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ABSTRACT
Software systems are often subject to unexpected runtime
errors. Automatic runtime recovery (ARR) techniques aim
to recover them from erroneous states and maintain them
functional in the field.
This paper proposes Ares, a novel, practical approach for

ARR. Our key insight is leveraging a system’s inherent error
handling support to recover from unexpected errors. To
this end, we synthesize error handlers in two ways: error
transformation and early return. We also equip Ares with a
lightweight in-vivo testing infrastructure to select the promis-
ing synthesis method and avoid potentially dangerous error
handlers. Unlike existing ARR techniques with heavyweight
mechanisms (e.g., checkpoint-restart and runtime monitor-
ing), our approach expands the intrinsic capability of runtime
error resilience in software systems to handle unexpected
errors. Ares’s lightweight mechanism makes it practical and
easy to be integrated into production environments.
We have implemented Ares on top of both the Java HotSpot

VM and Android ART, and applied it to recover from 52 real-
world bugs. The results are promising — Ares successfully
recovers from 39 of them and incurs negligible overhead.

CCS Concepts
•Software and its engineering → Error handling and
recovery;

Keywords
automatic runtime recovery, JVM, exception handling

1. INTRODUCTION
Deployed software systems are subject to runtime errors.

Some of these errors can be anticipated and recovered by
programmatically prepared error handlers. For example,
reading a non-existing file is invalid and the programmer
needs to explicitly tackle this case by following the usage

description of certain APIs. The other errors refer to unan-
ticipated errors that are usually related to bugs in programs
(e.g., divide-by-zero, invalid memory access). Ideally these
errors (or bugs) should all be eliminated before release, but
in reality some slip through the software testing phase and
manifest after release and deployment. Different from antici-
pated errors, handlers usually do not exist for unanticipated
errors. Thus, when triggered, they may lead to system fail-
ures and incur expensive losses, including security exploits,
data corruptions and system unavailability.
Automatic Runtime Recovery To mitigate this problem,
a number of techniques [12, 25, 24, 22, 7, 27, 8, 18] have been
proposed to make a deployed software system resilient to
runtime errors. That is, once an unanticipated runtime error
occurs in the field, these techniques try to recover the system
from the faulty state to a good one in which the system can
still function for subsequent usage. This process is usually
referred to as automatic runtime recovery (ARR).
ARR techniques typically consist of two stages: amend-

ing runtime states to recover from an unanticipated error,
and validating the correctness or feasibility of the recovery
action. Generally, they can be categorized into two classes:
heavyweight and lightweight. The former class relies on
heavyweight mechanisms — e.g., checkpoint creation and
restoration, online validation by restart or re-execution, ex-
pensive instrumentation — to validate the recovery. For
example, ARMOR [8] dynamically replaces a piece of prob-
lematic code snippet with another equivalent code snippet
(provided by developers) and uses checkpoint to rule out
invalid recovery solutions. Although in this class various
recovery techniques [24, 13, 28, 20, 8] have been proposed,
the significant runtime overhead is still a major challenge for
heavyweight approaches to be practical.
Lightweight approaches [25, 18] are usually more efficient,

but may be less effective than heavyweight approaches due
to their aggressive nature and insufficient validation of a
recovery. For example, FOC [25] simply discards any invalid
memory write and synthesizes a type-specific default value
for invalid memory read for server applications. Recently, a
novel lightweight approach, RCV [18], has been demonstrated
to be effective to some extent in practice. However, RCV has
no proactive validation but passive error containment. As the
error containment only takes account of parts of the data flow,
persistent data may also be ruined by manufactured recovery
indirectly. Besides, the control flow may be impacted by the
error and leads to infinite recurrences of erroneous states.
Ares In this paper, we propose a lightweight approach
(referred to as Ares) for runtime error recovery. At the high
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level, our approach expands the intrinsic capability of run-
time error resilience existing in software systems to handle
unanticipated errors. Ares is lightweight, barely incurring
any overhead on normal program executions. Furthermore,
instead of relying on heuristics to generate a single recov-
ery action [25, 18], Ares synthesizes multiple error handler
candidates at a time and uses a virtual testing technique to
select the most promising one. Ares can successfully avoid
infinite recurrences of erroneous states due to its adaptive
and context-sensitive nature.
Concretely, once an unanticipated error occurs, we ana-

lyze the current call stack, and synthesize a set of recovery
solutions (by collecting error handlers residing on the stack
or synthesizing new error handlers). Next we determine
which handler is the most viable in terms of minimizing
the negative impact on the subsequent computation. We
perform an in-vivo testing to analyze the impact of every
handler. That is, we continue the execution by interpreting
the buggy program after applying each recovery solution in
a confined virtual execution environment (viz., a sandbox).
Note that this in-vivo testing is invoked in an on-demand
manner only if an unanticipated error occurs, so it will not
impact the performance of normal program executions. Fi-
nally, we choose the most promising recovery solution, apply
it to and continue the host execution.
In this paper, we use the following two lightweight strate-

gies to synthesize error handlers:
Error Transformation transforms an unanticipated error

to an error of another type which has a proper handler
on the method call stack.

Early Return simply ignores the unanticipated error and
returns to the caller with a default value, i.e., null for
reference types.

We have realized the proposed technique on top of Java
HotSpot VM in OpenJDK.1 We embed Java PathFinder
(JPF) into HotSpot VM and use it as the virtual execution
environment for in-vivo testing. The system is evaluated on
43 bugs in large real-world programs, and can successfully
recover from 31 of them.
We have also implemented a mobile version of Ares on

top of Android ART.2 It can successfully recover from 8 out
of 9 real Android app bugs, avoiding crashing these apps.
Compared to regular Java programs, recovering from these
app bugs is equally important. A survey [2] on mobile apps
shows that 79% of mobile users would not use a mobile app
any more if it is unable to work at the first or second time.
In order to ensure reproducibility, we have made all the

data used in this paper (i.e., source code of Ares and the
program subjects for evaluation) publicly available at http:
//lab.artemisprojects.org/groups/ares. These large real-world
buggy programs will also benefit the research community
by providing a benchmark suite for evaluating various bug
detection, recovery and fixing techniques.
Contributions Our main contributions are as follows:
• We propose a lightweight framework to perform ARR

by exploiting and extending the intrinsic error resilience
of software systems.
• We propose a sandbox approach to evaluating the ef-
fectiveness of multiple recovery solutions, and also a
set of ranking strategies to choose the most viable one.

1http://openjdk.java.net/groups/hotspot/
2https://source.android.com/devices/tech/dalvik/

• Our implementation, Ares, is built on top of the widely
deployed Java HotSpot VM and Android ART, making
it easy to be integrated into production environments.
Ares intercepts the internal exception handling mech-
anisms in the two VMs, so the runtime overhead is
negligible during normal program executions.
• The evaluation of Ares is promising. We have applied

Ares to 52 real world bugs from large software projects,
and it can successfully recover from 39 of them. Because
their software systems lack intrinsic error resilience, the
13 non-recoverable bugs by Ares require more advanced
recovery strategies, which we leave as future work.

Paper Organization The remainder of this paper is orga-
nized as follows. Section 2 introduces necessary background
on exceptions in Java, and Section 3 demonstrates how Ares
recovers from runtime exceptions via two illustrative exam-
ples. Section 4 describes the design and implementation of
Ares. Section 5 presents our evaluation results. Section 6
discusses the limitation of Ares and other design decisions.
Section 7 surveys related work and Section 8 concludes.

2. EXCEPTIONS IN JAVA
This section briefly introduces necessary background on

Java exceptions to provide proper context for our work.

2.1 Exception Handling Mechanism
The Java programming language has a built-in exception

handling mechanism. The basic construct is a try-catch
block, composed of a try block and a catch block that catches
exceptions thrown inside the try block. A catch block declares
a catchable exception type Eh, that is, any exception of type
Eh or a subtype of Eh is catchable by the catch block. We
denote a try-catch block as

(ls, le, lc, Eh) (Try-Catch Block)

where ls and le are the start (inclusive) and end (inclusive) of
the try block; lc is the start (inclusive) of the catch block; Eh

is the catchable exception type. Note that multiple try-catch
blocks can share the same try block. Without ambiguity we
use exceptions and errors interchangeably in the remainder
of this paper.
In JVM once an exception of type E is thrown at a location

l, JVM looks up an exception handler inside the current
method on the top of the call stack. If there exists a try-
catch block (ls, le, lc, Eh) where ls ≤ l ∧ l ≤ le ∧ E <: Eh,3
the execution jumps to this handler lc. Otherwise, the stack
frame of this method is popped out and the exception is
delivered down to the stack. The same procedure repeats for
each method frame until an exception handler is located or
the stack becomes empty.

2.2 Exception Hierarchy
Figure 1 shows the hierarchy of exception types in Java.

Generally, there are two types of exceptions:
Checked Exceptions Checked exceptions are used to in-
dicate that certain anticipated errors may happen and must
be noticed by programmers. Therefore, programmers should
explicitly use a try-catch block to catch and handle these ex-
ceptions, or deliver them up to the caller. This is enforced by
the type system of Java. For example, reading a non-existing
3 The operator <: denotes subtyping relation.
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Figure 1: Java exception type hierarchy.

file will throw an exception of FileNotFoundException. Thus
when reading a file, the programmer needs to either catch
this exception or let the caller handle it.
Unchecked Exceptions Unchecked exceptions do not re-
quire programmers to explicitly handle them, as they are of-
ten assumed not to occur during execution. Thereby, such an
exception may crash the program unexpectedly. Unchecked
exceptions in Java can be further classified into two categories
Error (i.e., java.lang.Error) and RuntimeException. The
former category refers to errors related to Java virtual ma-
chines, such as OutOfMemoryError and StackOverflowError,
which are usually not recoverable for programmers. On the
other hand, RuntimeException and its subclasses are often
symptoms of programmers’ bugs, which are not expected to
manifest at runtime, e.g., NullPointerException. For sim-
plicity, we will use unchecked exception to refer to the latter
category.
In this paper, we focus on the recovery of the unchecked

exceptions, namely, maintaining the system functional for
subsequent usage by surviving unanticipated unchecked ex-
ceptions. When there is no ambiguity, we use error and
unchecked exception interchangeably in the remainder of this
paper.

3. ILLUSTRATIVE EXAMPLE
This section presents two examples to illustrate how Ares

recovers a software system from unanticipated runtime excep-
tions with its two types of error handler synthesis strategies,
i.e., error transformation and early return.

3.1 Recovery via Error Transformation
We use a real security bug of Tomcat 7 to demonstrate how

Ares recovers the system from the manifestation of this bug
via error transformation. Figure 2a shows this information
disclosure security bug (CVE-2013-2071) [1].
The method fireOnComplete on line 5 realizes the Observer

design pattern. The listeners are registered to be called
on some events, and may be implemented by third-party
developers. A listener may be buggy and therefore it is
possible that the method call on line 5 abnormally exists
with an unchecked exception. However, the catch block on
line 6 only handles IOException. This exception will be
propagated along the stack, and results in the server failing
to recycle the data of the current web request. Consequently
the leaked data later becomes accessible for the next web
request.
If Ares is deployed, this security exploit can be prevented.

Error transformation will automatically convert the unchecked

1 for (AsyncListenerWrapper l : listenersCopy) {
2 try {
3 /* BUG: An unchecked exception may be
4 thrown in the call below. */
5 l.fireOnComplete(event);
6 } catch (IOException e) {
7 }}

(a) Tomcat bug 54178 (CVE-2013-2017)

1 for (AsyncListenerWrapper l : listenersCopy) {
2 try {
3 l.fireOnComplete(event);
4 - } catch (IOException ioe) {
5 + } catch (Throwable t) {
6 + ExceptionUtils.handleThrowable(t);
7 }}

(b) Patch

Figure 2: Tomcat bug 54178 (CVE-2013-2071) and
its patch.

1 /* BUG: getDigest(...) may return null */
2 Stringmd5a1 = getDigest(username, realm).toLowerCase

(Locale.ENGLISH);
3 if (md5a1 == null)
4 return null;

(a) Tomcat bug 54438

1 String md5a1 = getDigest(username, realm);
2 /* FIX: check value of
3 getDigest(...) */
4 if (md5a1 == null)
5 return null;
6 md5a1 = md5a1.toLowerCase(Locale.ENGLISH);

(b) Patch
Figure 3: Tomcat bug 54438 and its patch.

exception thrown on line 5 into an IOException object which
will be immediately processed by the handler on line 6, pre-
venting information leakage. In fact, the official patch, shown
in Figure 2b, is very similar to our recovery process. It just
makes the catch block capable of handling every exception
(i.e. Throwable).

The recovery strategy error transformation aims to exploit
the error resilience existing in software systems (i.e., exist-
ing exception handlers) to handle unanticipated unchecked
exceptions. It is also similar to one of the common ways
developers cope with unchecked exceptions, namely, catching
the unchecked exception, converting it to another type and
re-throwing the new exception.

3.2 Recovery via Early Return
This subsection shows another Tomcat bug, which can be

recovered by the strategy early return. Figure 3a displays
Tomcat Bug 54438. On line 2, the method call getDigestmay
return null if the username does not exist. This null further
triggers a NullPointerException when we use the returned
digest (i.e., null) to invoke another method toLowerCase.
To recover from this exception, Ares intercepts the internal

exception handling of JVM. It then ignores the exception and
returns null for the call to toLowerCase. However from the
perspective of overhead, Ares’s synthesized error handler does
not incur additional overhead on normal program executions.
Figure 3b shows the developer’s patch to this bug, which
is equivalent to our synthesized error handler, although in
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different representations. It first checks whether the return
value of getDigest() is null. If yes, then it returns from the
current method.
Similar to error transformation, the strategy early return

is inspired by another common way in which developers
handle unchecked exceptions, that is, catching an unchecked
exception and returning from the current method with a
default value (e.g., 0 for numerics types and null for reference
types).

4. APPROACH
This section describes our approach for ARR. Figure 4

shows the overall framework of Ares.
JVM Our approach is built on a regular Java virtual ma-

chine (JVM). It is used to execute programs in normal
mode. Ares only intercepts the exception handling of
the underlying JVM. Once an error of interest occurs
(e.g., unanticipated unchecked exceptions), Ares stops
JVM, takes over the execution, and starts the recovery
process.

Synthesizer Based on the thrown exception and the content
of the call stack in JVM, the synthesizer generates a set
of candidate solutions for recovery (i.e., error handlers),
which will be tested in a “sandbox” to assess their
capabilities of recovering from the exception.

JPF We use Java PathFinder (JPF) as the “sandbox”, be-
cause it supports checkpoint and restoration, facilitat-
ing program state exploration and rollback. In detail,
once we start the recovery process, a JPF instance is
created and initialized with the program states in the
host JVM. We apply a synthesized error handler in
JPF each time until all handlers are tested.

Ranker After the testing of JPF, we propose an effective
heuristic to rank these error handlers and return the
most promising one.

Patcher The patcher will realize the error handler returned
by the ranker in the host JVM on the fly. Then the
program execution resumes.

4.1 Identifying Errors of Interest
Ares piggybacks on the internal exception handling mecha-

nism of JVM. When an exception is thrown, Ares first checks
whether the exception is of interest and then attempts to
recover from it if yes. Ares only checks and recovers from
the exceptions that satisfy the following two conditions,

1. The exception must be an unchecked exception, an
object of RuntimeException or its subtype. We omit
checked exceptions as they have been explicitly handled
by programmers, which is enforced by the Java type
system.

Algorithm 1: Force-Throwable Error Transformation
Input: 〈m1, · · · , mn〉, the recovery context
Input: E, an unchecked exception
Output: an exception type to which E can be

transformed
1 for i← 2 to n do
2 H← exception handlers in method mi

3 li−1 ← the location of the call to mi−1
4 foreach handler (ls, le, lc, Eh) ∈ H do
5 if ls ≤ li−1 ∧ li−1 ≤ le then
6 return Eh

7 return null

2. The unchecked exception should have no correspond-
ing effective error handler. Apparently, an unchecked
exception is of interest if it has no error handler in
the whole call stack. We also consider another type
of unchecked exceptions that are handled by a trivial
overly-stated catch block, e.g., unchecked exceptions
caught by catch( Throwable e){...}. We refer to the
first type as uncaught exception and the latter as triv-
ially handled exception.

4.2 Error Handler Synthesis
We synthesize error handlers in two ways: error transfor-

mation and early return. Before detailing them, we introduce
a notion recovery context to facilitate the description.
Recovery Context Given a thrown exception E, let H be
the stack frame which has a catch block to handle E. Then
the recovery context of E is the sequence of frames in the
stack from the top frame T to the frame above H (exclusive
of H), i.e., [T, H). We also use 〈m1, · · · , mn〉 (m1 is the top
frame) to denote a recovery context.
Take Figure 2 as an example. An unchecked exception is

thrown in the method call fireOnComplete(event) on line 5.
This exception cannot be handled by the existing handler for
IOException on line 6, and is handled by a catch block for
Throwable in a method frame End near the bottom of the
call stack. Therefore, the recovery context for this exception
is the stack frames from the top frame to the frame right
above End.
For a trivially handled exception, we only try to recover

from it before the last frame of its recovery context. If we
fail to synthesize a proper error handler, we will honor the
original semantics of the program and let the programmed
error handler take charge of the execution.

4.2.1 Force-Throwable Error Transformation
The simplest way to reuse existing error handlers is to

make every catch block catch Throwable. Thus, we propose
the Force-Throwable Error Transformation (FTET) in Algo-
rithm 1. FTET ignores the type of the raised exception and
uses only the location information to search for error handlers.
As Java is type-safe, we also need an error transformation
that converts the unchecked exception to the exception that
the catch block declares.

4.2.2 Stack-Based Error Transformation
A method should only throw a checked exception that is

declared by the method. Therefore, we propose the Stack-
Based Error Transformation (SBET) in Algorithm 2. In
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Algorithm 2: Stack-Based Error Transformation
Input: 〈m1, · · · , mn〉, the recovery context
Input: E, an unchecked exception
Output: a set R of checked exception types to which E

can be transformed
1 R← ∅
2 for i← 2 to n do
3 H← exception handlers in method mi

4 S← checked exceptions declared by method mi−1
5 li−1 ← the location of the call to mi−1
6 foreach handler (ls, le, lc, Eh) ∈ H do
7 if Eh ∈ S ∧ ls ≤ li−1 ∧ li−1 ≤ le then
8 R← R ∪ {the type of Eh}

9 return R

1 public void printMultiLn(String s) {
2 int index = 0;
3 // look for hidden newlines inside strings
4 while ((index=s.indexOf(’\n’,index)) > -1 ) {
5 javaLine++;
6 index++;
7 }
8 writer.print(s);
9 }

Figure 5: Tomcat bug 43758

SBET, not any arbitrary checked exception can be the target
exception of error transformation. First, the target exception
should have a proper error handler in the recovery context.
Second, the checked exception must be declared by one of
the active methods in the recovery context.
In Algorithm 2, once an unchecked exception E is thrown

in the method m1, we check whether its callers (from m2 to
mn) have available exception handlers which we can leverage
to handle E. Specifically, if a method mi declares to throw
an exception Eh (tested by Eh ∈ S on line 7) and there is a
handler for this exception, then we can transform E to Eh.

4.2.3 Early Return
This recovery strategy takes as input two parameters: a

number n (n ≥ 1) of stack frames to pop out of the call stack
and a value v of the return type. Once an unanticipated
error occurs, this strategy pops n stack frames from the call
stack and returns v as the return value. If n = 1, we name
this early return as First Early Return (FER).
These two parameters should be carefully chosen, other-

wise early return will result in dense cascaded exceptions or
introduce other unexpected program behavior after recovery.
In particular, the major challenge of early return is how to
fabricate a good return value. In FOC [25] and RCV [18],
they use the default value of a type, e.g., 0 for integers,
null for object types. However, this may be problematic.
Take Figure 5 (i.e., Tomcat Bug 43758) as an example. The
bug happens when the parameter s is null, leading to a
NullPointerException when we call indexOf on line 4. If we
choose v = 0 and return it as a default value, implemented
in FOC and RCV, then the loop becomes infinite.
Different from FOC and RCV which propose a single recov-

ery solution, Ares proposes a bounded number of parameters
to perform early return recovery. We then use JPF to evalu-
ate these parameters, which is able to weed out inappropriate
parameters. More details are available in Section 4.3.
Void-Only Early Return (VOER) Although it is diffi-
cult to choose a good value to return from the domain of

a type, it is easy to choose a value for type void, which is
void itself. We specialize early return by only returning from
a method with void return type. Void-Only Early Return
(VOER) just walks along the stack to locate the first method
with void return type and then makes an early return there.
There may not be such a method. Hence, VOER may fail to
recover from some exceptions.

4.3 Evaluating Synthesized Handlers
As shown in Figure 4, after generating a set of error han-

dlers for a runtime error, we invoke JPF to test the appli-
cability of each handler. Specifically, Ares walks through
the stack in the host JVM to collect necessary information
to quickly instantiate an instance of JPF. Each time JPF
applies one error handler, and checks whether it can recover
the system from the bug. Thanks to the built-in support
for state checking and restoration of JPF, to test a handler,
we first save the current state in which the buggy thread
is about to crash, and then apply the error handler. If the
execution stops, JPF restores the state and starts over to test
another error handler. After all error handlers are tested,
JPF returns a set of viable error handlers, which are later
ranked by the ranking strategy elaborated in Section 4.3.2.

4.3.1 Evaluating an Error Handler
Given a runtime error thrown in the top stack frame m1,

let 〈m1, · · · , mn〉 denote its recovery context. Before JPF
executes any code of the synthesized error handler, a number
d of call stack frames need to be popped out. Take error
transformation as an example, if the target error handler is
in mi, then stack frames [m1, . . . , mi−1] should be popped
out first. The same procedure also applies to early return.
The JPF execution begins at the target error handler in mi.

The execution may call new methods, create new stack frames
and increase the stack size. But these new stack frames do
not belong to the recovery context. During the execution,
there is a lowest stack frame mj in the recovery context. We
use [mi, mj) in measuring the length of testing, as they are
related to the context in which the exception is thrown. The
length (j − i) is denoted as c. Besides, we also record the
number of executed instructions as s. Intuitively, these two
metrics are complementary in measuring the confidence of
the JPF testing execution.
The handler evaluation may stop in one of the following

scenarios:
No Error All methods in the recovery context complete

their execution normally.
Timeout In order to maintain responsiveness of the system

under recovery, we stop testing the current error handler
if a maximum number of instructions (specified by the
parameter TIMEOUT) has been executed.

Uninterpretable Behavior The JPF execution encoun-
ters a VM behavior that it cannot interpret, e.g., a call
to uninterpretable native code.

Cascaded Error The applied error handler in JPF execu-
tion triggers another runtime error.

Finally, the testing result of an error handler is represented
as a tuple (t, r, d, s, c), where t is the type of the error handler
(either error transformation or early return), r is the stop
scenario of the JPF execution, d is the number of discarded
stack frames in the recovery context, s is the number of
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executed instructions, c is the number of stack frames in the
recovery context that have completed their execution.

4.3.2 Ranking Error Handlers
The ranking heuristic is designed based on observation

that the most promising error handler usually outperforms
others in two aspects: fewer discarded stack frames which is
measured by d, and longer JPF testing which is measured
by s and c.
First, we classify testing results as either benign or malig-

nant. No Error and Timeout are straightforwardly treated as
benign. For Uninterpretable Behavior and Cascaded Error,
their executed instructions s must exceed a threshold STEPS.
For Cascaded Error, despite STEPS, their exercised stack
frames c must further exceed another threshold FRAMES.
Any other result is treated as malignant.

For benign error handlers, their online testing reflects high
confidence. Thus, we prefer the one with fewer discarded
stack frames d. If two testing results have the same d, we
choose the one with more executed instructions. Malignant
error handlers are only used when there is no benign one.
For these error handlers, their online testing brings poor con-
fidence. Thus, we simply prefer the one with more executed
instructions.

4.4 Implementation
We have implemented Ares on two popular platforms:

Java HotSpot VM and Android ART. This design decision
enables our approach to be a drop-in substitute for standard
VMs, and easy to deploy in production environments without
complex configurations.

4.4.1 Ares on Java HotSpot VM
The Java HotSpot VM is an open-source industrial-strength

JVM. It has been distributed as the default JVM vendor
for popular Linux distributions (e.g., Ubuntu and Fedora).
We intercept the standard exception handling mechanism of
HotSpot to identify errors of interest and perform recovery.
In this way, our recovery system has little impact on the
performance of software systems in normal execution (i.e.,
when no unanticipated errors occur). There is even no over-
head when no anticipated or unanticipated exceptions occur,
which is usually the case for majority of execution time.

We embed JPF in the host JVM to test synthesized error
handlers and invoke it on demand when recovery is required.
When a thread is about to crash due to an unanticipated
error of interest, we intercept the error handling process, and
start a JPF instance to continue the execution by applying
an error handler in the same thread. Specifically, we first
create a call stack for JPF by duplicating the stack frames of
the recovery context (the top frames in the call stack of the
about-to-crash thread) in the host JVM. Then the program
execution is altered with an error handler and resumed in this
JPF instance. This process is repeated, with each iteration
applying a different error handler. Lastly, we rank these
error handlers and choose the most promising one.
As JPF and JVM have different object models, when

JPF needs to access an object in the host JVM at runtime,
Ares converts that object to the representation of JPF. In
order to reduce runtime overhead, we only convert JVM
objects on demand, that is, we only convert the minimally
sufficient objects when they are requested. After the testing
for a handler completes, Ares resets all values of objects

Table 1: Programs used in our experiments.
Bugs Recovered

Tomcat 19 14 web application server
Jetty 12 8 web application server

JMeter 4 4 GUI application
GanttProject 8 5 GUI application

Android 9 8 various mobile apps
Total 52 39

for the next testing. Interactions with external resources
(e.g., files, databases) are uninterpretable behaviors that
are not supported by JPF. These behaviors should indeed
be forbidden as they may induce side effects on the host
execution during online testing, which are difficult to revert
when JPF tests another error handler.

If a synthesized error handler is applied for recovery, Ares
does not persist it in the buggy method for future program
execution. This is mainly because the error handler is synthe-
sized based on the context (e.g., method call stack) in which
the error manifests. Next time the method encounters the
same error, Ares will synthesize another error handler based
on the context, which may be different from the previous
handler as the context may differ.

4.4.2 Ares on Android ART
The mobile version of Ares is implemented on top the new

Android ART released in Android 5.0.1. We modify the ART
runtime and deploy it in a Nexus 5 mobile phone. However,
currently we only implement a conservative strategy in ART
instead of embedding JPF. Android ART uses a different
byte code representation (i.e., dalvik) and a different layout
of stack frames, which is not supported by JPF.
Our conservative strategy in Android ART first attempts

to apply SBET. If SBET is not applicable, it then attempts to
apply VOER. If both fail, we just abort the recovery process.
Our evaluation on nine bugs in real-world Android apps
shows that this strategy is always able to find an appropriate
error handler.

5. EXPERIMENTS
To demonstrate the effectiveness of Ares, this section

presents our extensive evaluation of Ares on widely-used
web servers, desktop GUI applications and mobile apps. The
experiments on server and desktop applications were con-
ducted on a Linux machine with Intel Quad-Core i7 3.4GHz
CPU and 12 GB memory; those on mobile apps were done
on a Nexus 5 smart phone.
We have evaluated Ares on all 52 exception-related bugs

that we were able to reproduce from several widely-adopted
projects, and Ares successfully recovered from 39 of them,
e.g., the program can continue running to serve new user
requests. The 13 non-recoverable bugs are mainly due to
lack of intrinsic error resilience in these software systems.
Tackling them requires more advanced recovery strategies
besides error transformation and early return, which we leave
as future work.
Program Subjects Table 1 lists the details of the program
subjects used in our evaluation. Both Tomcat and Jetty are
popular Java web servers that have been under active devel-
opment for over ten years, and widely deployed in production
environments. JMeter is a web testing tool. GanttProject
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Table 2: Acronyms of exception names
Exception Name Acronym

ArrayIndexOutOfBoundsException AIO
BufferOverflowException BOE

ConcurrentModificationException CME
ClientAbortException CAE
DeploymentException DE

Exception E
EofException EE

FileNotFoundException FNF
IllegalArgumentException IAE

IllegalAccessException ICE
IllegalJidException IJE

IllegalStateException ISE
IllegalUserActionException IUA

InterupptedException IE
IOException IOE

JasperException JE
MalformedURLException MUE

MalformedCachePatternException MCP
MPXJException MPX

NumberFormatError NFE
NullPointerException NPE

RuntimeException RE
ServletException SE

StringIndexOutOfBoundsException SIO
SQLException SQE

Throwable T
UnavailableException UE

UnsupportedEncodingException UEE
UnsupportedOperationException UOE

XNIException XNI

is a project planning tool. The Android apps include web
browsers, instant messengers and productivity tools.
Collection of Bugs In order to collect these bugs, we first
searched the bug repositories, revision logs and release notes
with the keywords “exception” or “NPE”. This step yielded
244 bugs. Then we attempted to reproduce all these bugs
according to the instructions recorded in their bug reports.
At last, we obtained 52 bugs that were reproducible in our
testing environment. Besides, almost all bugs were repro-
duced in a standalone server with a deployed web application
or by manually exercising a GUI application. For the other
bugs, we directly used unit tests provided in bug reports.
To save space and facilitate description, we use acronyms

of exceptions in the rest of this section, as shown in Table 2.

5.1 Evaluation on Java HotSpot VM
We evaluate Ares with 43 real-world bugs on the Java

HotSpot VM. In order to better understand the effective-
ness of Ares, we also evaluate four basic strategies with the
same set of bugs, i.e. FTET, SBET, FER and VOER. In
each basic strategy evaluation, given a buggy program, we
apply the strategy to recover the program from not only
the unanticipated exception triggered by the bug, but also
the cascaded exceptions that are of interest for recovery. In
contrast, on each exception of interest, Ares will adaptively
select the most promising error handler based on the context
of the exception rather than sticking to a single strategy.
The parameters of Ares are configured as follows, TIMEOUT =

1000, STEP = 100, FRAMES = 1. As Algorithm 2 shows,
SBET returns a set of exception types to transform to. In
the evaluation of the basic strategy SBET, we only use the
first exception type in the nearest call stack frame as the
transformation target. Similarly, FER and VOER also pro-
pose a list of call stack frames to return from, as described
in Section 4.2.3; and we select the top frame as the target in
their evaluations.

Table 3: Summary of Recovery Results on Java
HotSpot VM

Result FTET SBET FER VOER Ares

N.A. 2 13 0 3 0
Failure 33 24 13 16 12
Repair 5 4 10 3 10
Plausible 3 2 20 21 21
Recovery 8 6 30 24 31
Repair Rate 12.2% 13.3% 23.3% 7.5% 23.3%
Plausible Rate 7.3% 6.7% 46.5% 52.5% 48.8%
Success Rate 19.5% 20.0% 69.8% 60.0% 72.1%

The result of a recovery is analyzed in two steps:
Step One We manually check whether the recovery makes

software functional for later use. Take GanttProject
as an example. After recovery, if we still can make
planning, we then classify this recovery as effective; if
the application crashes or we cannot make planning,
we then classify the recovery as ineffective.

Step Two If the recovery is effective, we further compare
the synthesized error handler with the developer’s patch.
If they are semantically equivalent, then we classify
the error handler as a repair, otherwise as a plausible
recovery.

Table 3 summarizes the recovery results. The row N.A.

represents the number of cases where the corresponding
strategy is not applicable (e.g., no existing exception han-
dler for FTET and SBET); the row Failure represents the
number of cases where the corresponding strategy fails to
recover from the bugs. The Recovery row is the sum of
Repair and Plausible, the Repair Rate is computed as
Repair/(Recovery+ Failure), the Plausible Rate is com-
puted as Plausible/(Recovery+Failure), and the Success
Rate is computed as Recovery/(Recovery + Failure).
Among the four basic strategies, FER is the most effective

one. This observation contributes much to our ranking algo-
rithm. However, FER may result in a catastrophic infinite
loop (e.g., the bug in Figure 5). An infinite loop should
be prevented in advance, as it may propagate bad effects
rapidly. VOER is also effective. However, it results in fewer
repairs but more plausible recoveries. Although FTET has
more applicable scenarios, its repair rate and success rate
are slightly lower than SBET.

Ares has the best overall recovery result and also results in
fewer cascaded exceptions, especially compared to FER (will
be discussed in the following section together with Table 4).
Although our ranking heuristic of Ares overall works well in
the evaluation, it rejects two repairs (i.e., Bug 29 and 30 in
Table 4), and accepts two plausible recovery handlers with
fewer cascaded errors than the repairs. We believe that with
an enhanced ranking mechanism, the evaluation results will
be further improved, which we leave as future work.

5.1.1 Details of Evaluation
Table 4 shows the details of our evaluation on the 44 bugs.

The first column shows the unique IDs of these bugs in order
to conveniently refer to them in this paper, and the second
column shows the real bug IDs in their corresponding bug
repositories. The third column lists the types of exceptions
thrown when these bugs manifest themselves.
The multi-column Basic Strategy shows the statistics of

recoveries with the four basic strategies. We only show the
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Table 4: Recovery of bugs on the Java HotSpot VM.

# Bug ID Error
Basic Strategyα Ares

FTET SBET FER VOER FTET SBET FER VOER Final Time
t C R t C R t C R t C R r d s c r d s c r d s c r d s c t r d s c C R (ms)

1 TC 43338 IAE E 0 F ICE 0 F void 0 P 1 0 P C 4 211 0 C 4 211 0 C 1 583 1 C 1 583 3 void1 C 1 583 3 0 P 723
2 TC 43758 NPE E 0 F JE 0 F 0 ∞ F 2 1 R U 14 21 0 U 14 21 0 C 1 16 0 U 2 120 0 void2 U 2 120 0 1 R 887
3 TC 46298 NPE SQE 0 R SQE 0 R void 0 P 1 0 P T 2 — 0 T 2 — 0 U 1 454 5 U 1 454 5 void1 U 1 454 5 0 P 862
4 TC 49184 AIO T 0 F N.A. void 2 P 1 1 F T 3 — 0 N.A. N 1 50 3 N 1 50 3 void1 N 1 50 3 2 P 766
5 TC 49883 UOE LE 0 F LE 0 F null 7 P 6 4 P T 11 — 0 T 11 — 0 T 1 — 1 T 6 — 1 null1 T 1 — 1 7 P 249
6 TC 51401 IAE E 5 F N.A. void 5 P 1 5 P C 1 211 0 N.A. U 1 160 0 U 1 160 0 void1 U 1 160 0 5 P 803
7 TC 51403 NPE E 10 F N.A. null 22 F N.A. C 1 113 0 N.A. C 1 6 0 N.A. E C 1 113 0 10 F 679
8 TC 51550 ISE IOE 0 F IOE 0 F null 45 F 5 0 F N 8 683 1 N 8 683 1 T 1 — 7 T 5 — 3 void1 T 1 — 7 5 F 969
9 TC 51910 NPE T 0 F IOE 0 F void 1 R 1 0 R C 7 394 0 N 7 761 1 N 1 507 7 N 1 507 7 void1 N 1 567 7 0 R 313
10 TC 53677 ISE CAE 0 F IOE 0 F void 14 F 1 14 F N 2 410 1 T 2 — 0 N 1 93 2 N 1 93 2 void1 N 1 93 2 4 F 869
11 TC 54178 RE IOE 0 R IOE 0 R void 0 P 1 0 P C 2 239 0 C 2 239 0 T 1 — 4 T 1 — 4 void1 T 1 — 4 0 P 1277
12 TC 54438 NPE T 0 F IOE 0 F null 0 R 5 0 F N 5 995 1 T 5 — 0 T 1 — 2 N 5 294 1 null1 T 1 — 2 0 R 766
13 TC 54703 NPE IOE 0 P IOE 0 P null 0 P 3 0 P C 1 823 3 C 1 823 3 C 1 824 3 C 3 806 1 null1 C 1 824 3 0 P 836
14 TC 55454 NPE E 1 P IOE 0 P null 4 P 4 0 P N 1 6 1 N.A. C 1 1 0 N.A. E N 1 6 1 1 P 854
15 TC 56010 IAE T 0 F IOE 0 F void 0 F 1 0 F U 3 3 0 U 3 3 0 U 1 33 0 U 1 33 0 void2 N 2 4 2 1 F 635
16 TC 56246 NPE N.A. N.A. null 0 R N.A. N.A. N.A. T 1 — 0 N.A. null1 T 1 — 0 0 R 591
17 TC 56736 ISE IOE 0 F N.A. 0 0 R 2 0 P C 4 703 0 N.A. T 1 — 3 T 2 — 2 01 T 1 — 3 0 R 1131
18 TC 58232 NPE DE 1 F N.A. null 4 F 2 2 F C 3 48 0 N.A. C 1 1 0 T 1 — 1 void2 T 1 — 1 1 F 1043
19 TC 58490 NPE MUE 0 F N.A. null 39 P 2 0 F U 2 1 0 N.A. C 1 85 0 U 2 1 0 null1 C 1 85 0 7 P 532
20 JT 335500 NPE EE 0 F IOE 0 F void 16 P 1 2 F T 6 — 0 T 6 — 0 U 1 11 0 U 1 11 0 void4 T 4 — 2 0 P 797
21 JT 358027 NPE EE 0 F IOE 0 F null 6 F 2 0 P C 4 196 0 T 4 — 0 C 1 10 0 C 2 187 2 void2 C 2 187 2 0 P 775
22 JT 375490 NPE IOE 0 F FNF 0 F null 0 F 2 0 F N 1 35 0 N 1 35 0 U 1 88 0 N 2 4 2 IOE N 1 35 0 0 F 620
23 JT 393158 ISE T 3 F IOE 0 F 0 2 P 2 2 P T 2 — 2 T 4 — 0 T 1 — 3 T 2 — 2 01 T 1 — 3 1 P 1082
24 JT 395794 NPE IAE 0 F IOE 0 F null 0 R 2 0 P T 4 — 0 C 8 767 0 U 1 190 1 U 2 112 1 null1 U 1 190 1 0 R 1065
25 JT 401531 SIO UE 0 F JE 0 F 0 0 F 7 0 F T 7 — 0 C 8 8 0 U 1 11 0 U 7 172 0 null1 T 2 — 2 2 F 763
26 JT 402106 BOE E 0 F N.A. null 0 P N.A. T 1 — 0 N.A. U 1 5 0 N.A. E T 1 — 0 1 F 630
27 JT 404283 NPE IOE 0 R N.A. void 0 R 1 0 R T 1 — 0 N.A. U 1 974 2 U 1 974 2 IOE T 1 — 0 0 R 714
28 JT 411844 AIO N.A. N.A. void 0 P 1 0 P N.A. N.A. T 1 — 0 T 1 — 0 void1 T 1 — 0 0 P 500
29 JT 424051 NPE T 0 F IOE 0 F null 5 R 3 0 F U 2 93 0 N.A. C 1 12 1 N.A. T U 2 93 0 1 P 518
30 JT 446107 NPE UE 0 F SE 0 F null 1 R 3 1 P U 4 907 0 U 4 920 0 U 1 2 1 N 3 6 2 null2 U 2 145 0 0 P 765
31 JT 465700 NPE E 0 F IOE 0 F 0 0 F 2 0 F C 8 354 0 U 8 752 0 T 1 — 0 U 2 579 6 01 T 1 — 0 0 F 900
32 JM 39599 CME IUA 0 F IUA 0 F null 2 P 2 0 P T 8 — 0 T 8 — 0 U 1 547 7 U 2 924 6 null1 U 1 547 7 2 P 579
33 JM 51869 IAE IUA 1 F IUA 1 F null 1 R 3 3 F T 8 — 0 T 8 — 0 T 1 — 3 U 3 548 3 null1 T 1 — 3 3 R 588
34 JM 53874 NPE UEE 0 R UEE 0 R null 0 R 3 0 P U 1 301 0 U 1 301 0 T 1 — 1 U 3 225 1 null1 T 1 — 1 0 R 745
35 JM 55694 NPE MCP 0 P N.A. void 1 P 1 1 P U 3 302 0 N.A. C 1 182 0 C 1 182 0 void2 T 2 — 3 0 R 494
36 GP 461 NPE E 0 F IOE 0 F null 36 P 2 9 P C 6 127 0 C 6 127 0 T 1 — 0 T 2 — 0 null1 T 1 — 0 36 P 725
37 GP 465 AIO IE 0 F N.A. null 2 F 3 0 F N.A. N.A. U 1 1 0 N.A. 06 T 6 — 2 0 F 381
38 GP 523 NPE IOE 0 F IOE 0 F 0 5 F 5 2 F C 9 130 0 C 9 130 0 C 1 7 0 U 5 923 0 null3 U 2 993 3 2 F 433
39 GP 577 RE IOE 1 F IOE 0 F null 20 P 2 1 P C 7 130 0 C 7 130 0 C 1 47 0 C 2 225 0 void3 C 3 487 0 1 P 361
40 GP 607 NPE XNI 1 R XNI 1 R void 0 F 1 0 F C 2 190 4 C 2 190 4 T 1 — 5 T 1 — 5 void1 T 1 — 5 0 F 703
41 GP 708 NPE MPX 0 F MPX 0 F void 1 P 1 1 P C 6 128 0 C 6 128 0 C 1 257 6 C 1 257 6 void1 C 1 257 6 1 P 502
42 GP 817 NPE IE 0 F N.A. void 0 P 1 0 P N.A. N.A. T 1 — 2 T 1 — 2 void1 T 1 — 2 0 P 590
43 GP 830 NPE E 0 F IOE 0 F void 2 P 1 1 P N.A. T 11 — 4 C 1 65 2 C 1 65 2 void4 T 4 — 5 0 P 417

α t indicates the type of error handler. Specifically, t is the target exception type for SBET and FTET, the return type for FER, the discarded
stack frames for VOER, and a pair of the return type and the number of discarded stack frames for generic early return. C indicates the
number of the actual cascaded errors in the host JVM. R indicates the recovery result. For recovery result, we use F for failure, R for repair,
and P for plausible recovery. (t, r, d, s, c) is the testing result of the JPF execution described in Section 4.3.1. For the stop scenario r, we
use N for No Error, T for Timeout, U for Uninterpretable Behavior, and C for Cascaded Error.

type of the first error that is triggered by the bug. For each
basic strategy, we list a tuple including the type of recovery
solutions, the number of cascaded errors and the recovery
result.
For Ares, we first list the testing result (r, d, s, c) for each

basic strategy. Note that SBET and VOER may fail first, e.g.,
Bug 14. At last, we use a 7-tuple for the most promising error
handler determined by the ranking, including the testing
result (t, r, d, s, c), the actual cascaded errors in the host
JVM after applying the error handler, and the recovery
result. As JPF has its own implementation of a small set of
library classes, Ares may fail to apply all basic strategies in
JPF (e.g., Bug 42 and 43) and also result in false cascaded
errors that disappear in the host JVM.
Ares versus FER The major advantage of Ares over FER
is the significantly reduced number of cascaded exceptions
induced by the recovery handler. Table 5 shows the statistics

Table 5: Statistics of Cascaded Exceptions of FER
and Ares

MIN MAX StdDev Mean Median
FER 0 45 11.0 5.8 1
Ares 0 36 5.8 2.2 0

of the cascaded exceptions by the two strategies. We also
conducted Wilcoxon Signed-Rank Test. The p value for the 1-
tail test is 0.0008, showing that the improvement is statistical
significant. Note that the results in Table 5 are computed
by excluding Bug 2, in which FER causes an infinite loop
triggering infinite number of exceptions. This bug further
demonstrates the advantage of Ares over basic strategies.
Overhead Ares performs recovery on demand, and re-
quires no instrumentation into programs. Thus it imposes no
overhead on normal program executions. The overhead intro-

691



1 /* method processMatches */
2 List matches = new ArrayList();
3 if (isScopeVariable()){
4 String inputString=vars.get(getVariableName());
5 /* BUG: inputString may be null */
6 + if(inputString == null) {
7 + log.warn("...");
8 + return Collections.emptyList();
9 + }

10 matchStrings(..., matches, ..., inputString);
11 } else {...}
12 return matches;

Figure 6: JMeter bug 55694 and its patch.

1 try {
2 setFormatter((Formatter) cl.loadClass(

formatterName).newInstance());
3 } catch (Exception e) {
4 - // Ignore
5 + // Ignore and fallback to defaults
6 + setFormatter(new SimpleFormatter());
7 }

Figure 7: Tomcat bug 51403 and its patch.

duced by Ares only occurs when an exception is thrown and
the recovery is performed. As Table 4 shows, the recovery
pausing time of all basic strategies is less than one millisec-
ond; and that of Ares ranges from 249 to 1277 milliseconds,
which is mainly used to bootstrap JPF.

5.1.2 Analysis of Bug Samples
In addition to the bugs discussed in previous sections, we

further discuss three bugs in detail as follows.
JMeter 55694 As shown in Figure 6, processMatches

calls matchStrings (on line 10) to find substrings that match
inputString (on line 4), and saves the results in matches,
which is allocated as an empty list (on line 1). matchStrings
first uses inputString to create a matcher object. If the value
of inputString is null, the constructor results in an NPE.
FER and VOER return from the constructor abnormally
and results in a cascaded error in matchStrings. Ares detects
the cascaded error and returns from matchStrings directly.
Finally, the execution returns from the processMatches on
line 12 with an empty list. Thus, it has the same behavior
as the patch except the log (on line 7).
GanttProject 830 This bug makes GanttProject not re-
sponsive to any of the bug reporter’s requests. The patch
to this bug is two-fold: It first fixes the broken logic to cal-
culate the correct value for a date range and then adds a
catch-and-ignore error handler surrounding buggy methods,
as the calculation of date range is non-trivial and there may
still be bugs.
Although Ares cannot calculate the correct date range, it

lets users continue editing and saving their work by using
early return. Once the edited file is opened with a fixed
version, helpful warnings will lead users to manually refill
the nullified broken date ranges. Thus, we claim that Ares
produces a plausible recovery.
Tomcat 51403 This bug cannot be fixed by any default
error handlers in this paper. As shown in Figure 7, the patch
assigns a non-default value to the formatter. Currently, Ares
cannot allocate an object instead of null. Using a new-
allocated object requires to update all related references,
which has been well studied in [21].

5.2 Evaluation on Android ART
We only evaluate Android bugs using the conservative

strategy as described in Section 4.4.2. As shown in Table 6,
Ares can recover 8 of 9. Two bugs are recovered by SBET
and 6 are recovered by VOER. The only unrecoverable one
incurs an “Application Not Responding” (ANR).
Recovery with VOER VOER can discard up to 61 frames
to recover from an error in this experiment. In Firefox bug
1136157, a NullPointerException occurs during recursively
destroying a set of GUI widgets when closing a page. There
are no reusable error handlers and no methods with void
return type in the first 60 frames. VOER results in destroying
the page, which is just the desired behavior.

Table 6: Recovery of Android apps bugs
App Bug ID Failure Type Result

Swiftp 22 IAE IOE FTP 550
AardDict 68 NPE 32 Ignored

MobileOrg 192 ISE 2 ANR
MobileOrg 344 NPE 13 Ignored

My Expense 136 NFE 4 Finished
OI Notepad 3 NPE 2 Ignored

Conversation 839 NPE IJE Ignored
Firefox 1136157 NPE 61 Finished
Firefox 1114499 NPE 13 Ignored

Recovery with SBET While VOER exhibits significant
recovery ability, SBET can also successfully recover from two
errors. Conversation bug 839 occurs when the app fails to
parse the user id into a string by scanning a QR-Code. A later
fetch of this id attempts to build a Jid from the empty string,
which results in a NullPointerException. Ares converts this
error into an InvalidJidException to recover the app from
a crash. Although the user fails to load the id, we believe
that it is better than the crash of the whole app.
Swiftp can be used for sharing files between different mo-

bile phones. Swiftp bug 22 is caused by a misuse of an
Android API, which is used for creating named temporary
files. If the name of the temporary file has fewer than three
characters, the API throws an IllegalArgumentException.
This error makes the thread terminate abnormally. Ares
converts this error into an IOException, which has an error
handler that sends back an FTP 550 error together with a
message indicating the fail of the rename. Obviously, this
recovery is not a repair but better than no recovery, which
results in a connection loss.

6. DISCUSSION
In this section, we generally discuss the correctness guar-

antee of Ares. Similar to most of the ARR techniques [12,
25, 22, 7, 27, 18], Ares does not guarantee the correctness of
the recovered buggy software systems. However, the use of
JPF as a sandbox execution environment makes Ares capable
of eliminating a number of dangerous or infeasible recovery
plans at the early stage (e.g., avoid applying FER for Bug
2 in Table 4), and selecting the promising/optimal recovery
plan to execute. This step greatly reduces the risk of the
recovery plan’s causing worse consequence than the buggy
program’s default behavior of handling the unanticipated
bug. Besides, we plan to develop new strategies, particularly
for bugs that currently Ares and FER cannot handle. By
combining sandbox testing and new ranking algorithms, we
would avoid using FER to recover bugs that it cannot handle.
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In terms of persistent data safety, Ares’s in-vivo testing
phase forbids writing data to persistent storage. Any of
such attempts will abort the recovery process and resume
the execution in the host VM. For the writes to persistent
storage in the host VM after a recovery handler is applied, we
can leverage the monitoring technique (orthogonal to Ares)
proposed by Long et al. in [18], that is, tracking whether
data that are affected by the recovery process can flow to
the persistent storage.
Compared to correctness-critical software (e.g., databases,

compilers), ARR techniques are suitable for recovering in-
teractive programs that have the following property: These
programs usually have multiple features, and the malfunction
of one feature (although it can crash the entire program) has
little or no impact on the operation of other features. In this
case, if we can recover the program from this failure, other
features can still run correctly in the current interaction or
the following ones. For example, in the Tomcat bug in Fig-
ure 2, although the failure of a buggy third-party listener can
lead Tomcat to malfunction by leaking private information
(similar to crashing), it does not (and should not) affect the
execution of other features. Our 52 real-world bugs cover
web servers, GUI applications, and mobile apps, most of
which have this property . The evaluation of Ares on them
shows that Ares does not introduce worse consequences than
program subjects’ default error handlers.

7. RELATED WORK
This section surveys three lines of related work to Ares.

7.1 Automatic Runtime Recovery
Generally, the recovery ability of ARR techniques comes

from either redundancy [24, 8] or just default behavior [25,
18]. The validation of the recovery can be either testing by re-
execution [24, 8] or suppressing catastrophic operations [18,
20]. We mainly discuss these approaches in this paper. Other
approaches [12, 22, 7, 27] that focus on specific error detection
and recovery are not discussed in detail.
Checkpoints and Re-execution Checkpoint has been ex-
tensively studied in software recovery [14, 4]. Lots of ARR
techniques [24, 28, 8] piggyback checkpoints to facilitate val-
idation of their recoveries. ASSURE [28] also reuses existing
error handler. However, it requires profiling runs to collect
reusable error handlers before deployment. Ares has no need
to make checkpoints and can dynamically collect reusable
error handlers. It adopts a lightweight testing infrastructure
to rule out potential dangerous recovery.
Memory Error Suppression Memory error suppression
based approaches [25, 20, 18] continue the execution in a
recovery mode until the recovery ends up. Failure-Oblivious
Computing (FOC) [25] discards invalid memory writes (e.g.,
out of bounds writes, null dereference) and manufactures de-
fault values for invalid memory reads. RCV [18] extends FOC
with recovery shepherding to prevent manufactured values
from ruining persistent data. However, the shepherding may
remain for a long time if there are infected long-live variables.
Besides, both FOC and RCV can only synthesize a single
recovery and may result in infinite loops. APPEND [13]
instruments programs to recover potential null dereferences
by default or user-provided error handlers. NPEFix [10] uses
9 different strategies to handle NPE but cannot determine
the final strategy and also incurs very high overhead. Ares

are not limited in handling memory errors and requires no
additional code, data and instrumentation. Thus, it incurs
negligible overhead in the host JVM.

7.2 Improving Exception Handling
Exception handling is usually used in programmer partici-

pated error recovery [15] but in fact is not well treated by
programmers [26, 5, 30]. Many approaches attempt to auto-
mate exception handling by either using specific model [6],
predefined strategies [9] or default exception handling [11].
Ares can adaptively synthesize a number of error handlers
and select the most promising one. Besides, we implement
Ares on a modern production platform and evaluate it with
real applications used in industry. Azim et al. [3] analyze
the log of Android to detect errors and also handle them by
synthesized error handlers that either ignore errors or reload
GUI. Ares is built on the ART runtime and also supports
error transformation.

7.3 Automatic Program Repair
Recently, a number of approaches on automatic program

repair have been proposed [29, 16]. These approaches usu-
ally require costly computation to find a plausibly correct
repair [17]. In contrast, ARR usually has a strict timing
requirement and aims to seek results better than immediate
failures rather than a repair. Ares can also synthesize many
repairs. In fact, a certain number of repairs generated by
existing work simply delete functionality [23, 19].

8. CONCLUSION
This paper has presented Ares, an automatic runtime recov-

ery system implemented on top of the industry-strength Java
HotSpot VM and the Android ART VM. Ares is lightweight
(as it requires only minimal modifications to the runtime),
and efficient (as it intercepts only the exception handling
mechanism, incurring no overhead on normal program execu-
tion). Thus, it can be seamlessly integrated into production
environments. Ares is also effective as demonstrated by our
evaluation on 52 real-world bugs — it is able to successfully
recover from 39 of the bugs. To ensure reproducibility, we
have released all the source code and data used in this pa-
per, and more details about our evaluation can be found at
http://lab.artemisprojects.org/groups/ares.
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