
Boosting Program Reduction with the Missing Piece of
Syntax-Guided Transformations
ZHENYANG XU, University of Waterloo, Canada

YONGQIANG TIAN,Monash University, Australia

MENGXIAO ZHANG, University of Waterloo, Canada

CHENGNIAN SUN, University of Waterloo, Canada

Program reduction is a widely used technique in testing and debugging language processors. Given a program

that triggers a bug in a language processor, program reduction searches for a canonicalized and minimized

program that triggers the same bug, thereby facilitating bug deduplication and simplifying the debugging

process. To improve reduction performance without sacrificing generality, prior research has leveraged the

formal syntax of the programming language as guidance. Two key syntax-guided transformations—Compatible

Substructure Hoisting and Quantified Node Reduction—were introduced to enhance this process. While these

transformations have proven effective to some extent, their application excessively prunes the search space,

preventing the discovery of many smaller results. Consequently, there remains significant potential for further

improvement in overall reduction performance.

To this end, we propose a novel syntax-guided transformation named Structure Form Conversion (SFC)

to complement the aforementioned two transformations. Building on SFC, we introduce three reduction

methods: Smaller Structure Replacement, Identifier Elimination, and Structure Canonicalization, designed

to effectively and efficiently leverage SFC for program reduction. By integrating these reduction methods

to previous language-agnostic program reducers, Perses and Vulcan, we implement two prototypes named

SFCPerses and SFCVulcan. Extensive evaluations show that SFCPerses and SFCVulcan significantly outperforms

Perses and Vulcan in both minimization and canonicalization. Specifically, compared to Perses, SFCPerses
produces programs that are 36.82%, 18.71%, and 41.05% smaller on average on the C, Rust, and SMT-LIBv2

benchmarks at the cost of 3.65×, 16.99×, and 1.42× the time of Perses, respectively. Similarly, SFCVulcan
generates programs that are 14.51%, 7.65%, and 7.66% smaller than those produced by Vulcan at the cost of

1.56×, 2.35×, and 1.42× the execution time of Vulcan. Furthermore, in an experiment with a benchmark suite

containing 3,796 C programs that trigger 46 unique bugs, SFCPerses and SFCVulcan reduce 442 and 435 more

duplicates (programs that trigger the same bug) to identical programs than Perses and Vulcan, respectively.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: Program Reduction, Test Input Minimization, Automated Debugging

ACM Reference Format:
Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun. 2025. Boosting Program Reduction

with the Missing Piece of Syntax-Guided Transformations. Proc. ACM Program. Lang. 9, OOPSLA2, Article 275
(October 2025), 27 pages. https://doi.org/10.1145/3763053

1 Introduction
Program reduction is a widely utilized technique in the testing and debugging of language pro-

cessors such as compilers, interpreters, and debuggers [20–22, 29, 32, 36, 37, 41]. Given a program

Authors’ Contact Information: Zhenyang Xu, University of Waterloo, Canada, zhenyang.xu@uwaterloo.ca; Yongqiang

Tian, Monash University, Australia, yongqiang.tian@monash.edu; Mengxiao Zhang, University of Waterloo, Canada,

m492zhan@uwaterloo.ca; Chengnian Sun, cnsun@uwaterloo.ca, University of Waterloo, Canada.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART275

https://doi.org/10.1145/3763053

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

https://orcid.org/0000-0002-9451-4031
https://orcid.org/0000-0003-1644-2965
https://orcid.org/0000-0002-3463-2802
https://orcid.org/0000-0002-0862-2491
https://doi.org/10.1145/3763053
https://orcid.org/0000-0002-9451-4031
https://orcid.org/0000-0003-1644-2965
https://orcid.org/0000-0003-1644-2965
https://orcid.org/0000-0002-3463-2802
https://orcid.org/0000-0002-0862-2491
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763053
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3763053&domain=pdf&date_stamp=2025-10-09

275:2 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

𝑃 that triggers a bug in a language processor, along with an oracle𝜓 that verifies whether a pro-

gram triggers the bug, program reduction aims to produce a minimized, canonicalized version

of 𝑃 that still triggers the same bug. By minimizing bug-irrelevant code from 𝑃 , this technique

streamlines the debugging process. The significance of such minimization is underscored by the

fact that many language processor communities mandate that users and developers perform re-

duction on bug-triggering programs before reporting bugs [4, 6, 14, 23]. Furthermore, program

reduction also facilitates the canonicalization
1
of bug-triggering programs, reducing differences

among duplicates (two programs are duplicate if they trigger the same bug). This capability is

particularly advantageous for deduplication in large-scale automated testing campaigns of language

processors [2].

Program reduction presents significant challenges for two primary reasons. First, the original

bug-triggering programs can be considerably large since many of these programs are generated

through fuzz testing [20, 29, 41], and empirical evidence suggests that configuring a fuzzer to

generate larger programs can enhance bug-finding performance [41]. Meanwhile, a language

processor is typically extremely complex, and thus reducing the program by directly analyzing

which part is essential for triggering the bug is almost impossible. Second, programs are highly

structured and adhere to complex, strict grammatical rules. Naively removing parts of a program

using algorithms like ddmin [42] often produces syntactically invalid code, which is unlikely to

reproduce the original bug, leading to inefficient and ineffective reduction.

To address these challenges, many trial-and-error, syntax-aware program reduction techniques

have been proposed over the past decades [8, 19, 25–27, 30, 39]. One notable example is Hierarchical

Delta Debugging (HDD), proposed by Misherghi and Su [25]. HDD builds on the ddmin reduction

algorithm but introduces a hierarchical approach: instead of directly applying ddmin to the program,

it first transforms the program into a tree representation (e.g., an abstract syntax tree) and then

applies ddmin at each level of the tree in a top-down manner. This hierarchical strategy significantly

improves both the effectiveness and efficiency of reduction in cases involving highly structured

inputs. However, HDD still tends to generate a substantial number of syntactically invalid programs

during the reduction process, which hampers its overall performance. This issue was addressed by

Perses, a syntax-guided program reducer [30]. Perses additionally takes as input the formal syntax

of the programming language and applies only syntax-guided transformations (i.e., transformations

that preserves the syntactical validity) during reduction. By doing so, Perses avoids generating

syntactically invalid programs, leading to improved performance compared to HDD.
2

Prior Syntax-Guided Transformations. Perses introduces two syntax-guided transformations:

Compatible Substructure Hoisting and Quantified Node Reduction. Compatible Substructure Hoist-

ing replaces a given syntactical structure in 𝑃 with one of its sub-structures (i.e., a descendant
of the given syntactical structure in the parse tree). For instance, it can transform the expres-

sion a+b into one of its sub-expressions (e.g., a or b). Quantified Node Reduction uses ddmin to

reduce syntactically parallel or repeated structures, such as a sequence of statements or a list

of function parameters, These syntax-guided transformations preserve syntactical validity, have

1
Canonicalization aims to reduce different programs that trigger the same bug to an identical program or a set of programs

with minimum differences. This concept is further discussed in § 2.1.

2
Besides the language-agnostic reducers mentioned in the paragraph, there are many language-specific reducers such

as C-Reduce and ddSMT [19, 26, 27]. These reducers are not only syntax-awared but also specifically optimized for the

target languages. However, these tools require considerable language-specific knowledge and cannot be well generalized

to reducing programs in other languages. In this paper, the focus is improving language-agnostic program reduction

approaches, and thus these language-specific approaches are not discussed in detail.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:3

been shown to be highly effective, and have since been adopted by various program reduction

techniques [7, 8, 34, 39, 45].

The Missing Piece. Despite their success, the two prior syntax-guided program transformations

are inherently limited because, given a structure in 𝑃 , many smaller yet syntactically valid structures

cannot be generated. Relying solely on these two transformations for program reduction excessively

prunes the search space P and can ultimately result in inadequate reductions [39]. For instance,

consider a function invocation expression f(e1,e2,e3) in a C program 𝑃 where the arguments

e1, e2 and e3 generally represent three expressions rather than just variables, and assume that

evaluating these three expressions altogether is necessary to trigger a bug, while calling f is

irrelevant to the bug. Neither Compatible Substructure Hoisting nor Quantified Node Reduction can

reduce this expression. Compatible Substructure Hoisting attempts to reduce the entire expression

by replacing it with one of its sub-expressions, i.e., e1, e2, or e3. Note that according to the C

language, the syntactical structure of e1,e2,e3 in the parse tree of calling f is an argument list but

not an expression. Thus, Compatible Substructure Hoisting cannot replace the entire expression

with e1,e2,e3. Quantified Node Reduction attempts to reduce the syntactically parallel structure

(i.e., the argument list) with the ddmin algorithm (e.g., Quantified Node Reduction can possibly

reduce the expression to f(e1)). Nevertheless, there exist other transformation strategies that still

preserve syntactic validity. For example, deleting the function name f and the parentheses leaves

e1,e2,e3, which is also a valid expression in C. Although this transformation, missed by both

Compatible Substructure Hoisting and Quantified Node Reduction, only involves deleting three

tokens, it can open up further reduction opportunities across the entire program 𝑃 by eliminating a

use of the function f. Namely, if f is unused elsewhere, its definition can also be entirely removed.

Structure Form Conversion. To mitigate the limitations of Compatible Substructure Hoisting

and Quantified Node Reduction, in this paper, we propose a novel syntax-guided transformation

named Structure Form Conversion (SFC). SFC is designed to transform a given syntactic structure

into others forms that preserve the syntactical validity of whole programs. For instance, given the

expression f(e1,e2,e3), SFC attempts to transform it to other forms of expressions defined by

the formal syntax, such as the previously mentioned expression e1,e2,e3. Unlike Compatible

Substructure Hoisting and Quantified Node Reduction, converting a structure to another form does

not ensure the resulted structure is smaller than the original one, and the number of structures that

can be possibly generated is vast or even infinite. To tackle this challenge, we establish five guiding

principles for SFC based on the chracteristics of program reduction, in order to constrain the

space of generated programs. Additionally, we design three reduction methods—Smaller Structure

Replacement, Identifier Elimination, and Structure Canonicalization—to effectively apply SFC in

program reduction. Specifically, Smaller Structure Replacement reduces a program by replacing

structures with smaller, compatible ones generated by SFC. Identifier Elimination strives to create

reduction opportunities by utilizing SFC to eliminate the uses of an identifier, in the hope of

successfully removing the corresponding definition or initialization of the identifier.While these two

methods focus on enhancing minimization, Structure Canonicalization emphasizes canonicalization.

It transforms structures into the most canonical forms with SFC, making duplicate programs

(i.e., those that trigger the same bug) more likely to be reduced to identical or similar forms. By

integrating these three reduction methods into existing language-agnostic program reducers, Perses

and Vulcan [39], we develop two prototype reducers: SFCPerses and SFCVulcan.

To evaluate the performance of SFC in minimization and canonicalization, we utilize two bench-

mark suites, Benchmark-Reduce and Benchmark-Cano, respectively. Benchmark-Reduce con-

tains 20 C benchmarks from Perses [30], 20 Rust benchmarks partially from Vulcan [39], and 205

SMT-LIBv2 benchmarks from ddSMT2.0 [19]. Each benchmark consists of a program triggering

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

275:4 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

a unique real-world crash or miscompilation bug. In contrast, Benchmark-Cano contains many

duplicated C programs that triggers the same bug, including 2,501 programs triggering 11 unique

crash bugs in GCC 4.3.0, and 1,295 programs triggering 35 miscompilation bugs also in GCC 4.3.0 [2].

Experiments with Benchmark-Reduce show that the results of SFCPerses is 36.82%, 18.71%, and

41.05% smaller than those of Perses on the C, Rust, and SMT-LIBv2 benchmarks, respectively. In

terms of execution time, SFCPerses takes 3.65×, 16.99×, and 3.97× the time of Perses on average.

As for SFCVulcan, it can produce 14.51%, 7.65%, and 7.66% smaller results than Vulcan at the cost

of 1.56×, 2.35×, and 1.42× the execution time of Vulcan, respectively. Moreover, experiments

with Benchmark-Cano show that SFCPerses and SFCVulcan can reduce 442 and 435 more duplicates

(programs that trigger the same bug) to identical programs than Perses and Vulcan, respectively.

Contributions. This work makes the following contributions.

• We propose a novel syntax-guided transformation, Structure Form Conversion, complementing

to prior transformations Compatible Substructure Hoisting and Quantified Node Reduction.

• We propose three novel reduction methods to effectively and efficiently leverage SFC in pro-

gram reduction. We further implement two language-agnostic reducer prototypes, SFCPerses and

SFCVulcan by integrating these methods into existing reducers.

• By conducting extensive evaluation, we demonstrate the SFCPerses and SFCVulcan significantly

outperforms Perses and Vulcan in terms of both minimization and canonicalization capability.

• For reproducibility and replicability, we have released the implementation and data at https:

//github.com/sfc-reducer/sfc-reducer.

2 Preliminary
This section provides the essential background knowledge relevant to this work.

2.1 Program Reduction

Program 𝑃 Program 𝑃′ Oracle 𝜓

Transformation 𝑓

① Perform Query

② Obtain a new 𝑃′ by performing a transformation

③ Update program 𝑃 with 𝑃′ and repeat
𝜓 𝑃! = true

𝜓 𝑃! = false

Fig. 1. A typical workflow of a program reducer.

Let P denote the search space of program reduction, namely, the set of all possible programs

during reduction. Given an oracle 𝜓 : P → {true, false} that can verify whether a program

triggers a specific bug, and a bug-triggering program 𝑃 ∈ P s.t. 𝜓 (𝑃), program reduction aims

to output a minimized bug-triggering program 𝑃𝑚𝑖𝑛 by keeping searching for another program

𝑃 ′ ∈ P s.t.𝜓 (𝑃 ′)∧ |𝑃 ′ | < |𝑃 |, (|𝑃 | is the size of program 𝑃). In this paper, we use the number of tokens

as the metric for measuring program sizes. This metric can abstract away details like identifier

length and whitespace, which do not fundamentally affect the complexity of a program [25].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

https://github.com/sfc-reducer/sfc-reducer
https://github.com/sfc-reducer/sfc-reducer

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:5

Additionally, using number of tokens as the metric is also widely adopted in prior closely related

studies [25, 30, 39].

Canonicalization. In addition to minimizing bug-triggering programs, another important

and highly desired feature of program reduction is canonicalization [10, 24]. Ideally, a perfectly

canonicalizing reducer can reduce all duplicates (different programs that trigger the same bug) to

an identical program. However, achieving perfect canonicalization is impractical [2, 10]. Therefore,

a more attainable goal is often pursued: given a set of duplicates, the program reducer should

minimize the differences among them as much as possible and reduce them to a minimal set of

unique programs. This canonicalization capability is highly valuable in practice. For example,

during a large-scale automated testing campaign for a language processor, a significant amount of

bug-triggering programs may be generated. In such a case, a highly canonicalizing reducer could

eliminate most duplicates and help address the fuzzer taming problem [2], i.e., rank bug-triggering

programs so that those triggering distinct bugs appear early in the list. From a debugging perspective,

canonicalization can reduce the need for developers to examine numerous duplicates that vary

only in unimportant ways, thereby simplifying and accelerating the debugging process [10].

TypicalWorkflow. Program reduction is typically a trial-and-error process. As shown in Figure 1,

a program reducer first performs a transformation 𝑓 : P→ P to the original program 𝑃 and obtains

a different program 𝑃 ′ (step 1). If 𝑃 ′ does not trigger the same bug as 𝑃 does (i.e.,𝜓 (𝑃 ′) = false),
𝑃 ′ is discarded and the reducer will attempt to obtain another different program by performing

another transformation and repeat the process (step 2). Otherwise, if𝜓 (𝑃 ′) = true, which means

a smaller program is successfully found, the reduction continues by treating 𝑃 ′ as the original
program 𝑃 and searching for the next smaller program (step 3).

2.2 Syntax of Programming Languages

1 expr := primary_expr kleene_comma_expr

2 expr := primary_expr

LPAREN optional_arg_list RPAREN

3 kleene_comma_expr := comma_expr*
4 comma_expr := COMMA primary_expr

5 primary_expr := ID

6 primary_expr := LPAREN expr RPAREN

7 optional_arg_list := arg_list?

8 arg_list := primary_expr kleene_comma_expr

9 ID := [a-zA-Z_][a-zA-Z0-9_]*
10 LPAREN := '('

11 RPAREN := ')'

12 COMMA := ','

(a) An example CFG that defines a language of simple
expressions. The bolded expr is the start symbol.

(b) An example parse tree that represents the expres-
sion f(e1,e2,e3) based on the grammar shown in
Figure 2a. For simplicity, in the example, e1, e2, and
e3 are simply three variables.

Fig. 2. An example CFG and an example parse tree.

The syntax of a programming language is a set of rules that define the valid textual structure

of programs written in this language. Typically, the syntax of a programming language can be

formally expressed with a context-free grammar (CFG). A CFG 𝐺 consists of four components:

a finite set of nonterminal symbol 𝑁 , a finite set of terminal symbol Σ, a finite set of production
(or rewrite) rules 𝑅, and a start symbol 𝑆 ∈ 𝑁 , i.e., 𝐺 = (𝑁, Σ, 𝑅, 𝑆). The language defined by a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

275:6 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

CFG 𝐺 is called a context-free language (CFL), denoted as 𝐿(𝐺). Figure 2a shows an example CFG

that formally defines a language of simple expressions, and Figure 2b shows the parse tree of an

example expression, f(e1,e2,e3), which conforms to the example CFG.

Nonterminal Symbol. A nonterminal symbol 𝑣 ∈ 𝑁 represents a syntactic structure in the

language defined by the corresponding CFG. Each non-leaf sub-tree 𝑠𝑡 (a sub-tree whose height is

not 0, also referred to as a structure in this paper) in the parse tree of a program corresponds to a

nonterminal symbol 𝑣 in the grammar of the language, denoted as 𝑠𝑡 ↦→ 𝑣 in this paper. For example,

in Figure 2b, sub-trees rooted at nodes marked with orange box correspond to the nonterminal

symbol primary_expr. In Figure 2a, nonterminal symbols are all named with lowercase words

while terminal symbols are uppercased.

Terminal Symbol. While nonterminal symbols can be rewritten to other symbol(s), a terminal

symbol 𝜎 ∈ Σ directly maps to character(s) (a token) that appears in the actual textual content and

cannot be expanded to other symbols. Terminal symbol are either defined with constant character(s)

or regular expressions. They form the alphabet of the language defined by the grammar.

Production Rule. A production rule 𝑟 ∈ 𝑅 defines how a nonterminal symbol can be rewritten.

Its left-hand side is the nonterminal symbol to be defined and the right-hand side is a sequence

of symbols (either terminal or nonterminal symbols). Note that a nonterminal can have multiple

different production rules. In the example grammar, there are eight production rules (line 1-8),

and the nonterminal expr has two different production rules (i.e., |𝑅expr | = 2), which means it

can be rewritten in two different ways. Given a non-leaf sub-tree 𝑠𝑡 and the nonterminal 𝑣 that 𝑠𝑡

corresponds to, we can further map 𝑠𝑡 to a production rule 𝑟 ∈ 𝑅𝑣 (denoted as 𝑠𝑡 ↦→ 𝑟), indicating

that the 𝑠𝑡 is derived by following the production rule 𝑟 . In Figure 2b, it can be observed that each

non-leaf node is written in the format of nonterminal:index. The index after the colon is the

index of the production rule to which the sub-tree corresponds. For example, the root of the entire

parse tree is expr:2, indicating the parse tree corresponds to the second production rule of expr.

Start Symbol. The start symbol of the CFG is a special nonterminal symbol. All the strings that

can be represented by the start symbol (i.e., can be possibly derived by applying a sequence of

production rules starting from the start symbol) form the language defined by the grammar. In the

example grammar, expr is defined to be the start symbol.

Normal Forms of CFGs. The CFG can be written in various ways to represent a certain CFL. To

impose specific restrictions thus facilitating certain parsing algorithms or theoretical analysis on

top of the grammar, many normal forms of CFGs are proposed, such as Chomsky Normal Form

(CNF) [3] and Greibach Normal Form (GNF) [9]. In this work, we make the CFG conform to Perses

Normal Form (PNF), which is proposed and utilized by the previously proposed syntax-guided

program reducer, Perses [30]. PNF requires that each production rule is in one of the following

forms: (1) 𝐴 ::= 𝐵1𝐵2...𝐵𝑛 (2) 𝐴 ::= 𝐵1∗ (3) 𝐴 ::= 𝐵1+ (4) 𝐴 ::= 𝐵1? , and (5) 𝑆 ::= 𝜖 . Symbol 𝐴

represents any nonterminal symbol, 𝐵𝑖 (∀𝑖 ∈ [1, 𝑛]) represents any nonterminal symbol or terminal

symbol, and 𝑆 represents the start symbol. The example grammar in Figure 2a conforms to PNF.

2.3 Syntax-Guided Transformation
Syntax-guided transformations are widely used in the process of program reduction to improve its

effectiveness and efficiency [27, 30]. The insight behind this is that invalid programs are unlikely

to trigger the bug that the original program reveals, and avoiding generating invalid programs

can significantly shrink the search space of program reduction, thus saving considerable reduction

time. The following definition formally defines syntax-guided transformations.

Definition 2.1 (Syntax-Guided Transformation). Assuming Pvalid is the set of all syntactically valid
programs, a transformation 𝑓 is a syntax-guided transformation if and only if∀𝑃 ∈ Pvalid, 𝑓 (𝑃) ∈ Pvalid.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:7

Two syntax-guided transformations are adopted by prior language-agnostic program reducer [30].

Compatible Substructure Hoisting: Given a tree, this transformation attempts to simplify the tree

by hoisting one of its compatible descendants. A descendant is considered to be compatible if the

nonterminal that the root corresponds to can be directly or indirectly rewritten by the nonterminal

of the descendant. In Figure 2b, the entire parse tree represents f(e1,e2,e3) and corresponds to the
nonterminal expr. Among all its descendants, four orange nodes corresponding to primary_expr
are compatible, since according to line 1 in Figure 2a, expr can be rewritten by primary_expr
(kleene_comma_expr can be empty). Thus, eventually, Compatible Substructure Hoisting attempts

to simplify the original parse tree by reducing it to each four compatible descendant (f, e1, e2, and
e3).
Quantified Node Reduction: This transformation aims to simplify trees that correspond to a produc-

tion rule in the form of 𝐴 ::= 𝐵1∗ or 𝐴 ::= 𝐵1+, or 𝐴 ::= 𝐵1?. For example, the sub-tree rooted at the

blue node in Figure 2b corresponds to the production rule kleene_comma_expr := comma_expr*
which is in the form of𝐴 ::= 𝐵1∗. For such a sub-tree, all its children can be deleted without breaking
the syntax; thus Quantified Node Reduction attempts to simplify the tree by applying ddmin to its

child list. For trees corresponding to production rules like 𝐴 ::= 𝐵1+, Quantified Node Reduction

additionally ensures that at least one child remains, and for trees corresponding to 𝐴 ::= 𝐵1?,

Quantified Node Reduction simply attempts to remove the single child.

3 Methodology
This section introduces Structure Form Conversion (SFC) (§ 3.1), how to effectively and efficiently

apply SFC to the program reduction task (§ 3.2), and the implementation (§ 3.3)

3.1 Structure Form Conversion (SFC)
SFC converts a structure to another form. For example, given a function invocation expression

f(e1,e2,e3) in a C program, SFC may convert it to e1,e2,e3. Such a conversion complements

with Compatible Substructure Hoisting and Quantified Node Reduction and may create extra

reduction opportunities.

Algorithm 1 describes the general idea of SFC. Given the formal syntax of the programming

language 𝐺3
and a sub-tree 𝑠𝑡 in the parse tree of the program written in the specific language,

SFC can produce a list of transformed sub-trees 𝑇 that correspond to the same nonterminal as the

original sub-tree 𝑠𝑡 . Specifically, SFC first obtains the nonterminal 𝑣 that the subtree 𝑠𝑡 corresponds

to, i.e., 𝑠𝑡 ↦→ 𝑣 (line 1). Next, SFC retrieves all the production rules of the nonterminal 𝑣 in the

grammar 𝐺 (line 2). Then, for each production rule, SFC builds a list of new sub-trees (line 3-5),

and eventually all the sub-trees built based on the production rules are returned (line 6).

Algorithm 1: The SFC Algorithm – SFC(𝑠𝑡 , 𝐺 , pred)
Input :𝑠𝑡 , the sub-tree to be transformed. 𝐺 , the formal syntax of the programming language.

pred, an additional predicate for matching compatible sub-trees

Output :A list of transformed sub-trees𝑇

1 𝑇 ← [] ; 𝑣← the nonterminal symbol that 𝑠𝑡 maps to, i.e., 𝑠𝑡 ↦→ 𝑣

2 𝑅𝑣 ← the production rules for 𝑣

3 for 𝑖 ∈ [0, 𝑅𝑣 .size() − 1] do
4 if 𝑠𝑡 ↦→ 𝑅𝑣[𝑖] then continue // skip the production rule that the original sub-tree corresponds to

5 𝑇𝑅𝑣 [𝑖] ← buildSubTreesForTheRule(𝑅𝑣[𝑖], 𝑠𝑡 , pred);𝑇 .addAll(𝑇𝑅𝑣 [𝑖])

6 return𝑇

3
In the algorithm, it is assumed that the grammar is in Perses Normal Form (PNF).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

275:8 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

3.1.1 Design Principles. Themost essential and challenging part of SFC is the algorithm for building

sub-trees based on a given production rule. Making this algorithm effective and efficient for program

reduction faces two main challenges. First, given a production rule, there is often an infinite (or at

least extremely large) number of valid sub-trees that can be generated. Therefore, the algorithm

needs to be properly guided and restricted. Otherwise, it will be too expensive to be feasible. Second,

randomly generated sub-trees may render the semantics of the program invalid even though they

preserve the syntactic validity. Although previous approaches like Perses faces the same problem

as they cannot ensure semantic validity during the reduction, randomly generating sub-trees can

amplify this problem and thus significantly impair the reduction performance. For example, a

randomly generated expression is very likely to contain a random identifier which is not defined in

the program. In such a case, the program after the replacement is not likely to trigger the same bug

as the language processor probably terminates when it detect this semantic error in an early stage.

To overcome the aforementioned two challenges, we propose five principles to restrict the

sub-tree building algorithm. The insight behind all the principles is that the fewer changes are

made, the more likely the bug-triggering property can be preserved. In other words, instead of

aggressively simplifying the problem in a single step, gradually reducing it through small steps is

more likely to succeed, especially since SFC is designed to operate on programs that have already

been reduced to a relatively small size. Therefore, the essence of these principles is to avoid making

excessive and unnecessary changes to the original sub-trees.

Principle 1: Do not randomly generate any structure. Reuse the structures in the original sub-tree
instead. This principle is to avoid generating numerous sub-trees that are unlikely to replace the

original sub-tree without making the program no longer trigger the same bug. For example, given a

sub-tree that represents f(e1,e2,e3), generating a new expression with some random identifiers

is usually meaningless as such an expression would probably lead to an undefined identifier error.

Principle 2: A structure in the original sub-tree can only be reused once. This principle further

reduces the number of sub-trees that can be possibly generated. Meanwhile, it can also reduce the

difference between the generated sub-tree and the original sub-tree, thus increasing the possibility

that replacing the original sub-tree with the new one makes the program still trigger the same bug.

Principle 3: The reused structures should remain the same order as they appear in the original sub-tree.
Similar to principle 2, this principle narrows down the search space of the algorithm and makes

the generated sub-trees be more similar to the original sub-tree.

Principle 4: The reused structure should be as high-level as possible. This principle aims to avoid

generating sub-trees that are aggressively simplified. Meanwhile, adhering to this principle makes

SFC more orthogonal to Compatible Substructure Hoisting. It makes SFC focus on converting

the structure to another form and delegates the simplification task to the subsequent Compatible

Substructure Hoisting.

Principle 5: Reuse as many structures as possible. When the input production rule is in the form of

𝐴 ::= 𝐵1∗ or 𝐴 ::= 𝐵1+, the algorithm needs to decide the number of structures that correspond to

𝐵1 the generated sub-trees should contain. This principle dictates the algorithm to maximize this

number while not breaking other principles. Similar to principle 4, this principle can avoid gener-

ating aggressively simplified sub-trees. Meanwhile, it makes SFC more orthogonal to Quantified

Node Reduction.

3.1.2 Sub-Tree Building. Algorithm 2 describes the sub-tree building algorithm of SFC. This algo-

rithm takes three inputs, i.e., a sub-tree to be transformed 𝑠𝑡 , a production rule 𝑟 , and an additional

predicate for matching sub-trees (this input is for identifier elimination and will be discussed in

§ 3.2.2). The output of the algorithm is a list of sub-trees that are generated based on the input

production rule 𝑟 . Recall that in PNF, the right hand side of a production rule can be a sequence

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:9

Algorithm 2: The Sub-Tree Building Algorithm – buildSubTreesForTheRule(𝑟 , 𝑠𝑡 , pred)
Input :𝑠𝑡 , the sub-tree to be transformed. 𝑟 , the production rule based on which the sub-tree is built.

pred, an additional predicate for matching compatible sub-trees

Output :A list of built sub-trees𝑇

1 𝑇 ← []

2 if The form of the production rule 𝑟 is 𝐴 ::= 𝐵1∗ or 𝐴 ::= 𝐵1+ or 𝐴 ::= 𝐵1? then
3 𝑠 ← the symbol in the right hand side of the production rule

4 compatibleTrees← findCompatibleSubTrees(𝑠 , 𝑠𝑡 , pred)
5 if compatibleTrees.size() == 0 then return []

6 if 𝑠 is followed by an optional quantifier (?) then
7 foreach 𝑐𝑡 ∈ compatibleTrees do
8 if ∃𝑐𝑡 ′ ∈ compatibleTrees, s.t. 𝑐𝑡 is a descendant of 𝑐𝑡 ′ then continue // Principle 4
9 𝑡 ′ ← a subtree built based on 𝑟 by resuing 𝑐𝑡 ;𝑇 .append(𝑡 ′)

10 else // 𝑠 is followed by a Kleene Star (*) or a Kleene Plus (+)

11 𝑡 ′ ← a subtree built based on 𝑟 by reusing all highest-level compatible sub-trees in compatibleTrees
𝑇 .append(𝑡 ′)

12 else // The form of the production rule 𝑟 is 𝐴 ::= 𝐵1𝐵2 ...𝐵𝑛

13 symbolList← all the symbols in the right hand side of the production rule 𝑟

14 uniqueSymbols← symbolList.toSet()
15 symbolToCompatibleMap← an empty map

16 foreach 𝑠 in uniqueSymbols do
17 if 𝑠 is a terminal and is defined with fixed text then continue // No need to match for constants

18 else
19 compatibleTrees← findCompatibleSubTrees(𝑠 , 𝑠𝑡 , pred)
20 𝑛← the number of symbol 𝑠 in symbolList
21 if 𝑛 > compatibleTrees.size() then return []

22 symbolToCompatibleMap[𝑠]← all 𝑛-combinations of compatibleTrees

// symbolToCompatibleMap now records all combinations of compatible subtrees for each unique symbol

23 reusings← the cartesian product of symbolToCompatibleMap[𝑠] of each unique symbol 𝑠

24 adoptedReusings← all elements of reusings in which all subtrees are independent and as high-level as

possible // Adhere to principle 2 and 4

25 foreach reusing in adoptedReusings do
26 𝑡 ′ ← a subtree built based on 𝑟 by resuing subtrees in reusing;𝑇 .append(𝑡 ′)

27 return𝑇

of symbols or a single symbol followed by a kleene star (*), or a kleene plus (+), or an optional

quantifier (?).
4
For different forms of production rules, the way to build sub-trees are different.

Building for Production Rules with a Quantified Symbol. When the right hand side of the

production rule 𝑟 is a single quantified symbol, the algorithm first extracts the single symbol 𝑠

(line 3), and then searches for all the compatible sub-trees in 𝑠𝑡 , i.e., the tree to be transformed

(line 4). If no compatible 𝑠𝑡 is found, meaning no sub-tree can be reused for the building, the

algorithm simply returns an empty list, indicating no sub-tree can be built (line 5). Otherwise,

the algorithm builds sub-trees according to the type of quantifier that follows the symbol 𝑠 . If the

symbol 𝑠 is followed by an optional quantifier (?), the algorithm traverses the found compatible

sub-trees. For each compatible sub-tree, if it is at the highest level
5
(line 8), a transformed sub-tree

4
The special form 𝑆 ::= 𝜖 for including empty string in the defined language is omitted here.

5
A compatible node is at the highest level if none of its ancestors is compatible. According to the fourth aforementioned

design principle, the algorithm is designed to prefer reusing node as high-level as possible.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

275:10 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

is built by simply reusing the compatible sub-tree (line 6-9). If the symbol 𝑠 is followed by an Kleene

star (*) or Kleene plus (+), the algorithm only builds one transformed sub-tree by reusing all the

highest-level compatible sub-trees
5
(line 10-11).

Builidng for Production Rules with a Sequence of Symbols. If the production rule 𝑟 is in

the form of 𝐴 ::= 𝐵1𝐵2...𝐵𝑛 , the algorithm needs to find a compatible sub-tree for each symbol in

the right hand side of 𝑟 (except terminal symbols with constant text such as COMMA and LPAREN)
to reuse. In other words, a sequence of compatible sub-trees with which all the symbols in the

right hand side of 𝑟 can have a compatible sub-trees to reuse (such a sequence is referred to as a

matching for brevity) is required to build one transformed sub-tree. To illustrate the algorithm in this

scenario, we describe the steps with a running example. We use the parse tree shown in Figure 2b

as the input of the running example, let the input production rule be expr := primary_expr
kleene_comma_expr (line 1 in Figure 2a), and suppose there is no additional predicate.

Initialization: First, the algorithm initializes symbolList with all the symbols on the right hand

side of the production rule 𝑟 (line 13), and extracts all the unique symbols to a set uniqueSymbols
(line 14). In the running example, both symbolList and uniqueSymbols contain primary_expr and

kleene_comma_expr. It should be noted that in practice, a symbol can appear multiple times in

the right hand side of a production rule. Next, symbolToCompatibleMap, a map that maps each

unique symbol to all the possible matchings, is initialized with an empty map (line 15).

Searching for Compatible Sub-Trees: The algorithm traverses uniqueSymbols. For each unique

symbol 𝑠 , if it is a terminal symbol and is defined with constant text, then no compatible sub-tree is

needed and the algorithm moves to the next unique symbol (line 17). Otherwise, the algorithm

searches for all the compatible sub-trees for the symbol 𝑠 (line 19). In the running example, the

symbol primary_expr has four compatible sub-trees, whose roots are marked with orange and

the symbol kleene_comma_expr has one compatible sub-tree, whose root is marked with blue.

Obtaining Matchings for Each Unique Symbol: Next, the number of appearances 𝑛 of this unique

symbol is retrieved (line 20). Recall that to build a transformed sub-tree, each symbol needs a

compatible sub-tree to reuse. Therefore, the number 𝑛 is also the required number of sub-trees

to form a matching for the unique symbol. If the total number of found compatible sub-trees

is smaller than 𝑛, the algorithm returns an empty list, meaning no transformed sub-tree can

be generated (line 21). Otherwise, all 𝑛-combinations of the found compatible trees are store as

matchings in symbolToCompatibleMap with the corresponding unique symbol 𝑠 as the key. In the

running example, both unique symbols only appear once in the production rule. Thus, the number

𝑛 for both unique symbols equals one, and the matchings for these two unique symbols are the

1-combinations of their compatible sub-trees. Specifically, there are four matchings for the unique

symbol primary_expr and one matching for kleene_comma_expr.
Obtaining Matchings for the Entire Production Rule: Once the matchings of each unique symbol

is found, the algorithm derives all the matchings for the entire right hand side of 𝑟 by calculating

the Cartesian product of the matchings of each unique symbol (line 23). In the running example,

primary_expr has four matchings. Each of them contains one sub-tree that represents ‘f’, ‘e1’,
‘e2’, ‘e3’, respectively. kleeene_comma_expr has one matching containing one sub-tree repre-

senting ‘,e2,e3’. Therefore the resulted Cartesian product contains four matchings representing

‘f,e2,e3’, ‘e1,e2,e3’, ‘e2,e2,e3’, ‘e3,e2,e3’. However, the last two matchings violate the

second design principle (they reuse ‘e2’ and ‘e3’ twice, respectively), the algorithm filters such

matchings by excluding all matchings that contain dependant compatible sub-trees (line 24). Finally,

all the remaining matchings are utilized to build transformed sub-trees (line 25-26).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:11

3.2 Program Reduction with SFC
Unlike Compatible Substructure Hoisting and Quantified Node Reduction, SFC does not ensure that

the resulted structure is smaller than the original structure. Meanwhile, compared to the previous

two syntax-guided transformation, the number of structures that can be possibly generated by SFC

is usually much larger. Therefore, to effectively and efficiently adapt SFC to the program reduction

task, we further propose three reduction methods, i.e., Smaller Structure Replacement, Identifier

Elimination via SFC and Structure Canonicalization. This section details how these reduction

methods utilize SFC to boost program reduction.

3.2.1 Smaller Structure Replacement. This reduction method aims to reduce a program by replacing

structures of the program to their smaller forms. It traverses the structures at different levels in the

parse tree of the program, invokes the SFC algorithm to generate structures in different forms that

are smaller, and attempts to replace the original structure with the newly generated structure. If

the program after the replacement still triggers the same bug, the program is successfully reduced.

Algorithm 3: Smaller Structure Replacement– reduceBySimplifyingStructure(𝑡 , 𝐺)
Input :𝑃 , the program to be reduced. 𝐺 , the formal syntax of the programming language.

𝜓 , the oracle that verifies whether a program triggers the specific bug

Output :The reduced program 𝑃 ′

1 𝑡 ← the parse tree of 𝑃 ; truePred← a predicate that always returns true
2 queue← a queue that only contains the root node of 𝑡

3 while queue is not empty do
4 root← queue.poll(); 𝑠𝑡 ← the sub-tree rooted at root
5 𝑇 ← the result of SFC(𝑠𝑡 ,𝐺 , truePred) sorted in ascending order

6 for 𝑠𝑡 ′ ∈ 𝑇 do
7 if the number of leaves in 𝑠𝑡 ′ is not smaller than that of 𝑠𝑡 then break
8 𝑡 ′ ← a new parse tree obtained by replacing 𝑠𝑡 with 𝑠𝑡 ′

9 𝑃 ′ ← the program derived from 𝑡 ′

10 if 𝜓 (𝑃 ′) then 𝑡 ← 𝑡 ′; root← the root of 𝑠𝑡 ′; break

11 queue.addAll(root.children)

12 return the program derived by 𝑡

Algorithm 3 describes this reduction method. Given a bug-triggering program to be reduced 𝑃 ,

the formal syntax of the language in which 𝑃 is written, and a oracle that can check whether a

program triggers the specific bug, the algorithm can produce a reduced program 𝑃 ′ by simplifying

structures in the program in a breadth-first manner. Specifically, at the beginning, the algorithm

obtains the parse tree of the input program 𝑃 , initializes a predicate that always returns true
(required by SFC, meaning no additional criterion for compatible sub-trees), and adds the root of

the parse tree to a queue (line 1-2). Next, the algorithm starts simplifying structures in a while loop

(line 3-11). First, the node at the front of the queue and the sub-tree rooted at this node are retrieved

(line 4). Next, the algorithm invokes SFC to obtain a list of transformed sub-trees and sorts the

sub-tree list based on the number of leaves in ascending order (line 5). Then, in a for loop (line 6-10),

the algorithm attempts to replace the original sub-tree 𝑠𝑡 with each transformed sub-tree 𝑠𝑡 ′ until
the transformed sub-tree 𝑠𝑡 ′ is not smaller than the original sub-tree 𝑠𝑡 (line 7) or the program

after replacement still triggers the bug (line 10), which means a structure is successfully simplified.

After the simplification performed in the for loop, the children of the original sub-tree 𝑠𝑡 (or the

transformed sub-tree 𝑠𝑡 ′ if the simplification succeeded) are added to the queue (line 11), and the

algorithm repeats the process to keep simplifying structures in the program.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

275:12 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

Algorithm 4: Identifier Elimination– reduceByEliminatingIdentifers(𝑡 , 𝐺)
Input :𝑃 : the program to be reduced. 𝐺 : the formal syntax of the programming language.

𝜓 : the oracle that verifies whether a program triggers the specific bug

Output :The transformed program 𝑃 ′

1 allIdentifiers← all identifier tokens in program 𝑃

2 nameToIdTokensMap← a map that maps each unique identifier name to the corresponding identifier tokens

3 foreach name ∈ nameToIdTokensMap.keys() do
4 useIds← all the uses of name (i.e., identifier tokens that are not for ID definition or initialization)

5 foreach anotherName ∈ nameToIdTokensMap.keys()\name do
6 𝑃 ′ ← a new program obtained by renaming all useIds with anotherName
7 if 𝜓 (𝑃 ′) then return 𝑃 ′

8 foreach use ∈ useIds do // Eliminate each use by either SFC or replacing

9 foreach anotherName ∈ nameToIdTokensMap.keys()\name do
10 𝑃 ′ ← a new program obtained by renaming use with anotherName
11 if 𝜓 (𝑃 ′) then update 𝑃 with 𝑃 ′ and go to line 8 to eliminate the next use

12 success← eliminateBySFC(use, 𝑃 ,𝜓)
13 if ¬success then go to line 3 and move to next unique identifier name // Fail to eliminate

14 return 𝑃

15 Function eliminateBySFC(use, 𝑃 ,𝜓):
16 parent← use; pred← a predicate that takes a sub-tree as input and returns true only if the sub-tree does not

contain use
17 while parent has a parent node do
18 parent← the parent node of parent
19 𝑇 ← the result of SFC(𝑠𝑡 ,𝐺 , pred) sorted in ascending order

20 for 𝑠𝑡 ′ ∈ 𝑇 do
21 if the number of leaves in 𝑠𝑡 ′ is not smaller than that of 𝑠𝑡 then break
22 𝑃 ′ ← a program obtained by replacing the sub-tree rooted at parent with 𝑠𝑡 ′

23 if 𝜓 (𝑃 ′) then update 𝑃 with 𝑃 ′; return true

3.2.2 Identifier Elimination. In previous research work, eliminating the uses of an identifier has

been demonstrated to be effective for further simplifying a bug-triggering program, since it can

potentiallymake some definitions or initializations of identifiers redundant, thus being deletable [39].

However, previous approaches of identifier elimination only relies on replacing (i.e., replacing all
the uses of an identifier with another identifier). The reduction method proposed in this section aims

at additionally utilizing SFC to eliminate uses of an identifier for better effectiveness. Specifically,

given a use of an identifier, this approach replaces a structure that contains the use with another

structure generated by SFC. During the generation, any sub-tree that contains the given use is

forbidden to be reused; thus, after the replacement, the use of the identifier is eliminated.

Algorithm 4 describes the complete reduction method in detail. First, given a program to be

reduced 𝑃 , all the identifier tokens in 𝑃 are collected and clustered by their names (line 1-2). To

achieve this, the terminal symbol (e.g., ID in Figure 2a) that represents identifier tokens in the

corresponding grammar𝐺 must be specified. Although this requirement introduces some degree

of language specificity, we believe it does not compromise the generality of our approach, as it

can typically be addressed in a straightforward manner. Next, the algorithm traverses each unique

identifier and attempts to eliminate all the uses for the specific identifier (line 20-23). To eliminate

all the uses, the algorithm first attempts to rename all of them at once with another unique identifier

(line 5-7). If the elimination is successful, the program after elimination is returned for further

reduction. Otherwise, the algorithm attempts to eliminate the uses one by one (line 8-13). To do

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:13

so, the algorithm traverses all the uses, and for each use, it first attempts to rename it in a similar

way as renaming all the uses at once (line 9-11). If the attempt fails, the function eliminateBySFC
is invoked (line 19). This function takes as input a use (i.e., an identifier token), the program 𝑃 ,

and the oracle𝜓 , and then it attempts to eliminate the use by replacing the sub-tree that contains

the use with a new sub-tree without the use generated by SFC. Specifically, the function first

initializes a predicate pred which takes as input a sub-tree and only return true when the sub-tree

does not contains the input use (line 16). Next, in a while loop, starting from the parent of the

leaf node representing the use the function traverses the ancestors of the use from bottom to the

top (line 17-23). For the sub-tree rooted at each ancestor node, a list of sub-trees are generated

by invoking SFC (line 19). It should be noted that the predicate pred ensures that the generated

sub-trees do not contains the use. Finally, for each generated sub-tree 𝑠𝑡 ′ that is smaller than the

original sub-tree 𝑠𝑡 , the algorithm attempts to replace 𝑠𝑡 with 𝑠𝑡 ′ (line 20-22). If the replacing is

successful (i.e., the new program 𝑃 ′ still triggers the same bug), 𝑃 is updated by 𝑃 ′ and the function
immediately returns true, indicating the elimination is successful (line 23).

3.2.3 Structure Canonicalization. In addition to minimizing bug-triggering inputs, another desired

feature of program reduction is canonicalizing inputs that trigger the same bug. This canonical-

ization feature can significantly facilitate bug deduplication and help solve the fuzzer taming

problem [2], thus being highly demanded in practice. To boost the canonicalization aspect of

language-agnostic program reducers, we propose a method named Structure Canonicalization. Its

workflow is similar to Smaller Structure Replacement in Algorithm 3. While Smaller Structure Re-

placement attempts to replace the original structure with a smaller one, Structure Canonicalization

attempts to replace the original structure with a structure having the same size but being more

canonical. To decide which structure is more canonical, we follow the definition below.

Definition 3.1. Given a nonterminal 𝑣 and two sub-trees 𝑠𝑡 ↦→ 𝑣 and 𝑠𝑡 ′ ↦→ 𝑣 . The subtree 𝑠𝑡 is more
canonical than the subtree 𝑠𝑡 ′ if and only if 𝑠𝑡 ↦→ 𝑟 , 𝑠𝑡 ′ ↦→ 𝑟 ′, and the index of 𝑟 is smaller than that
of 𝑟 ′ in 𝑅𝑣 .

For example, suppose we have two different production rules for the nonterminal expr, ordered
as follows: 1 expr:=ID+ID; 2 expr:=ID.ID. In this case, we consider a+b to be more canonical

than a.b. If the order were reversed, then a.b would be considered more canonical. The purpose

here is that if both a+b and a.b can trigger the same bug, we want to canonicalize them to a single,

canonical form. In our implementation, the production rules are ordered based on their appearance

in the Antlr4 grammar file.

The algorithm of Structure Canonicalization can be obtained by adjusting the smaller struc-

ture replacement algorithm (Algorithm 3) and the SFC algorithm (Algorithm 1) it invokes. First,

continue on line 4 in SFC needs to be revised to break, so that SFC only generate more canonical

sub-trees. Next, line 5 in Algorithm 3 shall invoke the revised SFC instead and filter out sub-trees

having different size from the original sub-tree 𝑠𝑡 . Finally, line 7 in Algorithm 3 needs to be removed.

3.3 Implementation
We implemented two prototypes, SFCPerses and SFCVulcan on top of two previous language-agnostic

program reducers, Perses and Vulcan, respectively. Figure 3 shows the workflow of SFCPerses,

which contains a main reducer Perses and three auxiliary reducers. The main reducer, Perses,

is responsible for reducing the input efficiently. The three auxiliary are implemented based on

the proposed three SFC-based reduction method and they are supposed to either aggressively

search for reduction opportunities and/or create reduction opportunities for the main reducer. The

architecture of SFCVulcan is similar to SFCPerses but uses Vulcan as main reducer. Compared to

SFCPerses, SFCVulcan additionally incorporates the auxiliary reducers proposed by Vulcan.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

275:14 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

Main Reducer Auxiliary Reducers based on SFCProgram

Grammar Smaller Structure
Replacement

Identifier
Elimination

Structure
Canonicalization

Oracle

Fig. 3. The overall workflow of SFCPerses

Both SFCPerses and SFCVulcan take three inputs, i.e., a bug-triggering program, the grammar in

which the program is written, and an oracle that verifies whether a program triggers the specific

bug. The input program is first reduced by the main reducer. Once the main reducer cannot make

any progress, the first auxiliary reducer is invoked to further reduce the program and/or create

reduction opportunities by performing certain transformations. If the auxiliary makes progress,

the program is send back to the main reducer, otherwise, the next auxiliary reducer is invoked. For

example, if Identifier Elimination successfully eliminates an identifier, the program will be directly

sent back to the main reducer. Otherwise, if Identifier Elimination cannot eliminate any identifier,

the program will be sent to the next auxiliary reducer, i.e., Smaller Structure Replacement. This

alternating process is repeated until the last auxiliary reducer cannot make any progress, and it

retains the same theoretical guarantee (e.g., 1-minimality) as the main reducer.

4 Evaluation
To evaluate the proposed SFC-based reduction methods, we conducted experiments to investigate

the following research questions.

RQ1: Can SFC benefit previous language-agnostic program reducers in minimization?

RQ2: Can SFC benefit previous language-agnostic program reducers in canonicalization?

RQ3: To what extent does each SFC-based method contribute to the performance improvement?

0 50000 100000 150000 200000
Original Size (tokens)

0

50

100

Fr
eq

ue
nc

y

Fig. 4. Distribution of the original program sizes in Benchmark-Reduce.

Benchmark Suites. We use two benchmark suites, Benchmark-Reduce and Benchmark-Cano,
to assess the performance in minimization and canonicalization for each reducer. Specifically,

Benchmark-Reduce contains 20 C benchmarks, 20 Rust benchmarks, and 205 SMT-LIBv2 bench-

marks. Each benchmark consists of a program that triggers a unique real-world crash or miscompi-

lation bug and a shell script that checks whether a program triggers the specific bug. The original

sizes of these bug-triggering programs range from 15 to 212,259 tokens, and the distribution of the

original sizes is shown in Figure 4. We utilize this benchmark suite for assessing the minimization

performance of reducers. These benchmarks are also widely used for evaluation in previous studies

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:15

in this direction [8, 19, 30, 33, 38, 39, 43, 45]. Benchmark-Cano contains 3,796 bug-triggering C pro-

grams. 2,501 of them trigger 11 unique crash bugs in GCC 4.3.0, and the remaining 1,295 programs

trigger 35 miscompilation bugs also in GCC 4.3.0. This benchmark suite is used for evaluating bug

deduplication performance in previous studies [2, 40]. In our evaluation, we use this suite mainly

for evaluating the canonicalization performance of reducers.

Baselines. To evaluate SFCPerses and SFCVulcan, we compare them against the corresponding

previous language-agnostic program reduction tools, Perses [30] and Vulcan [39], and two pro-

gram reducers that are specifically optimized for C/C++ and SMT-LIBv2, i.e., C-Reduce [28] and
ddSMT [19].

• Perses is the first syntax-guided language-agnostic program reducer. It is implemented with

two syntax-guided transformations, Compatible Substructure Hoisting and Quantified Node

Reduction, to achieve efficient program reduction.

• Vulcan is a language-agnostic program reduction framework that aims to trade off the efficiency

for a smaller reduction result. It deploys Perses as the main reducer and includes three auxiliary

reducers to search for reduction opportunities when Perses cannot make any progress.

• T-Rec is a fine-grained language-agnostic program reduction technique that mainly aims to im-

prove canonicalization by searching for reduction opportunities within tokens [38]. We included

it as a baseline when evaluating the canonicalization performance. Unlike Perses, Vulcan, and

SFC—which treat tokens as atomic elements—T-Rec is capable of reducing and canonicalizing

token content. For example, it can reduce a random string literal to an empty string or a nu-

meric constant to 0. We chose to include T-Rec in our evaluation of canonicalization for two

reasons. First, T-Rec also aims to improve canonicalization. By integrating it, we demonstrate

that SFC is complementary to T-Rec and that combining them can further enhance canonicaliza-

tion performance. Second, integrating T-Rec simplifies the evaluation. Although SFC improves

canonicalization by aligning program structure, few duplicates are reduced to exactly identical

programs because Perses, Vulcan, and SFC do not modify characters within token contents. As

a result, structurally similar programs may still differ in unimportant literals. T-Rec addresses

this by canonicalizing tokens, thereby enabling more duplicates to be textually identical, which

simplifies downstream deduplication tasks. T-Rec is implemented as an additional auxiliary

reducer, integrated by appending it to the list of auxiliary reducers.

• C-Reduce and ddSMT are program reducers specifically optimized for reducing C/C++ and

SMT-LIBv2 programs, respectively. By comparing our approach with C-Reduce and ddSMT,

we aim to assess the extent to which SFC narrows the gap between language-agnostic and

language-specific reducers. Since C-Reduce also includes certain language-agnostic reduction

components, it can be applied to programs in other languages as well. Therefore, we include

C-Reduce as a baseline for the Rust benchmarks. However, we exclude C-Reduce when evaluating

on SMT-LIBv2 benchmarks, as we observed that it often fails to reduce these programs effectively

within a reasonable time.

Metrics. We use two metrics in our evaluation. To assess the minimization capability of a

reducer, we define the Size of a program by the number of tokens it contains. A smaller output

indicates a stronger minimization capability. We use Number of Eliminated Duplicates to

measure the performance of canonicalization. Given a list of duplicates, assuming the number of

distinct programs that the list contains is 𝑛. Suppose that after reduction the number of distinct

programs becomes 𝑚. Then the difference (i.e., 𝑛 −𝑚) is the number of eliminated duplicates.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

275:16 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

A larger difference indicates that more duplicates become identical after reduction (thus can be

eliminated), demonstrating a stronger canonicalization capability.

Experiment Setup. The experiments are run on an Ubuntu 20.04 server with AMD 7950X CPU

and 128 GB RAM. For fair comparisons, all the experiments are run with a single thread.

4.1 RQ1: Performance in Minimization
To investigate this research question, we compare SFCPerses and SFCVulcan to Perses and Vulcan

on Benchmark-Reduce, respectively. Figure 5, Figure 6, and Figure 7 show the results of the

experiment. For the C and Rust benchmarks, detailed results are also listed in Table 1 and Table 2.

SFCPerses vs. Perses. As shown in Table 1 and Figure 5-7, the results produced by SFCPerses are

generally and significantly smaller than those of Perses, indicating that integrating SFC-based

reduction methods can effectively boost the minimization performance of Perses. Specifically,

in terms of size, the results of SFCPerses are 36.82%, 18.71%, and 41.05% smaller than those of

Perses on average on C, Rust, and SMT-LIBv2 benchmarks, respectively. In terms of execution

time, incorporating SFC-based methods inevitably introduces overhead. On average, SFCPerses
takes 3.65×, 16.99×, and 3.97× the time of Perses on C, Rust, and SMT-LIBv2 benchmarks. The

unusually high time ratio on the Rust benchmarks is primarily due to the presence of many small

benchmarks, which inflates the average. For instance, when considering only the 10 smallest

benchmarks from rust-77320 to rust-78720, the time ratios of these benchmarks range from 11

to 64, averaging 26.46. However, the absolute time differences for these benchmarks range from

82s to 628s, averaging 282.8s—less dramatic than the ratios suggest.

SFCPerses vs.Vulcan. FromTable 1 and Figure 5-7, it can be observed that the overall performance

of SFCPerses and Vulcan is comparable. Specifically, the results of SFCPerses are 1.86%, 3.34%, and

3.34% smaller than those of Vulcan. The p-values yielded by the Wilcoxon signed-rank test are

0.105, 0.530, and 0.598, respectively, which indicate that there is no statistically significant difference

between the two reducers in terms of minimization performance. Time-wise, SFCPerses takes 1.19×,
1.33×, and 0.95× the time of Vulcan onC, Rust, and SMT-LIBv2 benchmarks, and the corresponding p-

values are 0.04, 0.812, and 1.256×10−6, respectively. These results indicate that statistically, SFCPerses
is significantly slower than Vulcan on C benchmarks, significantly faster on SMT-LIBv2 benchmarks,

and not significantly different on the Rust benchmarks. Although SFCPerses and Vulcan achieve

comparable overall minimization performance, it is worth noting that they are complementary to

some extent. Specifically, in 53 out of 245 benchmarks, SFCPerses produces results that are more

than 10% smaller than Vulcan, while in 48 benchmarks, it produces results that are more than

10% larger. Furthermore, our comparison of SFCVulcan with Vulcan demonstrates that integrating

SFC-based reduction methods into Vulcan leads to further improvements in minimization.

SFCVulcan vs. Vulcan vs. C-Reduce and ddSMT. As illustrated in Table 2 and Figure 5-7,

SFCVulcan significantly outperforms Vulcan in terms of minimization. On average, the results of

SFCVulcan are 14.51%, 7.65%, and 7.66% smaller than those of Vulcan on C, Rust, and SMT-LIBv2

benchmarks, respectively. However, on C benchmarks and SMT-LIBv2 benchmarks, SFCVulcan does

not outperform the corresponding language-specific reducers, i.e., C-Reduce and ddSMT, which

is expected. Specifically, SFCVulcan produces 50.39% and 7.55% larger results than C-Reduce and

ddSMT on C and SMT-LIBv2 benchmarks, respectively. In contrast, the results of Vulcan are 80.38%

and 16.22% larger than those of C-Reduce and ddSMT, showing that SFCVulcan closes a substantial

portion of the gap. For the Rust benchmarks, although C-Reduce is also effective at reducing Rust

programs, SFCVulcan achieves better results—producing outputs that are, on average, 11.58% smaller

than those of C-Reduce. In terms of execution time, SFCVulcan takes 1.56×, 2.35×, and 1.42× the

time of Vulcan on C, Rust, and SMT-LIBv2 benchmarks. Compared to language-specific reducers,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:17

SFCVulcan takes 1.85× and 3.22× the time of C-Reduce on C and Rust benchmarks, and 6.04× the
time of ddSMT on SMT-LIBv2 benchmarks.

Trade-off between Time Overhead and Reduction. As shown in the results discussed above,

SFC introduces a notable time overhead. However, it should be noted that the reducer always

maintains a minimal result during the reduction process, allowing users to stop at any point that

they deem the result sufficiently simplified. The objective of SFC is not to replace Perses or Vulcan,

but rather to offer an effective and efficient method for users to further trade execution time for a

smaller result when needed. Given that minimizing bug-triggering programs is not always time-

sensitive, and manual inspection and minimization can be labor-intensive—demanding specific

language and compiler expertise—we believe providing the option to trade additional CPU time for

a smaller program to initiate manual analysis is beneficial.

Example Simplifications Performed by SFC. To provide insights on how SFC-based reduction

methods enable further reduction, we manually inspect some of the C benchmarks and summarize

some example simplifications performed by the SFC-based reduction methods shown below (in the

examples, ei represents an expression, si represents a statement, and a and b are identifiers):

(1) e1 && e2 ==> !e1
(2) e1 < e2 ==> !e1
(3) e1.e2 ==> &e1
(4) e1.e2 ==> sizeof e1
(5) e1[e2] ==> *e1
(6) e1[e2].[e3] ==> e1->e3

(7) e1.e2 = e3 ==> ++e1.e2
(8) f(e1, e2) ==> --e1
(9) s1 ==> ;
(10) if (a=b); ==> a=b;
(11) for(;a;a++) ==> while(a++)
(12) for(;;) { s1 s2 } ==> for(s1;;s2)

RQ1: While SFC-based reduction methods introduce some time overhead, they significantly

boost the minimization capabilities of Perses and Vulcan. Specifically, the results of SFCPerses
are 36.82%, 18.71%, and 41.05% smaller than those of Perses on C, Rust, and SMT-LIBv2

benchmarks. As for SFCVulcan, the corresponding percentage decreases are 14.51%, 7.65%,

and 7.66%, respectively.

4.2 RQ2: Performance in Canonicalization
To evaluate whether SFC-based reduction methods can boost performance in canonicalization,

we run Perses, Vulcan, SFCPerses and SFCVulcan to reduce all the bug-triggering programs in

Benchmark-Cano. As mentioned previously, to demonstrate that SFC-based reduction methods

are complementary to T-Rec, another technique for improving canonicalization performance, we

integrate T-Rec to each reducer in the experiment.

The evaluation results are shown in Table 3 (SFCPerses--sc is a variant for the ablation study covered

in § 4.3, where its results are discussed). From the table, it can be observed that compared to Perses,

SFCPerses can eliminate 439 more crash duplicates and 3more miscompilation duplicates. Meanwhile,

compared to Vulcan, SFCVulcan eliminates 425 and 10 more crash and miscompilation duplicates,

respectively. Such results indicate that SFC-based reduction methods significantly improve the

canonicalization capabilities of both Perses and Vulcan. Time-wise, the average execution time

of SFCPerses is 1.69× and 3.08× the time of Perses on the crash and miscompilation benchmarks,

respectively. As for SFCVulcan, its average time is 1.06× and 1.35× the time of Vulcan, respectively.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

275:18 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

Table 1. Evaluation results of Perses, Vulcan, and SFCPerses on C and Rust benchmarks. Column %Δ shows
the average percentage change in size achieved compared to the baseline reducer.

Perses Vulcan SFCPerses

Benchmarks

Time (s) Size (#) Time (s) Size (#) Time (s) Size (#)

%Δ in size

w.r.t. Perses
Time ratio

w.r.t. Perses
%Δ in size

w.r.t. Vulcan
Time ratio

w.r.t. Vulcan

clang-22382 508 144 1,058 108 1,114 113 -21.53% 2.19 4.63% 1.05

clang-22704 1,376 78 1,574 62 1,650 61 -21.79% 1.20 -1.61% 1.05

clang-23309 1,619 464 6,802 303 7,748 227 -51.08% 4.79 -25.08% 1.14

clang-23353 750 98 1,025 91 1,392 82 -16.33% 1.86 -9.89% 1.36

clang-25900 915 239 1,676 104 3,136 193 -19.25% 3.43 85.58% 1.87

clang-26760 1,718 120 2,384 56 2,263 52 -56.67% 1.32 -7.14% 0.95

clang-27137 7,391 180 9,962 88 13,137 83 -53.89% 1.78 -5.68% 1.32

clang-27747 1,013 117 1,759 79 2,149 83 -29.06% 2.12 5.06% 1.22

clang-31259 1,719 406 11,695 282 13,375 249 -38.67% 7.78 -11.70% 1.14

gcc-59903 3,291 308 4,743 198 6,236 158 -48.70% 1.89 -20.20% 1.31

gcc-60116 2,200 443 6,945 247 9,373 211 -52.37% 4.26 -14.57% 1.35

gcc-61383 2,128 272 10,766 195 17,711 183 -32.72% 8.32 -6.15% 1.65

gcc-61917 1,064 150 1,650 103 1,865 70 -53.33% 1.75 -32.04% 1.13

gcc-64990 2,508 239 4,416 203 5,634 165 -30.96% 2.25 -18.72% 1.28

gcc-65383 827 153 1,531 84 5,523 119 -22.22% 6.68 41.67% 3.61

gcc-66186 2,158 327 16,992 226 10,035 221 -32.42% 4.65 -2.21% 0.59

gcc-66375 2,409 440 11,656 227 16,719 289 -34.32% 6.94 27.31% 1.43

gcc-70127 2,726 301 15,053 230 14,502 188 -37.54% 5.32 -18.26% 0.96

gcc-70586 5,496 157 17,335 94 7,717 75 -52.23% 1.40 -20.21% 0.45

gcc-71626 45 51 123 38 140 35 -31.37% 3.11 -7.89% 1.14

Mean 2,093.05 234.35 6,457.25 150.90 7,070.95 142.85 -36.82% 3.02 -1.86% 1.19

STDEV 1,724.73 130.24 5,746.84 82.89 5,587.87 74.75 0.1329 2.31 0.2673 0.63

rust-111502 71 166 930 157 1,155 160 -3.61% 16.27 1.91% 1.24

rust-112061 2,188 458 17,728 442 14,658 418 -8.73% 6.70 -5.43% 0.83

rust-112213 3,617 736 55,834 635 17,786 549 -25.41% 4.92 -13.54% 0.32

rust-112526 2,900 382 10,932 338 10,407 355 -7.07% 3.59 5.03% 0.95

rust-44800 1,048 467 7,766 284 6,117 307 -34.26% 5.84 8.10% 0.79

rust-66851 4,047 728 31,256 713 39,530 660 -9.34% 9.77 -7.43% 1.26

rust-69039 518 114 5,397 101 6,363 99 -13.16% 12.28 -1.98% 1.18

rust-77002 331 263 1,582 247 1,772 246 -6.46% 5.35 -0.40% 1.12

rust-77320 10 39 153 39 147 9 -76.92% 14.70 -76.92% 0.96

rust-77323 4 13 26 13 86 13 0.00% 21.50 0.00% 3.31

rust-77910 13 34 112 21 451 20 -41.18% 34.69 -4.76% 4.03

rust-77919 28 74 280 62 656 69 -6.76% 23.43 11.29% 2.34

rust-78005 18 102 212 102 282 82 -19.61% 15.67 -19.61% 1.33

rust-78325 5 28 61 26 320 26 -7.14% 64.00 0.00% 5.25

rust-78651 9 17 55 9 99 9 -47.06% 11.00 0.00% 1.80

rust-78652 14 56 182 49 195 56 0.00% 13.93 14.29% 1.07

rust-78655 5 26 107 26 230 26 0.00% 46.00 0.00% 2.15

rust-78720 25 72 351 56 493 56 -22.22% 19.72 0.00% 1.40

rust-91725 284 174 1,700 78 1,315 108 -37.93% 4.63 38.46% 0.77

rust-99830 544 303 3,921 281 3,212 281 -7.26% 5.90 0.00% 0.82

Mean 783.95 212.60 6,929.25 183.95 5,263.70 177.45 -18.71% 12.37 -2.55% 1.33

STDEV 1,302.36 229.65 13,915.68 208.93 9,579.61 193.12 0.1994 15.44 0.2099 1.24

RQ2: Despite introducing some time overhead, SFC-based reduction methods can signifi-

cantly enhance the canonicalization capabilities of Perses and Vulcan (with T-Rec integrated).

Specifically, SFCPerses and SFCVulcan elimiate 442 and 435 more duplicates than Perses and

Vulcan, respectively.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:19

Table 2. Evaluation results of C-Reduce, Vulcan, and SFCVulcan on C and Rust benchmarks. Column %Δ
shows the average percentage change in size achieved compared to the baseline reducer.

C-Reduce Vulcan SFCVulcan

Benchmarks

Time (s) Size (#) Time (s) Size (#)

%Δ in size

w.r.t. C-Reduce Time (s) Size (#)

%Δ in size

w.r.t. Vulcan
Time ratio

w.r.t. Vulcan
%Δ in size

w.r.t. C-Reduce

clang-22382 1,085 70 1,058 108 54.29% 1,852 100 -7.41% 1.75 42.86%

clang-22704 1,916 42 1,574 62 47.62% 1,731 57 -8.06% 1.10 35.71%

clang-23309 3,696 118 6,802 303 156.78% 10,624 211 -30.36% 1.56 78.81%

clang-23353 1,135 74 1,025 91 22.97% 1,496 90 -1.10% 1.46 21.62%

clang-25900 1,687 90 1,676 104 15.56% 2,528 96 -7.69% 1.51 6.67%

clang-26760 2,811 43 2,384 56 30.23% 2,807 52 -7.14% 1.18 20.93%

clang-27137 9,477 50 9,962 88 76.00% 15,185 83 -5.68% 1.52 66.00%

clang-27747 1,963 68 1,759 79 16.18% 2,471 74 -6.33% 1.40 8.82%

clang-31259 4,772 168 11,695 282 67.86% 19,341 248 -12.06% 1.65 47.62%

gcc-59903 6,326 105 4,743 198 88.57% 6,849 129 -34.85% 1.44 22.86%

gcc-60116 5,174 168 6,945 247 47.02% 10,853 194 -21.46% 1.56 15.48%

gcc-61383 3,934 84 10,766 195 132.14% 18,134 137 -29.74% 1.68 63.10%

gcc-61917 3,316 65 1,650 103 58.46% 2,471 74 -28.16% 1.50 13.85%

gcc-64990 4,961 68 4,416 203 198.53% 6,888 141 -30.54% 1.56 107.35%

gcc-65383 2,206 51 1,531 84 64.71% 5,492 74 -11.90% 3.59 45.10%

gcc-66186 5,045 115 16,992 226 96.52% 23,779 208 -7.96% 1.40 80.87%

gcc-66375 7,414 56 11,656 227 305.36% 19,525 202 -11.01% 1.68 260.71%

gcc-70127 6,316 84 15,053 230 173.81% 21,406 187 -18.70% 1.42 122.62%

gcc-70586 6,342 130 17,335 94 -27.69% 31,316 92 -2.13% 1.81 -29.23%

gcc-71626 292 46 123 38 -17.39% 162 35 -7.89% 1.32 -23.91%

Mean 3,993.40 84.75 6,457.25 150.90 80.38% 10,245.50 124.20 -14.51% 1.56 50.39%

STDEV 2,421.34 38.32 5,746.84 82.89 79.90% 9,205.30 63.14 0.1073 0.49 63.10%

rust-111502 822 161 930 157 -2.48% 2,370 156 -0.64% 2.55 -3.11%

rust-112061 4,892 447 17,728 442 -1.12% 25,980 413 -6.56% 1.47 -7.61%

rust-112213 4,413 726 55,834 635 -12.53% 70,048 536 -15.59% 1.25 -26.17%

rust-112526 5,921 537 10,932 338 -37.06% 18,530 334 -1.18% 1.70 -37.80%

rust-44800 6,436 471 7,766 284 -39.70% 10,731 284 0.00% 1.38 -39.70%

rust-66851 5,673 649 31,256 713 9.86% 68,837 658 -7.71% 2.20 1.39%

rust-69039 649 109 5,397 101 -7.34% 10,379 97 -3.96% 1.92 -11.01%

rust-77002 2,097 264 1,582 247 -6.44% 3,428 246 -0.40% 2.17 -6.82%

rust-77320 147 39 153 39 0.00% 367 9 -76.92% 2.40 -76.92%

rust-77323 25 13 26 13 0.00% 128 13 0.00% 4.92 0.00%

rust-77910 88 23 112 21 -8.70% 373 20 -4.76% 3.33 -13.04%

rust-77919 422 70 280 62 -11.43% 699 59 -4.84% 2.50 -15.71%

rust-78005 308 75 212 102 36.00% 603 82 -19.61% 2.84 9.33%

rust-78325 122 34 61 26 -23.53% 442 26 0.00% 7.25 -23.53%

rust-78651 76 12 55 9 -25.00% 150 9 0.00% 2.73 -25.00%

rust-78652 176 49 182 49 0.00% 384 49 0.00% 2.11 0.00%

rust-78655 93 26 107 26 0.00% 450 26 0.00% 4.21 0.00%

rust-78720 476 51 351 56 9.80% 861 53 -5.36% 2.45 3.92%

rust-91725 2,387 101 1,700 78 -22.77% 2,341 77 -1.28% 1.38 -23.76%

rust-99830 4,278 164 3,921 281 71.34% 6,350 269 -4.27% 1.62 64.02%

Mean 1,975.05 201.05 6,929.25 183.95 -3.55% 11,172.55 170.80 -7.65% 2.35 -11.58%

STDEV 2,341.12 231.04 13,915.68 208.93 24.54% 21,095.72 190.52 0.1715 1.44 26.68%

4.3 RQ3: Ablation Studies
To investigate whether each proposed SFC-based reduction methods are effective, we conducted

ablation studies. Specifically, we implemented six variants of SFCPerses and SFCVulcan as follows.

SFCPerses--ie , SFCPerses--ssr , and SFCPerses--sc are variants of SFCPerses that do not have the auxiliary

reducer corresponding to Identifier Elimination,Smaller Structure Replacement, and Structure

Canonicalization integrated, respectively. SFCVulcan--ie , SFCVulcan--ssr , and SFCVulcan--sc are variants of

SFCVulcan without these three auxiliary reducer, respectively.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

275:20 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

Perses Vulcan SFCPerses SFCVulcan C-Reduce

200

400

Si
ze

 (#
)

 μ=234.35
 σ=130.24 μ=150.90

 σ=82.89
 μ=142.85
 σ=74.75 μ=124.20

 σ=63.14
 μ=84.75
 σ=38.32

(a) Size of reduced programs.

Perses Vulcan SFCPersesSFCVulcanC-Reduce
0

10000

20000

30000

Ti
m

e
(s

)

 μ=2093.05
 σ=1724.73

 μ=6457.25
 σ=5746.84

 μ=7070.95
 σ=5587.87

 μ=10245.50
 σ=9205.30

 μ=3993.40
 σ=2421.34

(b) Execution time.

0 5000 10000 15000 20000 25000 30000
Time (s)

200

400

Si
ze

 (#
)

Perses
Vulcan
SFCPerses

SFCVulcan

C-Reduce

(c) Execution Time vs. Program Size.

Fig. 5. Evaluation results of Perses, Vulcan, SFCPerses and SFCVulcan on C benchmarks.

Perses Vulcan SFCPerses SFCVulcan C-Reduce
0

200

400

600

Si
ze

 (#
)

 μ=212.60
 σ=229.65

 μ=183.95
 σ=208.93

 μ=177.45
 σ=193.12

 μ=170.80
 σ=190.52

 μ=201.05
 σ=231.04

(a) Size of reduced programs.

Perses Vulcan SFCPersesSFCVulcanC-Reduce
0

20000

40000

60000

Ti
m

e
(s

)

 μ=783.95
 σ=1302.36

 μ=6929.25
 σ=13915.68

 μ=5263.70
 σ=9579.61

 μ=11172.55
 σ=21095.72

 μ=1975.05
 σ=2341.12

(b) Execution time.

0 10000 20000 30000 40000 50000 60000 70000
Time (s)

0

200

400

600

Si
ze

 (#
)

Perses
Vulcan
SFCPerses

SFCVulcan

C-Reduce

(c) Execution Time vs. Program Size.

Fig. 6. Evaluation results of Perses, Vulcan, SFCPerses and SFCVulcan on Rust benchmarks.

Impacts of Removing Smaller Structure Replacement. Smaller Structure Replacement is

proposed to mainly enhance the minimization capabilities of program reducer. Thus, to evalu-

ate its contribution, we compare SFCPerses--ssr and SFCVulcan--ssr with SFCPerses and SFCVulcan on

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:21

Perses Vulcan SFCPersesSFCVulcan ddSMT
0

500

1000

Si
ze

 (#
)

 μ=287.30
 σ=237.71

 μ=121.51
 σ=68.25

 μ=125.83
 σ=76.26 μ=112.30

 σ=64.14
 μ=109.09
 σ=66.36

(a) Size of reduced programs.

Perses Vulcan SFCPersesSFCVulcan ddSMT
0

2000

4000

Ti
m

e
(s

) μ=320.73
 σ=487.04

 μ=755.88
 σ=749.18 μ=637.38

 σ=586.93

 μ=920.10
 σ=813.24

 μ=176.75
 σ=176.93

(b) Execution time.

0 1000 2000 3000 4000 5000
Time (s)

0

500

1000

Si
ze

 (#
)

Perses
Vulcan
SFCPerses

SFCVulcan

ddSMT

(c) Execution Time vs. Program Size.

Fig. 7. Evaluation results of Perses, Vulcan, SFCPerses and SFCVulcan on SMT-LIBv2 benchmarks.

Table 3. Evaluation results of Perses, SFCPerses, SFCPerses--sc , Vulcan, SFCVulcan, and SFCVulcan--sc on
Benchmark-Cano. The column Eliminated shows the total number of eliminated duplicates. The column
Size and Time shows the average size of the outputs and the average execution time.

Reducer

Crash Miscompilation

Eliminated (#) Size (#) Time (s) Eliminated (#) Size (#) Time (s)

Perses 1,297/2,501 55.73 146.58 0/1,295 228.14 769.03

SFCPerses 1,736/2,501 39.59 248.31 3/1,295 168.77 2367.54

SFCPerses--sc 1,382/2,501 41.32 217.75 1/1,295 169.99 2001.45

Vulcan 1,327/2,501 40.81 293.68 1/1,295 188.56 2896.75

SFCVulcan 1,752/2,501 36.16 312.42 11/1,295 160.88 3914.47

SFCVulcan--sc 1,397/2,501 37.83 284.13 8/1,295 156.28 4245.39

Benchmark-Reduce, respectively. From Table 4, it can be observed that for both SFCPerses and

SFCVulcan, removing Smaller Structure Replacement significantly deteriorates the minimization

performance. Specifically, removing Smaller Structure Replacement causes SFCPerses to produce

results that are 16.70%, 29.90%, and 16.31% larger on C, Rust, and SMT-LIBv2 benchmarks, respec-

tively. Similarly, removing Smaller Structure Replacement from SFCVulcan results in outputs that

are 13.56%%, 18.89%, and 6.03% larger, respectively.

Impacts of Removing Identifier Elimination. Similar to Smaller Structure Replacement, Iden-

tifier Elimination is also proposed to primary boost the minimization performance. Therefore, we

evaluate its contribution in the same way we assess Smaller Structure Replacement. As shown

in Table 4, removing Identifier Elimination also has a negative impact on the minimization capa-

bility of SFCPerses, especially on the SMT-LIBv2 benchmarks. Specifically, the results of SFCPerses

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

275:22 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

Table 4. Results of SFCPerses--ie , SFCPerses--ssr , SFCVulcan--ie , and SFCVulcan--ssr on Benchmark-Reduce. Column
Worse is the number of cases where the removal causes a deterioration in minimization capability. Column
%Δ is the average percentage increase in size caused by the removal.

Reducer

C Rust SMT-LIBv2

Size Worse %Δ in Size Size Worse %Δ in Size Size Worse %Δ in Size

SFCPerses--ie 192.70 20/20 39.03% 194.05 10/20 7.21% 266.23 169/205 93.91%

SFCPerses--ssr 165.90 20/20 16.70% 190.65 17/20 29.90% 145.17 167/205 16.31%

SFCVulcan--ie 132.35 12/20 5.22% 171.35 2/20 0.25% 113.83 29/205 1.11%

SFCVulcan--ssr 141.10 20/20 13.56% 176.05 12/20 18.89% 117.38 137/205 6.03%

without Identifier Elimination are 39.03%, 7.21%, and 93.91% larger on C, Rust, and SMT-LIBv2

benchmarks, respectively. The negative impact of removing Identifier Elimination from SFCVulcan
is not as significant as that of removing it from SFCPerses, the corresponding percentage increases

in size of the results are 5.22%, 0.25%, and 1.11%, respectively. The reason behind this may be that

Vulcan also has an auxiliary reducer for eliminating identifiers, which is somewhat overlapped

with Identifier Elimination. Nevertheless, the increases in size still demonstrates that Identifier

Elimination proposed in this paper is more effective than the auxiliary reducer in Vulcan.

Impacts of Removing Structure Canonicalization. Since Structure Canonicalization is pro-

posed primarily to enhance the canonicalization capability of program reducers, to evaluate the

contribution of Structure Canonicalization to the improved canonicalization performance, we

compare SFCPerses--sc and SFCVulcan--sc to SFCPerses and SFCVulcan on Benchmark-Cano, respectively.
As shown in Table 3, removing Structure Canonicalization from SFCPerses leads to 354 and 2 fewer

eliminated duplicates. Removing Structure Canonicalization from SFCVulcan also leads to 355 and 3

fewer eliminated duplicates, respectively. Such results indicate that Structure Canonicalization sig-

nificantly contributes to the superior canonicalization performance of both SFCPerses and SFCVulcan.

RQ3: All the proposed SFC-based reduction methods significantly contributes to the

improved reduction performance of SFCPerses and SFCVulcan. Removing Smaller Structure

Replacement or Identifier Elimination can results in large outputs and the ratio is upto

93.91%. Without Structure Canonicalization, more than 300 duplicated crash bugs cannot

be eliminated.

5 Related Work
This section discusses the studies related to this paper.Delta Debugging is the first systematic work in

the direction of bug-triggering test inputminimization [42]. This work proposed an algorithmnamed

ddmin which is designed to reduce a list of elements. This algorithm still serves as a fundamental

reduction algorithm in many advanced reduction techniques proposed by subsequent research

studies [18, 19, 25, 26, 30, 39, 44, 46]. ProbDD later improves ddmin with a probabilistic model [35].

Zhang et al. conducted an in-depth theoretical and empirical analysis of ProbDD, and then proposed

Counter-Based Delta Debugging (CDD), a simplified version of ProbDD that reduce the complexity

from both theory and implementation perspectives [44]. Zhou et al. introduced Weighted Delta

Debugging (WDD), a novel concept to leverage the size of elements in partitioning [46].

The algorithm ddmin and its variants cannot well handle highly structured inputs on themselves.

Targeting to tackle this limitation, Hierarchical Delta Debugging (HDD) was proposed by Misherghi

and Su [25]. Specifically, HDD performs ddmin on each level of the tree representation (e.g.,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:23

the parse tree) of the input from top to bottom. After HDD was proposed, many researchers

improved HDD from different aspects with different mechanisms [12, 13, 18, 34]. Hodován et al.
proposed Picieny, which uses extended context-free grammars to modernized the original HDD

implementation [12]. In the next year, the same authors proposed another technique called Coarse

Hierarchical Delta Debugging (CHDD) to further improve the efficiency of HDD [13]. Kiss et al.
proposed a recursive version of HDD named HDDr also for saving reduction time [18]. Vince et al.
improve the performance of HDD by integrating the hoisting operation [34].

Although HDD and its variants can recognize the structure of the input to be reduced, the

transformations (i.e., deletions) that they perform do not preserve the syntactic validity, which

eventually leads to limited overall reduction performance. To overcome this obstacle, Sun et al.
propose Perses, a syntax-guided program reducer that always generates programs that are conform

to the provided formal grammar during the reduction process. Gharachorlu et al. further improves

the efficientcy of Perses by optimizing the order of reducing each portion of the program [7, 8], and

Tian et al. proposed a better implementation that greatly reduces the engineering work required

for applying Perses to different programming languages [31]. Tian et al. introduced a novel caching
scheme to speed up program reduction [33].

To further trade off efficiency for smaller reduction results, Xu et al. proposed Vulcan, a reducer that
can switch to more exhaustive reducers whenever the main reducer (i.e., Perses) cannot make any

progress [39]. In the study of Vulcan, three auxiliary reducers are proposed, which are Tree-Based

Local Exhaustive Enumeration, Identifier Replacement, and Sub-Tree Replacement, respectively.

Among these auxiliary reducers, the last two are similar to Identifier Elimination and Smaller Struc-

ture Replacement proposed in this paper. However, compared to Identifier Replacement, Identifier

Elimination is more effective as it can eliminate uses of identifiers not only by replacing but also

by utilizing SFC. Meanwhile, compared to Smaller Structure Replacement, Sub-Tree Replacement

in Vulcan lacks a structure-reusing mechanism, which significantly limits its effectiveness. The

extensive evaluation also demonstrates that compared to Vulcan, the methods proposed in this

paper are either more effective or complementary. T-Rec is another syntax-guided program reducer

proposed recently [38]. It improves the reduction performance (especially the canonicalization

performance) by introducing a fine-grained reduction process, which leverages the lexical syntax

to canonicalize tokens. As demonstrated in § 4.1, SFC-based reduction methods can significantly

enhance the canonicalization capabilities of Perses and Vulcan with T-Rec integrated. Such a result

indicates that T-Rec and our approach are complementary to some extent.

There are also many language-specific program reducers that are specifically optimized for re-

ducing programs in certain programming languages. These reducers are designed with language-

specific knowledge and often require heavy engineering work to implement. C-Reduce is a reducer

that specifically optimized for reducing C programs [27]. ddSMT and ddSMT2.0 are designed for

reducing SMT-LIBv2 programs [19, 26]. J-Reduce focuses on Java bytecode [16, 17], and JS Delta is

for reducing JavaScript programs [15]. Zhang et al. proposed LPR, the first LLMs-aided technique

leveraging LLMs to perform language-specific program reduction for multiple languages [43].

Compared to these language-specific ones, SFC-based reduction is much more general and can be

applied to a wide range of programming languages.

There are also program reducers designed for software debloating. For example, Chisel is a

reducer for debloating C/C++ programs [11]. It leverages a reinforcement learning-based approach

to improve the efficiency and scalability. Additionally, Bruce et al. proposed JShrink, an end-to-end

framework for debloating Java bytecode [1].

Instead of directly reducing the test case, some reducers reduce test cases in a different manner.

Hypothesis reducer reduces test cases by minimizing the choice sequence with test case genera-

tors [24]. PPR, proposed by Zhang et al., reduces pairs of programs, i.e., a seed and a bug-triggering

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

275:24 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

mutant derived from the seed, in mutation-based fuzzing [45]. It reduces both the difference and

the common parts of the two programs to facilitate debugging. While the reducer in spirv-fuzz also

reduces difference between seed and mutant, it focuses on reducing the transformation sequences

that mutate the seed to the mutant [5]. These works are all complementary to our work.

6 Conclusion
In this paper, we boost the performance of language-agnostic program reduction by proposing a

novel syntax-guided transformation named Structure Form Conversion (SFC). SFC complements

the previously proposed two transformations, Compatible Substructure Hoisting and Quantified

Node Reduction. Building on SFC, we further propose three reduction methods: Smaller Structure

Replacement, Identifier Elimination, and Structure Canonicalization, to effectively and efficiently

leverage SFC for program reduction. Through extensive evaluation with two benchmark suites,

we demonstrate the proposed three reduction methods can significantly improve both the mini-

mization and canonicalization performance. Specifically, SFCPerses produces 36.82%, 18.71%, and

41.05% smaller results than Perses on average on the C, Rust, and SMT-LIBv2 benchmarks, respec-

tively. Similarly, the average results of SFCVulcan are 14.51%, 7.65%, and 7.66% smaller than Vulcan.

Furthermore, in Benchmark-Cano SFC-based reduction methods help Perses and Vulcan further

eliminate 442 and 435 more duplicates (programs that trigger the same bug), respectively.

7 Data Availability
For reproducibility and replicability, we have released the replication package at https://github.

com/sfc-reducer/sfc-reducer.

Acknowledgments
We thank all the anonymous reviewers in OOPSLA’25 for their insightful feedback and comments,

which significantly improved this paper. This research is partially supported by the Natural Sciences

and Engineering Research Council of Canada (NSERC) through the Discovery Grant, a project

under WHJIL, and CFI-JELF Project #40736.

References
[1] Bobby R Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung Kim. 2020. JShrink: in-depth investi-

gation into debloating modern Java applications. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 135–146.

[2] Yang Chen, Alex Groce, Chaoqiang Zhang, Weng-Keen Wong, Xiaoli Fern, Eric Eide, and John Regehr. 2013. Tam-

ing Compiler Fuzzers. In Proceedings of the 2013 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 197–208.

[3] Noam Chomsky. 1959. On certain formal properties of grammars. Information and Control 2, 2 (1959), 137–167.

doi:10.1016/S0019-9958(59)90362-6

[4] CPython. 2022. Bug Report. Retrieved 2022-09-20 from https://github.com/python/cpython/issues/new?assignees=

&labels=type-bug&template=bug.md

[5] Alastair F Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, André Perez Maselco, and Antoni Karpiński.

2021. Test-case reduction and deduplication almost for free with transformation-based compiler testing. In Proceedings
of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. 1017–1032.

[6] GCC-Wiki. 2020. A guide to Testcase reduction. Retrieved 2022-09-20 from https://gcc.gnu.org/wiki/A_guide_to_

testcase_reduction

[7] Golnaz Gharachorlu and Nick Sumner. 2019. PARDIS: Priority Aware Test Case Reduction. In International Conference
on Fundamental Approaches to Software Engineering. Springer, 409–426.

[8] Golnaz Gharachorlu and Nick Sumner. 2023. Type Batched Program Reduction. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (Seattle, WA, USA) (ISSTA 2023). Association for

Computing Machinery, New York, NY, USA, 398–410. doi:10.1145/3597926.3598065

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

https://github.com/sfc-reducer/sfc-reducer
https://github.com/sfc-reducer/sfc-reducer
https://doi.org/10.1016/S0019-9958(59)90362-6
https://github.com/python/cpython/issues/new?assignees=&labels=type-bug&template=bug.md
https://github.com/python/cpython/issues/new?assignees=&labels=type-bug&template=bug.md
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://gcc.gnu.org/wiki/A_guide_to_testcase_reduction
https://doi.org/10.1145/3597926.3598065

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:25

[9] Sheila A. Greibach. 1965. A New Normal-Form Theorem for Context-Free Phrase Structure Grammars. J. ACM 12, 1

(Jan. 1965), 42–52. doi:10.1145/321250.321254

[10] Alex Groce, Josie Holmes, and Kevin Kellar. 2017. One test to rule them all. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Santa Barbara, CA, USA) (ISSTA 2017). Association for

Computing Machinery, New York, NY, USA, 1–11. doi:10.1145/3092703.3092704

[11] Kihong Heo,Woosuk Lee, Pardis Pashakhanloo, andMayur Naik. 2018. Effective ProgramDebloating via Reinforcement

Learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018,
Toronto, ON, Canada, October 15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.).

ACM, 380–394. doi:10.1145/3243734.3243838

[12] Renáta Hodován and Ákos Kiss. 2016. Modernizing Hierarchical Delta Debugging. In Proceedings of the 7th International
Workshop on Automating Test Case Design, Selection, and Evaluation (Seattle, WA, USA) (A-TEST 2016). Association for

Computing Machinery, New York, NY, USA, 31–37. doi:10.1145/2994291.2994296

[13] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2017. Coarse Hierarchical Delta Debugging. In 2017 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2017, Shanghai, China, September 17-22, 2017. IEEE Computer

Society, 194–203. doi:10.1109/ICSME.2017.26

[14] JerryScript. 2022. Bug Report. Retrieved 2022-09-20 from https://github.com/jerryscript-project/jerryscript/blob/

master/.github/ISSUE_TEMPLATE/bug_report.md

[15] JS Delta. 2017. JS Delta. Retrieved 2022-10-28 from https://github.com/wala/jsdelta

[16] Christian Gram Kalhauge and Jens Palsberg. 2019. Binary reduction of dependency graphs. In Proceedings of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019, Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra

Russo (Eds.). ACM, 556–566. doi:10.1145/3338906.3338956

[17] Christian Gram Kalhauge and Jens Palsberg. 2021. Logical bytecode reduction. In PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021,
Stephen N. Freund and Eran Yahav (Eds.). ACM, 1003–1016. doi:10.1145/3453483.3454091

[18] Ákos Kiss, Renáta Hodován, and Tibor Gyimóthy. 2018. HDDr: A Recursive Variant of the Hierarchical Delta Debugging

Algorithm. In Proceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection,
and Evaluation (Lake Buena Vista, FL, USA) (A-TEST 2018). Association for Computing Machinery, New York, NY, USA,

16–22. doi:10.1145/3278186.3278189

[19] Gereon Kremer, Aina Niemetz, and Mathias Preiner. 2021. ddSMT 2.0: Better Delta Debugging for the SMT-LIBv2

Language and Friends. In Computer Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July
20-23, 2021, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12760), Alexandra Silva and K. Rustan M. Leino

(Eds.). Springer, 231–242. doi:10.1007/978-3-030-81688-9_11

[20] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equivalence modulo inputs. (2014), 216–226.

doi:10.1145/2594291.2594334

[21] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F Donaldson. 2015. Many-core compiler fuzzing.

ACM SIGPLAN Notices 50, 6 (2015), 65–76.
[22] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing for C and C++ compilers with YARPGen.

Proceedings of the ACM on Programming Languages 4, OOPSLA (2020), 1–25.

[23] LLVM. 2022. How to Submit an LLVM bug report. Retrieved 2022-09-20 from https://llvm.org/docs/HowToSubmitABug.

html

[24] David R MacIver and Alastair F Donaldson. 2020. Test-case reduction via test-case generation: Insights from the

hypothesis reducer (tool insights paper). In 34th European Conference on Object-Oriented Programming (ECOOP 2020).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik.

[25] Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical Delta Debugging. In 28th International Conference
on Software Engineering (ICSE 2006), Shanghai, China, May 20-28, 2006, Leon J. Osterweil, H. Dieter Rombach, and

Mary Lou Soffa (Eds.). ACM, 142–151. doi:10.1145/1134285.1134307

[26] Aina Niemetz and Armin Biere. 2013. ddSMT: a delta debugger for the SMT-LIB v2 format. In Proceedings of the 11th
International Workshop on Satisfiability Modulo Theories, SMT. 8–9.

[27] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-Case Reduction

for C Compiler Bugs. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (Beijing, China) (PLDI ’12). Association for Computing Machinery, New York, NY, USA, 335–346.

doi:10.1145/2254064.2254104

[28] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-case reduction

for C compiler bugs. In Proceedings of the 2012 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 335–346.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

https://doi.org/10.1145/321250.321254
https://doi.org/10.1145/3092703.3092704
https://doi.org/10.1145/3243734.3243838
https://doi.org/10.1145/2994291.2994296
https://doi.org/10.1109/ICSME.2017.26
https://github.com/jerryscript-project/jerryscript/blob/master/.github/ISSUE_TEMPLATE/bug_report.md
https://github.com/jerryscript-project/jerryscript/blob/master/.github/ISSUE_TEMPLATE/bug_report.md
https://github.com/wala/jsdelta
https://doi.org/10.1145/3338906.3338956
https://doi.org/10.1145/3453483.3454091
https://doi.org/10.1145/3278186.3278189
https://doi.org/10.1007/978-3-030-81688-9_11
https://doi.org/10.1145/2594291.2594334
https://llvm.org/docs/HowToSubmitABug.html
https://llvm.org/docs/HowToSubmitABug.html
https://doi.org/10.1145/1134285.1134307
https://doi.org/10.1145/2254064.2254104

275:26 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

[29] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live code mutation. In Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016, Eelco Visser and Yannis
Smaragdakis (Eds.). ACM, 849–863. doi:10.1145/2983990.2984038

[30] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018. Perses: Syntax-Guided Program

Reduction. In Proceedings of the 40th International Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18).
Association for Computing Machinery, New York, NY, USA, 361–371. doi:10.1145/3180155.3180236

[31] Jia Le Tian, Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yiwen Dong, and Chengnian Sun. 2023. Ad Hoc

Syntax-Guided Program Reduction. In Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (San Francisco, CA, USA) (ESEC/FSE 2023). Association for

Computing Machinery, New York, NY, USA, 2137–2141. doi:10.1145/3611643.3613101

[32] Yongqiang Tian, Zhenyang Xu, Yiwen Dong, Chengnian Sun, and Shing-Chi Cheung. 2023. Revisiting the Evaluation of

Deep Learning-Based Compiler Testing. In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China. ijcai.org, 4873–4882. doi:10.24963/IJCAI.2023/542

[33] Yongqiang Tian, Xueyan Zhang, Yiwen Dong, Zhenyang Xu, Mengxiao Zhang, Yu Jiang, Shing-Chi Cheung, and

Chengnian Sun. 2023. On the Caching Schemes to Speed Up Program Reduction. ACM Trans. Softw. Eng. Methodol. 33,
1, Article 17 (nov 2023), 30 pages. doi:10.1145/3617172

[34] Dániel Vince, Renáta Hodován, Daniella Bársony, and Ákos Kiss. 2021. Extending hierarchical delta debugging with

hoisting. In 2021 IEEE/ACM International Conference on Automation of Software Test (AST). IEEE, 60–69.
[35] Guancheng Wang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang. 2021. Probabilistic Delta debugging.

In ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Athens, Greece, August 23-28, 2021, Diomidis Spinellis, Georgios Gousios, Marsha Chechik, and

Massimiliano Di Penta (Eds.). ACM, 881–892. doi:10.1145/3468264.3468625

[36] Theodore Luo Wang, Yongqiang Tian, Yiwen Dong, Zhenyang Xu, and Chengnian Sun. 2023. Compilation Consistency

Modulo Debug Information. In Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023,
Tor M. Aamodt, Natalie D. Enright Jerger, and Michael M. Swift (Eds.). ACM, 146–158. doi:10.1145/3575693.3575740

[37] Yuanmin Xie, Zhenyang Xu, Yongqiang Tian, Min Zhou, Xintong Zhou, and Chengnian Sun. 2025. Kitten: A Simple

Yet Effective Baseline for Evaluating LLM-Based Compiler Testing Techniques. In Proceedings of the 34th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA Companion 2025, Clarion Hotel Trondheim, Trondheim,
Norway, June 25-28, 2025, Mike Papadakis, Myra B. Cohen, and Paolo Tonella (Eds.). ACM, 21–25. doi:10.1145/3713081.

3731731

[38] Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Jiarui Zhang, Puzhuo Liu, Yu Jiang, and Chengnian Sun. 2024. T-Rec:

Fine-Grained Language-Agnostic Program Reduction Guided by Lexical Syntax. ACM Trans. Softw. Eng. Methodol.
(aug 2024). doi:10.1145/3690631 Just Accepted.

[39] Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Gaosen Zhao, Yu Jiang, and Chengnian Sun. 2023. Pushing the Limit

of 1-Minimality of Language-Agnostic Program Reduction. Proc. ACM Program. Lang. 7, OOPSLA1, Article 97 (apr
2023), 29 pages. doi:10.1145/3586049

[40] Chen Yang, Junjie Chen, Xingyu Fan, Jiajun Jiang, and Jun Sun. 2023. Silent Compiler Bug De-duplication via

Three-Dimensional Analysis. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis (Seattle, WA, USA) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA, 677–689.

doi:10.1145/3597926.3598087

[41] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Understanding Bugs in C Compilers. In

Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (San Jose,

California, USA) (PLDI ’11). Association for Computing Machinery, New York, NY, USA, 283–294. doi:10.1145/1993498.

1993532

[42] A. Zeller and R. Hildebrandt. 2002. Simplifying and isolating failure-inducing input. IEEE Transactions on Software
Engineering 28, 2 (2002), 183–200. doi:10.1109/32.988498

[43] Mengxiao Zhang, Yongqiang Tian, Zhenyang Xu, Yiwen Dong, Shin Hwei Tan, and Chengnian Sun. 2024. LPR: Large

Language Models-Aided Program Reduction. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis (Vienna, Austria)(ISSTA 2024). Association for Computing Machinery, New York, NY, USA.
https://doi. org/10.1145/3650212.3652126.

[44] Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Xinru Cheng, and Chengnian Sun. 2025. Toward a Better Under-

standing of Probabilistic Delta Debugging. In 47th IEEE/ACM International Conference on Software Engineering, ICSE
2025, Ottawa, ON, Canada, April 26 - May 6, 2025. IEEE, 2024–2035. doi:10.1109/ICSE55347.2025.00117

[45] Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yu Jiang, and Chengnian Sun. 2023. PPR: Pairwise Program Reduction.

In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3611643.3613101
https://doi.org/10.24963/IJCAI.2023/542
https://doi.org/10.1145/3617172
https://doi.org/10.1145/3468264.3468625
https://doi.org/10.1145/3575693.3575740
https://doi.org/10.1145/3713081.3731731
https://doi.org/10.1145/3713081.3731731
https://doi.org/10.1145/3690631
https://doi.org/10.1145/3586049
https://doi.org/10.1145/3597926.3598087
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/ICSE55347.2025.00117

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:27

Software Engineering. 338–349.
[46] Xintong Zhou, Zhenyang Xu, Mengxiao Zhang, Yongqiang Tian, and Chengnian Sun. 2025. WDD: Weighted Delta

Debugging. In 47th IEEE/ACM International Conference on Software Engineering, ICSE 2025, Ottawa, ON, Canada, April
26 - May 6, 2025. IEEE, 1592–1603. doi:10.1109/ICSE55347.2025.00071

Received 2025-03-25; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 275. Publication date: October 2025.

https://doi.org/10.1109/ICSE55347.2025.00071

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Program Reduction
	2.2 Syntax of Programming Languages
	2.3 Syntax-Guided Transformation

	3 Methodology
	3.1 Structure Form Conversion (SFC)
	3.2 Program Reduction with SFC
	3.3 Implementation

	4 Evaluation
	4.1 RQ1: Performance in Minimization
	4.2 RQ2: Performance in Canonicalization
	4.3 RQ3: Ablation Studies

	5 Related Work
	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

