vul-

nerabilities in embedded devices, e.g., DTaint [12], Karonte [44], and

SaTc [9]. It can be applied directly and statically to analyze firmware,

achieving high code coverage without requiring emulation or real

embedded devices for analysis.1 The workflow of classical firmware

taint analysis contains three major steps: 1 Identifying as taint

sources interface library functions that receive user data, e.g., recv,
getenv, fgets. 2 Identifying as sinks unsafe library functions that

can lead to buffer overflow or command hijacking, e.g., system,
sprintf, strcpy. 3 Analyzing the data flow from taint sources to

sinks, and determining the existence of bugs by checking whether

the tainted data on the data flow reaches any sink without being

sanitized.

Challenges. However, performing accurate data flow analysis

from taint sources to sinks has always been a challenging problem

for applying taint analysis on firmware, even with the state-of-the-

art techniques [9, 12, 44]. The reason is manifold. First, firmware

consists of multiple binaries, and user input (i.e. the taint source)

often flows across binaries, which is a complex scenario for tracking

data flow. For example, the web server uses the common gateway

interface (CGI) to call other binaries to process user requests. Sec-

ond, even within a single binary, data aliasing, indirect calls via

function pointers or jump tables, debug information stripped, etc.

further complicate the analysis of data flow. Lastly, due to the multi-

binary nature of firmware and the complexity of individual binary,

the data flow from taint sources to sinks can be excessively long,

and difficult to be precisely identified. In the past, techniques such

as symbolic execution [9, 44], value set analysis [9, 44], and alias

analysis [12] were used to mitigate this problem to some extent.

But at the cost of increased false positives and runtime overhead,

1In this paper we focus on static taint analysis only as dynamic taint analysis is usually
not applicable to analyzing programs running in embedded devices. For brevity, taint
analysis in this paper refers to static taint analysis.

hindering the practicality of conducting taint analysis in large and

complex real-world firmware.

A New Approach via Intermediate Taint Sources. To improve

the effectiveness of tainted data flow analysis, rather than relying

on heavyweight techniques [9, 12, 44], we take a different, fresh

perspective: we aim to shorten the length of the data-flow path

from the taint source to the sink, which can significantly reduce

the complexity of the analysis problem for existing data flow anal-

ysis algorithms. To this end, we propose intermediate taint sources

(ITSs), as an alternative to the classical taint sources (CTSs) that

are interface library functions directly receiving user input. An ITS

is a custom function (not a library function) that processes user

input received via library functions and returns a part of the input

to be used by other functions. Concretely, the concept of ITSs is

inspired by our observation that the logic of handling a user input

in Internet-connected IoT devices typically involves three steps: first,

receiving the structured user input, which usually contains multiple

fields, through interface library functions; second, saving the user

input to a memory region if the input conforms to the format re-

quirement; and finally, fetching one or more fields from the memory

region for subsequent processing. Figure 1b shows such an example

of ITSs. The function fn16 fetches the user input received by a

library function and stored at src_addr, based on the index, and
then returns the corresponding data to other functions for further

processing An ITS is a node on the data flow from a CTS to a sink;

and its distance to the sink is always shorter than that of the CTS,

thus reducing the complexity of the data flow for taint analysis.

More details of the ITS are discussed in §2.

However, determiningwhether a function Fn in stripped firmware

can be classified as an ITS is non-trivial. First, ITSs do not have a

definitive detection criterion as CTSs, and have versatile implemen-

tations, especially across firmware of different device vendors. Sec-

ond, finding ITSs requires reverse engineering not only Fn to model

the semantics (i.e., behaviors) of Fn, but also the other functions

to understand the interprocedural data and control dependencies

between Fn and the other functions. Third, firmware is usually

stripped of debug information and symbol tables, resulting in loss

of semantic information (e.g., names of variables and functions) and

further exacerbating the technical difficulty of understanding the

behaviors of Fn. Lastly, it is usually impossible to apply dynamic

analysis to find ITSs, because of vendor’s protective measures for

devices (such as hidden debug interfaces and non-public memory

mapping between firmware and hardware) which make it difficult

to obtain runtime information that characterizes the behaviors of

Fn.

Inferring ITSs. We infer ITSs by leveraging the aforementioned

observation on how user inputs are handled in Internet-connected

IoT devices. Our insight is that an ITS function should read memory

to fetch data, derive new data from the fetched data, and return the

new data via return value or pointers. Therefore, an ITS behaves

like a memory operation function. Considering there are various

standard library functions that operate memory such as strncpy,
memcmp, and strstr, we treat the implementation of these functions

as anchors and analyze the similarities between anchor functions

and custom functions to identify ITSs. Note that we aim to measure

the similarity between anchors and a custom function in terms
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fn14/init_web

fn13/websOpenServer fn15/websDataHandlers

fn12/websOpenListen fn16/websGetVar fn17/websDataProcessor

fn11/socketOpenConnection fn10/webAccept sprintf

fn9/websAlloc fn8/createHandler fn7/websSocketEvent

fn4/socketGets fn5/websGetInput fn6/websReadEvent

fn3/socketRead

fn2/length fn1/socketGetInput

fn0/socketPtr recv

recv
fn16
sprintf

(a) An example of function call graph for dangerous data be-
tween recv and sprintf.

char *fn16(char* index , char* src_addr , int length) {

if (index) {

int v1 = strlen(index);

int i = 0;

while (i < length) {

if (!*( src_addr + i)) return -1;

if (! strncmp(index , src_addr + i, v1)) break;

i++;

}

if (i < length) {

int v2 = strlen (*( src_addr + i));

char* v3 = (char*) malloc(v1 + v2);

if (!v3) return -1;

memcpy(v3, arg1 , v2);

memcpy (&v3[v1], arg2 + i, v2);

return v3; // used later by other functions
}

}

return 0;

}

(b) An example of intermediate taint sources.

Figure 1: Typical user input propagation process in an Internet-connected IoT device, reverse-engineered from the firmware of

NETGEAR R7000P and manually cleaned for readability.

of behaviors but not code self; thus our work is different from

the existing techniques that measure binary code similarity [17,

21, 34, 58]. Moreover, due to the difficulty of obtaining runtime

information from embedded devices and the low coverage problem

of dynamic analysis, we apply static analysis to extract structural

and flow features to describe the static and dynamic properties of

functions.

This paper proposes FITS (inFerring IntermediateTaint Sources),

a novel methodology to identify ITSs by extracting a descriptive

feature vector from each function and adopting a multi-stage strat-

egy to compare behavioral similarities between custom and anchor

functions. Specifically, FITS first identifies a set of binaries in the

firmware that export network services and converts these binaries

into an intermediate language to facilitate analysis. Then, FITS per-

forms reaching definition analysis and call site analysis based on the

control flow graph and call graph generated by under-constrained

symbolic execution [41] to extract structural and flow features for

each function. To reduce the false positives due to the order of mag-

nitude difference in feature dimensions, FITS clusters all custom

functions based on their feature vectors, and only selects functions

in the class with high complexity as candidates. Finally, FITS uses

the cosine distance to calculate the similarity between the candi-

dates and the anchor functions to rank the functions that are likely

to be ITSs.

We evaluated FITS on 59 real-world firmware from 5 popular

vendors. The results show that FITS successfully found at least one

ITS in each firmware with the top-3 precision of 89%. To illustrate

that ITSs are beneficial for finding vulnerabilities, we added ITSs to

the state-of-the-art taint analysis engine Karonte [44]. Compared

to the vanilla Karonte, 15 more bugs were found with the help of

ITSs. Furthermore, since the symbolic execution technique limits

Karonte’s analysis efficacy, we implemented a static taint analysis

engine. ITSs helped the static engine find 339 more bugs. As of

now, 67 of the 141 bugs found in the latest firmware have been

confirmed by the vendors, and 21 of them have been awarded

CVE IDs. The severity of these vulnerabilities is rated high by

the National Vulnerability Database (the CVSS score greater than

7.2) [16], allowing hackers to launch remote attacks on devices such

as denial of service and remote code execution.

Contributions. We make the following major contributions.

• We propose a novel concept of intermediate taint sources

(ITSs) to tackle the challenges of performing effective taint

analysis on stripped firmware of Internet-connected IoT de-

vices.

• We propose the first methodology FITS to automatically, ac-

curately discover ITSs from stripped firmware. FITS includes

two major components: a novel behavior feature represen-

tation to summarize the static and dynamic properties of

functions, and a multi-stage strategy for measuring behav-

ioral similarity to infer ITSs.

• Our comprehensive evaluations on 59 real-world firmware

demonstrate the effectiveness of FITS in inferring ITSs with

the top-3 precision of 89%. More importantly, ITSs signifi-

cantly boosted the performance of taint analysis and helped

the static engine find 339 more bugs, 21 of which were

awarded CVE IDs and rated high severity.

2 MOTIVATION

Figure 1 shows how an ITS helps improve the efficacy and effi-

ciency of taint analysis [9, 12, 44] to find vulnerabilities in stripped

firmware of Internet-connected embedded devices. As mentioned in

§1, such embedded devices have more functionalities and are more

vulnerable to cyberattacks than other devices that do not directly

access the Internet [38, 51]. However, the task of identifying vul-

nerabilities in the firmware of embedded devices is challenging due

to the intricate implementation that varies across different vendors.

Furthermore, the firmware is typically stripped down and highly
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char *strcpy(char *strDest , const char *strSrc) {

...

char *address = strDest;

while ((* strDest ++ = * strSrc ++) != '/0') NULL;

...

}

int memcmp(const void *str1 , const void *str2 , int count){

...

while (--count && *(char *)str1 == *(char *)str2){

str1 = (char *)str1 + 1;

str2 = (char *)str2 + 1;

}

return (*(( char *)str1) - *(( char *)str2 ));

}

char *strstr(const char *haystack , const char *needle ){

char *s1, *s2, *cp = (char *) haystack;

...

while (*cp){

s1 = cp;

s2 = (char *) needle;

while (*s2 && !(*s1 - *s2)) s1++, s2++;

if (!*s2) return(cp);

cp++;

}

...

}

Figure 2: Examples of anchor functions.

optimized, lacking debug information and presenting difficulties in

analysis.

Figure 1a shows the call graph of the workflow of processing

user input from the web server, reverse-engineered from NETGEAR

R7000P.2 The function fn14 starts the web service as a daemon.

When the interface library function recv, called in fn1, receives
a user request, all the user data in the request after the format

check is saved to a global variable for subsequent use. The function

fn15 calls fn16 to extract certain user data fields from the global

variable, e.g., extracting the user name and password for login

authentication. Then fn15 calls the corresponding data processor
(i.e., fn17 in Figure 1a) to execute the extracted data to complete

the login authentication.

CTS. Prior work [9, 12, 44] marks interface library functions that

receive user data as taint sources (e.g., recv), referred to as CTSs. It
is easy to identify such library functions even in stripped firmware

thanks to the ubiquitous use of dynamic linking of libraries. How-

ever, the major problem with CTSs is the difficulty of computing

the data flow from CTSs to sinks. For example, there is a dangerous

data flow from recv to sprintf in Figure 1a, which is difficult to

identify for the following reasons. First, the functionalities provided

by Internet-connected IoT devices require large, complex imple-

mentation that inevitably involves numerous function calls and

conditional branches, leading to scalability issues, such as large

memory overhead and path explosion, that challenge the state-of-

the-art data flow analysis. Second, the names and types of variables

and functions are not available in the stripped binary, which further

complicates data flow analysis. The various forms and granularities

of data sharing, including global variables, pointers, arrays, and

I/O addresses, make alias analysis ineffective in identifying data

sharing [10, 53]. Third, indirect function calls via function pointers

2The call graph is significantly simplified for illustration purpose. At the same time, we
add easy-to-understand function names that do not exist during the reverse process,
except for recv and sprintf.

or jump tables further leads to the interruption of data flow. The

value set analysis and its evolution technique are proposed to miti-

gate these problems [1, 5, 33]. However, the significant overhead

and low precision of these techniques hinder their applications in

analyzing real-world programs [64]. Therefore, the data flow in the

firmware cannot be effectively analyzed with CTSs, resulting in a

high number of false negatives.

ITS. An ITS is a custom function (not a library function) that

extracts a part of the user input and passes out the result via return

values, pointers, global variables, etc.. ITSs can be used to mitigate

the aforementioned problems of the CTSs. This new type of taint

sources is inspired by our key observation of how developers han-

dle user input obtained from the CTSs in Internet-connected IoT

firmware. Concretely, such user input is usually a structure con-

sisting of multiple fields. For example, an HTTP request to an IoT

device may include a user name and a password for authentication.

The input is stored in the heap, and when a field in the input is

required, a custom function extracts the required field from the

input, and returns the extracted user data. Such a custom function

is regarded as an ITS, and we strongly believe that the ITS is a good

alternative of the CTS, because it is more adjacent to the sink than

the CTS, facilitating data flow analysis. The function fn16 is an

ITS. Figure 1b shows the reverse-engineered, simplified decompiled

code of fn16. If fn16 is used as a taint source, the difficulty of

computing the data flow from recv to sprintf can be significantly

reduced. In Figure 1b, fn16 fetches the data at the src_addr ac-

cording to the index and returns the data. The src_addr stores the
data obtained by recv. The return value is used by sprintf and

stored into another variable. An overflow bug occurs if the length

of the return value from calling fn16 is not checked and exceeds

the size of the variable buffer.

Inferring ITSs. The ITS inference for stripped binaries of firmware

is a brand new endeavor. Unlike prior work of inferring taint

sources from Java bytecode [42], our technique FITS has to deal with

stripped binaries that do not have sufficient semantic information

(e.g., names of variables and functions). To tackle this challenge of

missing semantic information, we propose a multi-stage, similarity-

based approach to automatically and accurately identify ITSs: our

key insight is that ITSs should be similar to the library functions

that operate memory (i.e., anchor functions in this paper) due to the

aforementioned characteristics of ITSs. For example, the ITS fn16
is behaviorally similar to the three anchor functions in Figure 2:

taking arguments which include pointers and values of scalar types,

processing the memory with the arguments, and returning the re-

sult via a return value or a pointer. Note that we use anchors to

identify custom functions that exhibit similar patterns of memory

operations, and the goal is not to identify custom functions that

are behaviorally equivalent to the anchor functions.

3 METHODOLOGY

3.1 System Overview

Figure 3 shows the overall workflow of FITS, consisting of the

following three stages.

1 Pre-processing Firmware. This stage unpacks the firmware to

obtain the binaries and selects the binaries containing the network

interface as the analysis target, because network communication
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Figure 3: Workflow of FITS.

is a major source of cyber threats to IoT devices. Then, we find all

libraries on which the selected binaries depend. At the same time,

we identify library functions with memory operation behavior as

anchor functions by standard library function names. Finally, the

selected binaries and dependency libraries are converted to inter-

mediate language (IR) to facilitate later analysis. Implementation

details are available in §3.4.

2 Representing Function Behaviors. To infer ITSs, we need

to analyze the behavioral characteristics of each custom and an-

chor function. To this end, this stage builds a feature vector to

represent the behavior of functions. However, building the function

behavioral representation for stripped binaries is challenging due

to missing semantic information and there is no prior work yet. To

tackle this challenge, we design a novel feature representation of

functions, called Behavioral Feature Vector (BFV). A BFV includes

two categories of features:

• structure features (SF) to represent the static properties of

a function, e.g., the number of basic blocks, the existence of

loops.

• flow features (FF) to represent the dynamic properties of a

function, e.g., whether the function parameter controls loop

or branch.

Table 1 lists the details of the features used in FITS. To compute these

features, we leverage the under-constrained symbolic execution

(UCSE) [41] technique to generate control flow graph (CFG) and

call graph (CG) for each function. First, we perform graph analysis

on the CFG and CG of the function under analysis (Fn) to extract

structural features. Second, we apply reaching definition data flow

analysis to the CFG of Fn to understand how the parameters of Fn

affect its branches or loops to extract intraprocedural flow features.

Third, for interprocedural flow features, we analyze the function

calls to Fn, and backtrack through the memory structure to find

the origins of the arguments. The BFVs of custom functions and

anchor functions constitute the behavioral representation (BR) for

further analysis.

3 Inferring Intermediate Taint Sources. This stage scores

the behavioral similarity between custom functions and anchor

functions to infer ITSs. However, scoring custom functions directly

may lead to false positives due to the order of magnitude differences

in feature dimensions. To this end, we first perform cluster analysis

on all custom functions, and screen candidate custom functions by

Table 1: Features used in FITS.

Category Feature Name

Structural

Feature

(SF)

1. number of basic blocks

2. existence of loops

3. number of callers

4. number of parameters

5. number of call anchor functions

6. number of call library functions

Flow

Feature

(FF)

7. whether parameters control loops

8. whether parameters control conditional branches

9. whether parameters passed to anchor functions

10. whether arguments contain strings

11. number of different strings in all call sites

Algorithm 1: Compute behavioral representations.

Input: Bin: the binary under analysis

Input: Libs: the dependency libraries of Bin

Output: BR: the dictionary containing all functions BFV

1 for each function Fn in Bin do

2 cfgFn, cgFn ← UCSE-based analysis on Bin, Libs, and Fn

3 for each function Fn in Bin do

4 Initialize SF, FFintra, FFinter lists with zero or False

5 SF ← structural analysis on cfgFn and cgFn

6 vars, params ← identify key vars and params in cfgFn

7 rdefs ← reaching definition analysis on cfgFn and params

8 FFintra ← use vars to match rdefs

9 for each caller in Fn do

10 argscaller ← call site analysis on cfgcaller and Fn

11 strscaller ← backtrack memory on cfgcaller and args

12 FFinter ← analysis strscaller of each caller

// The operator + represents the operation of list concatenation.

13 BFV ← SF + FFintra + FFinter

14 BR[Fn] = BFV

15 return BR

statistical characteristics of classes. In this way, some functions that

may lead to false positives are discarded. Finally, each ITS candidate

is scored with the anchor functions to infer ITSs.

3.2 Function Behavior Representation

We propose BFV to capture the behavioral characteristics of func-

tions to identify ITSs. Function behavior is generally reflected in

static and dynamic properties. Function static properties, such as

the number of basic blocks and the existence of loops, do not change

w.r.t. function input. Dynamic properties mainly refer to the process

of processing input at runtime by a function such as whether the

input affects branches. The difficulty of extracting these proper-

ties varies. We divide them into structural features (SF) and flow

features (FF) for extraction. The overall algorithm for behavior

representation extraction is shown in Algorithm 1.

Structural Features. For a function, structural features include

the number of basic blocks, the existence of loops, etc.. These

features can be obtained by statically analyzing the CFG of Fn.

Symbolic execution can build accurate CFGs (e.g., path-sensitve,
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Table 2: Backtracking principle.

IR expression Description

PUT(𝑟𝑖 ) = 𝑡𝑖 or constant Assign 𝑡𝑖/𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 to 𝑟𝑖
𝑡𝑖 = GET(𝑟 𝑗 ) Assign the value from 𝑟 𝑗 to 𝑡𝑖

𝑡𝑖 = Binop(𝑡𝑛, 𝑡𝑚 𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)
Assign the calculation result of 𝑡𝑛 and

𝑡𝑚/𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 to 𝑡𝑖
𝑡𝑖 = Load(𝑡 𝑗 ) Assign the value loaded from 𝑡 𝑗 to 𝑡𝑖
Store(𝑡 𝑗 ) = 𝑡𝑖 Store 𝑡𝑖 to the memory at 𝑡 𝑗

context-sensitive, object-sensitive), but face the problem of un-

tractable memory overhead and path explosion. To this end, we

perform CFG generation based on UCSE, starting the analysis from

the entry point of Fn. Then, structural features can be obtained by

analyzing the generated CFG.

Intraprocedural Flow Features. Intraprocedural features re-

fer to the relationship between variables of loop control, branch

control, memory operation library function and Fn parameters. To

understand the relationship, we apply reaching definition data flow

analysis to the CFG of Fn. Specifically, we first find out all variables

in Fn, which control loops or branches, or are passed as arguments

to anchor functions. Then, all locations where parameters are used

are identified and labeled as defaddr. At the same time, reaching

definition analysis is performed based on defaddr set to form the

data dependency graph (DDG). In this way, the processing logic of

function parameters can be expressed abstractly. Finally, we ana-

lyze whether the parameters of Fn are related to variables of loop

control, branch control, and memory anchor functions according

to DDG.

Interprocedural Flow Features. Interprocedural features refer

to whether the arguments contain a string when the Fn is the callee.

Concretely, since the network communication data is structured,

user input is usually stored in the memory in the form of keywords

combined with user input [44]. When some user input needs to be

processed, keywords, such as username and password, are used as

indexes to obtain the corresponding part of the user input. There-

fore, it is reasonable to treat the arguments of Fn with strings as

interprocedural flow features.

However, diverse addressing modes and the loss of variable types

pose challenges to determine whether an argument is a string. To

this end, we perform call site analysis based on the CFG of the caller

of Fn and backtrack according to memory structures. First, we

recursively collect all program points that call Fn, and the registers

that store the arguments. Then, we follow the principle shown

in the Table 2 to track the register backward and end up when

the register can be represented with a constant. The r in the table

represents a register, and the t represents a temporary variable.

Next, we analyze the constant and retain the constant that refers to

an address in the program. Here we denote it as PT. If PT points to

the read-only section (i.e., rodata) in the program, we can infer that

the argument type is a string. In some cases, strings are generated

dynamically during program execution, so they are stored in the

data section. The reference method of these strings is similar to

global offset table [52], which provides an intermediate table to

store the pointers to these strings. Thus, if PT points to data section,
we retrieve the content pointed by PT, and denote it as MT. If MT

Algorithm 2: Infer intermediate taint sources.

Input: BR: the dictionary containing all functions BFV

Output: Rank: the rank of custom functions as ITSs

1 candidates ← ∅

2 classes ← cluster analysis on BR[custom function]

3 for each class in classes do

4 Cclass ← calculate the complexity of the class

5 Caverage ← compute the average complexity of all classes

6 for each class in classes do

7 if Cclass > Caverage then

8 candidates ← candidates ∪ {functions in class}

9 for each function Fn ∈ candidates do

10 SFn ← score BR[Fn] based on BR[anchor function]

11 Rank← sort functions according to SFn

12 return Rank

also refers to an address, we further acquire the content point by

MT. This content usually contains some hint strings to wait for the

runtime to populate.

AnExample. We use fn16 in Figure 1b as an example to illustrate

the BFV composition. We assume that fn16 is called in two places

i.e.,

• fn16("User_Name", *((const char**) v1, 10)
• fn16(v2, *((const char**) v1, 20)

where v1 points to uninitialized memory and v2 points to a string.

In the order of the feature names shown in Table 1, the BFV of fn16
is computed as [17,True,2,3,5,6,True,True,True,True,2].

3.3 Intermediate Taint Source Inference

To infer ITSs, we score BFV of a custom function by measuring its

similarity with that of anchor functions. The BFV is more similar

to that of anchor functions, the custom function is more likely

to be an ITS. But before scoring stage, we need to first cluster

the custom functions based on BFV and select candidate custom

functions, otherwise many false positives would be introduced due

to the order of magnitude difference in feature dimensions. For

example, the error output function takes a string representing the

error message as input, and processes it based on the content of

the string, which is somewhat similar to the anchor function. The

number of anchor functions called by the error output function is

less than that of the ITS, but the number of called of the error output

functions is far more than that of the ITS. So the number of calls

dominate the score. However, feature processing operations, such as

dimensionality reduction or normalization, affect the fidelity of the

data. Moreover, the features that dominate the results in different

binaries are not fixed, which makes it difficult to use weights to

solve this problem universally. To this end, we adopt clustering idea

to weaken the individual features of a function and filter out false

positives through the statistical features of the class.

Behavior Clustering. To cluster functions based on their BFVs,

we use a classic unsupervised learning algorithm calledDBSACN [54].

Here we follow an assumption that memory operation functions

have relatively complex behavior, which is reflected in the complex-

ity of the function implementation [43]. Therefore, we calculate
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the complexity of each class and then filter out classes that have

less complexity. The complexity calculation of a function utilizes

the number of basic blocks (bb), calls from the parent (caller), calls

to library functions (lib), and calls to anchor functions (anchor)

as shown in eq. (1). The N is the number of custom functions in

the class. Normalization of each dimension by the maximum value

is performed at the calculation time. When the complexity of a

class (Cclass) is greater than the average (Caverage) of all classes, the

functions in the class are used as candidate functions for the next

step of scoring. The reduction of false positives is achieved in this

way, which is evaluated in §4.5.

Cclass =

𝑖=𝑁∑

𝑖=0
[bbi + calleri + libi + anchori]

N

(1)

Behavior Scoring. According to the anchor functions, we score

each candidate custom function to identify ITSs. To eliminate biases

introduced by certain features, we use cosine distance to determine

the similarity of feature representations. Cosine distance measures

similarity using vector angles, prioritizing relative differences over

absolute differences in values. Moreover, the cosine distance main-

tains better stability in high-dimensional space than other methods.

The BFVs of anchor functions are formed into a matrix for candi-
date custom functions scoring. The behavioral similarity score of

Fn is obtained by calculating the distance from the matrix as shown

in eq. (2). The N represents the number of anchor functions. The

vstack represents the concatenation of a vector and a matrix. Ulti-

mately, functions with high ratings are more likely to be considered

as ITSs.

SFn =

𝑗=𝑁∑

𝑖=0, 𝑗=1
[1 − cosine(vstack( [BR[Fn],Matrix]))]𝑖, 𝑗

N

(2)

3.4 Implementation

FITS. FITS is implemented in Python. Unpacking firmware is

implemented based on Binwalk [46] to extract the filesystem from

firmware. For firmware using private encoding or encryption, FITS

decrypts the firmware according to the magic byte of the file header

and then unpacks it [19]. After obtaining the filesystem, FITS se-

lects the network binary for further analysis based on PIE [14]. At

the same time, the dependent libraries are determined according

to the dynamic section in the header of the network binary. Based

on BootStomp [43], anchor functions are determined by matching

standard library function names in the dynamic link library. In the

following program analysis, the binary and libraries are disassem-

bled and converted to VEX intermediate language [40]. Based on

Angr [59], we extract the CFG and CG of the functions and analyze

the data flow and control flow to achieve the extraction of BFV.

After obtaining the function behavior representation, we utilize

scikit-learn [48] to perform the similarity between custom functions

and anchor functions, thereby ranking ITSs. This approach enables

FITS to perform scalable and semantic-agnostic ITS inference

Static Taint Analysis Engine (STA). We implemented a static

taint analysis engine (STA) to find bugs in embedded device firmware.

Given taint sources, together with sinks to identify all vulnerable

data flow on the CFG and CG is equivalent to computing the reach-

ability subgraph starting from the taint sources ending at the sinks.

To accomplish this, we used IDA Pro [26] to disassemble the binary

and generate its CFG and CG, which we then converted to VEX in-

termediate language. Data flow analysis starts from the designated

taint sources, with the return value or parameter register of differ-

ent taint source call sites marked with unique taint labels. Taint

analysis involves tracking data dependencies and sanitizing taint

labels (similar to the sanitizing setting of Karonte [44]), for instance,

copying constants to tainted memory. To detect vulnerabilities, STA

set sinks by matching library function names to identify two types

of vulnerabilities, namely buffer overflow (e.g., strncpy, sprintf,
strncat) and command hijacking (e.g., system, execve).

4 EVALUATION

We designed the evaluations of FITS to answer the four research

questions below:

RQ1: Efficacy of FITS in inferring ITSs.

RQ2: Efficacy of ITSs in detecting vulnerabilities.

RQ3: Efficacy of BFV in inferring ITSs.

RQ4: Efficacy of the multi-stage strategy in inferring ITSs.

4.1 Evaluation Setup

Dataset. We evaluated FITS on 59 real-world firmware sam-

ples, encompassing both the Karonte dataset [44] and new version

firmware samples. The inclusion of the new version firmware sam-

ples aims to demonstrate FITS’s capability to detect 0-day vulnera-

bilities, as vendors do not accept proof-of-concept (PoC) of bugs for

outdated products. The samples were obtained from well-known

IoT vendors, such as NETGEAR, D-Link, and TP-Link, covering

WIFI routers, access points, and gateways, featuring firmware ar-

chitecture that includes ARM, AARCH64, and MIPS.

Baseline. To answer the proposed research questions, we select

different baselines as follows.

• RQ1: We choose BootStomp [43], which utilizes a heuristic-

based taint source inference module on stripped bootloaders,

as a contrast of FITS to illustrate the efficacy of ITS inference.

SUSI [42] is not selected as the baseline due to its reliance on

semantic information, such as function and variable names,

for taint source inference, which is not applicable to stripped

firmware.

• RQ2: We integrate ITSs into two taint analysis engines:

Karonte [44] and STA (implemented in §3.4). The efficacy of

ITSs in detecting vulnerabilities is demonstrated by compar-

ing the results of taint analysis using only CTSs.

• RQ3: We analyze the composition of BFV and compare BFV

with the state-of-the-art binary code representations to illus-

trate the efficacy of BFV in inferring ITSs. Firstly, we perform

the ablation study of BFV with different feature combina-

tions. Then, we compare BFV with two prominent binary

code representations: Augmented-CFG of NERO [17] and

Attributed-CFG of Gemini [58]. These two representations

have achieved good results in function summarization and

code similarity analysis in stripped binaries.

• RQ4: We evaluate the behavioral clustering and scoring

stages independently. To demonstrate the efficacy of clus-

tering, we remove the stage and replace the stage with di-

mensionality reduction [45] and data preprocessing [15] for
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comparison. Regarding the behavior scoring stage, we ex-

periment with other similarity distance calculation methods,

including Euclidean distance [55], Manhattan distance [56]

and Pearson correlation coefficient [57], to compare the effi-

cacy of Cosine distance.

Verifying Inferred ITSs and Identifying Taint Origins. We

manually verify whether the inferred results of FITS can be used

as ITSs, and if so, the register or global variable storing fetched

unsanitized user data is regarded as the taint origin. The verification

is challenging because it requires a deep understanding of how user

input is processed in closed-source, stripped, optimized firmware.

To tackle this challenge, we use totally three different verification

methods for different firmware-specific circumstances: firmware

rehosting, real device debugging, and semantic information analysis.

More details on these methods are available in Appendix A. When

we use an ITS as a taint source for taint analysis, and we need to

specify the taint origin of this ITS. A taint origin is either a register

or a global variable that stores unsanitized user data produced by

the ITS. The identification of the taint origin is done during the

verification of the ITS in Appendix A. For example, the ITS function

fn16 in Figure 1b, its return value register is used as a taint origin,

and any data stored in the register is marked with a taint label.

Configurations. All experiments were performed on a Linux

workstation with an Intel Core i7-8750H CPU and 64G RAM.

4.2 Taint Source Inference (RQ1)

We applied FITS to the dataset for ITS inference. After getting

the ranking results of FITS, we need to verify whether a custom

function can be used as an ITS. As mentioned in §1, the ITS function

should extract and return a part of the user input. Therefore, we

adopt this criterion and methods in Appendix A to verify the ITSs

inferred by FITS.

Table 3 displays the top-1, top-2, and top-3 precision rates for in-

ferring ITSs in the firmware dataset using FITS. The top-𝑛 precision

indicates that the top 𝑛 results have at least one custom function

that can serve as an ITS. The top-3 precision of FITS attains 89%

on average across diverse firmware samples, which proves the

effectiveness and generality of FITS.

Out of the total firmware samples, only six firmware samples can-

not be successfully inferred by FITS. We further performed manual

analysis to investigate the reasons for the failure. The findings indi-

cate that four firmware samples could not locate the correct target

for analysis in the firmware pre-processing stage. The remaining

two were due to the fact that network data is directly stored in a

structure. The program uses the array offset to retrieve the data

in the subsequent processing. Such data processing is frequently

encountered in devices with simple designs. The relatively small

size of these programs allows taint analysis to commence from

interface library functions.

Table 4 presents the detailed inference results of firmware ran-

domly selected from different vendors. The results demonstrate that

ITSs are accurately inferred from a vast number of functions. As it is

impractical to gather all custom functions that can function as ITSs

from stripped firmware, we did not calculate the recall. According

to existing work [12], which manually analyzes the firmware to

determine the taint source, at most one or two custom functions in

Table 3: Statistics of ITS inference results.

Dataset Vendor Series
#

Firmware
Top-1 Top-2 Top-3

Avg time

(hh:mm)

Karonte

Firmware

NETGEAR R/XR/WNR 17 71% 100% 100% 9:11

D-Link DIR/DWR/DCS 9 33% 33% 78% 0:37

TP-Link TD/WA/WR/TX/KC 16 36% 63% 81% 2:13

Tenda AC/WH/FH 7 43% 43% 86% 2:13

Latest

Firmware

NETGEAR R/WNR 2 100% 100% 100% 8:57

D-Link DIR/DAP 3 33% 33% 100% 0:25

TP-Link WR/AP 2 0% 0% 100% 1:21

Tenda AC/G 2 50% 50% 100% 1:25

Cisco RV 1 0% 0% 100% 10:27

Average - - - 47% 63% 89% 2:57

a binary may be the effective taint source. Moreover, it is impossi-

ble to duplicate functions that achieve the same purpose in terms

of the system development specification. We randomly selected

5 firmware samples from different vendors for analysis. After an-

alyzing each custom function, no other functions can be used as

ITSs.

Table 4: Partial ITS inference results.

Vendor Firmware Binary # Functions ITS addr. Ranking

NETGEAR R7800-V1.0.2.32 httpd 2207 0x19090 1

NETGEAR AC1450-V1.0.0.36 httpd 1540 0x1654c 2

NETGEAR R7000P-V1.3.0.8 httpd 2207 0x19090 1

NETGEAR R8900-V1.0.2.40 netcgi 1248 0x2a228 1

D-Link DIR826LA1_FW105B13 miniupnpd 456 0x412240 3

D-Link DAP1860A1_FW104B05 uhttpd 1280 0x417574 2

D-Link DIR1960A1_FW111B03 prog.cgi 1341 0x41be3c 1

TP-Link AP500(US)_V1_180320 httpd 1919 0x4ed64 1

TP-Link C2v1_0.9.1_5.0 httpd 268 0x404098 1

TP-Link W8968v4_un_1_0_5 httpd 1145 0x41b278 3

Tenda US_G3V3.0br_V15.11.0.6 httpd 1978 0x1c634 3

Tenda AC9V1.0BR_V15.03.05.14 httpd 1507 0x2b9fc 3

Tenda FH1201V1.0BR_V1.2.0.8 httpd 1142 0x432a84 1

Cisco RV130X_FW_1.0.3.55 httpd 1338 0x1d210 3

Table 3 shows that the average time taken by FITS to complete

firmware analysis is 2 hours and 57minutes.We further investigated

the binary properties that influence the analysis efficiency and

discovered that the number of functions and the file size of the

target binary have a strong positive correlation with the analysis

time. Specifically, we plotted the analysis time against the number

of functions and the binary size in Figure 4. The results illustrate

that the analysis time is positively correlated with both the number

of functions and the size of the target binary. The scattered points

on the figure imply that the analysis efficiency is also affected by

the data structure and function call relationships within the target

binary. Additionally, the majority of binaries comprise less than

800 functions with a size under 300KB, and can be analyzed in less

than one hour.

Comparison. We compared FITS with BootStomp, which has

a taint source inference module for stripped bootloaders. Since

the taint source inference module only supports ARM architecture

firmware and works as IDA Pro scripts, we evaluated BootStomp

on 33 ARM firmware samples in our dataset. The result shows

that BootStomp cannot find any taint source in these firmware

samples. This is because BootStomp relies on keyword matching

in strings processed by different functions, but the semantics of
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Table 5: Bug finding results.

Karonte Karonte-ITS STA STA-ITS

Dataset #

Alerts

#

Bugs

Avg time

(hh:mm)

#

Alerts

#

Bugs

Avg time

(hh:mm)

#

Alerts

#

Bugs

Avg time

(hh:mm)

#

Alerts

#

Bugs

Avg time

(hh:mm)

NETGEAR R/XR/WNR 17 36 23 17:13 39 26 17:21 165 15 0:04 168 132 0:06

D-Link DIR/DWR/DCS 9 24 15 14:09 29 18 14:58 19 15 0:02 42 22 0:03

TP-Link TD/WA/WR/TX/KC 16 2 2 1:30 2 2 2:11 0 0 0:03 17 11 0:05

Karonte

Firmware

Tenda AC/WH/FH 7 12 6 1:01 15 9 1:32 8 8 0:03 112 79 0:04

NETGEAR R/WNR 2 1 1 3:10 3 3 4:09 5 3 0:01 52 36 0:03

D-Link DIR/DAP 3 0 0 0:20 0 0 0:20 3 3 0:02 18 13 0:03

TP-Link WR/AP 2 0 0 7:02 2 1 6:57 0 0 0:01 13 8 0:02

Tenda AC/G 2 0 0 2:20 4 2 5:30 2 2 0:01 47 43 0:02

Latest

Firmware

Cisco RV 1 0 0 6:45 1 1 7:17 0 0 0:02 65 41 0:02

Total - - 59 73 47 - 95 62 - 202 46 - 534 385 -

Figure 4: Time overhead.

strings can vary or even be missing in different firmware, rendering

this approach ineffective.

Answer to RQ1: With an 89% top-3 precision rate and

an average analysis time of under three hours, FITS can

accurately infer ITSs. On the other hand, BootStomp failed

to identify any taint sources in the firmware dataset. The

results demonstrate the efficacy of FITS.

4.3 Vulnerability Discovery (RQ2)

We applied FITS to two taint analysis engines, Karonte and STA,

to demonstrate how ITSs help improve the vulnerability discovery

capability in firmware.

Determining Sinks. Following how Karonte identifies sinks, we

use risky library functions as sinks that can induce buffer overflow

vulnerabilities (e.g., strncpy, sprintf, strncat) or command hi-

jacking vulnerabilities (e.g., system, execve). Specifically, we scan
the binary instructions of the firmware, and find all function calls

that call any of the risky library functions; these function calls

are labeled as sinks. A taint analysis engine reports an alert if un-

sanitized user data flows to these sinks without sanitization. For

experiments with Karonte, we directly used Karonte’s own sink

identification method; in STA, we implemented the same logic to

identify sinks.

Karonte vs. Karonte-ITS. In our experiment, we implemented

Karonte-ITS by integrating the inferred ITSs from FITS to Karonte,

and then conducted taint analysis. Our results, as shown in Table 5,

demonstrate that Karonte-ITS identified 15 more distinct bugs (true

positives) than Karonte. Furthermore, all bugs detected by Karonte

were also detected by Karonte-ITS, indicating a lower false neg-

ative rate of Karonte-ITS than Karonte. These newly discovered

bugs are because with ITSs Karonte-ITS identified and analyzed

more data-flow paths between ITSs and sinks than those between

CTSs and sinks in Karonte. As shown in Table 6, Karonte-ITS has a

false positive rate of 34.7%, better than 35.6% of Karonte. Although

Karonte-ITS takes longer on average to analyze data flow due to

the increased number of taint sources involved, this additional

overhead is reasonable. Karonte’s taint engine relies on symbolic

execution, so as the number of data flow increases, the analysis

time also rises significantly. However, the average analysis time per

path is reduced by roughly 20% because the inferred ITSs by FITS

shorten the distance of some data flow.

Table 6: False positive rates of taint analysis techniques.

Karonte Karonte-ITS STA STA-ITS

35.6% 34.7% 77.2% 27.9%

Karonte vs. STA. Karonte has limitation in finding vulnerabil-

ities in firmware. The root cause is that its reliance on symbolic

execution, which requires the analysis time of each data flow to

be specified to prevent memory or path explosion. As a result, the

taint analysis of some data flow may be incomplete, and some bugs

may remain undetected in the firmware. To address this issue, we

developed a static taint analysis engine called STA (as described

§3.4). To setup STA, we used CTSs (consistent with Karonte) as taint

sources for analysis. Ultimately, STA issued 202 alerts, of which 46

were verified to be bugs, resulting in a false positive rate of 77.2%.

Compared to Karonte’s 35.6% false positive rate, the false positive

rate of STA increased due to the inaccuracy of data flow recovery,

especially in NETGEAR’s firmware. Nevertheless, STA found 9 bugs

that Karonte could not. This is because STA can perform more data

flow analysis that Karonte does not check due to time limitations

on data flow analysis. Even without the time limitations, Karonte
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would still be unable to find these bugs due to the problem of path

explosion.

STA vs. STA-ITS. Similarly, we set up STA-ITS by integrating

ITSs to STA. During the experiment, we discovered that ITSs not

only manipulated user data but also some system data (e.g., subnet

mask, MAC address, IP address), which leads to false positives.

Drawing on the idea of Karonte, we filtered out some false positives

by matching the relevant strings on the path that triggers the alerts.

After filtering out 69 false positives, STA-ITS issued 534 alerts, of

which 385 were confirmed as bugs. STA-ITS found 339 more bugs

than STA, including all bugs found by STA, showing fewer false

negatives of STA-ITS than STA. Compared to STA, due to the shorter

distance between taint sources and sinks, the difficulty of data flow

recovery is reduced and more true positives are found. As shown

in Table 6, the false positive rate of STA-ITS is 27.9%, significantly

lower than 77.2% of STA. The reduction in false positive rate is

also due to the shortened distance between taint sources and sinks,

which avoids analyzing long, complex data/control dependencies

and reporting infeasible code paths.

The discovered bugs are mainly caused by data being used di-

rectly for dangerous operations, such as memory copying with-

out sanitizing. We responsibly disclosed the 141 bugs of the latest

firmware samples to the corresponding vendor. As of now, 67 bugs

have been confirmed, and 21 of them have been awarded CVE IDs

due to their critical threat level.

Case Study. To illustrate the advantages of inferred ITSs in actual

taint analysis of firmware, we take the CVE-2022-20825 as an exam-

ple. The vulnerability exposes multiple devices to the risk of remote

unauthorized arbitrary code execution attacks, with the CVSS score

of 9.8, and has been reported by themedia due to its seriousness [27].

After conducting reverse analysis and dynamic debugging of the

firmware, we identified the library function BIO_read as the source
of dangerous data. Reaching the sink (strncpy) from BIO_read
requires at least 11 custom function calls and more than 50 library

function calls In real data flow analysis, this is more complicated by

the need to search through larger code paths, and the analysis also

involves alias analysis and at least three indirect calls. While value

set analysis [64] and symbolic execution [44] can alleviate these

problems, they may introduce many false negatives and significant

analysis overhead. For example, without limiting the analysis time,

Karonte can only analyze function calls with a depth of 4 after

24 hours. Moreover, the problem of memory and path explosion

makes it challenging to continue the analysis. However, using the

ITS 0x1d210 as the starting point for analysis requires only 2 func-

tion calls to reach the sink, greatly reducing the data flow analysis

overhead and difficulty.

Answer to RQ2: The ITSs inferred by FITS can help taint

analysis engine find more bugs with fewer false positives.

By integrating ITSs to the static taint analysis engine STA,

339 more bugs were found, 21 of which were awarded CVE

IDs and rated high severity.

Figure 5: BFV compared with other representations that can-

cel one-dimensional features.

4.4 Efficacy of the BFV Representation (RQ3)

To evaluate the efficacy of BFV, we first perform ablation study of

BFV, and then compare BFV with the state-of-the-art binary code

representations.

Ablation Study. To assess the necessity and importance of differ-

ent features that comprise the BFV, we created 11 variants of BFV,

and each variant is a 10-dimensional feature representation for ITSs

inference by removing one feature from BFV. For example, after

removing the first feature in Table 1, the representation consisting

of the remaining features is referred to as CF-1 (short for Cancel
Feature-1). Figure 5 shows the results of this ablation study: BFV

outperforms all other feature representations in terms of top-1 to

top-3 precision. In other words, each feature in BFV is necessary,

important and contributes positively to the inference precision of

FITS. For example, the data of CF-3 in Figure 5 shows that without

the feature "number of callers", the top-1 and top-2 precision of

FITS drops to zero.

To illustrate whether a single feature is sufficient to infer ITSs, we

perform ITS inference based on each individual feature in Table 1.

For numerical features, we took the top-3 results for verification.

The results show that only the "number of callers" feature con-

tributes to infer ITSs, and the top-3 achieved a precision rate of

21%. For boolean features, we analyzed the custom functions cor-

responding to the feature value true. However, the results show
that it is challenging or even meaningless to verify functions that

match a certain feature as ITSs. For example, when using only the

"whether parameters passed to anchor functions" feature, the aver-

age number of functions matching this feature in a binary is 105,

and the maximum number reaches 349. We have to analyze such

a large number of functions to find possibly one or two ITSs. In

addition, this method increases the false negative rate of ITSs. For

example, for the feature "whether parameters control conditional

branches", the correct ITSs were distributed in both false or true
results.
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Table 7: Inference results based on different representations.

Augmented-CFG Attributed-CFG BFV

Top-1 0% 0% 47%

Top-2 5% 0% 63%

Top-3 10% 1% 89%

Comparison with Other Binary Code Representations. To

further evaluate the effectiveness of BFV, we compared it with

other representations in binary code summarization and similarity

analysis, including Augmented-CFG and Attributed-CFG. Table 7

shows that ITS inference with BFV achieves 89% top-3 precision,

while ITS inference with Augmented-CFG and Attributed-CFG only

has less than 10% top-3 precision. We further investigated the poor

performance of existing code representations in inferring ITS and

summarized the following two reasons: (i) they only focus on code

structure features, which are helpful for identifying similarities in

the code-level but are insufficient for identifying behavior-level.

(ii) their similarity recognition methods rely on a large amount of

labeled data and complex network structures, which are not suitable

for unsupervised learning. Based on the comparison results, we

conclude that BFV can better represent the behavioral features of

functions by extracting structural features and flow features.

Answer to RQ3: BFV-based ITS inference outperforms

other subset feature combinations, indicating that various

BFV features are necessary for ITS inference. Moreover,

compared to Augmented-CFG and Attributed-CFG, ITS in-

ference using BFV can achieve higher precision in stripped

embedded firmware.

4.5 Efficacy of Inference Strategy (RQ4)

To illustrate the necessity of the behavior clustering stage in ITS

inference. We used anchor functions to score custom functions

directly. In 59 firmware samples top-1, top-2 and top-3 precision are

about 5%, 5%, and 7% respectively. We analyzed the results obtained

by inference and found that the top-ranked functions are often

dominated by a certain dimension feature, such as the number of

calls and basic blocks. The dominant features in different firmware

are different. For comparison, we also processed BFV using principal

component analysis, standardization, and normalization before

scoring. Based on them, the top-3 precision values are no more

than 10%. In addition, we further analyzed whether cluster-based

filtering introduces false negatives. By manually inspecting the

filtered functions, we found that they cannot be ITSs.

Table 8: Inference results based on different scoringmethods.

Euclidean Manhattan Pearson Cosine

Top-1 15% 20% 34% 47%

Top-2 25% 25% 50% 63%

Top-3 49% 44% 57% 89%

To demonstrate the performance of scoring with Cosine distance,

we compared it with other distance metrics, including Euclidean

distance, Manhattan distance, and Pearson correlation coefficient.

Table 8 presents the precision of inference results based on different

methods. We can find that Cosine distance is more suitable for

capturing the relative distance of vectors in high dimensional space.

Answer to RQ4: The clustering stage effectively reduces

the false positives caused by the feature dimensions on

the score. Moreover, Cosine distance is more suitable for

scoring than other similarity algorithms.

5 DISCUSSION

IoT Devices. The IoT devices evaluated by FITS are directly con-

nected to the Internet. However, there are many other types of IoT

devices, such as smart plugs, smart cleaning robots, programmable

logic controllers, which work in local area networks. These devices

use Zigbee, Bluetooth, Can Bus and other proximity communica-

tion protocols to complete cooperation. These devices typically

have high real-time requirements or a simple functional design.

FITS does not infer an effective ITS to aid in taint analysis for these

devices. The reasons are as follows: First, the program processing

logic and data indexing are simple to ensure real-time performance.

Functions directly read data in global variables using offsets or ob-

tain data through a fixed memory address, eliminating the need for

an additional function to serve as the data index. Second, the com-

munication protocols have the fixed formats, simple field designs,

and limited functionality. When processing communication data,

the function relies on the instruction format, i.e., it directly retrieves

the corresponding field data using offsets for processing without

indexing. Despite the absence of an ITS, the relatively small size and

simple implementation of these devices’ programs make it feasible

to perform analysis from classical taint sources to sinks [43].

Firmware Unpacking. As threats to IoT devices increase, ven-

dors have recognized that firmware distribution is one of the critical

reasons for security breaches. To protect their intellectual property

from reverse engineering attacks, some vendors encrypt or encode

their firmware. However, these measures also limit the security

analysis of firmware by third-party testers. While this paper miti-

gates popular encrypted firmware, vendors can easily release new

firmware versions by replacing algorithms, keys, and salts, which

limits the capability of FITS. Nevertheless, if vendors use FITS, it

can help discover vulnerabilities. Additionally, community enthusi-

asts or research work publish new firmware unpacking methods to

facilitate analysis [19, 39].

Application. Third-party security analysis for stripped binary

is a common application scenario [23–25, 28, 37, 44, 47, 63], given

that third-party security researchers often lack access to the source

code of target applications. Therefore, the primary aim of FITS is

to assist these researchers in effectively detecting vulnerabilities in

stripped binaries. However, vendors who have access to the source

code can leverage more semantic information, such as function

names, to improve the performance of FITS. ITSs can help find

more vulnerabilities than CTSs and reduce the analysis time of

large-scale code. Apart from taint source identification, we find
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that high-scoring custom functions tend to have sensitive opera-

tions, such as file writing and operation selection. These functions

cannot be used as taint sources, but analyzing these functions first

is more conducive to sorting out the code logic, rather than aim-

lessly analyzing from the main function. Moreover, FITS can assist

in analyzing malware, which is the stripped binary. For example,

malware often requires the control of remote or local instructions

to trigger malicious behavior. High-scoring functions help detect

critical operations in malware.

Vulnerability Mitigation. There are techniques to mitigate vul-

nerabilities, but they cannot completely avoid vulnerabilities. First,

code-level vulnerability mitigation techniques, such as replacing

unsafe library functions with safer library functions with boundary

checks (e.g., replacing strcpy with strncpy), are not effective for
all types of vulnerabilities [6]. For example, there is no general

mitigation method for command hijacking vulnerabilities; we need

to add a domain-specific sanitizer to sanitize the command from

user input. Even with the safer library functions, developers can

still make mistakes and introduce vulnerabilities. For example, the

case study in §4.3, the CVE-2022-20825 is induced by a function

call to strncpy. Second, system-level vulnerability mitigation tech-

niques, such as Address Space Layout Randomization (ASLR) and

No-EXecute (NX), have performance overhead issues that make

them impractical for some application scenarios such as the IoT

devices [62]. On the other hand, testing—an effective vulnerability

mitigation technique—can complement the mitigation techniques

above [49]. Taint analysis is such a static testing technique, and

ITSs improve taint analysis in efficacy and efficiency of finding

vulnerabilities in stripped binaries. Especially, ITSs have found vul-

nerabilities that cannot be mitigated by either the code-level or

system-level mitigation techniques.

6 RELATEDWORK

6.1 Taint Source Inference

Effective taint analysis depends on identifying the appropriate taint

source. However, stripped binaries lack the high-level semantics

available in Java programs that can aid in determining taint sources.

While methods like SUSI [42] can assist in identifying taint sources

in Java, they are not suitable for firmware, as their debug infor-

mation is often stripped and cannot rely on semantic information.

Nero [17], Debin [24], and Nomine [4] attempt to restore or re-

name the semantic information of stripped binaries. However, these

methods cannot be used in real programs due to the limitation of

dataset size, program size and accuracy rate, making them unsuit-

able for real programs. Existing taint analysis efforts for firmware

rely on manual work [12] or heuristic rules [9, 11, 43, 44], limiting

the performance of taint analysis in firmware. The FITS approach

overcomes these limitations by enabling semantic-agnostic ITSs

inference through the analysis of function behavioral similarity

and the scoring of custom functions with anchor functions. This

approach significantly improves the performance of firmware taint

analysis.

6.2 Binary Similarity Analysis

Binary similarity analysis techniques [18, 21, 34, 58, 60] have shown

promising results in vulnerability association and patch identifi-

cation, as they use lexical and syntactic analysis in combination

with deep learning to determine the similarity between functions.

These techniques primarily address code-level nuances introduced

by architecture, compiler, and compilation optimizations. However,

for taint source inference, functions that behave similarly may

have completely different code-level implementations. Moreover,

existing similarity analysis techniques require a sufficient number

of labeled samples, which is unattainable for heterogeneous and

closed-source firmware. To this end, FITS extracts structure and

flow features through program analysis to characterize the static

and dynamic properties of functions. It then measures the feature

representation to identify functions that behave similarly, making

it an effective approach for inferring ITSs in stripped firmware

binaries.

6.3 Firmware Vulnerability Analysis

Vulnerability analysis for IoT device firmware can be divided into

static and dynamic.

Static vulnerability analysis refers to the completion of vulner-

ability discovery through code analysis without the specific exe-

cution of the program. Taint analysis has been proven effective in

identifying vulnerabilities in firmware [9, 11, 12, 43, 44], and ex-

isting techniques such as value set analysis and variable structure

matching have been used to address the problem of false negatives

caused by incomplete data flow. However, real-world IoT firmware

is often complex and bulky, making it challenging to perform ac-

curate and comprehensive analysis of indirect calls and aliases,

resulting in a significant analysis overhead. The introduction of

ITSs, as demonstrated by the evaluation of FITS, has shown to

enhance the effectiveness of real-world stripped firmware taint

analysis. By using FITS to infer taint sources and focusing on cus-

tom functions with high scores, ITSs can reduce analysis overhead

and improve the accuracy of static vulnerability analysis in IoT

device firmware.

Dynamic vulnerability analysis is another approach to discover-

ing vulnerabilities, and it involves executing test cases and monitor-

ing the program’s behavior. Two primary methods for testing IoT

devices are real-device-based and firmware-rehosting-based meth-

ods. Real-device-based fuzzing techniques, such as IoTFuzzer [8],

Snipuzz [22], and PCFuzzer [35], have proven to be effective. How-

ever, these methods can be expensive and have limited coverage

due to the need for physical devices. Additionally, black box test-

ing often leads to inefficient testing and makes it difficult to iden-

tify exceptions. On the other hand, firmware-rehosting techniques,

FrimAFL [65], P2IM [20], and HALucinator [13], offer a less ex-

pensive way to test firmware. However, these methods have lower

fidelity and can lead to shallow testing and unreproducible results.

Furthermore, firmware-rehosting techniques require manual oper-

ation, which makes them less scalable. Therefore, static analysis

technology, such as FITS, is more suitable for scalable vulnerability

analysis of IoT firmware.
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7 CONCLUSION

In this paper, we present a novel approach to address the challenges

in performing effective data flow analysis on stripped firmware of

IoT devices. We introduce the concept of ITSs and propose the first

methodology, FITS, to automatically discover ITSs from stripped

firmware. To achieve this, FITS employs static analysis to extract

structural and flow features of functions, which serve as behavioral

representations to characterize their static and dynamic properties.

Using these representations, FITS ranks custom functions as ITSs

by leveraging behavior clustering and anchor function scoring. By

doing so, FITS shortens the path of data flow analysis, improving

the performance of firmware taint analysis.

Our comprehensive evaluations on 59 real-world firmware demon-

strate the effectiveness of FITS in inferring ITSs, with a top-3 preci-

sion of 89%. More importantly, ITSs helped Karonte find 15 more

bugs and the static taint analysis engine find 339 more bugs. As of

now, 67 of the 141 bugs found in the latest firmware version have

been confirmed, of which 21 have been awarded CVE IDs and rated

as high severity. These results demonstrate the potential of FITS in

improving the security of IoT devices.
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A VERIFYING INFERRED ITSS AND
IDENTIFYING TAINT ORIGINS

A function in the inferred result of FITS is considered an ITS if

it extracts and returns a part of the user input. Therefore, during

the verification process, our main concern is whether the function

takes part of the data from the memory region storing user input

(passed in through a parameter register or a global variable) and

return the fetched data (output through a parameter/return register

or a global variable). When an ITS is confirmed, the corresponding

register or global variable of the returned data is used as the taint

origin, and its data is marked with a taint label. Specifically, we

use the following three methods to verify according to the actual

situation of different firmware.

Firmware rehosting. Existing work such as Firmdyne [7] and

FirmAE [29] propose rehosting embedded device firmware on the

computer. This convenient and reliable verification method allows

us to debug programs in firmware through emulation dynamically.

For example, we can determine an ITS by setting breakpoints in the

target function and observing the values in registers or memory

region. However, existing technologies cannot support all firmware.

In addition, successfully rehosted firmware is not necessarily high

fidelity. That is, it crashes during debugging and verification. In the

end, 11 firmware were verified this way.

Real device debugging. Some devices support enabling Telnet

and SSH services. We can debug remotely by passing the debug

server to the device. Therefore, we can obtain program dynamic

running information through breakpoint debugging to determine

ITSs and the corresponding taint origin. However, this method

requires purchasing the real device, which is an expensive overhead.

Moreover, many vendors do not allow users to connect to the device

terminal. We verified 2 firmware samples by this means.

Semantic information analysis based on relevant version firm-

ware. The historical version of firmware often does not strip de-

bug information and symbol tables. There are differences between

versions due to patches and upgrades, but the overall workflow is

similar. We can match some of the same functions through simi-

larity analysis to help reverse engineering of firmware [66]. Then

we manually analyze the objective function and its context logic

to clarify the data processing flow. At the same time, combined

with the previous taint analysis work [12], we verified 46 firmware

samples and identified the taint origin.

B ARTIFACT APPENDIX

B.1 Abstract

This artifact provides the program of FITS, which is the code related

to our proposed behavior representation extraction and similarity

analysis for finding ITSs. The artifact is packaged as a Docker image

for standard X86 machines.

B.2 Artifact check-list
• Data set: Binaries for ITS inference in 59 real firmwares are

included.

• Run-time environment: Docker.

• Hardware: X86

• Output: Function ranking of candidate ITSs.

• Experiments: Write a configuration file to run with Python

code.

• How much disk space required (approximately)?: 15GB.

• How much time is needed to prepare workflow (approxi-

mately)?: 10 minutes.

• How much time is needed to complete experiments (approxi-

mately)?: Depending on the complexity of the binary the time

can range from a few minutes to a dozen hours.

• Publicly available?: Yes

• Archived DOI: 10.5281/zenodo.8376901

B.3 Description

B.3.1 How to Access. The artifact can be downloaded from [36].

B.3.2 Hardware dependencies. A standard X86 machine.

B.3.3 Software dependencies. Docker.

B.4 Installation

Please use the following command to install the artifact.

unzip fits-artifact.zip

docker load –input fits-artifact.tar

docker run -it fits-artifact
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B.5 Basic Test

Please use the following command to test the artifact.

cd app/FITS

conda activate FITS

python3 fits.pyc config/config_karonte/tplink/TPLINK_c2http

d.json

B.6 Experiment workflow

The workflow is as follows, see [36] for details.

(1) Write a config file.

(2) The config file as a parameter to run FITS.pyc.

B.7 Evaluation and expected results

After the FITS operation is completed, the generated results are in

the result directory. Moreover, the BFV of functions is saved in the

feature directory. The inference result shows the top 1-4 rankings

possible as an ITS. Manual verification is then required to confirm

the real ITS from the possible ITSs.
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