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Abstract
A program can be viewed as a syntactic structure P (syn-
tactic skeleton) parameterized by a collection of identifiers
V (variable names). This paper introduces the skeletal pro-
gram enumeration (SPE) problem: Given a syntactic skeleton
P and a set of variables V , enumerate a set of programs P
exhibiting all possible variable usage patterns within P. It pro-
poses an effective realization of SPE for systematic, rigorous
compiler testing by leveraging three important observations:
(1) Programs with different variable usage patterns exhibit di-
verse control- and data-dependence, and help exploit different
compiler optimizations; (2) most real compiler bugs were re-
vealed by small tests (i.e., small-sized P) — this “small-scope”
observation opens up SPE for practical compiler validation;
and (3) SPE is exhaustive w.r.t. a given syntactic skeleton
and variable set, offering a level of guarantee absent from all
existing compiler testing techniques.

The key challenge of SPE is how to eliminate the enor-
mous amount of equivalent programs w.r.t. α-conversion. Our
main technical contribution is a novel algorithm for comput-
ing the canonical (and smallest) set of all non-α-equivalent
programs. To demonstrate its practical utility, we have applied
the SPE technique to test C/C++ compilers using syntactic
skeletons derived from their own regression test-suites. Our
evaluation results are extremely encouraging. In less than six
months, our approach has led to 217 confirmed GCC/Clang
bug reports, 119 of which have already been fixed, and the
majority are long latent despite extensive prior testing efforts.
Our SPE algorithm also provides six orders of magnitude
reduction. Moreover, in three weeks, our technique has found
29 CompCert crashing bugs and 42 bugs in two Scala optimiz-
ing compilers. These results demonstrate our SPE technique’s
generality and further illustrate its effectiveness.

CCS Concepts • Software and its engineering → Soft-
ware testing and debugging; Source code generation;
• Mathematics of computing→ Enumeration

Keywords Program enumeration, compiler testing

1. Introduction
Compilers are among the most fundamental programming
tools for building software. A compiler bug may result in
unintended program executions and lead to catastrophic
consequences for safety-critical applications. It may also
hamper developer productivity as it is difficult to determine

whether an execution failure is caused by defects in the
application or the compiler. In addition, defects in compilers
may silently affect all programs that they compile. Therefore,
improving compiler correctness is crucial.

The predominant approach to validating production com-
pilers consists of various forms of testing. An important,
challenging problem in compiler testing is input generation:
How to effectively generate “good” test programs? Intuitively,
a good test program is productive (i.e., it triggers latent com-
piler defects) and thorough (i.e., it stress tests the internal
passes of a compiler). Besides manually created validation
suites (e.g., Plum Hall [3] and Perennial [2]), the main tech-
niques for input program generation can be categorized as
program generation or program mutation. Program genera-
tion constructs fresh test programs guided by a language’s
syntax and semantics. For example, Csmith is the most well-
recognized random program generator for testing C compil-
ers [9, 57]. Program mutation, on the other hand, focuses
on systematically transforming existing programs. Equiva-
lence Modulo Input (EMI) has been the most representative
mutation-based approach by randomly inserting or deleting
code [32, 33, 53]. Both approaches are opportunistic because
the typical search space is unbounded, and they tend to favor
large and complex programs.

Skeletal Program Enumeration. This paper explores a dif-
ferent, much less explored approach of skeletal program enu-
meration (SPE) for compiler testing. Rather than randomly
generating or mutating large and complex programs, is it
possible to fully exploit small programs to obtain bounded
guarantees w.r.t. these small programs? Specifically, we view
every program P as a syntactic skeleton P with placeholders
(or holes) for a variables set V . Given small sets of P and
V , we obtain new programs P by exhaustively enumerating
all variable usage patterns to fill the holes in P. This paper
demonstrates its strong practical utility for compiler testing.
Three key observations underlie our SPE realization:

• Most compiler bugs can be exploited through small test
programs. According to a recent large-scale study on GCC
and Clang’s bug repositories, each reduced test case in
the bug reports contains fewer than 30 lines of code on
average [54]. Moreover, in our empirical evaluation based
on the c-torture test-suite from GCC-4.8.5, each function
contains only 3 variables with 7 use-def sites on average.1

1 GCC’s c-torture test-suite consists of (small) test programs that broke the
compiler in the past.
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1 int a,b=1;
2 b = b-a;
3 if(a)
4 a = a-b;
5 ...

(a) Program P1

1 int a,b=1;
2 a = b-b;
3 if(a)
4 a = a-b;
5 ...

(b) Program P2

1 int a,b=1;
2 a = b-b;
3 if(b)
4 a = b-b;
5 ...

(c) Program P3

Figure 1. Illustrative example for skeletal program enumera-
tion, where we assume that the code snippets are parts of a
function.

• Different variable usage patterns trigger various compiler
optimization passes. Consider the programs based on
different variable usage patterns in Figure 1. Note that
the programs share the same program skeleton. In P1,
a compiler may issue a warning on the uninitialized
variable a. In P2, due to the constant propagation of b

= 1, variable a is folded to 0 on line 3. Therefore, an
optimizing compiler performs a dead code elimination of
the if statement. Finally, in P3, variable b is folded to 1
on line 3. An optimizing compiler then performs constant
propagation for variable a on lines 2 and 4. Section 2
illustrates SPE for compiler testing via concrete bugs.

• Exhaustive enumeration provides relative guarantees.
Given a small syntactic skeleton P with k variables, our
approach produces input programs for compiler testing by
enumerating all instances of P exhibiting different vari-
able usage patterns. For any programming language, it is
also possible to enumerate all syntactically valid token
sequences (i.e., the syntactic skeletons P) up to a given
bounded length. Our skeletal program enumeration estab-
lishes the first step toward realizing bounded verification
of compilers.2

The essence of SPE is, given a skeleton P and a set of vari-
ables V , producing a set of programs P by instantiating each
placeholder in the skeleton P with a concrete variable v ∈ V .
Given a set of k variables and a P with n placeholders, a naïve
approach produces the SPE set P with kn programs. How-
ever, most of the programs in P are α-equivalent, i.e., there
exists an α-conversion between any two α-equivalent pro-
grams. Since α-equivalent programs always exploit the same
control- and data-dependence information, it is redundant to
enumerate them for most purposes and especially for com-
piler validation. Generating only and all non-α-equivalent
programs makes SPE a unique and challenging combinatorial
enumeration problem. Existing techniques for enumeration
are inefficient to deal with α-equivalence in SPE (please refer
to Section 4.3 for a detailed discussion).

This paper presents the first practical combinatorial ap-
proach for SPE that generates only non-α-equivalent pro-
grams in P . To this end, we formulate SPE as a set par-
tition problem and tackle the unique challenge of dealing
with variable scoping. As an application of our SPE tech-
nique, we implement and apply it to test the development
versions of GCC and Clang/LLVM, two popular open-source

2 For languages that allow undefined behaviors, such as C/C++, we assume
reliable oracles exist for detecting undefined behaviors (cf. Section 5.4).

C/C++ compilers. In less than six months, we have found
and reported 217 bugs, most of which are long latent (e.g.,
more than two thirds of the GCC bugs affect at least three
recent stable releases). About half the bugs concern C++,
an extremely complex language, making our work the first
successful exhaustive technique for testing compilers’ C++
support. To further demonstrate its efficiency, we have ap-
plied the SPE technique to test CompCert [35] and two Scala
compilers [1, 4]. Our three-week testing efforts also yield
promising results.

Furthermore, to quantify the effectiveness of our enumera-
tion scheme, we also apply both our approach and the naïve
approach to GCC-4.8.5’s test-suite. In particular, we use the
enumerated programs to test the stable releases of GCC-4.8.5
and Clang-3.6. Besides finding 11 bugs in both compilers,
more importantly, our approach achieves six orders of size re-
duction over the naïve enumeration approach. Approximately,
our approach can process all programs in less than one month,
while the naïve approach would need more than 40K years to
process the same set of test programs.

Contributions. Our main contributions follow:
• We formulate the problem of skeletal program enumera-

tion to aid compiler testing. Unlike existing approaches
based on random program generation or mutation, our ap-
proach exhaustively considers all variable usage patterns
for small programs;

• We propose an efficient combinatorial approach to pro-
gram enumeration. In our empirical evaluation, our algo-
rithm reduces the search space by six orders of magnitude
over naïve enumeration when processing compiler test-
suites; and

• We apply our SPE technique to test GCC, Clang/LLVM,
CompCert and two Scala compilers. In less than six
months, we have found and reported 217 bugs in GCC and
Clang. In about three weeks, we have also found 29 Com-
pCert crashing bugs, and 42 bugs in the production Scala
compiler [4] and the Dotty [1] research compiler. These
bugs have been actively addressed by developers. For in-
stance, as of November 2016, among our reported GCC
bugs, 68% have already been fixed, 66% are long latent
and 10% are release-blocking. 25 CompCert bugs have
been fixed and all 27 Dotty bugs have been confirmed.

Generality. Beyond compiler testing, skeletal program enu-
meration suggests a general strategy for approaching various
enumeration problems. Indeed, rather than enumerating suit-
able structures from scratch w.r.t. syntax or semantics, it can
be more profitable to enumerate w.r.t. skeletons derived from
existing structures, which are arguably more interesting and
lead to a more feasible process. Algorithmically, our tech-
nique of casting SPE as the set partition problem and how
to support variable scoping may be adapted to enumeration
problems where such information is relevant, such as func-
tional program enumeration, quantified formula enumeration,
and other domain-specific settings.
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1 int a = 0;
2 extern int b __attribute__ ((alias (''a'')));
3

4 int main ()
5 {
6 int *p = &a, *q = &b;
7 *p = 1;
8 *q = 2;
9

10 //return b;
11 return a; // Bug: the program exits with 1
12 }

Figure 2. This test program is miscompiled by multiple GCC
versions from GCC 4.4 to revision 233678. This bug affected
revision 104500 in September 2005, and had been latent for
over ten years until we discovered it via SPE. The program is
expected to return 2, but incorrectly returns 1 instead.

Paper Organization. The rest of the paper is structured as
follows. Section 2 motivates our work via concrete exam-
ples, and Section 3 defines the SPE problem and program
α-equivalence. We present our combinatorial program enu-
meration algorithm in Section 4 and experimental results
in Section 5. Finally, Section 6 surveys related work, and
Section 7 concludes.

2. Motivating Examples
This section motivates our work using two real compiler bugs
found via SPE: a wrong code bug and a crash bug. A wrong
code bug is a compiler miscompilation, i.e., the compiler
silently produces a wrong executable, whose behavior is
unintended and different from that of the original source
program. A crash bug refers to the compiler crashing when
processing an input program. The wrong code bug is an
example latent bug, and the crash bug was classified as
release-blocking by the GCC developers.

Bug 69951 : GCC Miscompilation. Figure 2 shows a test
program that triggers a miscompilation in a series of GCC
versions, ranging from GCC-4.4 to the latest development
trunk (revision 233678). The bug affects as early as revision
104500 from September 2005, and had been in GCC even
before this revision. For over ten years, from then to March
2016, when we found and reported this bug, it had slipped
through various compiler testing techniques and thorough
in-house testing.

This program is expected to exit with 2. The attribute
annotation on line 2 declares that the variable b is an alias
of a. As pointers p and q point to a and b respectively, they
essentially represent the same memory region (i.e., variable
a). The last write to a is 2 through the pointer q on line 8,
hence the exit code of this program should be 2. However,
the buggy version of GCC optimizes the code as if p and
q were not aliases, and thus the exit code of this program
becomes 1 instead. The cause of this bug is that GCC did not
canonicalize two declarations that share the same memory
address (i.e., a and b in this example) into a single one, thus
compromising the soundness of its alias analysis.

This test program is enumerated using a skeleton from
GCC’s own test-suite by replacing the original variable b

with a on line 11. The program in Figure 2 is simplified for

1 struct s { char c[1]; };
2 struct s a, b, c;
3 int d; int e;
4

5 void bar (void)
6 {
7 //e ? (d==0 ? b : c).c : (e==0 ? b : c).c;
8 e ? (d==0 ? b : c).c : (d==0 ? b : c).c;
9 }

Figure 3. This test program crashes the development trunk
of GCC (revision 233377) at all optimization levels. The bug
has been marked as release-blocking.

a ::= x | n | a1 opa a2

b ::= true | false | not b |
b1 opb b2 | a1 opr a2

S ::= x := a | S1 ;S2 |
while(b) do S |
if(b) then S1 else S2

(a) Syntax rules for P .

JaK ::= � | n | Ja1K opa Ja2K
JbK ::= true | false | not JbK |

Jb1K opb Jb2K | Ja1K opr Ja2K
JSK ::= � := JaK | JS1K ; JS2K |

while(JbK) do JSK |
if(JbK) then JS1K else JS2K

(b) Syntax rules for transformed P.

Figure 4. Hole transformation for the WHILE language.

presentation purposes. The original program is slightly larger,
and a naïve program enumeration approach generates 3,125
programs. In constrast, our approach only enumerates 52
non-α-equivalent programs, and exposes the bug.

Bug 69801 : GCC Internal Compiler Crash. Figure 3
shows another bug example found by SPE. The test program
crashes the development trunk of GCC at all optimization
levels, including -O0. The reported bug has been marked as
release-blocking by the GCC developers.

The program is quite simple. Line 8 tries to access the field
c via nested conditional expressions. This line is also the key
to trigger the bug in the GCC’s constant folding pass. GCC
crashes when it is checking whether the second operand (d
== 0 ? b : c) and the third operand (d == 0 ? b : c) are
equal in the function operand_equal_p. This function recur-
sively checks whether each component of the two operands
are the same. When it is checking the integer constant 0 of the
binary expression d == 0, an assertion is violated because
operand_equal_p is instructed to use the addresses of the
integer constants to test the equality, which is undefined. In
the bug fix, a flag is set to instruct operand_equal_p to check
integer equality via value comparison.

This test program is also enumerated from GCC’s own
test-suite. The difference between them is shown on line 7.
The test program is derived by replacing e with d in the
third operand of the whole conditional expression. This
replacement makes the second and third operands identical,
triggering the bug in the function operand_equal_p.

3. SPE Problem Formulation
This section formalizes skeletal program enumeration.

3.1 Problem Statement
As mentioned in Section 1, a program P comprises of two
parts: a syntactic skeleton with placeholders for variables,
and a set of variables. We define every usage of a variable
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a := 10;
b := 1;
while(a) do
a := a− b;

(a) Program P

� := 10;
� := 1;
while(�) do
� := �−�;

(b) Skeleton P

b := 10;
a := 1;
while(b) do
b := b− a;

(c) Program P1

a := 10;
b := 1;
while(b) do
b := a− b;

(d) Program P2

Figure 5. Program enumeration for the WHILE language.

in program P as a hole, and denote it as �. In particular,
let us consider a WHILE-style language shown in Figure 4.
Figure 4(a) gives the syntax rules for the WHILE language
which has been widely used in the program analysis litera-
ture [43]. In particular, the nonterminals S, a and b denote
statements, arithmetic and Boolean expressions, respectively.
The WHILE language plays a pivotal role in explaining the ba-
sic ideas of our work. Note that the simple WHILE language
does not have scope constraints, and thus every variable is
considered global.

To obtain a program with holes, we recursively apply a
hole transformation JK to the WHILE grammar. Figure 4(b)
gives the transformed grammar. For any WHILE program
P , we say P is a skeleton of P iff TP = JTP K where TP

and TP are the respective abstract syntax trees of P and P .
Every hole �i in P is associated with a hole variable set vi.
The set vi describes all variables that belong to the lexical
scope of �i. Therefore, replacing all �is in P with variables
v ∈ vi emits a syntactically valid WHILE program P ′. We
say v ∈ vi fills �i, and P ′ realizes P. A skeleton P with
n holes can be represented as a characteristic vector sP =
〈�1,�2, . . . ,�n〉. Therefore, a program P ′ that realizes P
can also be represented as a vector sP ′ = 〈v1, v2, . . . , vn〉
such that vi ∈ vi fills �i in sP for all i ∈ [1, n].
DEFINITION 1 (Skeletal Program Enumeration). Given a skeleton
P and the hole variable sets vi for each �i, skeletal program
enumeration (SPE) exhaustively computes a set of programs P ,
such that each P ∈ P realizes P.

EXAMPLE 1. Consider the example in Figure 5. Figure 5(a) shows
a WHILE program P , and Figure 5(b) its skeleton P with 6 holes.
Since both a and b are global variables, we have v1 = v2 =
· · · v6 = {a, b}. The program P1 in Figure 5(c) realizes P with
sP1 = 〈b, a, b, b, b, a〉. Moreover, the program P2 in Figure 5(d)
realizes P with sP2 = 〈a, b, b, b, a, b〉. Therefore, in the program
enumeration of this example, we have P, P1, P2 ∈ P .

For a skeleton P with n holes, program enumeration
essentially generates the n-ary Cartesian product over sets
v1, v2, . . . , vn. As a result, the search space for generating
all possible solutions in P is

∏n
i=1 |vi|, which is clearly

exponential in terms of n. For instance, the skeleton P in
Figure 5 realizes 26 = 64 programs, i.e., |P| = 64.

3.2 Program α-Equivalence
The naïve approach to SPE produces an overwhelming
amount of programs, where most of the enumerated instances
are equivalent w.r.t. α-conversion. The α-equivalent programs
always exhibit the same control- and data-dependence infor-
mation. In this paper, we describe a combinatorial approach
to exhaustively enumerate only non-α-equivalent programs
in P . Section 3.2.1 formally defines α-equivalence using

WHILE programs, and Section 3.2.2 discusses α-equivalence
of practical C programs with scope information.

3.2.1 α-Equivalent Programs
Let us consider two WHILE programs P and P1 in Fig-
ure 5. The characteristic vectors are sP = 〈a, b, a, a, a, b〉
and sP1

= 〈b, a, b, b, b, a〉, respectively. As mentioned in Ex-
ample 1, both P and P1 belong to the SPE solution P in
Figure 5. Particularly, we can transform P to P1 by replac-
ing all occurrences of variables a and b in P with b and a,
respectively. The idea behind the transformation is quite sim-
ilar to the concept of α-conversion in lambda calculus. It is
clear in Figure 5 that P exhibits the same control- and data-
dependence information as P1. Consequently, if P is already
enumerated, there is no need to consider P1.

Let V be the set of all variables in a WHILE program P
with n holes. Since the WHILE language does not have lexical
scopes, the set V is the same as the hole variable set vi for
each hole �i, i.e., V = v1 = · · · = vi, for all i ∈ [1, n]. Let
α : V → V be a permutation of set V . Given P , V and α, we
define an α-renaming such that it replaces each occurrence
of variable v in P with α(v) for all v ∈ V . The α-renaming
transforms a program P to P ′, denoted as P α−→ P ′. For
example, in Figure 5, we have V = {a, b}, α = ( a bb a ), and
P

α−→ P1. Formally, we define α-equivalence below.
DEFINITION 2 (Program α-Equivalence). Two programs P1 and
P2 are α-equivalent, denoted as P1

∼= P2, iff:

(i). Both P1 and P2 realize the same P; and

(ii). There exists an α-renaming such that P1
α−→ P2.

EXAMPLE 2. Consider Figure 5 again. P and P1 are α-equivalent.
However, P and P2 are non-α-equivalent programs since their
characteristic vectors are sP = 〈a, b, a, a, a, b〉 and sP2 =
〈a, b, b, b, a, b〉, respectively. It is obvious that there exists no α-
renaming between them.

For α-equivalent programs P1 and P2, the α-renaming
maps the output value of any variable a in P1 to the variable
α(a) in P2 for any fixed inputs. Therefore, the α-equivalent
WHILE programs are semantically equivalent. As a result, we
can safely eliminate those α-equivalent programs in program
enumeration, and thus reduce the solution set.

3.2.2 α-Equivalence with Scope Information
The WHILE language in Figure 5 does not take lexical
scoping into account. The lexical scope information can
reduce the size of the SPE set P , even for the naïve approach.
In the remaining sections of this paper, we discuss using C
programs. However, the conceptual idea is general and can
be adapted to any imperative language.

Let us consider the C programs in Figure 6. Given a
program P in Figure 6(a), we can construct a skeleton P
shown in Figure 6(b) and a variable set vi = {a, b, c, d} for all
i ∈ [1, 10]. The construction treats all variables as if they were
global variables. According to Definition 1, SPE computes
410 = 1, 048, 576 programs. However, the variables a and b
in P are global variables, while the variables c and d belong
to the local scope of the if statement. Therefore, the variable
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int main(){
int a=1, b=0;
if(a){

int c=3, d=5;
b = c + d;

}
printf("%d", a);
printf("%d", b);
return 0;

}

(a) Program P .

int main(){
int �=1, �=0;
if(�){

int �=3, �=5;
� = � + �;

}
printf("%d", �);
printf("%d", �);
return 0;

}

(b) Skeleton P

int main(){
int c=1, b=0;
if(c){

int a=3, d=5;
b = a + d;

}
printf("%d", c);
printf("%d", b);
return 0;

}

(c) Program P1

int main(){
int b=1, a=0;
if(b){

int d=3, c=5;
a = d + c;

}
printf("%d", b);
printf("%d", a);
return 0;

}

(d) Program P2

Figure 6. α-equivalent C programs.

a can be used to fill any hole that belongs to c, but not vice
versa. With the scope information, a naïve approach only
needs to enumerate 25 · 45 = 32, 768 programs in P .

To cope with lexical scopes in C programs, we extend
α-renaming such that it only maps variables of the same
scope. We define the extended renaming map as a compact
α-renaming. Moreover, when transforming a C program P
to P, we also associate each hole �i and its hole variable
set vi in P with the corresponding scope information in P .
Therefore, a hole �i can only be filled with the variables
available at the current scope. The variable types can also be
handled by extending the compact α-renaming in a similar
way. Finally, it is clear that the compact α-renaming still
preserves semantic equivalence.

THEOREM 1. Given a compact α-renaming, and two C programs
P1 and P2, (P1

∼= P2) =⇒ (P1 ≡ P2).

EXAMPLE 3. In Figure 6, P , P1 and P2 are α-equivalent programs.
In particular, we have P

α1−−→ P1 using an α-renaming α1 =

( a b c dc b a d ), and P
α2−−→ P2 using a compact α-renaming α2 =

( a b c db a d c ). They are all semantically equivalent, generating the same
output “18”. Moreover, for the compact α-renaming, we have
vi = {a, b} and vj = {a, b, c, d}, where i ∈ {1, 2, 3, 9, 10} and
j ∈ {4, 5, 6, 7, 8}. As metioned above, the SPE w.r.t. compact α-
renamings computes 32 times fewer programs.

4. SPE Algorithm
This section presents our combinatorial program enumeration
approach. Our approach only enumerates non-α-equivalent
programs. Section 4.1 describes the main idea based on
programs without scope information. Section 4.2 extends
the idea to handle scope information. Section 4.3 provides
further relevant discussions.

4.1 Basic Idea
In the SPE problem, the inputs are a syntactic skeleton P
and a set of hole variables vi. Let us revisit the example in

Figure 5. The skeleton P in Figure 5(b) has 6 holes. Each
hole is associated with the same hole variable set vi = {a, b}
for all i ∈ [1, 6]. Therefore, there are 26 ways to fill in these
holes using a naïve approach.

As discussed in Section 3.2, the α-equivalent programs
are redundant for SPE. Having a representative program for
all its α-equivalent variants helps reduce the size of the SPE
solution P . Therefore, in our approach, we seek to compute
an SPE setP ′ of all non-α-equivalent programs, i.e., P1 � P2

for all distinct P1, P2 ∈ P ′. To realize this, we formulate SPE
as a set partition problem. In particular, we view the n holes
in P as a set H = {1, . . . , n} of n elements. Filling a hole
with a variable v ∈ vi can also be considered as partitioning
an element h ∈ H into a subset that corresponds to v. For
example, the skeleton P in Figure 5(b) with 6 holes can be
represented as set H = {1, . . . , 6}. Let variable a be the first
subset and b the second subset to partition. The characteristic
vector sP1

= 〈b, a, b, b, b, a〉 of P1 in Figure 5(c) can be
represented as a set partition {{1, 3, 4, 5}, {2, 6}} of set
HP1

, where the first subset represents the holes filled with
b and the second subset the holes filled with a. Due to
the α-equivalence property mentioned in Section 3.2.1, the
variable names are of no importance. Therefore, the partition
{{1, 3, 4, 5}, {2, 6}} is equivalent to {{2, 6}, {1, 3, 4, 5}}.
On the other hand, the partitions are sensitive to the elements
in set H such that partition {{1, 3, 4, 5}, {2, 6}} is different
from {{2, 3, 4, 5}, {1, 6}}.

As a result, given a skeleton P with n elements and a hole
variable set vi, where |vi| = k for all i ∈ [1, n], the SPE
problem can be reduced to a combinatorial problem.

Enumerate the ways to partition a set of n elements
into k subsets.

EXAMPLE 4. Consider the skeleton P in Figure 6. The characteris-
tic set of P is 〈a, b, a, c, d, b, c, d, a, b〉. The corresponding set par-
tition is {{1, 3, 9}, {2, 6, 10}, {4, 7}, {5, 8}}. P , P1 and P2 are
α-equivalent, therefore, they have the same set partition.

4.1.1 Number of Partitions
In combinatorics, the set partition problems are also known
as the twelvefold way, since there are twelve ways to classify
all related problems [29]. When the set elements are labeled
and the subsets unlabeled, the number of ways to partition
a set of n elements into k non-empty subsets is denoted by
the Stirling number of the second kind [29], denoted as

{
n
k

}
for k 6 n. For k > n, we let

{
n
k

}
=
{
n
n

}
, i.e., we consider

at most n partitions. For our SPE problem, let S denote the
number of all partitions, and we have

S =

k∑
i=1

{
n

i

}
(1)

For fixed value of k, one asymptotic estimation of the
Stirling number of the second kind is

{
n
k

}
∼ kn

k! [44, §26.8].
Therefore, we estimate the SPE solution set as follows:

S ∼ 1n

1!
+
2n

2!
+ · · · ,+k

n

k!
= O(

kkn

k!
) = O(

kn

(k − 1)!
) (2)
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vg = {a, b}
v1 = {c, d}

1 2 3 4 5

(a) Set partition illustration.

vg = {a, b}
v1 = {c, d}

1 2 5 3 4

(b) Corresponding normal form.

Figure 7. Set partition illustration and its normal form.

The overall complexity of our combinatorial approach is
still exponential. However, it reduces the entire solution set by
a notable constant factor of (k − 1)!. In practice, it improves
the feasibility of skeletal program enumeration.

4.1.2 Partition Enumeration
We adopt the standard approach to enumerate all set partitions
in lexicographic order [29, 30]. The conventional approach
to encode a unique set partition is using a restricted growth
string [29, 30]. For a set of n elements, a restricted growth
string a1a2 . . . an of length n satisfies the following:

a1 = 0 and ai+1 6 1 + max(a1, . . . , ai) if i ∈ [1, n)

The intuitive meaning of a restricted growth string is that,
each element h in H is partitioned to a subset numbered by
ai, where i represents the index of h inH . Moreover, suppose
that m elements in H have already been partitioned, if the
new element m + 1 belongs to a new partition, we always
assign the smallest available number to am+1.
EXAMPLE 5. Consider the skeleton P in Figure 5. The characteris-
tic set of P is 〈a, b, a, a, a, b〉. The corresponding restricted growth
string is “010001”. Since P1 and P are α-equivalent, their strings
are the same. For P2, we have sP2 = 〈a, b, b, b, a, b〉 and the corre-
sponding string is “011101”.

4.2 Taming Scopes
The most significant challenge of skeletal program enumera-
tion is to handle variable scopes. Taking the scope informa-
tion into consideration, each hole in the syntactic skeleton
P can be filled with different sets of variables. As a result,
computing the non-α-equivalent programs becomes more
difficult. The corresponding set partition problem of skeletal
program enumeration with scope information is unique and
has not been studied in the literature.

Giving a skeleton P and hole variable sets vi with scope
information, we depict the set partition problem using a figure
with circle and squares, where each labeled circle denotes
the corresponding �i ∈ P and the squares represent the
scope information. In particular, according to the compact
α-renaming described in Section 3.2.2, each hole (circle) can
only be filled with the variables from a valid scope (square).
We use the notations vg and vl to represent the sets of global
variables and the variables declared in scope l, respectively.
Consider the example in Figure 7(a). We have vg = {a, b},
and v1 = {c, d} for the first local scope. It is clear from the
figure that hole 2 can be filled with v ∈ v2 = vg whereas
hole 4 can be filled with v ∈ v4 = vg ∪ v1. It is also clear
that a naïve approach generates 23 · 42 solutions.

4.2.1 Set Partition for Skeletal Program Enumeration
Unlike the standard set partition problem discussed in Sec-
tion 4.1, the new enumeration problem essentially considers
the set partition of a set H with constraints on each element
h ∈ H . This section formalizes this new partition problem.

Consider a program skeleton P with n holes, and t scopes.
Each hole �i ∈ P can be either global or local. The global
hole �gi can be filled with only global variables, i.e., vi = vg

whereas the local hole �li can be filled with additional local
variables defined in scope l, i.e., vi = vg ∪ vl and l ∈ [1, t].
The set partition problem for SPE can be described as follows:

Given a set H of n elements, and pre-defined sets
vi ⊆ {1, . . . , k} for all i ∈ [1, n]. Each element
i ∈ H can be partitioned to a subset labeled by v ∈ vi
and v1 ∪ v2 ∪ . . . ∪ vi = {1, . . . , k}. Enumerate the
ways to partition H into k subsets.

4.2.2 Partitions with Scopes
A straightforward approach to compute partitions with scopes
is computing a local set partition solution Sl for each scope,
respectively. Then, obtain the final solution S by computing
the Cartesian product over all local solutions Sl together with
the solution of global holes Sg, i.e., S = Sg × S1 × · · · ×
St. However, the set partitions obtained are not the global
solution among all elements. For example, consider the holes
3 and 4 in Figure 7(a), where we have v3 = v4 = vg ∪ v1.
The local solution for them contains two partitions: {{3, 4}}
and {{3}, {4}}. Since the number of holes is smaller than the
number of hole variables, we pick two variables and let v3 =
v4 = {b, c}. Locally, the variable names are unimportant in
set partition problems. Therefore, for partition {{3}, {4}},
filling variables�3 ← b and�4 ← c is equivalent to�3 ← c
and �4 ← b. On the other hand, combining the two solutions
with the remaining holes filled with 〈a, a, b〉 obtains two
solutions 〈a, a, b, c, b〉 and 〈a, a, c, b, b〉. Clearly, they are two
unique solutions since they have different restrict growth
strings “00121” and “00122”, respectively.

To obtain the global solution, the key idea in our partition
algorithm is to choose some local holes by considering all
combinations of the local holes. Then, the chosen ones are
promoted to be global. Finally, we obtain the solution by
computing the Cartesian product of the global holes and the
remaining local holes.

Handling one scope. Procedure PartitionScope(SL, G, li)
describes the major steps for handling scope i, where SL
represents the set of all local solutions, G denotes the set of
the global holes and li the set of the local holes of scope i.
The routine COMBINATIONS(Q, k) returns

(|Q|
k

)
different

ways of selecting k elements from the set Q. The routine
PARTITIONS(Q, k) partitions the set Q into k subsets in∑k
i=1

{|Q|
k

}
ways. Moreover, the routine PARTITIONS′(Q, k)

partitions the set Q into k non-empty subsets in
{|Q|
k

}
ways.

PartitionScope handles a scope i as follows:
• Promoting k holes from scope i. Line 1 obtains the

cardinalities of sets li and vi. On line 3, we choose k
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Procedure PartitionScope(SL, G, li).

1 u← |li| and v ← |vi|
2 foreach k ∈ [0, u− 1] do
3 result ← COMBINATIONS(li, k)
4 foreach variable set l ∈ result do
5 G← G ∪ l
6 l← li \ l
7 foreach j ∈ [1, v] do
8 Sli

← PARTITIONS′(l, j)

9 S′L ← SL

10 if SL is empty then SL ← Sli
else SL ← SL × Sli

11 if i is not the last scope then
12 ParititionScope (SL, G, l(i+1))

13 else
14 SG ← PARTITIONS′(G, |vg|)
15 Sf ← Sf ∪ {SG × SL}
16 SL ← S′L

17 G← G \ l

Algorithm 1: Skeletal program enumeration algorithm.
Input :A program skeleton P and hole variable set vi;
Output :a set of programs P .

1 foreach function f ∈ P do
2 Normalize function f
3 S′f ← PARTITIONS(Hf , |vf |)
4 Sf ← ∅ and SL ← ∅
5 ParititionScope (SL, Gf , l1)

6 Sf ← Sf ∪ S′f
7 S ← S × Sf

8 foreach characteristic vector s ∈ S do
9 Generating a program P using P and s

holes from li and promote them as global holes G on
line 5. The set of remaining holes is denoted as l on line 6.

• Computing local solution for scope i. Lines 8-10 computes
the local set partition Sli of scope i and combines it with
the current local solution SL. If i is not the last scope, it
recursively handles the next scope i+ 1 on line 12.

• Obtaining the final solution. If i is the last scope, it
computes the solution SG of global holes G (line 14),
combines it with the current local solution SL and appends
it to the final solution Sf (line 15). On line 16 and 17,
the information on G and SL is restored for subsequent
recursive calls to Procedure PartitionScope.

Program enumeration algorithm. Algorithm 1 describes
our combinatorial SPE algorithm. For each function f in
skeleton P, we consider its characteristic vector sf =
〈1, . . . , n〉. Within a function f , the global variable set vf
contains the global variables in P, function parameters and
function-wise variables. Moreover, the set of global holes,
denoted as Hf , contains the holes that can be filled with
v ∈ vf . For t local scopes, we rearrange the vector to be of
the normal form 〈�g, ..,�g,�1, ..,�1, . . . ,�t, ..,�t〉, i.e.,
we pull all global holes to the front and arrange local holes
in order. For example, Figure 7(b) gives the normal form
of the holes in Figure 7(a). Let Gf and li be the sets of the
global holes in f and the local holes in scope i, respectively.
Algorithm 1 computes the partitions for function f as follows.
It normalizes f (line 2) and computes a partial solution for
f (line 3) without taking scopes into consideration. It then

computes a solution Sf by recursively processing each scope
on lines 4-5. Moreover, the global solution of function f
is obtained by combining both Sf and S′f on line 6. The
global solution of P is obtained by computing the Cartesian
product of each function on line 7. Finally, we enumerate the
programs according to the solutions in S.

EXAMPLE 6. Consider the normal form in Figure 7(b). Algorithm 1
computes the set partitions as follows. Computing S′

f : There are{
5
2

}
+

{
5
1

}
= 16 partitions; Promoting either 3 or 4: There are{

4
2

}
×

{
1
1

}
= 7 partitions for each hole; Promoting neither 3 nor 4:

There are
{
3
2

}
× (

{
2
2

}
+

{
2
1

}
) = 6 partitions; Final solution: SPE

algorithm computes (16 + 2 · 7 + 6) = 36 partitions. However, the
naïve approach computes (23 · 42) = 128 partitions.

4.3 Discussions
Granularity of enumeration. Algorithm 1 obtains the SPE
solution S of a skeleton P by computing the Cartesian product
w.r.t. each local solution Sf of function f . We say that Algo-
rithm 1 computes the intra-procedural enumeration. Since
each function can also be considered as a local scope w.r.t. a
program, the intra-procedural enumeration approximates the
global solution, where we call the global solution as the inter-
procedural enumeration. Algorithm 1 can be easily extended
to obtain the inter-procedural enumeration. The key exten-
sion is to replace the foreach loop on lines 1-7 with a call
to Procedure PartitionScope, where l1 represents the first
function scope instead. To handle additional scopes, one can
processes all scopes in a bottom-up fashion w.r.t. the scope
hierarchy. It is a practical design choice of enabling intra- or
inter-procedural enumerations. The intra-procedural enumer-
ation — though being an approximation — enumerates fewer
variants of a single test program P than the inter-procedural
counterpart. Thus, given a fixed budget on the total number
of enumerated variants, the intra-procedural enumeration is
able to process more test programs. It would be interesting to
investigate different enumeration granularities and find the
most cost-effective enumeration scheme for practical use.

Enumeration vs. counting. We have discussed the SPE set
partition problem, and proposed an enumeration algorithm.
An interesting open problem is to investigate the correspond-
ing counting counterpart of the enumeration problem in Sec-
tion 4.2.1. Specifically, fixing i and k in an SPE problem,
the counting problem is to determine the number of non-α-
equivalent programs for a syntactic skeleton P with n holes.
In Section 4.1.1, we discussed the counting problem of the
SPE problem without scope information, based on the tradi-
tional analysis of set partition problems [29, 30]. However,
developing an asymptotic estimation of the SPE problem de-
fined in Section 4.2.1 is nontrivial, as the analytics with the
variable set vi constraints becomes more complex. A promis-
ing direction may be counting the enumeration set using the
technique based on e-restricted growth functions [38, 39].

Other enumeration techniques. Algorithm 1 solves the
SPE problem based on the combinatorial algorithms for
generating set partitions and combinations. In the litera-
ture, there has been an extensive body of work that exhaus-
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tively generates input structures for software testing. This
line of work typically specifies the invariant property and
enumerates the structures declaratively [7, 19, 28, 50], imper-
atively [12, 31, 49, 56] or in a hybrid fashion [20, 48].

Unfortunately, these approaches are inefficient to automat-
ically leverage the invariant for the SPE problem. The key
challenge of adopting the existing enumeration techniques
is to encode the invariant. Specifically, the declarative enu-
meration techniques specify the invariant and typically use
generate-and-test approaches. Our combinatorial SPE algo-
rithm maintains the invariant of the non-α-equivalence. Let
P1 and P2 be two programs of the SPE set P . The invariant
is: P1 � P2 for all distinct P1, P2 ∈ P . Therefore, to gener-
ate |P| non-α-equivalent programs, it needs to test

∏n
i=1 |vi|

programs as a naïve SPE solution discussed in Section 3.1. In
addition, the imperative enumeration frameworks are capable
of enumerating only valid inputs w.r.t. the invariant. However,
our SPE algorithm solves a combinatorial problem rather
than generating combinatorial structures (e.g., red-black trees,
graphs and algebraic representations). Even though it might
be feasible to encode the SPE algorithm using the primitive
enumerators in the imperative enumeration frameworks, the
realization is strictly less efficient than directly applying our
combinatorial SPE algorithm in the first place.

Another relevant problem is enumerating lambda terms
exhaustively up to a given size [21, 36, 55]. Most of the
work enumerates lambda terms using the standard “nameless”
de Bruijn representation [14]. These approaches consider a
rather different enumeration problem as the lambda terms
have distinct syntactic structures and semantics. Specifically,
the essential enumeration problem concerns with various
unary-binary tree structures [22, 36, 55]. However, in our set
partition setting, there is no dependence among set elements.

Algorithm correctness. Algorithm 1 invokes procedure
PartitionScope to compute the scoped set partitions for
each function f . We briefly discuss the correctness of pro-
cedure PartitionScope. Our algorithm handles functions
at different granularities. In Algorithm 1, the input func-
tion f is in the normal form. Recall that each hole �i in
the skeleton P corresponds to an element i ∈ H . In the
normal form, the elements can been filled with both global
(vg) and local (vl) variables. We define the configuration
of the normal form to be a map c : H → {g, l} for all
variables i ∈ H . It is then sufficient and necessary to show
that: (1) procedure PartitionScope computes unique non-α-
equivalent partitions for each configuration; and (2) procedure
PartitionScope finds all configurations in function f .

• Part (1). The configure c maps i ∈ H to either l and g,
and it leads to two cases. In the first case, all elements are
global. Therefore, the SPE problem becomes the standard
set partition problem. Procedure PartitionScope calls
procedure PARTITIONS to compute the set partitions of
size j. In the second case, some elements i representing
local holes �l are mapped to l. In this case, the partition
problems of the global and local elements become in-
dependent. Procedure PartitionScope computes respec-

tively the set partitions for elements that representing both
�gs and �ls, and obtains the global solution by comput-
ing their Cartesian product.

• Part (2). Procedure PartitionScope calls procedure
COMBINATIONS to find all configurations of function
f ’s normal form by exhaustively selecting the combina-
tors of local holes.

5. Evaluation
To evaluate the effectiveness of skeletal program enumeration,
we conduct two sets of experiments. In the first experiment,
we enumerate skeletons derived from GCC-4.8.5’s test-suite,
and test two stable compiler releases, GCC-4.8.5 and Clang-
3.6.1. We aim to demonstrate the benefits of combinatorial
SPE. In the second experiment, we use a set of small pro-
grams to test the trunk versions of GCC and Clang, as well
as CompCert and two Scala compilers, to demonstrate the
bug-hunting capabilities of SPE.

5.1 Experimental Setup
Our implementation contains two components, i.e., skeleton
generation and program enumeration. The skeleton genera-
tion component recursively traverses the ASTs to obtain the
scope and type information for each variable, and build a
skeleton P for each test program P . The program enumera-
tion component realizes the enumeration algorithm described
in Algorithm 1. We compute the intra-procedural enumera-
tion as mentioned in Section 4.3.

Given a set of programs P , we directly feed those pro-
grams to the compilers under testing. For GCC and Clang,
we use two optimization levels (i.e., -O0 and -O3) and two
machine modes (i.e., 32- and 64-bits) for finding crashes.
For wrong code bugs, we investigate the program P with
CompCert’s reference interpreter [35] and additional manual
efforts to ensure that it is free of undefined behaviors. All ex-
periments were conducted on a server and a desktop running
Ubuntu-14.04. The server has Intel Xeon X7542 CPUs and
128GB RAM, while the desktop has an Intel i7-4770 CPU
and 16GB RAM.

5.2 Experiments on Stable Releases
In our first experiment, we evaluate the SPE technique on
stable releases of two popular C compilers, specifically GCC-
4.8.5 and Clang-3.6.1. We choose GCC-4.8.5 since it is the
default C compiler in the long term support version of Ubuntu
(14.04), and Clang-3.6.1 was released about the same time as
the chosen GCC.

We implemented both our combinatorial program enu-
meration described in Algorithm 1 and a naïve enumeration
algorithm mentioned in Section 3.1. We apply the two imple-
mentations on the default test-suite which has been shipped
with GCC-4.8.5. Most of the test programs belong to the
c-torture suite, which contains the code snippets that have his-
torically broken previous releases.3 According to the GCC’s
release criteria, any released version must pass the test-suite

3 https://gcc.gnu.org/onlinedocs/gccint/C-Tests.html.
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Approach Original Test-Suite Enumerated Test-Suite
Total Size Avg. Size #Files Total Size Avg. Size #Files

Naive 5.24× 10163 2.49× 10159 20,978 1,310,943,547,383 69,538,698.7 18,852
Our 1.48× 1079 7.05× 1074 20,978 2,050,671 108.8 18,852

Table 1. Evaluation results on size reduction. The “total size” column shows the total numbers of enumerated programs, and
the “avg. size” the average numbers of the enumerated programs for each test program. The size of the enumerated test-suite is
related to a threshold discussed in Section 5.2.1.

distributed in the source code. We are particularly interested
in understanding the following research questions:

• What is the size reduction achieved by our SPE approach?
• Given the fact that the test-suite contains many programs

once broke previous GCCs, what are the characteristics
of these programs?

• Can SPE find bugs in the stable GCC and Clang releases
using their own regression test-suite?

5.2.1 Enumeration Size Reduction
The GCC-4.8.5 test-suite contains about 21K C files. Table 1
decries the size reduction results of applying our combina-
torial SPE algorithm. For the original test-suite, our combi-
natorial SPE approach reduces the entire size by 94 orders
of magnitude. However, it is clear from the table that SPE
solution set is still too large to be applied for compiler testing
in practice. As a result, we set a 10K threshold such that we
ignore the test programs which have more than 10K variants
using our combinatorial SPE algorithm. The 10K threshold
is chosen w.r.t. the characteristics of the test-suite (Table 2),
i.e., |Vars||Holes|

= 3.467.34 ≈ 10K). We then compare the
solution spaces based on the remaining programs. From the
last three columns in Table 1, we can see that the number of
test files is decreased to 19K. Using the 10K threshold, we
can still retain 90% of the original test programs. On those
files, our SPE algorithm achieves six orders of size reduction
over the naïve approach. Specifically, for each test program,
the solution of our SPE approach contains merely 109 files on
average. In practical settings, suppose that we could process
each program in one second, it takes less than one month
to handle all enumerated programs. However, for the naïve
approach, it takes about 40K years to process the same test
programs. Finally, Figure 8 describes size reduction in terms
of different program enumeration sets P .

5.2.2 Test-Suite Characteristics
Table 2 gives an overview of the test programs in GCC-4.8.5
test-suite. It also describes the programs used in our evalua-
tion based on the aforementioned 10K threshold. It is inter-
esting to observe that most of the programs are quite small
even though most of them have triggered bugs in previous
versions of GCC. Indeed, this observation has motivated our
current program enumeration work. The programs used in
our evaluation are smaller due to the 10K threshold setting
w.r.t. our combinatorial enumeration algorithm. Recall that
these programs represent 90% of the programs in the original
test-suite. It clearly demonstrates that it is feasible to apply
combinatorial SPE on practical test-suites.

Test-Suite #Holes #Scopes #Funcs #Types #Vars
Original 7.34 2.77 1.85 1.38 3.46

Enumerated 3.84 1.85 1.50 1.29 1.60

Table 2. Characteristics of the GCC-4.8.5 test-suite. The
first four columns display the average counts of holes, scopes,
functions and variable types in each file, respectively. The
last column displays the variable counts for each hole.

internal compiler error: in assign_by_spills, at lra-assigns.c:1281
error in backend: Do not know how to split the result of this operator!
error in backend: Invalid register name global variable.
error in backend: Access past stack top!
Assertion ‘MRI->getVRegDef(reg) && “Register use before def!”’ failed.
Assertion ‘Num < NumOperands && “Invalid child # of SDNode!”’ failed.

Table 3. Crash signatures of bugs found in GCC-4.8.5 and
Clang-3.6.1 using the GCC-4.8.5 test-suite.

5.2.3 Benefits of Skeletal Program Enumeration
Hunting bugs. We apply our enumeration algorithm to test
GCC-4.8.5 and Clang-3.6 by enumerating the skeletons from
the GCC-4.8.5 test-suite. Our SPE technique have found
1 and 10 crash bugs in GCC and Clang, respectively. It is
perhaps interesting to note that we are able to find GCC bugs
by enumerating its own test-suite even if the release criteria
force it to pass the original test-suite. In this evaluation, we
only focus on crash bugs since wrong code bugs usually
require compiler developers’ confirmation (mostly due to
possible undefined behaviors in test programs). For crash
bugs, compiler messages clearly indicates their occurrence.
Table 3 gives the signatures of some crash bugs found in
this evaluation. We can see that most of the bugs are in the
backend and optimization passes.

Improving coverage. As described in Section 1, one of our
insights is that SPE can help trigger more internal compiler
passes. In order to validate the claim, we compare our SPE
technique against the seminal work Orion of program muta-
tion [32]. We choose Orion since it only considers statement
deletion. Therefore, the overall search spaces for both ap-
proaches are bounded. We randomly select 100 test programs
from the test-suite to run both approaches. Figure 9 gives the
empirical results. The selected test programs achieve 41%
function coverage and 32% line coverage for GCC, respec-
tively. For Clang, they achieve 20% function coverage and
17% line coverage, respectively. Our SPE approach brings
approximately 5% coverage improvement for GCC and 2.4%
coverage improvement for Clang, respectively. On the other
hand, Orion provides less than 1% coverage improvement.
This comparison also demonstrates the advantage of applying
our SPE technique on small programs.
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Figure 9. Coverage improvements over the baseline tests. PM-X represent improvements achieved by program mutation (the
Orion tool) which deletes X statements, and SPE represents improvements achieved using our SPE algorithm.

It is also worth noting that Orion has found 1 and 3 bugs in
Clang-3.6 and GCC-4.8.5, respectively, using the same test-
suite. The three GCC bugs are unique as they are different
from what we have found. This evaluation has also provided
practical evidence that program enumeration and program
mutation offer complementary benefits.

5.3 Experiments on Development Versions
We apply our combinatorial program enumeration for finding
bugs in the trunk versions of GCC and Clang. We select a
set of small C programs from the unit test-suite of many
open-source projects, such as CompCert [35], Frama-C, the
Rose compiler and KCC [17]. In particular, most of our test
C programs are from the test-suite in the trunk version of
GCC. The test programs share similar characteristics with
those described in Section 5.2. We began our testing process
in early January. In less than six months, our technique has
discovered 217 GCC and Clang bugs. To date, more than half
of them have been fixed.

To demonstrate SPE’s generality, we have also applied it
to test the CompCert verified C compiler, and two optimizing
Scala compilers, i.e., the production Scala compiler and the
Dotty research compiler. In about three weeks, we have
reported 29 CompCert crashing bugs and 42 bugs in the
two Scala compilers. The developers have appreciated and
promptly addressed our reports — 25 CompCert bugs have
already been fixed (all have been confirmed), and 27 Dotty
bugs have been confirmed. We started testing the two Scala
compilers recently in late October. Among the Dotty bugs,
9 have been fixed so far. Until now, there are only five high-

priority bugs in total in the Dotty code repository, and our
SPE technique has discovered four of them. The rest of this
section focuses discussing the GCC and Clang/LLVM bugs.

5.3.1 Overall Results
Table 4 gives an overview of the bugs that we have found
during the testing course. We have reported 217 bugs in total.
Developers have confirmed almost all of our reported bugs.
Moreover, more than half of them have already been fixed
within the six-month period. Some of our reported bugs are
quite complex. For example, two bugs have been reopened
by developers for further inspection. Although we ensure that
our reported bugs have different symptoms, it is sometimes
inevitable that we have occasionally reported duplicates as
it is quite difficult for us to track the root cause for each
bug. However, less than 5% of the bugs are duplicates. Two
of our reported GCC bugs have been marked as invalid. In
particular, one of them is about multiple inheritance and
casting in C++, and the other is a C program that contains
undefined behavior concerned with strict aliasing. We further
discuss the undefined behavior issue in Section 5.4.

Table 4 also gives the classification of the bugs. Most of the
bugs cause compiler crashes. As mentioned in Section 5.1,
we leverage the SPE technique to find both frontend and
optimization bugs. Among all GCC crash bugs, 56% of them
trigger frontend crashes, where most of them are related to
the C++ frontend. On the other hand, 44% lead to crashes
in the optimization passes. Moreover, we have discovered 8
bugs related to miscompilation. As mentioned in Section 2,
one of them has been around for more than ten years. Finally,
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Compiler Summary Classification
Reported Fixed Duplicate Invalid Reopened Crash Wrong code Performance

GCC 136 93 10 2 1 127 6 3
Clang 81 26 3 1 1 79 2 0

Table 4. Overview of bugs reported for trunk versions of GCC and Clang in six months.
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Figure 10. Characteristics of GCC trunk bugs. The darker bars denote the numbers of reported bugs and the lighter bars the
numbers of fixed bugs.

three of the bugs are related to compilation performance. We
describe one such bug in Appendix A.

5.3.2 Bug Characteristics
We discuss the characteristics of our reported GCC bugs. It
is worth mentioning that we have made more effort testing
GCC since GCC developers are relatively more responsive.
In particular, GCC developers not only have fixed 68% of our
bugs but also provide more feedback. Figure 10 characterizes
the 136 reported GCC trunk bugs. Specifically, Figure 10(a)
shows the importance of the reported bugs. P3 is the default
priority in GCC’s bugzilla system. About two thirds of the
bugs fall into this category. About 10% of them are release-
blocking (P1). Developers have to fix all P1 bugs in order to
release a future version. Figure 10(b) shows that our reported
bugs cover all optimization levels. Specifically, our approach
has found more -O3 bugs than the -O2 and -O1 bugs. This
demonstrates that the SPE technique is able to cover deep
compiler optimization passes. Figure 10(c) shows the affected
GCC versions. We can see that 85% of the bugs affect the
latest 6 release. Moreover, 66% of the bugs affect at least
three stable GCC 5 releases. Perhaps the most interesting to
note is that 43% of the bugs affect earlier GCC versions from
at least one year ago. It demonstrates that our techniques can
find long latent bugs. Figure 10(d) shows the diversity of our
reported bugs. Over half of our bugs are C++ frontend bugs.
The second category of most frequent bugs concern the tree-
optimization component. The results suggest that our SPE
technique is useful for testing various compiler components.

Our technique has discovered a large number of diverse
bugs in a relatively short period of time. One unique, notewor-
thy aspect of our work is the large number of reported bugs

in the compilers’ C++ support, making it the first successful
exhaustive technique to provide this capability. C++ is an
active, enormously complex language and has a growing set
of features — it is very challenging to develop practical C++
program generators. Note that we have many more bugs to
triage, reduce and report, but have been reporting bugs in a
steady fashion so as not to overwhelm the developers. The
results highlight the novelty and benefits of our approach.

5.3.3 Case Studies on Sample Bugs
We select and discuss four reported GCC and Clang bugs.
Figure 11 describes the corresponding test programs with bug
classifications and status. Eight additional bug samples may
be found in Appendix A.

Figure 11(a). This test program exposes a long latent bug
of GCC that affects all versions since GCC-4.4, which was
released four years ago. The bug is in the C++ frontend of
GCC, and manifests when GCC computes the path of the base
classes for the class B. The GCC developers have confirmed
this bug and are investigating its root cause.

Figure 11(b). This is a crash bug of the GCC trunk (6.0
revision 233242). It manifests when GCC compiles the
test program at -O2 and above. The goto statement in the
program introduces an irreducible loop, and GCC incorrectly
handles the backend and consequently triggers the assertion
verify_loop_structure to fail. This reported bug had been
fixed once, and later reopened by the GCC developers. Note
that this program is enumerated from the test program in
GCC bug report PR68841 .

Figure 11(c). This test program crashes the trunk (3.9
revision 263641) of Clang at -O1 and above. This bug is
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1 class A {
2 virtual void foo()
3 { }
4 };
5

6 class B : public A, A
7 { };
8

9 B b1, &b2 = b1;
10 A a = b2;

(a) G++ crash 70202 (fixed)

1 char a; short b;
2 void fn1() {
3 if (b)
4 ;
5 else {
6 int c[1] = {0};
7 l1: ;
8 }
9 if (a) goto l1;

10 }

(b) GCC crash 69740 (reopened)

1 int a;
2 double b, *c;
3

4 void fn1(int p1) {
5 for (;; p1--) {
6 a = p1;
7 for (; p1 >= a; a--)
8 b = c[p1];
9 }

10 }

(c) Clang crash 26973 (fixed)

1 int main() {
2 int *p = 0;
3 trick:
4 if (p)
5 return *p;
6 int x = 0;
7 p = &x;
8 goto trick;
9 return 0;

10 }

(d) Clang wrong code 26994 (confirmed)

Figure 11. Sample test programs that trigger bugs of GCC and Clang.

a regression, and had been latent for eleven months until
we discovered it. The culprit revision incorrectly passes a
wrong parameter to infer the loop invariant, and consequently
corrupts the emitted LLVM bitcode and causes an assertion
violation in the compiler backend.

Figure 11(d). The program is miscompiled by the Clang
trunk (3.9.0 revision 263789). The expected exit code is 0.
However the miscompiled executable returns 1 instead. The
root cause is that the Clang frontend deems that the lifetime
of the variable x ends after the control flow jumps to the label
trick, which is incorrect. Consequently the write to variable
x (i.e., int x = 0) was eliminated, and the miscompiled
executable just returns a memory cell with uninitialized data.
This bug is also a regression affecting the stable release of
Clang 3.7 and all later versions.

5.4 Toward Bounded Compiler Verification
As mentioned in Section 1, our approach is general and estab-
lishes the first step toward practical techniques for proving the
absence of compiler bugs for any programming language. For
C/C++ compilers, the SPE technique itself does not guarantee
that the generated programs are free of undefined behaviors.
Specifically, for the incorrect return value of the program de-
scribed in Figure 2, our technique cannot determine directly
whether it is a compiler miscompilation or a false alarm due
to possible undefined behavior. We rely on the heuristics
discussed in Section 5.1 and manual inspection to confirm
the bug. The test program was generated by SPE, which we
believe can help prove the absence of miscompilations in
C/C++ compilers. Our SPE technique has indeed found sev-
eral wrong code bugs in both GCC and Clang, but much
fewer than crash bugs. This section briefly discusses practi-
cal considerations in finding wrong code bugs with skeletal
program enumeration.

The most significant challenge is to avoid enumerating
programs with undefined behaviors. In both program genera-
tion and mutation, one can design different heuristics to avoid
producing “bad” programs. For instance, when performing
statement insertions in Athena [33], one can carefully choose
the candidate statements to avoid introducing undefined be-
havior such as uninitialized variables or out-of-bound array
accesses. Moreover, a key contribution of Csmith [57] is to
ensure that its generated programs are, most likely, free of un-
defined behavior. However, in our SPE work, what heuristics
to use is less obvious since we consider all variable usage pat-
terns. On the other hand, SPE is deterministic and exhaustive

rather than opportunistic. As a result, applying static analysis
on each enumerated program would not be too expensive. We
leave as interesting future work to explore static analysis tech-
niques or efficient enumeration schemes to avoid undefined
behaviors in the enumerated programs.

Besides avoiding undefined behaviors, it is also challeng-
ing to detect undefined behaviors given a set of enumerated
programs. This is perhaps more general since the issue it-
self has been an interesting, actively researched problem.
The reference interpreter in CompCert [35], for example, of-
fer tremendous help in detecting “bad” programs. However,
since CompCert only works on a subset of C, it may not han-
dle many practically useful features such as inline assembly,
attributes and compiler-specific extensions. It also defines
certain undefined behaviors, such as signed integer overflows.
Tools such as Clang’s undefined behavior sanitizers are also
useful, but incomplete. As a result, we resort to manual in-
spection to rule out the remaining “bad” programs, which
hinders productivity. Reliable tools for detecting undefined
behaviors would be extremely helpful.

6. Related Work
Csmith is the most popular random program generator for
testing C compilers [9, 57]. Compared with the testsuite
used in our study, Csmith generates large and complex
programs. Csmith is a highly influential project. Over the
years, it has helped find a few hundred bugs in both GCC
and Clang/LLVM. Based on Csmith, the CLsmith work of
Lidbury et al. focuses on testing OpenCL compilers [37].
Orange3 is a random program generator that tests arithmetic
optimizations in C compilers [41]. CCG is another random C
program generator which finds crash bugs in early versions
of GCC and Clang [5]. Epiphron is a randomized technique
to detect defects in compiler warning diagnostics in GCC
and Clang [52]. For functional languages, there has also
been an extensive body of work on exhaustive or random
test-case generators for compiler testing [10, 11, 16, 18, 45,
49]. Boujarwah and Saleh conduct a thorough survey on
generation techniques for compiler testing [6].

A recent work of Le et al. proposes the idea of testing com-
pilers using the equivalence modulo inputs (EMI) [32] con-
cept. Practical testing tools based on EMI mutate programs
by inserting and deleting statements in unexecuted branches.
In particular, Orion randomly deletes program statements in
dead regions [32]. Athena adopts the Markov Chain Monte
Carlo (MCMC) method to guide both statement insertions
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and deletions to obtain more interesting test programs [33].
Hermes inserts code fragments to live regions [53]. More-
over, Proteus applies the EMI technique to test link-time
optimizers [34]. The frameworks based on EMI are quite
efficient for compiler testing. They have revealed many bugs
in both GCC and Clang/LLVM. Most of them are deep wrong
code bugs. Besides testing C compilers, LangFuzz mutates
syntactically correct JavaScript programs using failing code
fragments [24]. It has discovered many vulnerabilities in the
Mozilla JavaScript interpreter. Finally, the well-known mu-
tation testing technique mutates a program to evaluate the
quality of its testsuite [15, 23].

To guarantee the correctness of compilers, the two most
notable developments are, perhaps, translation validation [42,
46] and verified compilers [35]. Besides verification, compiler
testing is another important practical approach. For testing C
compilers, all of the program generation, program mutation
and our SPE techniques realize the same idea of differential
testing [40]. The three approaches complement each other.
Specifically, for program enumeration, we consider small test
programs. Our technique exhaustively exploits all variable
combinations. On the other hand, the other two approaches
tend to produce large and complex programs in a random-
ized fashion. The buggy programs discovered using these
techniques could be processed using CompCert’s reference
interpreter to identify undefined behaviors [35]. To file high-
quality bug reports, test programs should also be reduced first,
using tools like C-Reduce [47] and Berkeley Delta [13].

Our work is also related to bounded-exhaustive testing,
which concerns the enumeration of all possible input struc-
tures up to a given size [51]. Two popular techniques are
declarative enumeration and imperative enumeration. In par-
ticular, declarative approaches leverage any given invariant
to search for valid inputs [7, 19, 28, 50], and the imperative
approaches directly construct the inputs based on more pre-
scriptive specifications [12, 31, 49, 56]. In program synthesis,
there have been studies on inductive functional programming
systems for exhaustively synthesizing small programs [8, 25–
27]. The essential enumeration techniques, categorized as
analytical or generate-and-test approaches, share similar con-
ceptual ideas. As mentioned in Section 4.3, existing enu-
meration techniques are expensive and impractical for the
combinatoral enumeration problem that this work considers.

7. Conclusion
This paper has introduced skeletal program enumeration
(SPE) for compiler testing and developed a practical combina-
torial solution. Our approach significantly reduces the number
of enumerated programs. For an empirical demonstration of
its utility, we have applied it to test two production C/C++
compilers, CompCert C comipler and two Scala compilers.
Our results are extremely promising. For instance, in less than
six months, our approach has helped discover more than 200
bugs in GCC and Clang. More than half of our reported bugs
have already been fixed, the majority are long latent, and a
significant fraction are classified as critical, release blocking.

Our SPE strategy and techniques are general and may be
applied in other enumeration settings. This work also demon-
strates the practical potential of program enumeration, and
opens up opportunities toward bounded compiler verification.
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A. Additional Sample Bugs
We briefly discuss eight additional sample bugs found by SPE
to show its generality and the diverse bugs that it can detect.

Figure 12(a). This bug is long latent and intriguing as it
causes different symptoms for multiple GCC versions. It
affects optimization levels -O1 and above. When compiling
it, GCC 4.6 and 4.7 hang, whereas 4.8 to trunk crash. GCC
incorrectly computes the address for exception handling,
which later causes an assertion violation in the middle end.

Figure 12(b). This test program is miscompiled by the
GCC trunk (6.0 revision 234026) at -O3. It is derived by
enumerating a test case in GCC’s testsuite. The expression
c=c+u[a+1335*a] on line 8 is obtained by replacing b in
the original expression c=c+u[a+1335*b] with a. Then this
replacement triggers a regression in the loop vectorizer pass.

Figure 12(c). This test program crashes the trunk (7.0 revi-
sion 237059) of GCC at -Os and above. The code overrides
the placement new operator of C++ on line 6. A replacement
new operator creates an object in a given memory region. In
the main function, this overridden new operator is called to
create an object of type C at the address of the local variable a

(i.e., ‘new (&a) C’). However, because C and a have different
types, GCC translates the code into an ill-formed intermedi-
ate representation (i.e., GIMPLE code), which does not pass
the GIMPLE verification pass.

Figure 12(d). This program triggers a bug in the name man-
gling module of Clang for the Itanium C++ ABI. On line 6,
the template function test takes as input two parameters of
the types: a generic type T and the underlying type of T. When
Clang was trying to mangle the function name of the call on
line 11, the bug (i.e., the type trait __underlying_type was
improperly handled) led the compilation to unreachable code,
thus failing an assertion.

Figure 12(e). This test program triggers a crashing bug in
CompCert’s frontend. Before the initialization, the parser
does not check whether the type is incomplete, which triggers
an assertion failure in CompCert.
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1 void foo()
2 {
3 unsigned long l;
4 void *p = 0;
5

6 __builtin_unwind_init ();
7

8 l = 0;
9

10 __builtin_eh_return (l, p);
11 }

(a) GCC crash/performance bug 67619 (fixed)

1 double u[1782225];
2 int a, b, d, e;
3 static void foo(int *p1) {
4 double c = 0.0;
5 for (; a < 1335; a++) {
6 b = 0;
7 for (; b < 1335; b++)
8 c = c + u[a + 1335 * a];
9 u[1336 * a] *= 2;

10 }
11 *p1 = c;
12 }
13 int main() {...}

(b) GCC wrong code bug 70138 (fixed)

1 struct C {
2 C() {}
3 int i;
4 };
5

6 void *operator new(size_t, void *p2)
7 { return p2; }
8

9 int main() {
10 int a;
11 new (&a) C;
12 return 0;
13 }

(c) G++ crash bug 71405 (fixed)

1 enum Color {
2 R, G, B
3 };
4

5 template < typename T >
6 void test(T, __underlying_type (T))
7 {}
8

9 int main() {
10 Color c = R;
11 test (c, c);
12 return 0;
13 }

(d) Clang++ crash bug 28045 (fixed)

1 union U u = { 0 };

(e) CompCert crash bug 125 (fixed)

1 object Main extends App {
2 case class Foo(field: Option[String])
3 val x: PartialFunction[Foo, Int] = {
4 c => c.field match {
5 case Some(s) => 42
6 }
7 }
8 }

(f) Dotty crash bug 1637 (fixed)

1 void foo (struct A a)
2 {
3 a++;
4 }

(g) CompCert crash bug 121 (fixed)

1 class Bar {
2 def f (x : { def g }) {}
3 f (new Foo { def g })
4 }

(h) Scala crash bug 10015 (open)

Figure 12. Additional sample bugs.

Figure 12(f). This test program crashes the Dotty compiler
— a next generation compiler for Scala. It triggers an assertion
in the Dotty typer. The bug has been fixed and marked as
high priority in Dotty’s GitHub repository. As of March 2017,
there are five high-priority bugs in the Dotty code repository,
and SPE discovered four.

Figure 12(g). This test program crashes CompCert. Func-
tion foo’s parameter has a structure type A, whose definition
is unavailable in this translation unit. CompCert did not reject
the program early, thus leading to an “Unbound struct A” as-
sertion failure in the subsequent compilation of the program.

Figure 12(h). This test program crashes the 2.12 stable
release of the Scala compiler. Specifically, it triggers an
assertion failure in Scala’s type checker. The test program is
enumerated from the regression test-suite in the Scala release.
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