
T-Rec: Fine-Grained Language-Agnostic Program Reduction
Guided by Lexical Syntax
ZHENYANG XU, University of Waterloo, Canada
YONGQIANG TIAN, The Hong Kong University of Science and Technology, China
MENGXIAO ZHANG, University of Waterloo, Canada
JIARUI ZHANG, University of Waterloo, Canada
PUZHUO LIU, Ant Group, China
YU JIANG, Tsinghua University, China
CHENGNIAN SUN, University of Waterloo, Canada

Program reduction strives to eliminate bug-irrelevant code elements from a bug-triggering program, so that
(1) a smaller and more straightforward bug-triggering program can be obtained, (2) and the difference among
duplicates (i.e., different programs that trigger the same bug) can be minimized or even eliminated. With such
reduction and canonicalization functionality, program reduction facilitates debugging for software, especially
language toolchains, such as compilers, interpreters, and debuggers.While many program reduction techniques
have been proposed, most of them (especially the language-agnostic ones) overlooked the potential reduction
opportunities hidden within tokens. Therefore, their capabilities in terms of reduction and canonicalization
are significantly restricted.

To fill this gap, we propose T-Rec, a fine-grained language-agnostic program reduction technique guided
by lexical syntax. Instead of treating tokens as atomic and irreducible components, T-Rec introduces a fine-
grained reduction process that leverages the lexical syntax of programming languages to effectively explore
the reduction opportunities in tokens. Through comprehensive evaluations with versatile benchmark suites,
we demonstrate that T-Rec significantly improves the reduction and canonicalization capability of two existing
language-agnostic program reducers (i.e., Perses and Vulcan). T-Rec enables Perses and Vulcan to further
eliminate 1,294 and 1,315 duplicates in a benchmark suite that contains 3,796 test cases that triggers 46 unique
bugs. Additionally, T-Rec can also reduce up to 65.52% and 53.73% bytes in the results of Perses and Vulcan on
our multi-lingual benchmark suite, respectively.

Additional Key Words and Phrases: Automated Debugging, Program Reduction, Test Case Minimization

ACM Reference Format:

Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun. 2024.
T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax . 1, 1 (August 2024),
32 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Program reduction is a useful andwidely applied technique in theworkflow of testing and debugging
language implementations [Donaldson and MacIver 2021; Misherghi and Su 2006; Sun et al. 2018;
Zeller and Hildebrandt 2002]. This technique can reduce a bug-triggering program to a minimized
version that still manifests the same bug. With such minimized bug-triggering programs, developers
can analyze the root cause of the bug without being distracted by the bug-irrelevant code elements

Authors’ addresses: Zhenyang Xu, zhenyang.xu@uwaterloo.ca, University of Waterloo, 200 University Ave W, Waterloo,
ON, Canada, N2L 3G1; Yongqiang Tian, yqtian@ust.hk, The Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong, China; Mengxiao Zhang, University of Waterloo, 200 University Ave W, Waterloo,
ON, Canada, N2L 3G1, m492zhan@uwaterloo.ca; Jiarui Zhang, j879zhan@uwaterloo.ca, University of Waterloo, 200
University Ave W, Waterloo, ON, Canada, N2L 3G1; Puzhuo Liu, liupuzhuo@iie.ac.cn, Ant Group, Hangzhou, Zhejiang,
China; Yu Jiang, Tsinghua University, Haidian District, Beijing, China, 100084, jiangyu198964@126.com; Chengnian Sun,
cnsun@uwaterloo.ca, University of Waterloo, 200 University Ave W, Waterloo, ON, Canada, N2L 3G1.

2024. ACM XXXX-XXXX/2024/8-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

in the original bug-triggering program [Donaldson and MacIver 2021; Misherghi and Su 2006;
Sun et al. 2018; Zeller and Hildebrandt 2002]. Moreover, the differences among duplicate bug-
triggering programs (i.e., programs that trigger the same bug) are also reduced after reduction. This
functionality of program reducers is called canonicalization. Canonicalization is useful and desired,
as it significantly benefits bug deduplication and triage [Groce et al. 2017; Regehr 2019; Regehr et al.
2012]. It also benefits the existing approach for solving the compiler fuzzing taming problem [Chen
et al. 2013].

Since program reduction is useful and practical for testing and debugging language implementa-
tions, most compiler fuzzing work integrates program reduction techniques to process the found
bug-triggering programs [Chen et al. 2013; Chong et al. 2015; Le et al. 2014; Livinskii et al. 2020;
Sun et al. 2016]. Additionally, many production compilers and interpreters, such as GCC, LLVM,
CPython, and JerryScript, have explicitly required bugs be reported with minimized reproducible
bug-triggering programs in their bug-tracking systems [CPython 2022; GCC-Wiki 2020; JerryScript
2022; LLVM 2022].
Program reduction has been proven to be an NP-complete problem [Misherghi and Su 2006;

Zeller and Hildebrandt 2002] and it is not trivial to find the global minimal program. For effective
and efficient reduction, various program reduction techniques have been proposed in recent
decades [Kalhauge and Palsberg 2021; Kremer et al. 2021; Misherghi and Su 2006; Niemetz and
Biere 2013; Regehr et al. 2012; Sun et al. 2018; Tian et al. 2023; Xu et al. 2023; Zeller and Hildebrandt
2002]. For example, minimizing Delta Debugging (ddmin) treats a program as a list of elements.
It evenly partitions the list with increasing granularity, and iteratively attempts to delete each
partition and the complement from the list until no more elements can be deleted; Hierarchical
Delta Debugging (HDD) preprocesses the program into a tree structure, and applies ddmin on
the tree structure; Perses not only parses the program into a parse tree but also uses the syntax to
guide the minimization of the tree. All these techniques are language-agnostic, namely, they are
general and applicable to programs in different languages, which is also the focus of this study. 1

Limitation. Although previous language-agnostic program reduction techniques have been
demonstrated to be effective, their performance, especially canonicalization, is still limited. One
of the major bottlenecks is related to their coarse reduction granularity. Specifically, in previous
techniques such as HDD and Perses, bug-triggering programs are converted into parse trees (i.e.,
tree-based), and the subsequent reduction transformations (e.g., deletion) regard each leaf node (i.e.,
each token) as an atomic element. Therefore, each token (such as an identifier and a string literal)
can only either be entirely removed or kept as it is. In other words, these algorithms fail to recognize
the benefits of shrinking and canonicalizing tokens and consequently do not make attempts to
incorporate such optimizations. A recently proposed language-agnostic reducer, ddset, tackles
this problem by converting concrete structures in the program to abstract symbols [Gopinath et al.
2020a]. For example, it can reduce a concrete string token to the abstract string symbol in the
corresponding formal grammar, meaning that the content of the string does not affect whether
the program triggers the bug or not. However, our evaluation indicates that ddset is not effective
with bug-triggering C programs. One possible explanation is that when the inputs have strict
restrictions imposed upon on each token by the semantics or the property (i.e., triggering a certain
bug), the abstracting process may become infeasible, and thus the effectiveness of ddset may
significantly deteriorate. C-Reduce [Regehr et al. 2012] is another reducer that attempts to overcome
the limitation. It is a widely recognized and powerful reducer commonly employed in compiler
1Some of the program reduction approaches are language-specific, i.e., they are optimized with language-specific knowledge
to boost the performance in reducing programs in certain languages. [Kalhauge and Palsberg 2021; Kremer et al. 2021;
Niemetz and Biere 2013; Regehr et al. 2012]. In this study, we focus on language-agnostic techniques as they do not require
domain-specific knowledge, and thus they are more generalized.

, Vol. 1, No. 1, Article . Publication date: August 2024.

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 3

testing work and programming language communities [GCC 2020; Le et al. 2014; Li et al. 2023;
Livinskii et al. 2020; LLVM 2022; Rigger and Su 2020; Rust 2024; Winterer et al. 2020]. C-Reduce
strives to reduce identifiers, strings and numbers to their canonical forms (More details in §3.1.1).
However, the approach used by C-Reduce is specifically optimized for reducing C/C++ programs.
Although some parts of its approach is language-agnostic, their performance tends to be limited
when the language is less similar to C/C++, and thus could benefit from further enhancements.
Practical Benefits of Fine-Grained Reduction. Fine-grained reduction improves program
reduction in two aspects. First, it can minimize tokens such as identifiers and literals to canonical
tokens (formally defined in §4.1), thus making the bug-triggering program concise and further
increasing the degree of canonicalization. Such improvement can benefit bug deduplication, bug
triage, and compiler fuzzing taming [Chen et al. 2013]. The other benefit of fine-grained reduction is
that it can potentially create reduction opportunities for removing more tokens and lead to smaller
and simpler reduction results.
T-Rec. Motivated by the practical benefits above, we propose T-Rec, a fine-grained language-
agnostic program reduction technique. It enhances the capabilities of reduction and canonicalization
of existing language-agnostic program reducers by incorporating a novel, fine-grained reduction
phase. Meanwhile, since T-Rec is guided by lexical syntax, it can be readily and effectively applied
to a wide range of programming languages. T-Rec reduces tokens in two different ways. First, for
each token, T-Rec tries to find the canonical token and replace the original token with the canonical
one. Specifically, T-Rec leverages the lexical syntax to generate a list of smaller tokens arranged in
ascending shortlex order (i.e., shorter tokens come before longer tokens, and tokens with the same
length are ordered lexicographically). Then, it searches for the first token in the list that can replace
the original one until an attempt limit is reached. The found token is the canonical token and is
used to replace the original token. Such a replacement-based approach is especially effective in
scenarios where there is no strict constraint imposed upon the content of the token for the program
to trigger the bug. Second, if T-Rec cannot find the canonical token within the attempt limit, T-Rec
reduces the token by attempting to remove unnecessary characters in the token with the guidance
of lexical syntax and then converts the remaining characters to their canonical forms. More details
of this approach are presented in §4. Compared to the replacement-based approach, this method is
more effective when some parts of the token are essential for the program to trigger the bug.

We conducted extensive evaluations with two benchmark suites, named Benchmark-Tamer
and Benchmark-Multi. Benchmark-Tamer was curated by Chen et al. [Chen et al. 2013].
It contains 2,501 test cases that trigger 11 unique crash bugs in GCC 4.3.0, and 1,295 test cases
that triggers 35 unique miscompilation bugs also in GCC 4.3.0. We use this benchmark suite for
evaluating the performance of T-Rec in facilitating deduplication. Benchmark-Multi is a multi-
lingual benchmark suite. It contains 20 C, 20 Rust, and 195 SMT-LIBv2 programs in total, and is
used for evaluating the effectiveness, efficiency, and generality of T-Rec. We implemented T-Rec
on top of Perses [Sun et al. 2018], Vulcan [Xu et al. 2023], and C-Reduce [Regehr et al. 2012], and
built three prototypes named T-RecPerses, T-RecVulcan, and T-RecC-Reduce. Both Perses and Vulcan are
open-source syntax-guided language-agnostic reducers, and C-Reduce is a widely used reducer
specifically optimized for reducing C/C++ programs. As for baselines, we use Perses, Vulcan,
C-Reduce, ddset and some variants built on top of these existing reducers (more details in §5).

The evaluation results show that all the reducers with T-Rec integrated exhibit significantly better
capability in canonicalization than the original base reducers. Specifically, T-RecPerses, T-RecVulcan,
and T-RecC-Reduce eliminate 1,294, 1,315, and 336 more duplicates in Benchmark-Tamer than
Perses, Vulcan, and C-Reduce. The evaluation results also show that in terms of byte size, on
average, the results of T-RecPerses are 65.52%, 28.34%, and 42.86% smaller than those of Perses,

, Vol. 1, No. 1, Article . Publication date: August 2024.

4 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

and the results of T-RecVulcan are 53.73%, 19.79%, and 16.24% smaller than those of Vulcan. Such
results further demonstrate the superiority of T-Rec in canonicalization. Moreover, in terms of the
number of remaining tokens in the reduced program, T-RecPerses significantly outperforms Perses
and C-Reduce-canoPerses (a variant of T-RecPerses that uses the non-C/C++-specific canonicalization
transformations rather than T-Rec in the fine-grained reduction phase), which demonstrates that
T-Rec can better create reduction opportunities for removing more tokens than C-Reduce-cano.
Finally, the results also show that the overhead brought by T-Rec is within a reasonable range.
Concretely, T-RecPerses takes 24.22%, 31.22%, and 56.46% more time than Perses on C, Rust,and
SMT-LIBv2 benchmarks, respectively, and T-RecVulcan takes 1.59%, 5.04%, and 5.01% more time than
Vulcan on each benchmark.
Contribution. We make the following contributions.
• We propose the first work that uses lexical syntax to efficiently and effectively perform fine-
grained language-agnostic program reduction at the token level. Specifically, we propose a
two-stage canonicalization approach to reduce each token to its canonical form.
• We demonstrate that the fine-grained reduction process can not only significantly increase the
degree of canonicalization for a reducer, but also create more reduction opportunities to further
remove tokens, thus enhancing the reduction ability of prior reducers.
• Our extensive experiments with a benchmark suite including programs in C, Rust, and SMT-LIBv2
strongly demonstrate the efficacy and efficiency of T-Rec.
• For reproducibility and replicability, we have released the implementation and data at

https://github.com/trec-reducer/T-Rec
T-Rec will be fully open sourced as a part of Perses at https://github.com/uw-pluverse/perses
upon acceptance of this manuscript.

2 MOTIVATING EXAMPLE
In the section, we use the benchmarks rust-77002, gcc-60116, and gcc-71626 as motivating

examples to illustrate how T-Rec enhances the capabilities of both canonicalization and reduction.
rust-77002. Fig. 1a, 1b, and 1c show the reduced programs output by Perses, C-Reduce-canoPerses,
and T-RecPerses on the benchmark rust-77002 respectively. In rust-77002, the bug-triggering program
contains an integer token 1_000_000_000_000. T-Rec successfully reduces it to 0, while C-
Reduce cannot. The reason is that C-Reduce uses regular expression substitutions to canonicalize
integers, and the regular expression does not cover integers split with underscores. In contrast,
T-Rec can handle any type of integer in any language as it is guided by the lexical syntax. Reducing
the original integer token to 0 further narrows down the space of possible root cause of the bug,
i.e., it shows the extremely large value of the variable (1_000_000_000_000) is not essential to
trigger the bug. Additionally, in this case, any program with a different integer is a duplicate (i.e., a
different program that triggers the same bug). With T-Rec, the difference among such duplicates
can be completely eliminated, which makes deduplication trivial.
gcc-60116. Fig. 1d, 1e, and 1f show the results on the benchmark gcc-60116, which illustrates
another two cases where T-Rec performs better than C-Reduce in terms of canonicalization. First,
it can be observed that T-Rec reduces the string "checksum = %X\n" to "%X", but C-Reduce
does not reduce it at all. This is because C-Reduce only attempts to replace the string with an empty
string, whereas T-Rec further performs deletion-based canonicalization if such a replacement fails.
Additionally, in this benchmark, T-Rec better canonicalizes identifiers than C-Reduce. The original
identifier crc is reduced to a by T-Rec, whereas C-Reduce reduces it to aa. Although there is only
one-character difference in this case, such improvement can be important in scenarios like bug
deduplication. This difference stems from that C-Reduce groups identifier tokens that have the

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/trec-reducer/T-Rec
https://github.com/uw-pluverse/perses

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 5

1 fn main() {
2 const N: u64 = 1_000_000_000_000;
3 const SIZE: usize = 4;
4 type Mat = [[i64; SIZE]; SIZE];
5 ...
6 }

(a) The result output by Perses on rust-77002

1 fn main() {
2 const c: u64 = 1_000_000_000_000;
3 const d: usize = 4;
4 type e = [[i64; d]; d];
5 ...
6 }

(b) The result of C-Reduce-canoPerses on rust-77002

1 fn main() {
2 const h: u64 = 0;
3 const g: usize = 4;
4 type a = [[i64; g]; g];
5 ...
6 }

(c) The result of T-RecPerses on rust-77002

1 ...
2 int printf(const char *, ...);
3 void platform_main_end(
4 uint32_t crc, int flag
5) {
6 printf("checksum = %X\n", crc);
7 }
8 ...

(d) The result of Perses on gcc-60116

1 ...
2 int printf(const char *, ...);
3 void j(h aa, int b) {
4 printf("checksum = %X\n", aa);
5 }
6 ...

(e) The result of C-Reduce-canoPerses on gcc-60116

1 ...
2 int printf(const char *, ...);
3 void b(a a, int b) {
4 printf("%X", a);
5 }
6 ...

(f) The result of T-RecPerses on gcc-60116

Fig. 1. Code snippets in programs output by Perses, C-Reduce-canoPerses, and T-RecPerses on benchmark
rust-77002 (left) and gcc-60116 (right).

same name and renames different groups of identifier tokens with different canonical identifiers.
Therefore, the number of unique identifiers does not change after canonicalization. In this case,
C-Reduce exhausts all the one-letter identifiers. On the contrary, T-Rec canonicalizes each single
token solely, which can potentially decrease the number of unique identifiers.
gcc-71626. Fig. 2 shows the results on the benchmark gcc-71626, which illustrates that T-Rec is
effective in removing tokens. Fig. 2a is the reduced program output by Perses, and Fig. 2b is the
result of T-RecPerses. Compared to Perses, T-RecPerses further removed line 2, and 8 (highlighted in
red). The reason that Perses cannot remove these two lines is that line 9 in Fig. 2a uses the variable
defined by line 8, and line 8 uses the function defined by line 2. Nevertheless, after the fine-grained
reduction performed by T-Rec, the identifier in the curly bracket on line 9, becomes the same as the
function name on line 7 in Fig. 2a (as shown in Fig. 2b, on line 6 and line 7, the function name and
the identifier in the curly bracket are both b). This change makes line 2 and 8 in Fig. 2a redundant,
and thus they can be removed.

3 PRELIMINARIES
3.1 Program Reduction
A program reduction algorithm can be modeled as a function 𝑓 that takes two inputs, a program
𝑃 and a property 𝜓 that 𝑃 has, and outputs a (possibly) smaller program 𝑃 ′ still preserving the
property𝜓 . Mathematically,

𝑓 (𝑃,𝜓) = 𝑃 ′ (1)
where

𝜓 (𝑃) ∧𝜓 (𝑃 ′) ∧ |𝑃 ′ | ≤ |𝑃 | (2)

, Vol. 1, No. 1, Article . Publication date: August 2024.

6 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

1 typedef long llong;
2 test1char8() {}
3 typedef llong vllong1
4 __attribute__(
5 (__vector_size__(sizeof(llong)))
6);
7 vllong1 test2llong1() {
8 llong c = test1char8;
9 vllong1 v = {c};
10 return v;
11 }
12 main() {}

(a) The result of Perses on gcc-71626

1 typedef long a;
2 typedef a c
3 __attribute__(
4 (__vector_size__(sizeof(a)))
5);
6 c b() {
7 c a = {b};
8 return a;
9 }
10 main() {}

(b) The result of T-RecPerses on gcc-71626

Fig. 2. Results output by Perses and T-RecPerses on benchmark gcc-71626.

Is fixpoint
reached?

YesTree-Base Reduction

Algorithm

Parsing

No

Reduced ResultParse TreeProgram 𝑃 Program 𝑃′

Fig. 3. The overview of tree-based program reduction.

The property 𝜓 is modeled as a predicate, such that for any program 𝑃 , 𝜓 (𝑃) = true if 𝑃
preserves𝜓 and false otherwise. Often,𝜓 represents whether 𝑃 triggers a specific bug in a language
implementation. The notation |𝑃 | represents the size of the program 𝑃 .
Fixpoint. During the reduction process, it is common that deleting some elements makes some
other elements deletable. Therefore, only invoking the algorithm once is usually not sufficient.
To achieve the best reduction result within the capacity of the algorithm, a typical way is to
repeatedly apply the algorithm to its output until the input program and the output are identical
(i.e., 𝑓 (𝑃,𝜓) = 𝑃) [Hodován et al. 2017; Kiss et al. 2018; Misherghi and Su 2006; Regehr et al. 2012;
Sun et al. 2018; Vince 2022]. Such a program that cannot be minimized by the algorithm is called a
fixpoint of the program reduction algorithm.

3.1.1 Canonicalization. Another desired functionality that program reduction provides is canon-
icalization. Ideally, given a property 𝜓 (assuming that 𝜓 is accurate enough to prevent bug slip-
page [Chen et al. 2013]) and a search space P that includes all the possible programs, a perfectly
canonical program reduction algorithm 𝑓 has the following property:

|{𝑓 (𝑃,𝜓) |𝑃 ∈ P ∧𝜓 (𝑃)}| = 1 (3)

This property promises that all the programs in the search space P that have the same property𝜓
are reduced to a single, canonical program. In the context of reducing bug-triggering programs,
this property means the reducer can reduce all the different programs that trigger the same bug
to one canonical bug-triggering program. Such a property is extremely useful in testing and
debugging as it significantly facilitates bug deduplication and triage. Although perfectly canonical

, Vol. 1, No. 1, Article . Publication date: August 2024.

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 7

program reduction is usually impractical, it is possible and also valuable to increase the degree of
canonicalization of a program reducer (i.e., minimizing |{𝑓 (𝑃,𝜓) |𝑃 ∈ P ∧𝜓 (𝑃)}|).
Canonicalization in C-Reduce. C-Reduce has a few transformations specifically implemented
for canonicalization. These transformations can be classified into three types by their purposes, i.e.,
renaming identifiers, deleting content of string literals, and reducing integers. All the renaming
transformations except one of them are language-specific as they need to be performed on top of
the AST. The exception one does not rely on the AST; instead, it refactors the program by renaming
all the identifiers with a set of canonical identifiers (i.e., a, b, c, · · · , aa, ab, ac, · · ·). The other two
types of transformations are also not C/C++-specific. The transformation for deleting the content
of strings simply replaces each string token with an empty string, and the transformations for
reducing integers are based on regular expression substitution (e.g., matching a hex and replacing
with a decimal). For convenience, we refer to the group of the non-C/C++-specific canonicalization
transformations mentioned above as C-Reduce-cano. However, the generality of C-Reduce-cano
is limited even though they are not C/C++-specific. First, the effectiveness of renaming and string-
deleting transformation relies on the correctness of the lexing. However, C-Reduce only utilizes a C
lexer, which cannot ensure correctness when being applied to different languages. For example, in
SMT-LIBv2, identifiers can include dashes (i.e., -), and C-Reduce cannot recognize such identifiers
and thus cannot rename them. Second, the regular expression substitution does not work if the
target language supports different forms of integer literals. For example, C-Reduce cannot reduce
1_000_000_000_000 to 0 in rust-77002 shown in Fig. 1b. In addition to generality, C-Reduce-
cano are also limited in terms of effectiveness. First, C-Reduce-cano cannot effectively canonicalize
tokens when there are restrictions imposed upon the tokens. For example, C-Reduce-cano cannot
reduce the string at all in gcc-60116 shown in Fig. 1e. Second, C-Reduce-cano can hardly create
reduction opportunities for removing more tokens, e.g., they cannot help remove more tokens as
T-Rec does in gcc-71626 shown in Fig. 2.

3.1.2 Existing Language-Agnostic Reduction Techniques. The problem of program reduction has
been studied for decades. Many reduction techniques have been proposed.
Minimizing Delta Debugging. The minimizing delta debugging algorithm ddmin [Zeller and
Hildebrandt 2002] is a fundamental algorithm used by a wide range of program reduction tools.
Given a bug-triggering input, the intuition of ddmin is to consider the input as a list of elements
and keep testing whether a partition of the list or the complement of this partition can still trigger
the same bug. ddmin starts by dividing the list into two partitions and gradually decreases the
granularity when none of the partitions or complements can trigger the same bug.
Tree-Based Program Reduction. Tree-based program reduction leverages the tree structure of
the program to enhance the reduction performance. Fig. 3 shows the general workflow of tree-based
program reduction: the input program is first converted to its tree representation (e.g., its parse
tree), and the program reduction algorithm is applied to this tree structure instead of the plain
text of the program. For example, HDD runs ddmin on each level of the tree representation in a
top-down manner.
Syntax-Guided Program Reduction. Besides leveraging the tree structure of programs, syntax-
guided program reduction also utilizes formal syntax to guide the reduction. Program reduction
is a trial-and-error process. During this process, a large number of programs are generated by
deleting part of the original program and tested against the property. The key insight of syntax-
guided program reduction is that syntactically invalid programs usually do not have the property
(i.e., triggering the same bug as the original program). Therefore, by avoiding generating invalid
programs and performing property tests on only syntactically valid ones, much time can be saved.

, Vol. 1, No. 1, Article . Publication date: August 2024.

8 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

1 Constant
2 : IntegerConstant
3 | FloatingConstant
4 | CharacterConstant ;

6 fragment IntegerConstant
7 : DecConstant IntSuffix?
8 | OctConstant IntSuffix?
9 | HexConstant IntSuffix?
10 | BinaryConstant ;

12 fragment BinaryConstant
13 : '0' [bB] [0-1]+ ;

15 fragment DecConstant
16 : NonzeroDigit Digit* ;

18 fragment OctConstant
19 : '0' OctalDigit* ;

21 fragment HexConstant
22 : HexPrefix HexDigit+ ;

24 fragment HexPrefix
25 : '0' [xX] ;

27 fragment NonzeroDigit
28 : [1-9] ;

29 fragment OctalDigit
30 : [0-7] ;

32 fragment HexDigit
33 : [0-9a-fA-F] ;

35 fragment IntSuffix
36 : USuffix LongSuffix?
37 | USuffix LLSuffix
38 | LongSuffix USuffix?
39 | LLSuffix USuffix? ;

41 fragment USuffix
42 : [uU] ;

44 fragment LongSuffix
45 : [lL] ;

47 fragment LLSuffix
48 : 'll'
49 | 'LL' ;

51 fragment Digit
52 : [0-9] ;

Fig. 4. The partial lexical grammar of Constant token in C written in ANTLR grammar format

3.2 Lexical Syntax
Lexical syntax determines the way that a sequence of characters should be split into a sequence

of tokens. It is described by a list of lexical rules. Each rule defines the form of a specific type
of token. Fig. 4 shows a (partial) lexical rule in the syntax of the C programming language writ-
ten in ANTLR [ANTLR 2017] grammar format, which formally defines the Constant token
type. The fragment rules (rules that start with the keyword “fragment") are introduced for bet-
ter readability. This example rule defines that a Constant can be an IntegerConstant, a
FloatingConstant, or a CharacterConstant (line 1-4). Then, IntegerConstant is
defined to have four different forms (line 6-10). For example, it can be a HexConstant optionally
(indicated by ?) followed by an IntSuffix (line 9). HexConstant, according to the correspond-
ing fragment rule, is defined to be a HexPrefix followed by one or multiple (indicated by +)
HexDigit (line 21-22). A HexPrefix can be either 0x or 0X, indicated by ‘0’ [xX] (line 24-
25), while a HexDigit can be any character in the set [0-9a-fA-F] (line 32-33). Guided by the
lexical rule, we can possibly split a token into finer structures. For example, a hexadecimal constant
token 0xff00ull, according to the example lexical rule, can be divided into four components:

Component Fragment Description

0x HexPrefix the prefix for hexadecimal numbers
ff00 HexDigit+ hexadecimal digits
u USuffix the suffix for unsigned numbers
ll LLSuffix the suffix for the integer type long long

, Vol. 1, No. 1, Article . Publication date: August 2024.

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 9

Deletion-Based Token

Canonicalization

Program 𝑃

Syntax-Guided

Reduction Algorithm

Parsing

Is fixpoint
reached?

No

Yes

Parse Tree Reduced Result

First time reach here?
or any token is deleted?

Yes

No

Rule node

Token node

Canonical token node

Replace
Program 𝑃′

Syntax-Guided
Program Reduction

Fine-Grained
Reduction

Replacement-Based

Token Canonicalization

A Reduced ResultA (Partially) Canonicalized ResultA Canonicalized Result

Fig. 5. The overview of T-Rec.

4 METHODOLOGY
Fig. 5 shows the overview of T-Rec. Given a program to reduce, T-Rec first reduces it with a
syntax-guided program reduction algorithm. Once the algorithm reaches a fixed point (i.e., it can
no longer remove more tokens), the process of fine-grained reduction starts. In this process, T-Rec
strives to reduce each token to its canonical form. Specifically, T-Rec first attempts to replace each
token with the canonical token, which is generated based on the lexical rule of that certain token
type. Such a replacement-based approach is the most efficient way to canonicalize a token. It is
also effective in most scenarios, and thus it is performed first. However, some of the tokens may
not be able to be directly replaced with the canonical tokens. There might be some constraints
imposed upon the tokens to ensure that the program preserves the property (e.g., an integer has to
be larger than a certain value). For such tokens, T-Rec further performs a deletion-based approach
to canonicalize them. This approach first converts the token to a tree representation that reflects
the lexical structure of the token (referred to as a lex tree) based on the lexical syntax. Next, it
applies lexical syntax-guided reduction to the lex tree to remove unnecessary token fragments.
Finally, T-Rec canonicalizes each remaining token fragment by replacing it with the canonical one.
This second approach is not as efficient as the first one. Nevertheless, it is more effective when
there are strict restrictions imposed upon the token.

Algorithm 1 is the main algorithm of T-Rec. The invocations of reduceUntilFixpoint on
line 1 and line 13, correspond to the repeating syntax-guided reduction algorithm in Fig. 5. The
for loop from line 5 to line 12 corresponds to the fine-grained reduction process, which will be
introduced in detail in §4.2 and §4.3. The while condition on line 14 ensures that the reduction
terminates when the outer fixpoint is reached.

4.1 Definition of Canonical Tokens
Before introducing the two canonicalization approaches, we first define canonical tokens in this
subsection.

Definition 4.1 (Token). A token 𝑡 consists of a list of characters [𝑐1, 𝑐2, ..., 𝑐𝑛]. It is associated with
a type defined by the lexical syntax, denoted as type(𝑡), and its length equals the number of characters
in the list (i.e., n), denoted as length(𝑡).

Example. In C programs, 0x00ff is typically defined as a Constant token. Its length is 6 as it
contains 6 characters.

, Vol. 1, No. 1, Article . Publication date: August 2024.

10 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

Algorithm 1: The Main Algorithm – reduce(𝑃 ,𝜓 , 𝐺)
Input :𝑃 , the current program to be further reduced
Input :𝜓 : P→ B, the property checking function
Input :𝐺 : the formal syntax of the programming language
Output :A reduced program that still satisfies𝜓
// syntax-guided program reduction

1 𝑃𝑚𝑖𝑛 ← reduceUntilFixpoint (𝑃 ,𝜓)
2 do// Token canonicalization loop

3 𝑃𝑝𝑟𝑒𝑣 ← 𝑃𝑚𝑖𝑛

4 tokenCount← 𝑃𝑚𝑖𝑛 .tokenCount()
5 for 𝑖 ∈ [1, tokenCount] do
6 origToken← 𝑃𝑚𝑖𝑛 .getNthToken(𝑖)
7 𝑃 ′

𝑚𝑖𝑛
← replacementBasedCanonicalize(𝑃𝑚𝑖𝑛 , origToken,𝜓 , 𝐺)

8 if 𝑃 ′
𝑚𝑖𝑛

≠ 𝑃𝑚𝑖𝑛 then

9 𝑃𝑚𝑖𝑛 ← 𝑃 ′
𝑚𝑖𝑛

10 else

// deletion-based token canonicalization

11 𝑃𝑚𝑖𝑛 ← shrinkToken(𝑃𝑚𝑖𝑛 , origToken,𝜓 , 𝐺)
12 𝑃𝑚𝑖𝑛 ← canonicalizeTokenFragments(𝑃𝑚𝑖𝑛 , origToken,𝜓 , 𝐺)

13 𝑃𝑚𝑖𝑛 ← reduceUntilFixpoint (𝑃𝑚𝑖𝑛 ,𝜓)
14 while 𝑃𝑚𝑖𝑛 .size() < 𝑃𝑝𝑟𝑒𝑣 .size()
15 return 𝑃𝑚𝑖𝑛

Definition 4.2 (Shortlex Order). Given two tokens 𝑡1 = [𝑐11, 𝑐12, ..., 𝑐1𝑚] and 𝑡2 [𝑐21, 𝑐22, ..., 𝑐2𝑛],
𝑡1 <𝑠 𝑡2 if and only if eq. (4) or eq. (5) holds:

length(𝑡1) < length(𝑡2) (4)

length(𝑡1) = length(𝑡2) ∧ ∃𝑖,∀𝑗 < 𝑖 =⇒ 𝑐1𝑗 = 𝑐2𝑗 ∧ 𝑐1𝑖 < 𝑐2𝑖 (5)

Example. Given three string literal tokens: 𝑡1 is "", 𝑡2 is "a", and 𝑡3 is "b", it can be deduced
that 𝑡1 <𝑠 𝑡2 <𝑠 𝑡3 because 𝑡1 contains the smallest number of characters (i.e., two double quotes),
and the character a in 𝑡2 is in front of the b in 𝑡3 in lexicographic order.

Definition 4.3 (Canonical Token). Given a program 𝑃 that consists of a list of tokens [𝑡1, 𝑡2, ..., 𝑡𝑛]
and a property𝜓 that 𝑃 has (i.e.,𝜓 (𝑃) = true), a token 𝑡𝑖 is canonical if and only if:

∀𝑡 ′𝑖 <𝑠 𝑡𝑖 ∧ type(𝑡 ′𝑖) = type(𝑡𝑖), 𝑃 ′ = 𝑃 [𝑡𝑖/𝑡 ′𝑖] =⇒ 𝜓 (𝑃 ′) = false (6)

where type(𝑡) is the token type of the token 𝑡 defined by the lexical syntax (e.g., identifier), and 𝑃 [𝑡𝑖/𝑡 ′𝑖]
the program derived by replacing 𝑡𝑖 with 𝑡 ′𝑖 in 𝑃 .

Example. Suppose that a program 𝑃 that contains four tokens, [print,(,"hello",)], can
print “hello”, and assume that the property𝜓 is that the program prints at least one ASCII printable
character (character code 32-127). Then, the canonical token of the string token "hello" is " "
(i.e., a string that only contains a space), because " " is the first string token in the shortlex order
that preserves the property of the program. Sometimes, following the shortlex order based on
ASCII can lead to canonical tokens with poor readability. To fix this limitation, a feasible solution
is to customize the order of the alphabet rather than following the conventional order in ASCII.

, Vol. 1, No. 1, Article . Publication date: August 2024.

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 11

Algorithm 2: replacementBasedCanonicalize(𝑃 , origToken,𝜓 , 𝐺)
Input :𝑃 , the current best program
Input :origToken, the token to be replaced
Input :𝜓 , the property checking function, which takes as input a program and outputs a boolean
Input :𝐺 : the formal syntax of the programming language
Output :A reduced program that has the property𝜓

1 lexicalRule← getLexicalRule(origToken.tokenType, 𝐺)
2 tokenList← generateInShortlexOrder(lexicalRule)
3 attemptLimit← getAttemptLimit(origToken.tokenType)
4 for 𝑖 ∈ [1,min(tokenList.size(), attemptLimit)] do
5 newToken← tokenList[𝑖]
6 if replaceIfPassTest(𝑃 ,𝜓 , origToken, newToken) then

7 break

8 return 𝑃

9 Function replaceIfPassTest(𝑃 ,𝜓 , origToken, newToken):
// try to replace tokens with the same text simultaneously

10 𝑃 ′ ← a new program derived by replacing all the tokens in 𝑃 that have the same text as origToken
with newToken

11 if 𝜓 (𝑃 ′) then
12 update 𝑃 with 𝑃 ′

13 return true

// if not work, try to replace a single token

14 𝑃 ′ ← a new program derived by replacing origToken in 𝑃 with newToken
15 if 𝜓 (𝑃 ′) then
16 update 𝑃 with 𝑃 ′

17 return true

18 return false

4.2 Replacement-Based Token Canonicalization
Algorithm 2 describes the way that T-Rec replaces tokens with generated canonical tokens. The
algorithm takes four inputs, i.e., the current minimal program, the token to be replaced, the property
checking function, and the formal syntax of the corresponding programming language. First, T-Rec
retrieves the lexical rule of the token from the given formal syntax based on the token type (line 1).
Next, with the obtained lexical rule, it generates a list of tokens in shortlex order (line 2). The
generation approach that we use is similar to the input generation method mentioned by a few
existing grammar fuzzing studies [Aschermann et al. 2019; Hodován et al. 2018; Srivastava and
Payer 2021], but instead of random generation, we make the generation follow the shortlex order.
Typically, the result of the generation is determined by a list of choices that decide (1) whether
to generate for a part marked with an optional quantifier, (2) how many times to generate a
part marked with Kleene star and Kleene plus, (3) and which character(s) within the defined set
to generate. The strategy that T-Rec follows is generating as few parts as possible and always
prioritizing character(s) that are sequentially positioned in the front in shorlex order. According to
the definition of canonical tokens, the first token in tokenList that makes the program pass the
property test is the canonical token. Therefore, in the following loop (line 4-7), T-Rec iterates over
tokenList until it finds the token that can replace the original token while preserving the property
𝜓 (line 6-7).

, Vol. 1, No. 1, Article . Publication date: August 2024.

12 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

Sometimes, the canonical token is not positioned in the front in the shortlex-ordered token list.
For example, it is possible that to preserve the property, an integer literal needs to be larger than
or equal to 100. In such a case, T-Rec has to try all the integers from 0 to 99 to eventually find
that 100 is the canonical token. To ensure the replacement-based token canonicalization algorithm
does not waste too much time for such cases, T-Rec terminates the for loop once the attempt limit
set for the token type is reached (line 3 and line 4). T-Rec has two different attempt limits for
different token types. For identifiers, the attempt limit is set to infinite. Because for identifiers,
the aforementioned problem does not exist as the text content of the identifier does not affect the
semantics of the program. For tokens other than identifiers, the attempt limit is set to a small value.
In our implementation, it is set to 2 in order to cover both 0 and 1 for integer tokens.
Property Checking with New Tokens. The function replaceIfPassTest in Algorithm 2
describes the way that T-Rec checks whether a new token can replace the original token(s) without
making the program lose the property. As shown in the algorithm, T-Rec performs replacement
in two different ways. It first replaces all the tokens in 𝑡 that have the same text as origToken
with newToken to generate a new program (line 10), and it performs the property test on this
new program (line 11-13). The insight behind this replacement is that tokens having the same text
are often semantically related, and thus replacing them together sometimes better preserves the
property of the program. If the new program still has the property (i.e.,𝜓 (𝑃) = true), T-Rec updates
the current minimal program 𝑃 and returns true (line 12-13). Otherwise, T-Rec generates another
new program by only replacing the single token origToken in 𝑃 with newToken (line 14), and T-Rec
repeats the previous steps, i.e., testing and possibly updating, with this new program (line 15-17). If
neither of these two new programs passes the property, the function returns false, indicating the
new token fails the test.

1 // The original program
2 // `long_var' on line 6
3 // is the token
4 // to be replaced
5 int main() {
6 int long_var = 1;
7 int b = long_var + 2;
8 return b;
9 }

(a) The original program

1 // First program to test
2 //
3 // All `long_var's
4 // are replaced
5 int main() {
6 int a = 1;
7 int b = a + 2;
8 return b;
9 }

(b) The generated program 𝑃2

1 // Second program to test
2 //
3 // Only `long_var' on
4 // line 6 is replaced
5 int main() {
6 int a = 1;
7 int b = long_var + 2;
8 return b;
9 }

(c) The generated program 𝑃3

Fig. 6. An example of property checking with a new token

Example. Fig. 6 illustrates the process of a new token being tested by replaceIfPassTest.
Assuming that the original program is 𝑃1 in Fig. 6a, the original token is long_var on line 6, and
the new token is a. The function replaceIfPassTest first generates 𝑃2 as shown in Fig. 6b
by replacing all the long_var in the original program 𝑃1 with a. If 𝑃2 passes the property test𝜓 ,
the function updates 𝑃 with 𝑃2 and returns true to indicate that the test is passed. Otherwise, if
𝑃2 does not pass the property test𝜓 , the function replaceIfPassTest generates 𝑃3 in Fig. 6c
by replacing only the long_var on line 6, since it is the original token. Next, the function
replaceIfPassTest tests 𝑃3 against the property test 𝜓 . If the property test is passed, the
program 𝑃 is updated and true is returned; otherwise, the function returns false, indicating the test
of this new token fails.

, Vol. 1, No. 1, Article . Publication date: August 2024.

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 13

4.3 Deletion-Based Token Canonicalization
Replacement-based token canonicalization is not efficient when the token to be canonicalized
is imposed with certain restrictions for preserving the property of the program (e.g., an integer
needs to be at least 100 to make the program have the property). Therefore, we propose a deletion-
based token canonicalization approach to canonicalize the remaining tokens. The intuition of this
approach is to first remove the unnecessary characters or token fragments (i.e., shrinkToken)
and then canonicalize the remaining token fragments (i.e., canonicalizeTokenFragments).

Constant

IntegerConstant

HexConstant IntSuffix?

HexPrefix HexDigit+ USuffix LLSuffix?

“0x” “f” “f” “0” “0” “u” “ll”

Fig. 7. The lex tree of token 0xff00ull in C language.

4.3.1 Lex Tree. To facilitate the reduction with lexical syntax, we utilize lex tree to represent the
internal structures of tokens. Lex tree is similar to a parse tree, but instead of representing a program,
lex tree only represents a single token. Lex trees not only enable T-Rec to perform a tree-based
lexical syntax-guided reduction algorithm to effectively and efficiently remove unnecessary parts
within a token but also contain the necessary information for canonicalizing the shrunk token.

Fig. 7 shows an example lex tree which is built from a C constant token 0xff00ull, based on
the lexical definition of Constant. 2 The root node of the tree represents the corresponding lexical
rule. Each intermediate node represents a fragment, and each leaf node is an atomic fragment. Such
a tree representation can provide guidance for token shrinking. First, it can be observed that the
first two characters 0 and x are bound together. They form the atomic fragment HexPrefix, and
either deleting them or one of them will probably make the token syntactically invalid. Next, ff00
are four hexadecimal digits. Their parent node is a Kleene plus node (indicated by +). For every
Kleene plus node, its child can be deleted without breaking the syntax as long as at least one child
remains. The remaining parts u and ll are two suffixes of an integer. The former is an unsigned
suffix and the latter is a long long suffix. Their lowest common ancestor is IntSuffix, which
is an optional node (indicated by ?). For such a node, the sub-tree rooted in it can be deleted without
breaking the syntax. Another special type of node that is not included in the example is Kleene star
node (indicated by *). For Kleene star nodes, deleting an arbitrary number of its children does not
break the syntax.
In addition to providing guidance to token shrinking, lex trees also contain the information

for canonicalization. For example, according to the lex tree, the four characters in ff00 are all
HexDigit. According to the formal syntax, each of them can be a character in [0-9a-fA-F].
Therefore, we can canonicalize ff00 by replacing each token fragment with another valid one

2A token definition can simply be a regular expression. In such cases, T-Rec recognizes and outlines each necessary, optional,
and repetitive fragment in the regular expression and builds lex trees based on the new outlined definition.

, Vol. 1, No. 1, Article . Publication date: August 2024.

14 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

that is positioned as close to the beginning as possible in shortlex order, e.g., the resulting four
characters can be 1000.

Algorithm 3: Lexicial Syntax-Guided Reduction – shrinkToken(𝑃 , origToken,𝜓 , 𝐺)
Input :𝑃 , the current best program
Input :origToken, the token to be shrunk
Input :𝜓 , the property checking function, which takes as input a program and output a boolean
Input :𝐺 : the formal syntax of the programming language
Output :A reduced program that has the property𝜓

1 𝑡𝑙𝑒𝑥 ← buildLexTree(origToken, 𝐺)
2 queue← [𝑡𝑙𝑒𝑥 .root]
3 while queue is not empty do

4 node← queue.poll()
5 if node is an optional node then
6 𝑡 ′

𝑙𝑒𝑥
← 𝑡𝑙𝑒𝑥 .removeNode(node)

7 if replaceIfPassTest(𝑃 ,𝜓 , treeToToken(𝑡𝑙𝑒𝑥), treeToToken(𝑡 ′𝑙𝑒𝑥)) then

8 𝑡𝑙𝑒𝑥 ← 𝑡 ′
𝑙𝑒𝑥

9 else

10 queue.addAll(node.getChildren())

11 else if node is a Kleene star node or a Kleene plus node then
12 children← node.getChildren()
13 remaining← ddmin(children,𝜓)
14 update 𝑡𝑙𝑒𝑥 by removing nodes in children but not in remaining
15 update 𝑃 with the updated 𝑡𝑙𝑒𝑥
16 queue.addAll(remaining)

17 else queue.addAll(node.getChildren())

18 return 𝑃

4.3.2 Lexical Syntax-Guided Reduction. As introduced in §4.3.1, there are three special types of
nodes in a lex tree: optional nodes, Kleene star nodes, and Kleene plus nodes. For nodes that belong
to these types, deleting them or their children in a certain way can ensure that the resulting token
is still syntactically valid. Based on this insight, we propose a lexical syntax-guided reduction
algorithm.

Algorithm 3 describes the algorithm in detail. It takes three inputs, the current minimal program
𝑃 (i.e., the fixpoint result), the token to be shrunk origToken, and the property test function𝜓 which
checks whether the program still has the property. First, T-Rec builds the lex tree for the given
token (line 1) and initializes queue with the root node of the lex tree (line 2). Next, T-Rec reduces
the lex tree in a while loop (line 3-17). Whenever queue is not empty, T-Rec enters the loop and
retrieves the first node in the queue (line 4). Depending on the type of the node, T-Rec takes the
following actions.
• Optional Node If this node is an optional node, T-Rec generates a new lex tree by removing
this optional node from the original lex tree (line 6). If the new lex tree 𝑡 ′

𝑙𝑒𝑥
passes the property

test, the original lex tree 𝑡𝑙𝑒𝑥 is updated with 𝑡 ′
𝑙𝑒𝑥

, and no nodes are added to the queue (line 7-8);
otherwise, if 𝑡 ′

𝑙𝑒𝑥
does not pass the test, T-Rec adds all the children of the optional node to the

queue (line 9-10), and 𝑡 ′
𝑙𝑒𝑥

is discarded.

, Vol. 1, No. 1, Article . Publication date: August 2024.

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 15

• Kleene Star Node or a Kleene Plus Node If the node is a Kleene star node or Kleene plus node,
T-Rec applies ddmin to minimize the number of children of the node. Next, 𝑡𝑙𝑒𝑥 is updated by
only keeping the remaining children (line 12-14), and the queue is updated by adding all the
remaining children to it (line 16).
• Any nodes that do not belong to these three types are not processed, and T-Rec simply adds their
children to the queue (line 17).

4.3.3 Lex Tree-Based Canonicalization. After the lexical syntax-guided reduction finishes, T-Rec
canonicalizes the token by replacing each token fragment with another valid one that is positioned
as close to the beginning as possible in shortlex order as shown in Algorithm 4 (line 3-10). The
canonicalization process is similar to replacement-based token canonicalization. Replacement-
based token canonicalization canonicalizes the entire program by replacing each token with a
canonical one, while lex tree-based canonicalization canonicalizes a single token by replacing each
token fragment with a canonical one. Note that there is also an attempt limit in the algorithm
(line 6). In our implementation, we set it to 2, which is the same value in replacement-based token
canonicalization for tokens other than identifiers.

Algorithm 4: canonicalizeTokenFragments(𝑃 , origToken,𝜓 , 𝐺)
Input :𝑃 , the current best program
Input :origToken, the token to be canonicalized
Input :𝜓 , the property checking function, which takes as input a program and output a boolean
Input :𝐺 : the formal syntax of the programming language
Output :A canonicalizaed program that has the property𝜓

1 𝑡𝑙𝑒𝑥 ← buildLexTree(origToken, 𝐺)
2 leaves← 𝑡𝑙𝑒𝑥 .getLeaves()
3 for 𝑖 ∈ [1, leaves.size()] do
4 fragment← leaves(𝑖)
5 fragmentList← generateFragmentsInShortlexOrder(𝑡𝑙𝑒𝑥 , fragment, 𝐺)
6 for 𝑗 in range(min(fragmentList.size(), attemptLimit)) do

7 newFragment← fragmentList[𝑗]
8 𝑡 ′

𝑙𝑒𝑥
← a new lex tree derived by replacing fragment with newFragment

9 if replaceIfPassTest(𝑃 ,𝜓 , treeToToken(𝑡𝑙𝑒𝑥), treeToToken(𝑡 ′𝑙𝑒𝑥)) then

10 break

11 return 𝑃

Example. To illustrate the process of the deletion-based token canonicalization step by step, we
use 0xff00ull as an illustrating example and show how this token is canonicalized. The process
is shown in Fig. 8, using the lex tree of 0xff00ull shown in Fig. 7. The lexical syntax-guided
reduction algorithm visits nodes in the breadth-first order, and thus IntSuffix? is the first
special node being visited. Since it is an optional node, the algorithm removes the entire node,
which creates a new token 0xff00 (step 1), and invokes replaceIfPassTest to test this
new token. Assuming the new token fails the test, the algorithm discards the new token, and
continues to visit subsequent nodes. The next special node is HexDigit+. For this Kleene plus
node, the algorithm invokes ddmin to reduce the four children (step 2 - 4). Assuming that
eventually ddmin removes the last HexDigit (i.e., 0) (to ensure the result is a fixpoint, more
steps are performed by ddmin after step 4 , we assume all these steps fail the property test
and omit them for brevity), the token is then updated with the smaller one, and the program

, Vol. 1, No. 1, Article . Publication date: August 2024.

16 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

Updated Token𝝍New Token0xff00ullOriginal Token

0xff00ullàFalseà0xff00à0xff00ull① remove IntSuffix?:

0xff00ullàFalseà0xffullà0xff00ull② reduce HexDigit+:

0xff00ullàFalseà0x00ullà0xff00ull③ reduce HexDigit+:

0xff0ullàTrueà0xff0ullà0xff00ull④ reduce HexDigit+:

0xff0uàTrue à0xff0uà0xff0ull⑤ remove LLSuffix?:

0xff0uàFalseà0x0f0uà0xff0u⑥ replace 1st HexDigit:

0x1f0uàTrueà0x1f0uà0xff0u⑦ replace 1st HexDigit:

0x100uàTrueà0x100uà0x1f0u⑧ replace 2nd HexDigit:

Fig. 8. An example showing the process of the deletion-based token canonicalization.

is updated accordingly. The last special node is LLSuffix?, which is also an optional node.
Similarly, the algorithm generates a new token by removing the node. If this new token passes the
test, the algorithm updates the lex tree and the program again. Eventually, the lexical syntax-guided
reduction algorithm shrinks the token from 0xff00ull to 0xff0u. Next, T-Rec performs the
lex tree-based canonicalization algorithm. Since the first token fragment 0x does not have any
other valid alternatives, T-Rec just skips it and moves to the next token fragment, i.e., the first f.
From the formal syntax, this fragment is defined by [0-9a-fA-F]. The first two fragments in
this set in shortlex order are 0 and 1. Therefore, T-Rec first attempts to replace the first f with 0
(step 6). If such a replacement fails, T-Rec attempts to replace it with 1 (step 7). Suppose such a
replacement passes the property test, T-Rec then updates the token and the program and moves to
the next fragment and repeats the same process (step 8).

5 EVALUATION
To demonstrate the effectiveness and efficiency of T-Rec, we implemented prototypes of T-Rec on
top of Perses, Vulcan, and C-Reduce named T-RecPerses, T-RecVulcan, T-RecC-Reduce3 respectively and
conducted extensive evaluations to investigate the following research questions:
RQ1: What is the effectiveness of T-Rec in facilitating dedupliation?
RQ2: What is the effectiveness of T-Rec in reducing byte size?
RQ3: What is the effectiveness of T-Rec in removing tokens?
RQ4: How efficient is T-Rec?
Benchmark Suites. Two benchmarks suites are used for evaluating T-Rec. The first benchmark
suite is collected and used by Chen et al. [Chen et al. 2013] (referred to as Benchmark-Tamer).
We use this benchmark for evaluating the performance of T-Rec in facilitating deduplication. The
other benchmark suite used for evaluating T-Rec is named Benchmark-Multi. This benchmark
suite contains bug-triggering programs in three different programming languages, i.e., C, Rust, and
SMT-LIBv2. It is included to further assess the effectiveness and efficiency of T-Rec. Meanwhile,
this multi-lingual benchmark suite also allows us to evaluate the generality of T-Rec to some extent.
• Benchmark-Tamer includes 2,501 test cases that trigger 11 unique crash bugs and 1,295
test cases (1,298 in total, but we cannot reproduce the bug with 3 test cases) that trigger 35
unique miscompilation bugs in GCC 4.3.0. All the test cases are generated by CSmith [Yang

3T-RecC-Reduce is implemented by replacing C-Reduce-cano (i.e., the non-C/C++-specific canonicalization transformations)
in C-Reduce with T-Rec

, Vol. 1, No. 1, Article . Publication date: August 2024.

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 17

et al. 2011] version 2.1.0 under its default setting. This benchmark suite also contains JavaScript
bug-triggering test cases. We did not use them since we did not have access to the corresponding
property test scripts.
• Benchmark-Multi consists of 20 C programs, 20 Rust programs, and 195 SMT-LIBv2 programs.
The C programs are also used for evaluation in previous studies [Gharachorlu and Sumner 2023;
Sun et al. 2018; Wang et al. 2021; Xu et al. 2023; Zhang et al. 2024, 2023], which is generated
by fuzzing techniques including CSmith and EMI [Le et al. 2014]. The Rust benchmarks are all
real-world bugs collected by the authors, and most of them are also used for evaluation in previous
research studies [Xu et al. 2023; Zhang et al. 2024, 2023]. Each C and Rust benchmark consists of
a bug-triggering program that triggers an unique crash or miscompilation bug and a shell script
that checks whether a program triggers the bug in certain affected version(s) of compilers. The
SMT-LIBv2 programs are collected from the benchmark suite for evaluating ddSMT [Kremer et al.
2021; Niemetz and Biere 2013], which contains 241 SMT-LIBv2 programs in total. We used 195 of
them in our evaluation since the remaining 46 SMT-LIBv2 programs cannot be parsed or pass the
property check.

Baselines. The baselines to which we compared T-Rec include Perses, Vulcan, C-Reduce, ddset,
and a few variants built based on these reducers.
• Perses is a language-agnostic syntax-guided program reducer [Sun et al. 2018]. It excels at
efficiency, and reducers including Vulcan and ddset are built on top of Perses.
• Vulcan is the state-of-the-art language-agnostic program reducer [Xu et al. 2023]. It integrates
three auxiliary reducers on top of Perses to trade off execution time for smaller outcomes.
• ddset is another language-agnostic reducer built on top of Perses [Gopinath et al. 2020a].
It strives to abstract the bug-triggering input after reduction, which can be considered as a
different approach of canonicalization. We use the implementation from the ddset GitHub
repository [Gopinath et al. 2020b] and follow the instructions provided in the repository.
• C-Reduce is a commonly used state-of-the-art program reducer that is specifically optimized
for reducing C/C++ programs. For C-Reduce, in addition to its default setting (referred to as
C-Reduce), we also include C-Reduce with its sllooww flag enabled (C-Reduce under this setting
is referred to as C-Reduce-slow) as a baseline. When the flag sllooww is enabled, C-Reduce
performs more exhaustive reduction transformations and thus having enhanced capability of
both reduction and canonicalization at the cost of execution time.
• C-Reduce-canoPerses and C-Reduce-canoVulcan are two variants of T-RecPerses and T-RecVulcan.
They are built by replacing the find-grained reduction components (blue part in Fig. 5) with
C-Reduce-cano.

The name convention we followed for naming the prototypes and variants (reducer with a subscript
in its name) is that the base name refers to the canonicalization approach, and the subscript refers
to the main reduction algorithm.
Metrics. In the evaluation, the following four metrics are used to measure the performance of
program reduction:
• Number of Eliminated Programs: the total number of eliminated programs. Given a list of
programs, after reduction, some programs may become textually equivalent. For each group of
textually equivalent programs, only one of them is kept and others are eliminated. A higher value
of this metric indicates a better capability of the corresponding reducer in canonicalization.
• Byte Size: the size in byte of the reduced program. This metric can reflect the capability of
both reduction and canonicalization to some extent. The smaller the byte size, the better the
performance in reduction and canonicalization.

, Vol. 1, No. 1, Article . Publication date: August 2024.

18 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

• Token Count: the number of tokens in the reduced program. This metric mainly measures
the capability of reduction. The smaller the number of tokens, the better the performance in
reduction.
• Time: the execution time (in seconds) of the reduction.
We measure both the byte size and token count of the results to provide a comprehensive evaluation
of the effectiveness. The number of tokens reflects the reduction capability of a reducer. Fewer
tokens in the output program indicate better reduction capability. While the byte size also reflects
the reduction capability, it, meanwhile, reveals the capability in canonicalization of a reducer to
some extent. Having fewer redundant bytes in the reduced program often leads to fewer differences
among reduced duplicates. To observe the reduction performance gap between T-Rec and the
baselines in a straightforward way, we also include percentage change in size (for both byte size
and token count) in the evaluation results, which is calculated by (size − sizebaseline)/sizebaseline.
Different tools may output reduced programs in different formats, and the byte size of the

programs can be noticeably affected by their format. To eliminate the influence of format on size
comparison, we do not count any whitespace in the program.
Experiment Setup. The experiments are run on an Ubuntu 20.04 server with AMD Ryzen 9
7950X 16-Core CPU and 128GB RAM. All the experiments are run with a single thread.

Table 1. The reduction results produced by different reducer on the 2,501 crash test cases in
Benchmark-Tamer. The column Eliminated (#) shows the total number of programs eliminated by
each reducer.

Reducer Eliminated (#) Average Time (s) Average Size (# of Tokens)

Perses 3 83.05 59.87
C-Reduce-canoPerses 741 84.52 59.87
T-RecPerses 1,297 89.76 55.73

Vulcan 13 146.97 42.27
C-Reduce-canoVulcan 808 148.05 42.27
T-RecVulcan 1,327 157.71 40.80

C-Reduce 1,143 287.09 35.29
T-RecC-Reduce 1,466 375.48 33.90

C-Reduce-slow 1,959 768.67 31.73
T-RecC-Reduce-slow 2,053 778.68 30.34

ddset 3 667.51 N/A

5.1 RQ1: Effectiveness in Deduplication
A highly canonicalizing reducer tends to reduce different test cases that triggers the same bug to
similar or even identical test cases. Therefore, one meaningful perspective to evaluate the capability
of a reducer in canonicalization is to evaluate whether it can reduce duplicates (i.e., test cases that
trigger the same bug) to a textually identical test case. In this experiment, we compare the per-
formance of different program reducers in deduplication using Benchmark-Tamer. Specifically,
we utilize each reducer to reduce all the test cases in the benchmark suite. Among the reduced
test cases, if there are textually equivalent test cases, only one of them is kept and the others are
eliminated. We measure the number of eliminated test cases, the average time to reduce, and the

, Vol. 1, No. 1, Article . Publication date: August 2024.

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 19

Table 2. The reduction results produced by different reducer on the 1,295 miscompilation test cases in
Benchmark-Tamer. The Eliminated (#) column shows the total number of programs that are eliminated
because they are textually equivalent to other programs.

Reducer Eliminated (#) Average Time (s) Average Size (# of Tokens)

Perses 0 394.36 285.03
C-Reduce-canoPerses 0 430.09 284.42
T-RecPerses 0 511.41 228.59

Vulcan 0 2,134.71 197.72
C-Reduce-canoVulcan 0 2,146.40 197.17
T-RecVulcan 1 2,223.95 188.88

C-Reduce 36 1,247.19 79.26
T-RecC-Reduce 49 1,304.69 73.43

C-Reduce-slow 129 3,468.54 74.79
T-RecC-Reduce-slow 163 3,511.17 69.14

ddset 0 5,203.80 N/A

average size of the reduced test cases for each reducer. Table 1 and Table 2 show the results of the
experiment.
Perses v.s.C-Reduce-canoPerses v.s. T-RecPerses. T-RecPerses is a prototype of T-Rec implemented
on top of Perses, and C-Reduce-canoPerses integrates C-Reduce-cano instead of T-Rec on top of
Perses to serve as the fine-grained reduction technique. As shown in Table 1, C-Reduce-canoPerses
and T-RecPerses eliminate 741 and 1,297 textually equivalent programs after reducing the 2,501
crash test cases, whereas Perses only eliminates 3 programs. In terms of the 1,295 miscompilation
test cases, none of these three reducers successfully produces textually equivalent programs and
thus no program is eliminated. Such a result indicates that both C-Reduce-cano and T-Rec can
effectively canonicalize programs to some extent, and T-Rec is even more effective. Additionally, it
should be noted that the results of T-RecPerses contain fewer tokens than Perses. Specifically, on
average, the results of T-RecPerses have 5.01% and 18.52% fewer tokens than those of Perses on crash
and miscompilation test cases, respectively. Timewise, C-Reduce-canoPerses and T-RecPerses spend
2.91% and 14.79% more time than Perses on the crash test cases and 10.18% and 29.62% on the
miscompilation test cases.
Vulcan v.s.C-Reduce-canoVulcan v.s.T-RecVulcan. Similar to C-Reduce-canoPerses and T-RecPerses,
C-Reduce-canoVulcan and T-RecVulcan integrate C-Reduce-cano and T-Rec on top of Vulcan, respec-
tively. The comparison among these three reducers further supports the conclusion that both
C-Reduce-cano and T-Rec can effectively canonicalize programs to some extent, and T-Rec is more
effective than C-Reduce-cano. Specifically, T-RecVulcan can eliminate 519 (= 1327 − 808) more crash
test cases than C-Reduce-canoVulcan, and among the three reducers, T-RecVulcan is the only one that
can eliminate a miscompilation test case. Timewise, T-RecVulcan takes 8.49% and 5.77% more time
than Vulcan on crash and miscompilation test cases, respectively.
C-Reduce and C-Reduce-slow v.s. T-RecC-Reduce and T-RecC-Reduce-slow. To further evaluate
the capability of T-Rec in deduplication, we implement T-RecC-Reduce by replacing C-Reduce-cano
with T-Rec, and compare this prototype to C-Reduce with the default setting and with sllooww
flag enabled. As shown in Table 1 and Table 2, the T-Rec technique helps C-Reduce and C-Reduce-
slow further eliminate 323 and 94 crash test cases as well as 13 and 34 miscompilation test cases.

, Vol. 1, No. 1, Article . Publication date: August 2024.

20 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

Moreover, on average, the results of T-RecC-Reduce contain 2.84% and 6.04% fewer tokens than those
of C-Reduce on crash test cases and miscompilation test cases, respectively. Correspondingly, the
percentage decrease in token size of T-RecC-Reduce-slow compared to C-Reduce-slow is 2.84% and
4.20%, respectively. In terms of execution time, T-RecC-Reduce spends 37.48% and 5.12% more time
than C-Reduce, and T-RecC-Reduce-slow spends 1.40% and 1.36% more time than C-Reduce-slow on
reducing crash test cases and miscompilation test cases, respectively.
Comparing with ddset. As shown in Table 1, ddset cannot eliminate more crash test cases
than Perses. Moreover, its average execution time is 8.04× that of Perses. For ddset, its results
contains abstract symbols (i.e., terminals and nonterminals) and cannot be directly count by our
tool. Considering that token count is not the focus of this experiment, and it is not clear what is
the proper way to count abstract symbols, we did not include the token count results for ddset. In
terms of reducing miscompilation test cases, as shown in Table 2, ddset cannot eliminate any test
case, and its average execution time is the highest among all the reducers. It should be noted that
ddset exceeds the time limit (set to 7,200 seconds) for 897 test cases, and the results shown in the
table do not include these timeout results. To understand the reason why ddset is not effective
in this task, we investigated a few results produced by ddset and found that the structures that
ddset can abstract is very limited. A possible explanation is that these C programs are too complex
for ddset to abstract. In the ddset paper, the benchmark suite used for evaluation includes four
input languages, i.e., JavaScript, Clojure, Lua, and UNIX command line utilities including grep
and find, and the bug-triggering inputs after the reduction by Perses (with which the abstracting
process starts) are relatively small (46.82 characters on average and 185 characters at most). In
contrast, the crash test cases reduced by Perses contains 244.94 bytes on average and 3,080 bytes at
most. Moreover, the restrictions imposed upon the elements of a C test case by the strict semantic
requirements and the property (i.e., triggering the bug) may make the abstracting process infeasible.

RQ1: T-Rec can enable previous reducers to eliminates more duplicates by reducing them
to textually equivalent test cases. Specifically, T-RecPerses, T-RecVulcan, T-RecC-Reduce, and
T-RecC-Reduce-slow eliminate 1,294, 1,315, 336, and 128 more duplicates (including eliminated
crash test cases and miscompilation test cases) than Perses, Vulcan, C-Reduce, and C-
Reduce-slow, respectively.

5.2 RQ2: Effectiveness in Reducing Byte Size
The first research question has already demonstrated that T-Rec is effective in dedupliation, which
indicates that T-Rec is effective in canonicalization to some extent. In this research question, we
evaluate the canonicalization capability of T-Rec from another angle. Since the canonical token in
this work is defined with shorlex order. The byte size of the reduced program reflects the degree of
canonicalization to some extent. A reducer with higher degree of canonicalization is expected to
produce results with smaller byte size. Therefore, in this experiment, we measure the byte sizes of
the results produced by each tool on Benchmark-Multi. The results are shown in Table 3 and
Fig. 9.
T-RecPerses v.s. C-Reduce-canoPerses v.s. Perses. In this experiment, T-RecPerses significantly out-
performs both Perses and C-Reduce-canoPerses. In 199 out of 235 benchmarks, the result of T-RecPerses
is smaller than both that of Perses and C-Reduce-canoPerses, and in the remaining benchmarks,
the results of T-RecPerses and C-Reduce-canoPerses have the same sizes. On average, the result of
T-RecPerses is 65.52% (and 27.04%), 28.34% (and 8.23%), and 42.86% (and 35.39%) smaller than that of
Perses (and C-Reduce-canoPerses) on C, Rust, and SMT-LIBv2 benchmarks, respectively. It should

, Vol. 1, No. 1, Article . Publication date: August 2024.

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 21

Table 3. The byte sizes of the results produced by different reducers on C and Rust benchmarks.

Subjects Perses C-Reduce-canoPerses T-RecPerses
Change w.r.t.

Perses
Chance w.r.t.

C-Reduce-canoPerses
Vulcan C-Reduce-canoVulcan T-RecVulcan

Change w.r.t.
Vulcan

Change w.r.t.
C-Reduce-canoVulcan

clang-22382 524 285 231 -55.92% -18.95% 344 189 189 -45.06% 0.00%
clang-22704 246 124 117 -52.44% -5.65% 193 94 94 -51.30% 0.00%
clang-23309 1,899 716 153 -91.94% -78.63% 1,237 465 431 -65.16% -7.31%
clang-23353 331 169 152 -54.08% -10.06% 308 150 150 -51.30% 0.00%
clang-25900 926 412 328 -64.58% -20.39% 353 149 149 -57.79% 0.00%
clang-26760 487 193 115 -76.39% -40.41% 183 103 104 -43.17% 0.97%
clang-27137 684 308 80 -88.30% -74.03% 354 141 126 -64.41% -10.64%
clang-27747 415 193 128 -69.16% -33.68% 301 116 116 -61.46% 0.00%
clang-31259 1,341 617 424 -68.38% -31.28% 843 390 359 -57.41% -7.95%
gcc-59903 906 464 446 -50.77% -3.88% 518 277 276 -46.72% -0.36%
gcc-60116 1,901 764 455 -76.07% -40.45% 739 387 344 -53.45% -11.11%
gcc-61383 980 416 308 -68.57% -25.96% 649 264 265 -59.17% 0.38%
gcc-61917 557 250 199 -64.27% -20.40% 319 144 145 -54.55% 0.69%
gcc-64990 733 436 314 -57.16% -27.98% 553 271 270 -51.18% -0.37%
gcc-65383 516 223 186 -63.95% -16.59% 241 115 119 -50.62% 3.48%
gcc-66186 1,128 473 396 -64.89% -16.28% 668 288 290 -56.59% 0.69%
gcc-66375 1,596 671 491 -69.24% -26.83% 824 335 318 -61.41% -5.07%
gcc-70127 1,000 503 339 -66.10% -32.60% 768 334 317 -58.72% -5.09%
gcc-70586 633 238 221 -65.09% -7.14% 326 157 158 -51.53% 0.64%
gcc-71626 167 105 95 -43.11% -9.52% 137 91 91 -33.58% 0.00%

Average 848.5 378 258.9 -65.52% -27.04% 492.9 223 215.55 -53.73% -2.05%

rust-111502 429 299 292 -31.93% -2.34% 395 284 282 -28.61% -0.70%
rust-112061 1,002 951 727 -27.45% -23.55% 963 912 757 -21.39% -17.00%
rust-112213 1,509 1,335 1,068 -29.22% -20.00% 1,323 1,171 1,062 -19.73% -9.31%
rust-112526 996 984 804 -19.28% -18.29% 900 888 726 -19.33% -18.24%
rust-44800 1,240 850 759 -38.79% -10.71% 795 569 524 -34.09% -7.91%
rust-66851 1,767 1,191 1,126 -36.28% -5.46% 1,791 1,294 1,170 -34.67% -9.58%
rust-69039 377 274 274 -27.32% 0.00% 295 267 259 -12.20% -3.00%
rust-77002 452 368 328 -27.43% -10.87% 468 380 360 -23.08% -5.26%
rust-77320 84 73 73 -13.10% 0.00% 86 78 74 -13.95% -5.13%
rust-77323 49 49 49 0.00% 0.00% 49 49 49 0.00% 0.00%
rust-77910 62 53 43 -30.65% -18.87% 43 39 37 -13.95% -5.13%
rust-77919 176 135 135 -23.30% 0.00% 172 141 132 -23.26% -6.38%
rust-78005 188 157 157 -16.49% 0.00% 218 209 157 -27.98% -24.88%
rust-78325 95 63 63 -33.68% 0.00% 92 60 60 -34.78% 0.00%
rust-78651 53 34 34 -35.85% 0.00% 24 24 24 0.00% 0.00%
rust-78652 230 139 134 -41.74% -3.60% 141 127 122 -13.48% -3.94%
rust-78655 50 41 41 -18.00% 0.00% 49 43 41 -16.33% -4.65%
rust-78720 174 100 100 -42.53% 0.00% 107 86 86 -19.63% 0.00%
rust-91725 338 255 156 -53.85% -38.82% 208 161 155 -25.48% -3.73%
rust-99830 685 623 548 -20.00% -12.04% 632 580 544 -13.92% -6.21%

Average 497.8 398.7 345.55 -28.34% -8.23% 437.55 368.1 331.05 -19.79% -6.55%

be noted that part of the decrease in byte size achieved by T-RecPerses is attributed to the fact that
T-RecPerses removes more tokens than Perses.
T-RecVulcan v.s. Vulcan. Compared to Perses, the reduction algorithm of Vulcan is more ex-
haustive, and T-RecVulcan fails to remove more tokens than Vulcan (as shown in §5.3). Nevertheless,
T-RecVulcan still manages to produce 53.73%, 19.79%, and 16.24% smaller outcomes than Vulcan on
C, Rust, and SMT-LIBv2 benchmarks, respectively. Such a result indicates that T-Rec is effective in
increasing the degree of canonicalization.
T-RecVulcan v.s. C-Reduce-canoVulcan. Although C-Reduce-canoVulcan is also effective in terms
of increasing the degree of canonicalization, T-RecVulcan significantly outperformsC-Reduce-canoVulcan
on Rust and SMT-LIBv2 benchmarks. The p-values yielded by theWilcoxon signed-rank test [Wilcoxon
1992] are 4.34×10−4 and 1.36×10−4, respectively. This result demonstrates that T-Rec has bet-
ter generality than C-Reduce-cano. On C benchmarks, T-RecVulcan performs slightly better than
C-Reduce-canoVulcan, but the improvement is not significant. The p-value is 0.14. We also no-
ticed that in 6 out of 20 C benchmarks and 7 out of 195 SMT-LIBv2 benchmarks, the results of
C-Reduce-canoVulcan are smaller than those of T-RecVulcan, and we manually investigated each of
them. For the 6 C benchmarks, the differences are due to that the passes of C-Reduce sometimes
can reduce an integer to a smaller one than T-Rec (e.g., it can convert a hex to a decimal, thus
removing 0x). For the 7 SMT-LIBv2 benchmarks, the differences are all due to that T-Rec considers

, Vol. 1, No. 1, Article . Publication date: August 2024.

22 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

Perses C-ReducePerses T-RecPerses Vulcan C-ReduceVulcan T-RecVulcan

0

500

1000

1500

2000

2500

S
iz

e
(b

y
te

)

µ=999.84
σ=827.00

µ=844.59
σ=682.11

µ=438.85
σ=373.29

µ=431.62
σ=223.18 µ=371.44

σ=184.89
µ=348.35
σ=171.45

Fig. 9. The byte sizes of the results produced by different reducers on SMT-LIBv2 benchmarks. On average,
the results of T-RecPerses are 42.86% and 35.39% smaller than Perses and C-Reduce-canoPerses respectively;
the results of T-RecVulcan are 16.24% and 4.83% smaller than Vulcan and C-Reduce-canoVulcan respectively.

simple symbols as keywords (according to the lexical syntax) and does not reduce them, while the
passes of C-Reduce treat them as identifiers and replace them with smaller ones.

RQ2: Both T-RecPerses and T-RecVulcan exhibit significantly better capability in canonicaliza-
tion than Perses and Vulcan, respectively. Specifically, on average, the results of T-RecPerses
(and T-RecVulcan) are 65.52% (53.73%), 28.34% (19.79%), and 42.86% (16.24%) smaller than
that of Perses (and Vulcan) on C, Rust, and SMT-LIBv2 benchmarks, respectively. Although
integrating the passes for canonicalization in C-Reduce to Perses and Vulcan also increases
the degree of canonicalization, such an approach is not as generalized as T-Rec and is
significantly outperformed by T-Rec on Rust and SMT-LIBv2 benchmarks.

5.3 RQ3: Effectiveness in Removing Tokens
The evaluation results with Benchmark-Multi also demonstrate that T-RecPerses significantly
outperforms Perses and C-Reduce-canoPerses in terms of removing tokens. Table 4 and Fig. 10 shows
the number of tokens of the results produced by each reducer.

On average, the result of T-RecPerses contains 21.30%, 4.71%, and 34.35% fewer tokens than that of
Perses. In 185 (20 C, 8 Rust, and 157 SMT-LIBv2) out of 235 benchmarks, T-RecPerses reduces more
tokens than Perses. Although C-Reduce-canoPerses also reduces more tokens than Perses in some
benchmarks, it only achieves this in 15 (1 C and 14 SMT-LIBv2) out of 235 benchmarks, and there
is no benchmark where C-Reduce-canoPerses reduces more tokens than T-RecPerses.

T-RecVulcan does not remove more tokens than Vulcan noticeably overall. Specifically, The results
of T-RecVulcan on C and Rust benchmarks contain the same number of tokens as those of Vulcan.
Such a result is expected to some extent since the reduction algorithm of Vulcan is much more
aggressive than Perses. Compared to Perses, it contains three additional auxiliary reducers to
perform transformations for exploring reduction opportunities. Nevertheless, T-RecVulcan still
manages to remove more tokens in 18 SMT-LIBv2 benchmarks. Moreover, in these 18 benchmarks,
the results of T-RecVulcan contain 17.70% fewer tokens on average, and in the extreme case, the

, Vol. 1, No. 1, Article . Publication date: August 2024.

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 23

Table 4. The numbers of tokens of the results produced by different reducers on C and Rust.

Subjects Perses C-Reduce-canoPerses T-RecPerses
Change w.r.t.

Perses Vulcan C-Reduce-canoVulcan T-RecVulcan
Change w.r.t.

Vulcan

clang-22382 144 144 129 -10.42% 108 108 108 0.00%
clang-22704 78 78 71 -8.97% 62 62 62 0.00%
clang-23309 464 464 102 -78.02% 303 303 303 0.00%
clang-23353 98 98 94 -4.08% 91 91 91 0.00%
clang-25900 239 239 211 -11.72% 104 104 104 0.00%
clang-26760 120 120 74 -38.33% 56 56 56 0.00%
clang-27137 180 180 47 -73.89% 88 88 88 0.00%
clang-27747 117 117 89 -23.93% 79 79 79 0.00%
clang-31259 406 406 331 -18.47% 282 282 282 0.00%
gcc-59903 308 308 304 -1.30% 198 198 198 0.00%
gcc-60116 488 488 331 -32.17% 241 241 241 0.00%
gcc-61383 272 272 221 -18.75% 195 195 195 0.00%
gcc-61917 150 150 134 -10.67% 103 103 103 0.00%
gcc-64990 239 239 221 -7.53% 203 203 203 0.00%
gcc-65383 153 153 134 -12.42% 84 84 84 0.00%
gcc-66186 327 327 296 -9.48% 226 226 226 0.00%
gcc-66375 440 440 368 -16.36% 227 227 227 0.00%
gcc-70127 301 301 240 -20.27% 230 230 230 0.00%
gcc-70586 157 153 142 -9.55% 94 94 94 0.00%
gcc-71626 51 51 41 -19.61% 38 38 38 0.00%

Average 236.6 236.4 179 -21.30% 150.6 150.6 150.6 0.00%

rust-111502 166 166 161 -3.01% 157 157 157 0.00%
rust-112061 458 458 413 -9.83% 442 442 442 0.00%
rust-112213 736 736 647 -12.09% 635 635 635 0.00%
rust-112526 382 382 382 0.00% 338 338 338 0.00%
rust-44800 467 467 467 0.00% 284 284 284 0.00%
rust-66851 728 728 724 -0.55% 713 713 713 0.00%
rust-69039 114 114 114 0.00% 101 101 101 0.00%
rust-77002 263 263 247 -6.08% 247 247 247 0.00%
rust-77320 39 39 39 0.00% 39 39 39 0.00%
rust-77323 13 13 13 0.00% 13 13 13 0.00%
rust-77910 34 34 28 -17.65% 21 21 21 0.00%
rust-77919 74 74 74 0.00% 62 62 62 0.00%
rust-78005 102 102 102 0.00% 102 102 102 0.00%
rust-78325 28 28 28 0.00% 26 26 26 0.00%
rust-78651 17 17 17 0.00% 9 9 9 0.00%
rust-78652 56 56 56 0.00% 49 49 49 0.00%
rust-78655 26 26 26 0.00% 26 26 26 0.00%
rust-78720 72 72 72 0.00% 56 56 56 0.00%
rust-91725 174 174 105 -39.66% 105 105 105 0.00%
rust-99830 299 299 283 -5.35% 277 277 277 0.00%

Average 212.4 212.4 199.9 -4.71% 185.1 185.1 185.1 0.00%

result of T-RecVulcan contains 63.13% fewer tokens. On the other hand, C-Reduce-canoVulcan cannot
remove more tokens than Vulcan in any benchmark.

RQ3: T-RecPerses significantly outperforms Perses and C-Reduce-canoPerses in terms of re-
moving tokens. On average, the result of T-RecPerses contains 21.30%, 4.71%, and 34.35%
fewer tokens than that of Perses. Additionally, T-RecVulcan can remove more tokens than
Vulcan in 18 out of 195 SMT-LIBv2 benchmarks despite the aggressive reduction algorithm
adopted by Vulcan.

, Vol. 1, No. 1, Article . Publication date: August 2024.

24 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

Perses C-ReducePerses T-RecPerses Vulcan C-ReduceVulcan T-RecVulcan

0

200

400

600

800

S
iz

e
(t

ok
en

)

µ=299.66
σ=237.57

µ=299.11
σ=236.73

µ=155.51
σ=108.11 µ=127.69

σ=67.19
µ=127.69
σ=67.19

µ=124.71
σ=65.57

Fig. 10. The token sizes of the results produced by different reducers on SMT-LIBv2 benchmarks. On average,
the results of T-RecPerses contain 34.35% fewer tokens than Perses.

Perses C-ReducePerses T-RecPerses Vulcan C-ReduceVulcan T-RecVulcan

0

200

400

600

800

T
im

e
(s

)

µ=96.16
σ=168.45

µ=100.95
σ=168.98

µ=122.56
σ=179.62

µ=279.98
σ=298.93

µ=284.16
σ=300.52

µ=285.96
σ=301.02

Fig. 11. The execution time of different reducers on SMT-LIBv2 benchmarks. On average, T-RecPerses takes
56.46% and 22.04% more time than Perses and C-Reduce-canoPerses respectively; T-RecVulcan takes 5.01% more
time than Vulcan.

5.4 RQ4: Efficiency
Since T-RecPerses and T-RecVulcan perform extra steps on top of Perses and Vulcan, it is inevitable
that T-RecPerses and T-RecVulcan take more time to reduce a program. The experiment discussed in
§5.1 has demonstrated this to some extent. This research question aims to further investigate how
much overhead is brought by the additional fine-grained reduction process in each variant of T-Rec
using Benchmark-Multi. To answer this research question, we compare the execution time
that each tool takes to reduce the benchmarks. The result is shown in Table 5 and Fig. 11.
Perses and Vulcan as the Baselines. Overall, T-RecPerses takes 24.22%, 31.22%, and 56.46% more
time than Perses on C, Rust, and SMT-LIBv2 benchmarks, respectively. Compared to Vulcan, which

, Vol. 1, No. 1, Article . Publication date: August 2024.

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 25

Table 5. The execution time of different reducers on C and Rust.

Subjects Perses C-Reduce-canoPerses T-RecPerses
Change w.r.t.

Perses
Chance w.r.t.

C-Reduce-canoPerses
Vulcan C-Reduce-canoVulcan T-RecVulcan

Change w.r.t.
Vulcan

Change w.r.t.
C-Reduce-canoVulcan

clang-22382 256 267 266 3.91% -0.37% 525 539 534 1.71% -0.93%
clang-22704 609 617 630 3.45% 2.11% 726 738 736 1.38% -0.27%
clang-23309 882 964 934 5.90% -3.11% 5,012 5,113 5,036 0.48% -1.51%
clang-23353 320 330 329 2.81% -0.30% 451 462 452 0.22% -2.16%
clang-25900 388 411 429 10.57% 4.38% 848 866 859 1.30% -0.81%
clang-26760 806 823 842 4.47% 2.31% 1,136 1,150 1,153 1.50% 0.26%
clang-27137 4,023 4,152 4,122 2.46% -0.72% 7,027 7,148 7,085 0.83% -0.88%
clang-27747 509 531 557 9.43% 4.90% 869 892 879 1.15% -1.46%
clang-31259 1,013 1,343 1,927 90.23% 43.48% 9,553 9,780 9,639 0.90% -1.44%
gcc-59903 1,822 1,872 1,898 4.17% 1.39% 2,677 2,718 2,695 0.67% -0.85%
gcc-60116 1,252 1,442 1,718 37.22% 19.14% 6,126 6,208 6,161 0.57% -0.76%
gcc-61383 1,670 1,876 2,141 28.20% 14.13% 9,766 9,986 9,859 0.95% -1.27%
gcc-61917 559 572 602 7.69% 5.24% 807 819 815 0.99% -0.49%
gcc-64990 1,502 1,553 1,798 19.71% 15.78% 3,003 3,077 3,126 4.10% 1.59%
gcc-65383 522 571 594 13.79% 4.03% 1,013 1,073 1,036 2.27% -3.45%
gcc-66186 1,674 1,997 2,521 50.60% 26.24% 15,942 16,305 16,560 3.88% 1.56%
gcc-66375 1,763 2,097 3,344 89.68% 59.47% 10,432 10,699 10,558 1.21% -1.32%
gcc-70127 1,949 2,310 2,969 52.33% 28.53% 13,632 13,938 13,818 1.36% -0.86%
gcc-70586 3,317 3,830 4,214 27.04% 10.03% 15,143 15,893 15,348 1.35% -3.43%
gcc-71626 24 26 29 20.83% 11.54% 40 43 42 5.00% -2.33%

Average 1,243 1,379.2 1,593.2 24.22% 12.41% 5,236.4 5,372.35 5,319.55 1.59% -1.04%

rust-111502 39 63 49 25.64% -22.22% 275 292 283 2.91% -3.08%
rust-112061 2,010 3,305 3,418 70.05% 3.42% 12,565 13,834 13,605 8.28% -1.66%
rust-112213 3,235 5,287 3,649 12.80% -30.98% 36,784 38,757 37,682 2.44% -2.77%
rust-112526 2,643 3,112 5,064 91.60% 62.72% 7,799 8,237 9,673 24.03% 17.43%
rust-44800 456 830 575 26.10% -30.72% 2,268 2,415 2,378 4.85% -1.53%
rust-66851 3,170 5,500 4,771 50.50% -13.25% 20,395 22,603 22,233 9.01% -1.64%
rust-69039 437 584 571 30.66% -2.23% 3,875 4,147 3,875 0.00% -6.56%
rust-77002 191 235 189 -1.05% -19.57% 616 651 653 6.01% 0.31%
rust-77320 7 11 7 0.00% -36.36% 52 58 54 3.85% -6.90%
rust-77323 4 6 4 0.00% -33.33% 9 11 9 0.00% -18.18%
rust-77910 7 11 9 28.57% -18.18% 27 29 30 11.11% 3.45%
rust-77919 13 24 16 23.08% -33.33% 96 103 100 4.17% -2.91%
rust-78005 9 9 13 44.44% 44.44% 72 73 74 2.78% 1.37%
rust-78325 2 5 3 50.00% -40.00% 20 21 20 0.00% -4.76%
rust-78651 5 7 4 -20.00% -42.86% 17 20 16 -5.88% -20.00%
rust-78652 7 13 11 57.14% -15.38% 58 62 57 -1.72% -8.06%
rust-78655 2 4 3 50.00% -25.00% 19 36 21 10.53% -41.67%
rust-78720 12 23 16 33.33% -30.43% 116 123 116 0.00% -5.69%
rust-91725 649 676 783 20.65% 15.83% 1,098 1,112 1,118 1.82% 0.54%
rust-99830 6,779 7,566 8,878 30.96% 17.34% 36,539 37,060 42,597 16.58% 14.94%

Average 983.85 1,363.55 1,401.65 31.22% -12.51% 6,135 6,482.2 6,729.7 5.04% -4.37%

takes 265.37%, 539.89%, and 537.53% more time than Perses on C, Rust, and SMT-LIBv2 benchmarks,
the overhead introduced by the fine-grained reduction process in T-RecPerses is moderate, and does
not make T-Rec impractical. Additionally, overhead of applying T-Rec to Vulcan is more marginal
than that of applying it to Perses. Specifically, T-RecVulcan takes 1.59%, 5.04%, and 5.01% more time
than Vulcan on C, Rust, and SMT-LIBv2 benchmarks, respectively.
C-Reduce-canoPerses andC-Reduce-canoVulcan as the Baselines. Compared to C-Reduce-canoPerses,
T-RecPerses takes significantly more time than C-Reduce-canoPerses on C and SMT-LIBv2 benchmarks
(i.e., 12.41% and 22.04% more time on average) and does not show significant efficiency difference on
Rust benchmarks (p-value is 0.28). The reason behind this is that T-Rec is more effective in removing
more tokens than C-Reduce-cano. Therefore, to reach the fixed point, more rounds of alternately
invoking the syntax-guided reduction algorithm (i.e., Perses) and the fine-grained reduction algo-
rithm are required. The fact that T-RecVulcan takes a similar execution time as C-Reduce-canoVulcan
further verifies such an explanation.

RQ4: The overhead brought by the fine-grained reduction process in T-Rec is reasonable.
Specifically, T-RecPerses takes 24.22%, 31.22%, and 56.46% more time than Perses on C, Rust,
and SMT-LIBv2 benchmarks, respectively, and T-RecVulcan takes 1.59%, 5.04%, and 5.01%
more time than Vulcan on each benchmark.

, Vol. 1, No. 1, Article . Publication date: August 2024.

26 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

6 DISCUSSION
In this section, we discuss an ablation study we conducted to further evaluate the fine-grained
reduction process of T-Rec and the potential threats to the validity of this work.

6.1 Comparing to Perses with Lex Tree Extension
A straightforward way to perform fine-grained program reduction is to first extend the parse
tree of the input program with lex trees (i.e., convert leaf nodes to corresponding lex trees), and
then directly utilize tree-based syntax guided program reduction algorithm, e.g., Perses, to reduce
the extended parse tree. Compared to such an approach, the fine-grained reduction process of
T-Rec contains extra canonicalization steps. As introduced in §4, T-Rec performs replacement-
based token canonicalization and deletion-based token canonicalization, and deletion-based token
canonicalization can be further divided into two sub-steps, i.e., lexical syntax-guided reduction
and lex tree-based canonicalization. Among all these steps, lexical syntax-guided reduction can be
considered as directly applying the Perses algorithm to lex tree. 4 To evaluate the effectiveness of
the other two extra steps that T-Rec performs, we conducted an ablation study that compares the
deduplication performance of integrating T-Rec and T-Rec-reduce-only (a variant of T-Rec that
only performs lexical syntax-guided reduction in the fine-grained reduction process) to Perses,
Vulcan, C-Reduce, and C-Reduce-slow using the 2,501 crash test cases in Benchmark-Tamer. The
results presented in Table 6 show that compared to reducers with T-Rec integrated (i.e., T-RecPerses,
T-RecVulcan, T-RecC-Reduce, T-RecC-Reduce-slow), the corresponding reducers with T-Rec-reduce-only
integrated eliminate 248, 240, 326, 223 fewer crash C test cases, indicating the extra steps performed
by T-Rec significantly contributes to the high capability of canonicalization.

Table 6. The reduction results produced by different reducers on the 2,501 crash test cases in
Benchmark-Tamer. The column Eliminated (#) shows the total number of programs eliminated by
each reducer.

Reducer Eliminated (#)

With T-Rec integrated With T-Rec-reduce-only integrated Difference

Perses 1,297 1,049 248
Vulcan 1,327 1,087 240
C-Reduce 1,466 1,140 326
C-Reduce-slow 2,053 1,830 223

6.2 Threats to Validity
The correctness of the implementation of T-Rec is vital to the internal validity. To mitigate the
threats stemming from this aspect, we checked whether the program reduced by T-Rec could still
pass the property test. The nondeterminism in some of the benchmarks is also a threat to the
internal validity. Sometimes, it is hard to promise the bug is triggered in each compilation process. To
mitigate this threat, first we manually patched the benchmarks that we found are nondeterministic.
Specifically, we revised the corresponding property test script to repeat the test multiple times
to decrease the degree of nondeterminism. Second, all the experiments except the deduplication
4There is still slight difference between lexical syntax-guided reduction and directly applying the Perses to the parse tree
extended with lex trees. Recall that when T-Rec attempts to reduce a token, it also attempts to reduce all the other identical
tokens in the same way.

, Vol. 1, No. 1, Article . Publication date: August 2024.

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 27

experiment (§5.1) are run three times, and the results are the average over the multiple runs. For
the deduplication experiment, we did not run it multiple times for all the reducers because reducers
like C-Reduce-slow and T-RecC-Reduce-slow take considerable amount of time to finish. However, we
did run some efficient reducers multiple times and we only observe negligible differences among
different runs. Another possible threat to the validity comes from the measurement of byte size.
The format of the program can affect the byte size of the program significantly. To mitigate this
threat, we do not count any whitespace characters when measuring the byte size.

To mitigate the threats to the external validity, i.e., the generality of T-Rec, we collected bench-
marks from previous research studies [Kremer et al. 2021; Sun et al. 2018; Tian et al. 2023; Xu
et al. 2023], which cover three different programming languages. Moreover, these benchmarks are
diverse in terms of the size of the original bug-triggering program (ranging from 81 bytes to 793470
bytes) and bug type (crash bug and miscompilation bug).

7 RELATEDWORK
In this section, we introduce and discuss some research studies that are closely related to this paper.

7.1 Language-Agnostic Program Reducers
The first work of program reduction is Delta Debugging (DD), proposed in 2002. As a ground-
breaking work, DD inspires many following research studies in the field of failure-inducing input
reduction [Zeller and Hildebrandt 2002]. Given a failure-inducing input, the proposed minimizing
delta debugging algorithm ddmin systematically removes the failure-irrelevant elements in the
input until removing any single element from the input cannot trigger the same failure. To improve
the performance of DD, a recent study proposed Probabilistic Delta Debugging (ProbDD), which
uses a probabilistic model to guide the removal of elements [Wang et al. 2021].
However, as DD treats inputs as flat lists, it can hardly handle excessively large and highly

structured inputs like programs. To overcome this problem, Hierarchical Delta Debugging (HDD)
converts inputs to the corresponding tree structures (e.g., parse trees) and applies ddmin on each
level of the tree in a top-down manner [Misherghi and Su 2006]. In this way, reduction starts from
the coarsest granularity, gradually becomes fine-grained, and can also recognize the structure
of the input; thus both the efficiency and effectiveness are enhanced. A few subsequent studies
improve HDD in various ways. Picireny improves the performance of HDD by using extended
context-free grammar [Hodován and Kiss 2016]. Coarse Hierarchical Delta Debugging (CHDD)
significantly reduces the number of property tests performed during the reduction process without
noticeably deteriorating the reduction quality [Hodován et al. 2017]. HDDr, a recursive variant of
HDD [Kiss et al. 2018], significantly reduces the time required for reduction. There is another work
that improves HDD by extending it with a technique called hoisting [Vince et al. 2021].

Since HDD only leverages the formal grammar to build the tree structure, it does not guarantee
that the generated programs are syntactically valid. As a result, many syntactically invalid inputs
are generated and tested against the property during the reduction process. Since such invalid inputs
usually do not trigger the same failure as the original input, the efficiency of HDD is restricted.
To address this, Sun et al. proposed Perses, a syntax-guided reduction approach [Sun et al. 2018].
By changing the way to use ddmin and designing a hoisting transformation, it avoids generating
syntactically invalid inputs when trying to delete components from the program. Vulcan is a
recently proposed reduction framework [Xu et al. 2023]. It contains a main reducer and utilizes a
list of auxiliary reducers to help produce smaller results. Specifically, it first minimizes the program
with the main reducer. Whenever the main reducer reaches a local minimum, one of the auxiliary
reducers is invoked to either perform transformations or a more exhaustive search to possibly
escape the local minimum, and thus the reduction can be continued by the main reducer. Tian et al.

, Vol. 1, No. 1, Article . Publication date: August 2024.

28 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

further proposed Refreshable Compact Cache, a domain-specific caching scheme to speed up the
program reduction [Tian et al. 2023].
However, all these mentioned tree-based approaches are limited by their coarse reduction

granularity. All of them treat a token as an atomic element, and thus can only entirely remove a
token or keep it as it is. In contrast, T-Rec can reduce tokens with a two-stage lexical syntax-guided
reduction algorithm. Such a finer-grained approach enables T-Rec to achieve smaller reduction
results while not introducing impractical overhead.

ddset pursues high degree of canonicalization with a different approach [Gopinath et al. 2020a].
It strives to abstract syntactical structures of the reduced input. In other words, it attempts to
convert some concrete structures in the input to generalized abstract symbols (i.e., terminals
and nonterminals). However, although ddset is demonstrated to be effective with a benchmark
suite including JavaScript, Clojure, Lua and UNIX command line utilities inputs, according to our
evaluation, it is not as effective and efficient as T-Rec in deduplicating bug-triggering C programs.
One possible explanation is that when the input has strict restrictions imposed upon its tokens and
syntactical structures by the semantics or the property (i.e., triggering a certain bug), the abstracting
process may become infeasible, and thus the effectiveness of ddset may significantly deteriorate.
Another test case reduction technique that is related to this work is internal test case reduc-

tion [MacIver and Donaldson 2020]. This approach also adopts shorlex order to pursuit both great
reduction and canonicalization performance, but it performs reduction in a very different manner.
Instead of directly performing reduction on the test case, it reduces the choice sequence that leads
a test case generator to produce the test case under reduction. The advantage of internal test case
reduction is that it can equip each test case generator with reduction ability for free, without the
need of an external reducer. Meanwhile, it can benefit from certain properties that the generator
has. For example, if a generator is crafted to only generate valid test case, then internal reduction
can promise the intermediate test cases generated during the reduction process are all valid, thus
avoiding wasting time on checking invalid test cases. Compared to internal test case reduction,
T-Rec does not rely on the quality or presence of a test case generator, and we believe that external
reduction techniques like T-Rec and internal reduction are complementary to each other.

7.2 Language-Specific Program Reducers
Besides the language-agnostic reduction approachesmentioned above, there are alsomany language-
specific reduction tools. These tools are specifically optimized for certain languages. Therefore, they
are more effective in reducing programs that are written in those specific languages. The downside
of such tools is that these tools typically require domain-specific knowledge and heavy engineering
efforts to build. C-Reduce is a program reduction tool specifically optimized for reducing C/C++
programs. It is implemented with a set of C/C++-specific transformations based on the Clang front
end to help reduce the programs [Regehr et al. 2012]. ddSMT and ddSMT2.0 are designed for reducing
SMT-LIBv2 programs [Kremer et al. 2021; Niemetz and Biere 2013]. ddSMT is based on ddmin, and it
adds a set of SMT-LIBv2-specific structural and semantic simplifications. ddSMT2.0 further improves
ddSMT by supporting the entire family of SMT-LIBv2 language dialects and providing a hierarchical
reduction strategy in addition to the original ddmin-based strategy. JS Delta is a JavaScript-specific
reducer that reduces JavaScript programs by deleting statements, functions, and sub-expressions [JS
Delta 2017]. J-Reduce is a reducer for reducing Java bytecode [Kalhauge and Palsberg 2019].
It is implemented with a general strategy to overcome the challenge in reducing dependency
graphs. A following work improves J-Reduce by using a more fine-grained dependency modeling
approach [Kalhauge and Palsberg 2021]. Chisel is designed for debloating C/C++ programs, which
utilizes reinforcement learning to improve the performance [Heo et al. 2018].

, Vol. 1, No. 1, Article . Publication date: August 2024.

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 29

Some of the aforementioned language-specific program reducers recognize the importance of
reducing tokens to a canonical form, and are implemented with such functionality. For example,
C-Reduce can refactor the program by renaming all the identifiers with shorter and canonical
names (i.e., a, b, c, · · · , aa, ab, ac, · · ·), removing the content of each string literal in the program,
and replacing integer tokens with shorter ones by using regular expression substitutions. However,
such techniques are not generalized enough, and also they are not likely to enable further deletion
of tokens. In contrast, T-Rec can canonicalize tokens for any programming language as it leverages
the lexical syntax, and is demonstrated to be effective in terms of creating reduction opportunities
for removing more tokens.

8 CONCLUSION
In this paper, we pointed out that the performance of previous language-agnostic program reduction
approaches is restricted by their coarse reduction granularity. Because of treating tokens as the
fundamental elements of a program, previous approaches can only remove an entire token or
keep it as it is during reduction, but cannot shrink and canonicalize tokens. We propose T-Rec, a
fine-grained language-agnostic program reduction technique. By guiding the fine-grained reduc-
tion process with the lexical syntax, T-Rec can effectively and efficiently enhance the reduction
and canonicalization capability of existing language-agnostic program reducers. Our extensive
evaluation with versatile benchmark suites demonstrates the effectiveness and efficiency of T-Rec.
Specifically, T-Rec enables Perses, Vulcan, C-Reduce, and C-Reduce-slow to further eliminate 1,294,
1,315, 336, and 128 duplicates in a benchmark suite that contains 3,796 test cases triggering 46 bugs
in GCC. The evaluation also demonstrates that T-Rec is more effective and efficient than ddset
Additionally, T-Rec further reduces 65.52% (53.73%), 28.34% (19.79%), and 42.86% (16.24%) bytes of
the results of Perses (Vulcan) at the cost of 24.22% (1.59%), 31.22% (5.04%), and 56.46% (5.01%) extra
execution time on C, Rust, and SMT-LIBv2 benchmarks, respectively. Moreover, T-Rec also further
reduces 21.30%, 4.71%, and 34.35% tokens in the results of Perses on each language. By comparing
to the approach used in C-Reduce, we also demonstrate that T-Rec has better generality and can
create more reduction opportunities for removing more tokens.

ACKNOWLEDGMENTS
We sincerely thank the associated editor and anonymous reviewers of TOSEM for their constructive
feedback. Their insightful suggestions significantly helped us improve this manuscript. We also
would express our deepest appreciation to John Reghr, Yang Chen, Alex Groce, and Eric Eide
who shared us with Benchmark-Tamer for conducting experiments. This research is partially
supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through
the Discovery Grant, a project under WHJIL, and CFI-JELF Project #40736.

DATA-AVAILABILITY STATEMENT
For reproducibility and replicability, we have released the implementation of T-Rec and posted the
links to the benchmarks at https://github.com/trec-reducer/T-Rec.

REFERENCES
ANTLR. 2017. The ANTLR Parser Generator. Retrieved 2022-09-20 from https://www.antlr.org/
Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert.

2019. NAUTILUS: Fishing for Deep Bugs with Grammars. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. The Internet Society. https://www.ndss-
symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/trec-reducer/T-Rec
https://www.antlr.org/
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/

30 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

Yang Chen, Alex Groce, Chaoqiang Zhang,Weng-KeenWong, Xiaoli Fern, Eric Eide, and John Regehr. 2013. Taming Compiler
Fuzzers. In Proceedings of the 2013 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 197–208.

Nathan Chong, Alastair Donaldson, Andrei Lascu, and Christopher Lidbury. 2015. Many-Core Compiler Fuzzing. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI).

CPython. 2022. Bug Report. Retrieved 2022-09-20 from https://github.com/python/cpython/issues/new?assignees=&labels=
type-bug&template=bug.md

Alastair Donaldson and David MacIver. 2021. Test Case Reduction: Beyond Bugs. Retrieved May 29, 2023 from https:
//blog.sigplan.org/2021/05/25/test-case-reduction-beyond-bugs

GCC. 2020. A Guide to Testcase Reduction. Retrieved 2022-10-28 from https://gcc.gnu.org/wiki/A_guide_to_testcase_
reduction

GCC-Wiki. 2020. A guide to Testcase reduction. Retrieved 2022-09-20 from https://gcc.gnu.org/wiki/A_guide_to_testcase_
reduction

Golnaz Gharachorlu and Nick Sumner. 2023. Type Batched Program Reduction. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. 398–410.

Rahul Gopinath, Alexander Kampmann, Nikolas Havrikov, Ezekiel O Soremekun, and Andreas Zeller. 2020a. Abstracting
failure-inducing inputs. In Proceedings of the 29th ACM SIGSOFT international symposium on software testing and analysis.
237–248.

Rahul Gopinath, Alexander Kampmann, Nikolas Havrikov, Ezekiel O Soremekun, and Andreas Zeller. 2020b. The DDSET
Github repo. Retrieved 2024-06-20 from https://github.com/vrthra/ddset

Alex Groce, Josie Holmes, and Kevin Kellar. 2017. One test to rule them all. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Santa Barbara, CA, USA) (ISSTA 2017). Association for
Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3092703.3092704

Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective Program Debloating via Reinforcement
Learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.).
ACM, 380–394. https://doi.org/10.1145/3243734.3243838

Renáta Hodován and Ákos Kiss. 2016. Modernizing Hierarchical Delta Debugging. In Proceedings of the 7th International
Workshop on Automating Test Case Design, Selection, and Evaluation (Seattle, WA, USA) (A-TEST 2016). Association for
Computing Machinery, New York, NY, USA, 31–37. https://doi.org/10.1145/2994291.2994296

Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2017. Coarse Hierarchical Delta Debugging. In 2017 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2017, Shanghai, China, September 17-22, 2017. IEEE Computer
Society, 194–203. https://doi.org/10.1109/ICSME.2017.26

Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2018. Grammarinator: a grammar-based open source fuzzer. In Proceedings
of the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection, and Evaluation (Lake
Buena Vista, FL, USA) (A-TEST 2018). Association for Computing Machinery, New York, NY, USA, 45–48. https:
//doi.org/10.1145/3278186.3278193

JerryScript. 2022. Bug Report. Retrieved 2022-09-20 from https://github.com/jerryscript-project/jerryscript/blob/master/
.github/ISSUE_TEMPLATE/bug_report.md

JS Delta. 2017. JS Delta. Retrieved 2022-10-28 from https://github.com/wala/jsdelta
Christian Gram Kalhauge and Jens Palsberg. 2019. Binary reduction of dependency graphs. In Proceedings of the ACM

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra
Russo (Eds.). ACM, 556–566. https://doi.org/10.1145/3338906.3338956

Christian Gram Kalhauge and Jens Palsberg. 2021. Logical bytecode reduction. In PLDI ’21: 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021, Stephen N.
Freund and Eran Yahav (Eds.). ACM, 1003–1016. https://doi.org/10.1145/3453483.3454091

Ákos Kiss, Renáta Hodován, and Tibor Gyimóthy. 2018. HDDr: A Recursive Variant of the Hierarchical Delta Debugging
Algorithm. In Proceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection,
and Evaluation (Lake Buena Vista, FL, USA) (A-TEST 2018). Association for Computing Machinery, New York, NY, USA,
16–22. https://doi.org/10.1145/3278186.3278189

Gereon Kremer, Aina Niemetz, and Mathias Preiner. 2021. ddSMT 2.0: Better Delta Debugging for the SMT-LIBv2 Language
and Friends. In Computer Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021,
Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12760), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer,
231–242. https://doi.org/10.1007/978-3-030-81688-9_11

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equivalence modulo inputs. (2014), 216–226.
https://doi.org/10.1145/2594291.2594334

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://github.com/python/cpython/issues/new?assignees=&labels=type-bug&template=bug.md
https://github.com/python/cpython/issues/new?assignees=&labels=type-bug&template=bug.md
https://blog.sigplan.org/2021/05/25/test-case-reduction-beyond-bugs
https://blog.sigplan.org/2021/05/25/test-case-reduction-beyond-bugs
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://github.com/vrthra/ddset
https://doi.org/10.1145/3092703.3092704
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/2994291.2994296
https://doi.org/10.1109/ICSME.2017.26
https://doi.org/10.1145/3278186.3278193
https://doi.org/10.1145/3278186.3278193
https://github.com/jerryscript-project/jerryscript/blob/master/.github/ISSUE_TEMPLATE/bug_report.md
https://github.com/jerryscript-project/jerryscript/blob/master/.github/ISSUE_TEMPLATE/bug_report.md
https://github.com/wala/jsdelta
https://doi.org/10.1145/3338906.3338956
https://doi.org/10.1145/3453483.3454091
https://doi.org/10.1145/3278186.3278189
https://doi.org/10.1007/978-3-030-81688-9_11
https://doi.org/10.1145/2594291.2594334

T-Rec: Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax 31

Cong Li, Yanyan Jiang, Chang Xu, and Zhendong Su. 2023. Validating JIT Compilers via Compilation Space Exploration.
In Proceedings of the 29th Symposium on Operating Systems Principles (Koblenz, Germany) (SOSP ’23). Association for
Computing Machinery, New York, NY, USA, 66–79. https://doi.org/10.1145/3600006.3613140

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing for C and C++ compilers with YARPGen.
Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–25.

LLVM. 2022. How to Submit an LLVM bug report. Retrieved 2022-09-20 from https://llvm.org/docs/HowToSubmitABug.html
David R MacIver and Alastair F Donaldson. 2020. Test-case reduction via test-case generation: Insights from the hypothesis

reducer (tool insights paper). In 34th European Conference on Object-Oriented Programming (ECOOP 2020). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik.

Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical Delta Debugging. In 28th International Conference on Software
Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006, Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa
(Eds.). ACM, 142–151. https://doi.org/10.1145/1134285.1134307

Aina Niemetz and Armin Biere. 2013. ddSMT: a delta debugger for the SMT-LIB v2 format. In Proceedings of the 11th
International Workshop on Satisfiability Modulo Theories, SMT. 8–9.

John Regehr. 2019. Design and Evolution of C-Reduce. Retrieved 2024-01-20 from https://blog.regehr.org/archives/1679
John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-Case Reduction for C Compiler

Bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation (Beijing,
China) (PLDI ’12). Association for Computing Machinery, New York, NY, USA, 335–346. https://doi.org/10.1145/2254064.
2254104

Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database engines via non-optimizing reference
engine construction. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for Computing
Machinery, New York, NY, USA, 1140–1152. https://doi.org/10.1145/3368089.3409710

Rust. 2024. Finding a minimal, standalone example. Retrieved 2024-01-20 from https://rustc-dev-guide.rust-lang.org/
notification-groups/cleanup-crew.html#finding-a-minimal-standalone-example

Prashast Srivastava and Mathias Payer. 2021. Gramatron: Effective grammar-aware fuzzing. In Proceedings of the 30th acm
sigsoft international symposium on software testing and analysis. 244–256.

Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live code mutation. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016,
part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016, Eelco Visser and Yannis Smaragdakis
(Eds.). ACM, 849–863. https://doi.org/10.1145/2983990.2984038

Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018. Perses: Syntax-Guided Program Reduction.
In Proceedings of the 40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association
for Computing Machinery, New York, NY, USA, 361–371. https://doi.org/10.1145/3180155.3180236

Yongqiang Tian, Xueyan Zhang, Yiwen Dong, Zhenyang Xu, Mengxiao Zhang, Yu Jiang, Shing-Chi Cheung, and Chengnian
Sun. 2023. On the Caching Schemes to Speed Up Program Reduction. ACM Trans. Softw. Eng. Methodol. 33, 1, Article 17
(nov 2023), 30 pages. https://doi.org/10.1145/3617172

Dániel Vince. 2022. Iterating the minimizing Delta debugging algorithm. In Proceedings of the 13th International Workshop
on Automating Test Case Design, Selection and Evaluation, A-TEST 2022, Singapore, Singapore, November 17-18, 2022, Ákos
Kiss, Beatriz Marín, and Mehrdad Saadatmand (Eds.). ACM, 57–60. https://doi.org/10.1145/3548659.3561314

Dániel Vince, Renáta Hodován, Daniella Bársony, and Ákos Kiss. 2021. Extending hierarchical delta debugging with hoisting.
In 2021 IEEE/ACM International Conference on Automation of Software Test (AST). IEEE, 60–69.

GuanchengWang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang. 2021. Probabilistic Delta debugging. In ESEC/FSE
’21: 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
Athens, Greece, August 23-28, 2021, Diomidis Spinellis, Georgios Gousios, Marsha Chechik, and Massimiliano Di Penta
(Eds.). ACM, 881–892. https://doi.org/10.1145/3468264.3468625

Frank Wilcoxon. 1992. Individual comparisons by ranking methods. Springer.
Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. Validating SMT solvers via semantic fusion. In Proceedings

of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 718–730. https://doi.org/10.1145/3385412.3385985

Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Gaosen Zhao, Yu Jiang, and Chengnian Sun. 2023. Pushing the Limit of
1-Minimality of Language-Agnostic Program Reduction. Proc. ACM Program. Lang. 7, OOPSLA1, Article 97 (apr 2023),
29 pages. https://doi.org/10.1145/3586049

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose, California, USA)
(PLDI ’11). Association for Computing Machinery, New York, NY, USA, 283–294. https://doi.org/10.1145/1993498.1993532

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://doi.org/10.1145/3600006.3613140
https://llvm.org/docs/HowToSubmitABug.html
https://doi.org/10.1145/1134285.1134307
https://blog.regehr.org/archives/1679
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/3368089.3409710
https://rustc-dev-guide.rust-lang.org/notification-groups/cleanup-crew.html#finding-a-minimal-standalone-example
https://rustc-dev-guide.rust-lang.org/notification-groups/cleanup-crew.html#finding-a-minimal-standalone-example
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3617172
https://doi.org/10.1145/3548659.3561314
https://doi.org/10.1145/3468264.3468625
https://doi.org/10.1145/3385412.3385985
https://doi.org/10.1145/3586049
https://doi.org/10.1145/1993498.1993532

32 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun

A. Zeller and R. Hildebrandt. 2002. Simplifying and isolating failure-inducing input. IEEE Transactions on Software Engineering
28, 2 (2002), 183–200. https://doi.org/10.1109/32.988498

Mengxiao Zhang, Yongqiang Tian, Zhenyang Xu, Yiwen Dong, Shin Hwei Tan, and Chengnian Sun. 2024. LPR: Large
Language Models-Aided Program Reduction. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis.

Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yu Jiang, and Chengnian Sun. 2023. PPR: Pairwise Program Reduction.
In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 338–349.

, Vol. 1, No. 1, Article . Publication date: August 2024.

https://doi.org/10.1109/32.988498

	Abstract
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	3.1 Program Reduction
	3.2 Lexical Syntax

	4 Methodology
	4.1 Definition of Canonical Tokens
	4.2 Replacement-Based Token Canonicalization
	4.3 Deletion-Based Token Canonicalization

	5 Evaluation
	5.1 RQ1: Effectiveness in Deduplication
	5.2 RQ2: Effectiveness in Reducing Byte Size
	5.3 RQ3: Effectiveness in Removing Tokens
	5.4 RQ4: Efficiency

	6 Discussion
	6.1 Comparing to Perses with Lex Tree Extension
	6.2 Threats to Validity

	7 Related Work
	7.1 Language-Agnostic Program Reducers
	7.2 Language-Specific Program Reducers

	8 Conclusion
	References

