N
Check for
Updates

Boosting Program Reduction with the Missing Piece of
Syntax-Guided Transformations

ZHENYANG XU, University of Waterloo, Canada
YONGQIANG TIAN, Monash University, Australia
MENGXIAO ZHANG, University of Waterloo, Canada
CHENGNIAN SUN, University of Waterloo, Canada

Program reduction is a widely used technique in testing and debugging language processors. Given a program
that triggers a bug in a language processor, program reduction searches for a canonicalized and minimized
program that triggers the same bug, thereby facilitating bug deduplication and simplifying the debugging
process. To improve reduction performance without sacrificing generality, prior research has leveraged the
formal syntax of the programming language as guidance. Two key syntax-guided transformations—Compatible
Substructure Hoisting and Quantified Node Reduction—were introduced to enhance this process. While these
transformations have proven effective to some extent, their application excessively prunes the search space,
preventing the discovery of many smaller results. Consequently, there remains significant potential for further
improvement in overall reduction performance.

To this end, we propose a novel syntax-guided transformation named Structure Form Conversion (SFC)
to complement the aforementioned two transformations. Building on SFC, we introduce three reduction
methods: Smaller Structure Replacement, Identifier Elimination, and Structure Canonicalization, designed
to effectively and efficiently leverage SFC for program reduction. By integrating these reduction methods
to previous language-agnostic program reducers, Perses and Vulcan, we implement two prototypes named
SFCperses and SFCyyjcan- Extensive evaluations show that SFCperses and SFCyyjcan significantly outperforms
Perses and Vulcan in both minimization and canonicalization. Specifically, compared to Perses, SFCperses
produces programs that are 36.82%, 18.71%, and 41.05% smaller on average on the C, Rust, and SMT-LIBv2
benchmarks at the cost of 3.65%, 16.99%, and 1.42X the time of Perses, respectively. Similarly, SFCyyjcan
generates programs that are 14.51%, 7.65%, and 7.66% smaller than those produced by Vulcan at the cost of
1.56X, 2.35X, and 1.42x the execution time of Vulcan. Furthermore, in an experiment with a benchmark suite
containing 3,796 C programs that trigger 46 unique bugs, SFCperses and SFCyyjcan reduce 442 and 435 more
duplicates (programs that trigger the same bug) to identical programs than Perses and Vulcan, respectively.

CCS Concepts: » Software and its engineering — Software testing and debugging.
Additional Key Words and Phrases: Program Reduction, Test Input Minimization, Automated Debugging

ACM Reference Format:

Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun. 2025. Boosting Program Reduction
with the Missing Piece of Syntax-Guided Transformations. Proc. ACM Program. Lang. 9, OOPSLA2, Article 275
(October 2025), 27 pages. https://doi.org/10.1145/3763053

1 Introduction

Program reduction is a widely utilized technique in the testing and debugging of language pro-
cessors such as compilers, interpreters, and debuggers [20-22, 29, 32, 36, 37, 41]. Given a program

Authors’ Contact Information: Zhenyang Xu, University of Waterloo, Canada, zhenyang.xu@uwaterloo.ca; Yongqiang
Tian, Monash University, Australia, yongqiang.tian@monash.edu; Mengxiao Zhang, University of Waterloo, Canada,
m492zhan@uwaterloo.ca; Chengnian Sun, cnsun@uwaterloo.ca, University of Waterloo, Canada.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART275

https://doi.org/10.1145/3763053

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 275. Publication date: October 2025.

https://orcid.org/0000-0002-9451-4031
https://orcid.org/0000-0003-1644-2965
https://orcid.org/0000-0002-3463-2802
https://orcid.org/0000-0002-0862-2491
https://doi.org/10.1145/3763053
https://orcid.org/0000-0002-9451-4031
https://orcid.org/0000-0003-1644-2965
https://orcid.org/0000-0003-1644-2965
https://orcid.org/0000-0002-3463-2802
https://orcid.org/0000-0002-0862-2491
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763053
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3763053&domain=pdf&date_stamp=2025-10-09

275:2 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

P that triggers a bug in a language processor, along with an oracle i that verifies whether a pro-
gram triggers the bug, program reduction aims to produce a minimized, canonicalized version
of P that still triggers the same bug. By minimizing bug-irrelevant code from P, this technique
streamlines the debugging process. The significance of such minimization is underscored by the
fact that many language processor communities mandate that users and developers perform re-
duction on bug-triggering programs before reporting bugs [4, 6, 14, 23]. Furthermore, program
reduction also facilitates the canonicalization! of bug-triggering programs, reducing differences
among duplicates (two programs are duplicate if they trigger the same bug). This capability is
particularly advantageous for deduplication in large-scale automated testing campaigns of language
processors [2].

Program reduction presents significant challenges for two primary reasons. First, the original
bug-triggering programs can be considerably large since many of these programs are generated
through fuzz testing [20, 29, 41], and empirical evidence suggests that configuring a fuzzer to
generate larger programs can enhance bug-finding performance [41]. Meanwhile, a language
processor is typically extremely complex, and thus reducing the program by directly analyzing
which part is essential for triggering the bug is almost impossible. Second, programs are highly
structured and adhere to complex, strict grammatical rules. Naively removing parts of a program
using algorithms like ddmin [42] often produces syntactically invalid code, which is unlikely to
reproduce the original bug, leading to inefficient and ineffective reduction.

To address these challenges, many trial-and-error, syntax-aware program reduction techniques
have been proposed over the past decades [8, 19, 25-27, 30, 39]. One notable example is Hierarchical
Delta Debugging (HDD), proposed by Misherghi and Su [25]. HDD builds on the ddmin reduction
algorithm but introduces a hierarchical approach: instead of directly applying ddmin to the program,
it first transforms the program into a tree representation (e.g., an abstract syntax tree) and then
applies ddmin at each level of the tree in a top-down manner. This hierarchical strategy significantly
improves both the effectiveness and efficiency of reduction in cases involving highly structured
inputs. However, HDD still tends to generate a substantial number of syntactically invalid programs
during the reduction process, which hampers its overall performance. This issue was addressed by
Perses, a syntax-guided program reducer [30]. Perses additionally takes as input the formal syntax
of the programming language and applies only syntax-guided transformations (i.e., transformations
that preserves the syntactical validity) during reduction. By doing so, Perses avoids generating
syntactically invalid programs, leading to improved performance compared to HDD.?

Prior Syntax-Guided Transformations. Perses introduces two syntax-guided transformations:
Compatible Substructure Hoisting and Quantified Node Reduction. Compatible Substructure Hoist-
ing replaces a given syntactical structure in P with one of its sub-structures (i.e., a descendant
of the given syntactical structure in the parse tree). For instance, it can transform the expres-
sion a+b into one of its sub-expressions (e.g., a or b). Quantified Node Reduction uses ddmin to
reduce syntactically parallel or repeated structures, such as a sequence of statements or a list
of function parameters, These syntax-guided transformations preserve syntactical validity, have

!Canonicalization aims to reduce different programs that trigger the same bug to an identical program or a set of programs
with minimum differences. This concept is further discussed in § 2.1.

?Besides the language-agnostic reducers mentioned in the paragraph, there are many language-specific reducers such
as C-Reduce and ddSMT [19, 26, 27]. These reducers are not only syntax-awared but also specifically optimized for the
target languages. However, these tools require considerable language-specific knowledge and cannot be well generalized
to reducing programs in other languages. In this paper, the focus is improving language-agnostic program reduction
approaches, and thus these language-specific approaches are not discussed in detail.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 275. Publication date: October 2025.

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:3

been shown to be highly effective, and have since been adopted by various program reduction
techniques [7, 8, 34, 39, 45].

The Missing Piece. Despite their success, the two prior syntax-guided program transformations
are inherently limited because, given a structure in P, many smaller yet syntactically valid structures
cannot be generated. Relying solely on these two transformations for program reduction excessively
prunes the search space P and can ultimately result in inadequate reductions [39]. For instance,
consider a function invocation expression f(el,e2,e3) in a C program P where the arguments
el, e2 and e3 generally represent three expressions rather than just variables, and assume that
evaluating these three expressions altogether is necessary to trigger a bug, while calling f is
irrelevant to the bug. Neither Compatible Substructure Hoisting nor Quantified Node Reduction can
reduce this expression. Compatible Substructure Hoisting attempts to reduce the entire expression
by replacing it with one of its sub-expressions, i.e., el, e2, or e3. Note that according to the C
language, the syntactical structure of el, e2, e3 in the parse tree of calling f is an argument list but
not an expression. Thus, Compatible Substructure Hoisting cannot replace the entire expression
with el, e2, e3. Quantified Node Reduction attempts to reduce the syntactically parallel structure
(i.e., the argument list) with the ddmin algorithm (e.g., Quantified Node Reduction can possibly
reduce the expression to f(el)). Nevertheless, there exist other transformation strategies that still
preserve syntactic validity. For example, deleting the function name f and the parentheses leaves
el,e2,e3, which is also a valid expression in C. Although this transformation, missed by both
Compatible Substructure Hoisting and Quantified Node Reduction, only involves deleting three
tokens, it can open up further reduction opportunities across the entire program P by eliminating a
use of the function f. Namely, if f is unused elsewhere, its definition can also be entirely removed.
Structure Form Conversion. To mitigate the limitations of Compatible Substructure Hoisting
and Quantified Node Reduction, in this paper, we propose a novel syntax-guided transformation
named Structure Form Conversion (SFC). SFC is designed to transform a given syntactic structure
into others forms that preserve the syntactical validity of whole programs. For instance, given the
expression f(el,e2,e3), SFC attempts to transform it to other forms of expressions defined by
the formal syntax, such as the previously mentioned expression el, e2, e3. Unlike Compatible
Substructure Hoisting and Quantified Node Reduction, converting a structure to another form does
not ensure the resulted structure is smaller than the original one, and the number of structures that
can be possibly generated is vast or even infinite. To tackle this challenge, we establish five guiding
principles for SFC based on the chracteristics of program reduction, in order to constrain the
space of generated programs. Additionally, we design three reduction methods—Smaller Structure
Replacement, Identifier Elimination, and Structure Canonicalization—to effectively apply SFC in
program reduction. Specifically, Smaller Structure Replacement reduces a program by replacing
structures with smaller, compatible ones generated by SFC. Identifier Elimination strives to create
reduction opportunities by utilizing SFC to eliminate the uses of an identifier, in the hope of
successfully removing the corresponding definition or initialization of the identifier. While these two
methods focus on enhancing minimization, Structure Canonicalization emphasizes canonicalization.
It transforms structures into the most canonical forms with SFC, making duplicate programs
(i.e., those that trigger the same bug) more likely to be reduced to identical or similar forms. By
integrating these three reduction methods into existing language-agnostic program reducers, Perses
and Vulcan [39], we develop two prototype reducers: SFCperses and SFCyyican.

To evaluate the performance of SFC in minimization and canonicalization, we utilize two bench-
mark suites, Benchmark-Reduce and Benchmark-Cano, respectively. Benchmark-Reduce con-
tains 20 C benchmarks from Perses [30], 20 Rust benchmarks partially from Vulcan [39], and 205
SMT-LIBv2 benchmarks from ddSMT?2.0 [19]. Each benchmark consists of a program triggering

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 275. Publication date: October 2025.

275:4 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

a unique real-world crash or miscompilation bug. In contrast, Benchmark-Cano contains many

duplicated C programs that triggers the same bug, including 2,501 programs triggering 11 unique

crash bugs in GCC 4.3.0, and 1,295 programs triggering 35 miscompilation bugs also in GCC 4.3.0 [2].

Experiments with Benchmark-Reduce show that the results of SFCpeses is 36.82%, 18.71%, and

41.05% smaller than those of Perses on the C, Rust, and SMT-LIBv2 benchmarks, respectively. In

terms of execution time, SFCpeses takes 3.65%, 16.99%, and 3.97X the time of Perses on average.

As for SFCyyjcan, it can produce 14.51%, 7.65%, and 7.66% smaller results than Vulcan at the cost

of 1.56X%, 2.35%, and 1.42Xx the execution time of Vulcan, respectively. Moreover, experiments

with Benchmark-Cano show that SFCperses and SFCyyjcan can reduce 442 and 435 more duplicates

(programs that trigger the same bug) to identical programs than Perses and Vulcan, respectively.

Contributions. This work makes the following contributions.

o We propose a novel syntax-guided transformation, Structure Form Conversion, complementing
to prior transformations Compatible Substructure Hoisting and Quantified Node Reduction.

e We propose three novel reduction methods to effectively and efficiently leverage SFC in pro-
gram reduction. We further implement two language-agnostic reducer prototypes, SFCperses and
SFCyulcan by integrating these methods into existing reducers.

e By conducting extensive evaluation, we demonstrate the SFCperses and SFCyyjcan significantly
outperforms Perses and Vulcan in terms of both minimization and canonicalization capability.

e For reproducibility and replicability, we have released the implementation and data at https:
//github.com/sfc-reducer/sfc-reducer.

2 Preliminary

This section provides the essential background knowledge relevant to this work.

2.1 Program Reduction

(P") = true
(3) Update program P with P’ and repeat v V

(D) Perform A Query
— — — —
— Transformation f

Program P W Oracle ¥

(2) Obtain a new P’ by performing a transformation P(P') = false

Fig. 1. A typical workflow of a program reducer.

Let P denote the search space of program reduction, namely, the set of all possible programs
during reduction. Given an oracle y : P — {true, false} that can verify whether a program
triggers a specific bug, and a bug-triggering program P € P s.t. #(P), program reduction aims
to output a minimized bug-triggering program P,,;,, by keeping searching for another program
P’ € Ps.t. y(P") AIP’| < |P|,(|P] is the size of program P). In this paper, we use the number of tokens
as the metric for measuring program sizes. This metric can abstract away details like identifier
length and whitespace, which do not fundamentally affect the complexity of a program [25].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 275. Publication date: October 2025.

https://github.com/sfc-reducer/sfc-reducer
https://github.com/sfc-reducer/sfc-reducer

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:5

Additionally, using number of tokens as the metric is also widely adopted in prior closely related
studies [25, 30, 39].

Canonicalization. In addition to minimizing bug-triggering programs, another important
and highly desired feature of program reduction is canonicalization [10, 24]. Ideally, a perfectly
canonicalizing reducer can reduce all duplicates (different programs that trigger the same bug) to
an identical program. However, achieving perfect canonicalization is impractical [2, 10]. Therefore,
a more attainable goal is often pursued: given a set of duplicates, the program reducer should
minimize the differences among them as much as possible and reduce them to a minimal set of
unique programs. This canonicalization capability is highly valuable in practice. For example,
during a large-scale automated testing campaign for a language processor, a significant amount of
bug-triggering programs may be generated. In such a case, a highly canonicalizing reducer could
eliminate most duplicates and help address the fuzzer taming problem [2], i.e., rank bug-triggering
programs so that those triggering distinct bugs appear early in the list. From a debugging perspective,
canonicalization can reduce the need for developers to examine numerous duplicates that vary
only in unimportant ways, thereby simplifying and accelerating the debugging process [10].
Typical Workflow. Program reduction is typically a trial-and-error process. As shown in Figure 1,
a program reducer first performs a transformation f : P — P to the original program P and obtains
a different program P’ (step). If P’ does not trigger the same bug as P does (i.e., /(P’) = false),
P’ is discarded and the reducer will attempt to obtain another different program by performing
another transformation and repeat the process (step @). Otherwise, if {/(P’) = true, which means
a smaller program is successfully found, the reduction continues by treating P’ as the original
program P and searching for the next smaller program (step 3®).

2.2 Syntax of Programming Languages

1 expr := primary_expr kleene_comma_expr expr:2
2 expr := primary_expr
LPAREN optional_arg_list RPAREN (optional arg_fist:1)
3 kleene_comma_expr := comma_exprx f arg_l‘isl:1
4 comma_expr := COMMA primary_expr
5 primary_expr := ID |primary7expr:1 || kleene_comma_expr:1 |
6 primary_expr := LPAREN expr RPAREN ‘
7 optional_arg_list := arg_list? el comma_expr:1 comma_expr:1
8 arg_list := primary_expr kleene_comma_expr
9 ID := [a-zA-Z][a-zA-Z0-9_]x ,1primary_expr:1| ,]primary_expr:1|
10 LPAREN := ' (' | \
11 RPAREN := ') o2 e3
12 COMMA := ',° (b) An example parse tree that represents the expres-

sion f(el,e2,e3) based on the grammar shown in
(a) An example CFG that defines a language of simple Figure 2a. For simplicity, in the example, el, e2, and
expressions. The bolded expr is the start symbol. €3 are simply three variables.

Fig. 2. An example CFG and an example parse tree.

The syntax of a programming language is a set of rules that define the valid textual structure
of programs written in this language. Typically, the syntax of a programming language can be
formally expressed with a context-free grammar (CFG). A CFG G consists of four components:
a finite set of nonterminal symbol N, a finite set of terminal symbol 3, a finite set of production
(or rewrite) rules R, and a start symbol S € N, ie, G = (N, 2, R, S). The language defined by a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 275. Publication date: October 2025.

275:6 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

CFG G is called a context-free language (CFL), denoted as L(G). Figure 2a shows an example CFG
that formally defines a language of simple expressions, and Figure 2b shows the parse tree of an
example expression, f(el,e2,e3), which conforms to the example CFG.

Nonterminal Symbol. A nonterminal symbol v € N represents a syntactic structure in the
language defined by the corresponding CFG. Each non-leaf sub-tree st (a sub-tree whose height is
not 0, also referred to as a structure in this paper) in the parse tree of a program corresponds to a
nonterminal symbol v in the grammar of the language, denoted as st + v in this paper. For example,
in Figure 2b, sub-trees rooted at nodes marked with box correspond to the nonterminal
symbol primary_expr. In Figure 2a, nonterminal symbols are all named with lowercase words
while terminal symbols are uppercased.

Terminal Symbol. While nonterminal symbols can be rewritten to other symbol(s), a terminal
symbol ¢ € X directly maps to character(s) (a token) that appears in the actual textual content and
cannot be expanded to other symbols. Terminal symbol are either defined with constant character(s)
or regular expressions. They form the alphabet of the language defined by the grammar.
Production Rule. A production rule r € R defines how a nonterminal symbol can be rewritten.
Its left-hand side is the nonterminal symbol to be defined and the right-hand side is a sequence
of symbols (either terminal or nonterminal symbols). Note that a nonterminal can have multiple
different production rules. In the example grammar, there are eight production rules (line 1-8),
and the nonterminal expr has two different production rules (i.e., [Rexpr| = 2), which means it
can be rewritten in two different ways. Given a non-leaf sub-tree st and the nonterminal v that st
corresponds to, we can further map st to a production rule r € R, (denoted as st > r), indicating
that the st is derived by following the production rule r. In Figure 2b, it can be observed that each
non-leaf node is written in the format of nonterminal:index. The index after the colon is the
index of the production rule to which the sub-tree corresponds. For example, the root of the entire
parse tree is expr: 2, indicating the parse tree corresponds to the second production rule of expr.
Start Symbol. The start symbol of the CFG is a special nonterminal symbol. All the strings that
can be represented by the start symbol (i.e., can be possibly derived by applying a sequence of
production rules starting from the start symbol) form the language defined by the grammar. In the
example grammar, expr is defined to be the start symbol.

Normal Forms of CFGs. The CFG can be written in various ways to represent a certain CFL. To
impose specific restrictions thus facilitating certain parsing algorithms or theoretical analysis on
top of the grammar, many normal forms of CFGs are proposed, such as Chomsky Normal Form
(CNF) [3] and Greibach Normal Form (GNF) [9]. In this work, we make the CFG conform to Perses
Normal Form (PNF), which is proposed and utilized by the previously proposed syntax-guided
program reducer, Perses [30]. PNF requires that each production rule is in one of the following
forms: (1) A == B;By...B, (2) A == By* (3) A == Bj+ (4) A ::= B;?, and (5) S == €. Symbol A
represents any nonterminal symbol, B; (Vi € [1, n]) represents any nonterminal symbol or terminal
symbol, and S represents the start symbol. The example grammar in Figure 2a conforms to PNF.

2.3 Syntax-Guided Transformation

Syntax-guided transformations are widely used in the process of program reduction to improve its
effectiveness and efficiency [27, 30]. The insight behind this is that invalid programs are unlikely
to trigger the bug that the original program reveals, and avoiding generating invalid programs
can significantly shrink the search space of program reduction, thus saving considerable reduction
time. The following definition formally defines syntax-guided transformations.

Definition 2.1 (Syntax-Guided Transformation). Assuming P4 is the set of all syntactically valid
programs, a transformation f is a syntax-guided transformation if and only if VP € Pygig, f (P) € Poaiig.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 275. Publication date: October 2025.

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:7

Two syntax-guided transformations are adopted by prior language-agnostic program reducer [30].
Compatible Substructure Hoisting: Given a tree, this transformation attempts to simplify the tree
by hoisting one of its compatible descendants. A descendant is considered to be compatible if the
nonterminal that the root corresponds to can be directly or indirectly rewritten by the nonterminal
of the descendant. In Figure 2b, the entire parse tree represents f (el,e2, e3) and corresponds to the
nonterminal expr. Among all its descendants, four nodes corresponding to primary_expr
are compatible, since according to line 1 in Figure 2a, expr can be rewritten by primary_expr
(kleene_comma_expr can be empty). Thus, eventually, Compatible Substructure Hoisting attempts
to simplify the original parse tree by reducing it to each four compatible descendant (f, el, e2, and
e3).

Quantified Node Reduction: This transformation aims to simplify trees that correspond to a produc-

tion rule in the form of A ::= By or A ::= B+, or A := By ?. For example, the sub-tree rooted at the
blue node in Figure 2b corresponds to the production rule kleene_comma_expr := comma_exprx
which is in the form of A ::= By *. For such a sub-tree, all its children can be deleted without breaking
the syntax; thus Quantified Node Reduction attempts to simplify the tree by applying ddmin to its
child list. For trees corresponding to production rules like A ::= By+, Quantified Node Reduction
additionally ensures that at least one child remains, and for trees corresponding to A ::= B;?,
Quantified Node Reduction simply attempts to remove the single child.

3 Methodology

This section introduces Structure Form Conversion (SFC) (§ 3.1), how to effectively and efficiently
apply SFC to the program reduction task (§ 3.2), and the implementation (§ 3.3)

3.1 Structure Form Conversion (SFC)

SFC converts a structure to another form. For example, given a function invocation expression
f(el,e2,e3) in a C program, SFC may convert it to el, e2, e3. Such a conversion complements
with Compatible Substructure Hoisting and Quantified Node Reduction and may create extra
reduction opportunities.

Algorithm 1 describes the general idea of SFC. Given the formal syntax of the programming
language G* and a sub-tree st in the parse tree of the program written in the specific language,
SFC can produce a list of transformed sub-trees T that correspond to the same nonterminal as the
original sub-tree st. Specifically, SFC first obtains the nonterminal v that the subtree st corresponds
to, i.e, st = v (line 1). Next, SFC retrieves all the production rules of the nonterminal v in the
grammar G (line 2). Then, for each production rule, SFC builds a list of new sub-trees (line 3-5),
and eventually all the sub-trees built based on the production rules are returned (line 6).

Algorithm 1: The SFC Algorithm - SFC(st, G, pred)

Input :st, the sub-tree to be transformed. G, the formal syntax of the programming language.
pred, an additional predicate for matching compatible sub-trees

Output :A list of transformed sub-trees T

T « [] ; v « the nonterminal symbol that st maps to, i.e., st > 0

[

N

R, « the production rules for v
fori € [0,R,.size() — 1] do
if st — Ry[i] then continue // skip the production rule that the original sub-tree corresponds to
L Tr,[i] < buildSubTreesForTheRule(R,[i], st, pred); T.addAll(Tg,(;])

»ow

o

return T

=N

3In the algorithm, it is assumed that the grammar is in Perses Normal Form (PNF).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 275. Publication date: October 2025.

275:8 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

3.1.1 Design Principles. The most essential and challenging part of SFC is the algorithm for building
sub-trees based on a given production rule. Making this algorithm effective and efficient for program
reduction faces two main challenges. First, given a production rule, there is often an infinite (or at
least extremely large) number of valid sub-trees that can be generated. Therefore, the algorithm
needs to be properly guided and restricted. Otherwise, it will be too expensive to be feasible. Second,
randomly generated sub-trees may render the semantics of the program invalid even though they
preserve the syntactic validity. Although previous approaches like Perses faces the same problem
as they cannot ensure semantic validity during the reduction, randomly generating sub-trees can
amplify this problem and thus significantly impair the reduction performance. For example, a
randomly generated expression is very likely to contain a random identifier which is not defined in
the program. In such a case, the program after the replacement is not likely to trigger the same bug
as the language processor probably terminates when it detect this semantic error in an early stage.
To overcome the aforementioned two challenges, we propose five principles to restrict the
sub-tree building algorithm. The insight behind all the principles is that the fewer changes are
made, the more likely the bug-triggering property can be preserved. In other words, instead of
aggressively simplifying the problem in a single step, gradually reducing it through small steps is
more likely to succeed, especially since SFC is designed to operate on programs that have already
been reduced to a relatively small size. Therefore, the essence of these principles is to avoid making
excessive and unnecessary changes to the original sub-trees.
Principle 1: Do not randomly generate any structure. Reuse the structures in the original sub-tree
instead. This principle is to avoid generating numerous sub-trees that are unlikely to replace the
original sub-tree without making the program no longer trigger the same bug. For example, given a
sub-tree that represents f (el,e2,e3), generating a new expression with some random identifiers
is usually meaningless as such an expression would probably lead to an undefined identifier error.
Principle 2: A structure in the original sub-tree can only be reused once. This principle further
reduces the number of sub-trees that can be possibly generated. Meanwhile, it can also reduce the
difference between the generated sub-tree and the original sub-tree, thus increasing the possibility
that replacing the original sub-tree with the new one makes the program still trigger the same bug.
Principle 3: The reused structures should remain the same order as they appear in the original sub-tree.
Similar to principle 2, this principle narrows down the search space of the algorithm and makes
the generated sub-trees be more similar to the original sub-tree.
Principle 4: The reused structure should be as high-level as possible. This principle aims to avoid
generating sub-trees that are aggressively simplified. Meanwhile, adhering to this principle makes
SFC more orthogonal to Compatible Substructure Hoisting. It makes SFC focus on converting
the structure to another form and delegates the simplification task to the subsequent Compatible
Substructure Hoisting.
Principle 5: Reuse as many structures as possible. When the input production rule is in the form of
A = Byx or A ::= B+, the algorithm needs to decide the number of structures that correspond to
By the generated sub-trees should contain. This principle dictates the algorithm to maximize this
number while not breaking other principles. Similar to principle 4, this principle can avoid gener-
ating aggressively simplified sub-trees. Meanwhile, it makes SFC more orthogonal to Quantified
Node Reduction.

3.1.2 Sub-Tree Building. Algorithm 2 describes the sub-tree building algorithm of SFC. This algo-
rithm takes three inputs, i.e., a sub-tree to be transformed st, a production rule r, and an additional
predicate for matching sub-trees (this input is for identifier elimination and will be discussed in
§ 3.2.2). The output of the algorithm is a list of sub-trees that are generated based on the input
production rule r. Recall that in PNF, the right hand side of a production rule can be a sequence

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 275. Publication date: October 2025.

Boosting Program Reduction with the Missing Piece of Syntax-Guided Transformations 275:9

Algorithm 2: The Sub-Tree Building Algorithm — buildSubTreesForTheRule(r, st, pred)

Input :st, the sub-tree to be transformed. r, the production rule based on which the sub-tree is built.
pred, an additional predicate for matching compatible sub-trees
Output :A list of built sub-trees T
1 T e
2 if The form of the production ruler is A ::= By* or A ::= B1+ or A := B;? then
3 s « the symbol in the right hand side of the production rule

4 compatibleTrees «— findCompatibleSubTrees (s, st, pred)

5 if compatibleTrees.size() == 0 then return []

6 if s is followed by an optional quantifier (?) then

7 foreach ct € compatibleTrees do

8 if 3ct’ € compatibleTrees, s.t. ct is a descendant of ct’ then continue // Principle 4
L t' « a subtree built based on r by resuing ct; T.append(¢’)

10 else // s is followed by a Kleene Star (*) or a Kleene Plus (+)
11 ¢’ « a subtree built based on r by reusing all highest-level compatible sub-trees in compatibleTrees
T.append(t’)

12 else // The form of the production rule r is A == By B;...B,,

13 symbolList « all the symbols in the right hand side of the production rule r

14 uniqueSymbols « symbolList.toSet ()

15 symbolToCompatibleMap < an empty map

16 foreach s in uniqueSymbols do

17 if s is a terminal and is defined with fixed text then continue // No need to match for constants
18 else

19 compatibleTrees « findCompatibleSubTrees (s, st, pred)

20 n « the number of symbol s in symbolList

21 if n > compatibleTrees.size() then return []

22 symbolToCompatibleMap[s] « all n-combinations of compatibleTrees

// symbolToCompatibleMap now records all combinations of compatible subtrees for each unique symbol

23 reusings « the cartesian product of symbolToCompatibleMap[s] of each unique symbol s

24 adoptedReusings « all elements of reusings in which all subtrees are independent and as high-level as
possible // Adhere to principle 2 and 4

25 foreach reusing in adoptedReusings do

26 L t’ < a subtree built based on r by resuing subtrees in reusing; T.append (¢’)

27 return T

of symbols or a single symbol followed by a kleene star (*), or a kleene plus (+), or an optional
quantifier (?). ¢ For different forms of production rules, the way to build sub-trees are different.

Building for Production Rules with a Quantified Symbol. ~When the right hand side of the
production rule r is a single quantified symbol, the algorithm first extracts the single symbol s
(line 3), and then searches for all the compatible sub-trees in st, i.e., the tree to be transformed
(line 4). If no compatible st is found, meaning no sub-tree can be reused for the building, the
algorithm simply returns an empty list, indicating no sub-tree can be built (line 5). Otherwise,
the algorithm builds sub-trees according to the type of quantifier that follows the symbol s. If the
symbol s is followed by an optional quantifier (?), the algorithm traverses the found compatible
sub-trees. For each compatible sub-tree, if it is at the highest level ° (line 8), a transformed sub-tree

“The special form S ::= e for including empty string in the defined language is omitted here.

5 A compatible node is at the highest level if none of its ancestors is compatible. According to the fourth aforementioned
design principle, the algorithm is designed to prefer reusing node as high-level as possible.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 275. Publication date: October 2025.

275:10 Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, and Chengnian Sun

is built by simply reusing the compatible sub-tree (line 6-9). If the symbol s is followed by an Kleene
star (*) or Kleene plus (+), the algorithm only builds one transformed sub-tree by reusing all the
highest-level compatible sub-trees ° (line 10-11).

Builidng for Production Rules with a Sequence of Symbols. 1If the production rule r is in
the form of A ::= By B,...B,, the algorithm needs to find a compatible sub-tree for each symbol in
the right hand side of r (except terminal symbols with constant text such as COMMA and LPAREN)
to reuse. In other words, a sequence of compatible sub-trees with which all the symbols in the
right hand side of r can have a compatible sub-trees to reuse (such a sequence is referred to as a
matching for brevity) is required to build one transformed sub-tree. To illustrate the algorithm in this
scenario, we describe the steps with a running example. We use the parse tree shown in Figure 2b
as the input of the running example, let the input production rule be expr := primary_expr
kleene_comma_expr (line 1 in Figure 2a), and suppose there is no additional predicate.
Initialization: First, the algorithm initializes symbolList with all the symbols on the right hand
side of the production rule r (line 13), and extracts all the unique symbols to a set uniqueSymbols
(line 14). In the running example, both symbolList and uniqueSymbols contain primary_expr and
kleene_comma_expr. It should be noted that in practice, a symbol can appear multiple times in
the right hand side of a production rule. Next, symbolToCompatibleMap, a map that maps each
unique symbol to all the possible matchings, is initialized with an empty map (line 15).

Searching for Compatible Sub-Trees: The algorithm traverses uniqueSymbols. For each unique
symbol s, if it is a terminal symbol and is defined with constant text, then no compatible sub-tree is
needed and the algorithm moves to the next unique symbol (line 17). Otherwise, the algorithm
searches for all the compatible sub-trees for the symbol s (line 19). In the running example, the
symbol primary_expr has four compatible sub-trees, whose roots are marked with and
the symbol kleene_comma_expr has one compatible sub-tree, whose root is marked with blue.
Obtaining Matchings for Each Unique Symbol: Next, the number of appearances n of this unique
symbol is retrieved (line 20). Recall that to build a transformed sub-tree, each symbol needs a
compatible sub-tree to reuse. Therefore, the number n is also the required number of sub-trees
to form a matching for the unique symbol. If the total number of found compatible sub-trees
is smaller than n, the algorithm returns an empty list, meaning no transformed sub-tree can
be generated (line 21). Otherwise, all n-combinations of the found compatible trees are store as
matchings in symbolToCompatibleMap with the corresponding unique symbol s as the key. In the
running example, both unique symbols only appear once in the production rule. Thus, the number
n for both unique symbols equals one, and the matchings for these two unique symbols are the
1-combinations of their compatible sub-trees. Specifically, there are four matchings for the unique
symbol primary_expr and one matching for kleene_comma_expr.

Obtaining Mat