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Abstract
A high-quality program generator is essential to
effective automated compiler testing. Engineer-
ing such a program generator is difficult, time-
consuming, and specific to the language under test-
ing, thus requiring tremendous efforts from human
experts with language-specific domain knowledge.
To avoid repeatedly writing program generators for
different languages, researchers recently proposed
a language-agnostic approach based on deep learn-
ing techniques to automatically learn a program
generator (referred to as DLG) from existing pro-
grams. Evaluations show that DLGs outperform
Language-Specific Program Generators (LSGs) in
testing compilers.
However, we argue that it is unfair to use LSGs as
baselines to evaluate DLGs. LSGs aim to validate
compiler optimizations by only generating compil-
able, well-defined test programs; this restriction in-
evitably impairs the diversity of the language fea-
tures used in the generated programs. In contrast,
DLGs do not aim to validate the correctness of
compiler optimizations, and its generated programs
are not guaranteed to be well-defined or even com-
pilable. Therefore, it is not surprising that DLG-
generated programs are more diverse in terms of
used language features than LSG-generated ones.
This study revisits the evaluation of DLGs, and pro-
poses a new, fair, simple yet strong baseline named
Kitten for evaluating DLGs. Given a dataset con-
sisting of human-written programs, instead of using
deep learning techniques to learn a program gener-
ator, Kitten directly derives new programs by mu-
tating the programs in the dataset. Extensive exper-
iments with more than 1,500 CPU-hours demon-
strate that the state-of-the-art DLGs fail to compete
against such a simple baseline: 3 v.s. 1,750 hang
bugs, 1 v.s. 34 distinct compiler crashes. We believe
that DLGs still have a large room for improvement.

1 Introduction
Compilers are among the most important, fundamental sys-
tem software. Every program, no matter whether it is an op-

erating system or application, has to be compiled by a com-
piler from source code into binary executable, so that the pro-
gram can be executed by a computer. Hence the reliability of
compilers is critical, especially in the era of digitalization. To
this end, automated compiler testing is an active research area
which aims to automatically find bugs in production compil-
ers. Various language-specific methodologies [Yang et al.,
2011; Livinskii et al., 2020] have been proposed to gener-
ate random programs to test whether a compiler can correctly
compile these programs; if the compiler crashes or hangs (i.e.,
the compilation process does not terminate normally), or the
compiled binary behaves differently from the source code,
then a compiler bug is found. For example, Csmith [Yang
et al., 2011] is designed to randomly generate well-defined
C programs1 and can generate only C programs. Csmith
has helped find hundreds of bugs in GCC and LLVM, and
therefore has been integrated into the daily testing routine of
GCC. However, it is non-trivial, time-consuming, and labor-
intensive to design and implement such a language-specific
program generator (referred to as LSG), which requires com-
prehensive language-specific domain knowledge to design
correct, subtle program generation rules.

To minimize the cost of engineering a random program
generator for compiler testing, researchers recently resorted
to deep learning techniques [Liu et al., 2019; Cummins et
al., 2018]. Such a deep learning-based program generator
(referred to as DLG) attempts to automatically learn the syn-
tactic and semantic rules of a programming language from
human-written programs using a sophisticated deep learn-
ing model. Later, the DLG uses the trained model to gen-
erate programs to test the compiler of this language. Creat-
ing a DLG does not involve human efforts to encode domain
knowledge into program generation rules, and this approach
is demonstrated to be effective in compiler testing compared
to LSGs. For example, DeepFuzz [Liu et al., 2019] claimed
that it triggers more code paths in GCC than Csmith.

However, we argue that it is unfair to use LSGs as the base-
line to evaluate DLGs. An LSG usually has complex gen-
eration rules to ensure the generated programs are compil-
able and well-defined, in order to validate whether compilers

1A program is well-defined if the program does not contain any
undefined behaviors; and an undefined behavior is a behavior that is
not defined in the C language standard [IOS, 2005].



correctly optimize and produce binary code. These genera-
tion rules inevitably restrict the diversity of language features
used in the generated test programs. For example, Csmith-
generated programs only cover a small subset of the C lan-
guage features, and mainly exercise the optimization algo-
rithms in compilers but not the front end of compilers that
handles lexing and parsing. By contrast, existing DLGs can-
not warrant well-defineness or even compilableness, and may
use arbitrary language features depending on the programs in
the dataset. Therefore, it is not surprising to see that LSG-
generated programs trigger lower code coverage in compilers
than DLG-generated programs, especially code coverage in
the front end of compilers; in terms of bug detection ability,
it is also expected that LSGs such as Csmith do not trigger
more bugs than DLGs because LSGs have been heavily used
by various compiler communities in the past (e.g., Csmith has
been used for years on a daily basis) and their bug detec-
tion ability has saturated. Overall, using LSGs as baselines
to evaluate DLGs likely leads to biased conclusions.
Kitten. To help researchers fairly evaluate DLGs with
proper baselines, this paper proposes Kitten, a simple yet
strong, fair baseline. Kitten is a language-agnostic program
generation technique that supports abundant language fea-
tures. Same as a DLG, Kitten requires a dataset consisting
of programs. However, instead of the time-consuming step
of training a deep neural model to create a DLG, Kitten di-
rectly generates new test programs by mutating the programs
in the dataset. Specifically, given a program p in the dataset,
Kitten randomly mutates the tokens of p or nodes in the parse
tree [Aho et al., 2006] of p, and outputs the mutation result
as a new test program.2 Kitten has obvious advantages over
both LSGs and DLGs. Kitten is much easier to implement
than LSGs as it does not need domain knowledge to carefully
design the rules to generate programs; Kitten does not have
the constraints defined by Csmith or similar work [Livinskii
et al., 2020], and thus supports diverse language features to
comprehensively test compilers. Compared to DLGs, Kitten
does not need to train a deep learning model, thus saving
significant time and computational resources for training and
generation; moreover, Kitten is interpretable, and extensible
to support new mutation strategies.
Re-evaluating DLGs Using Kitten. Using Kitten as the
baseline, we conducted a comprehensive experiment to em-
pirically revisit the performance of two representative DLGs,
i.e., DeepSmith [Cummins et al., 2018] and DeepFuzz [Liu
et al., 2019]. Considering the simplicity of Kitten, it is rea-
sonable to expect that DLGs should at least perform similarly
to Kitten. However, with 1,500-CPU/GPU-hour experiment
and analysis, the results show that the performance of ex-
isting DLGs is far from this simple, reasonable objective in
three perspectives: bug detection ability, the diversity of lan-
guage features in the generated programs and code coverage
of compilers. In 72-hour testing on GCC, DeepSmith triggers
3 hang bugs and 1 distinct crash, while Kitten triggers 1,750

2Parsing a program into a list of tokens or a parse tree can be
easily done with a parser generator such as Antlr [Antlr, 2022a], and
the grammars of most main-stream programming languages are also
available online [Antlr, 2022b].

hang bugs and 34 distinct crashes. The generated programs
by Kitten cover 21,053 more lines and 26,853 more branches
than the dataset, which is at least 2x as the one generated by
DeepFuzz and DeepSmith. Moreover, the numbers of fea-
tures leveraged in the generation by DeepSmith and Deep-
Fuzz are also only around 64% of the one by Kitten. We
believe that DLGs still have much room for improvement to
compete against the simple baseline Kitten.
Contributions. We make the following contributions.
1. We identify that the evaluations of the state-of-the-art

DLGs are biased due to the use of improper baselines.
2. We propose Kitten, a simple yet strong language-agnostic

program generator as a fair baseline for evaluating DLGs.
3. We empirically demonstrate that DLGs have much room

for improvement as they fail to compete with Kitten.
4. We make Kitten publicly available at https://doi.org/10.

5281/zenodo.7946825 to benefit future research on DLGs.

2 Preliminary
2.1 Compilers and Compiler Bugs
Given a program p, a compiler translates the source code of p
into binary code, so that p can be executed by a computer. A
typical compilation process consists of three stages. First, the
front end of the compiler parses the source code and builds an
intermediate representation of p. Second, the middle end per-
forms various optimizations like dead code elimination on the
intermediate representation to make p run faster and use fewer
resources. Lastly, the back end converts the optimized inter-
nal representation into binary code. Bugs can occur in any of
the aforementioned stages in a compiler [Yang et al., 2011;
Sun et al., 2016b; Livinskii et al., 2020; Le et al., 2015].
There are three major types of compiler bugs:
Crash. A compiler crashes, if it aborts the compilation
process due to an error inside the compiler when compiling a
program. For example, if a segmentation fault occurs when
GCC is compiling a program, it aborts with an error message
internal compiler error: Segmentation fault.
Hang. A hang (timeout) is a compiler bug when the com-
piler runs indefinitely to compile a program.
Miscompilation. Given a well-defined program p, a com-
piler miscompiles p, if the compiled binary of p is not seman-
tically equivalent to p and thus behaves differently from p.
This type of compiler bugs is referred to as miscompilation.

2.2 Program Generation for Compiler Testing
Automated compiler testing uses a program generator to auto-
matically generate random test programs, and checks whether
the compiler under test can correctly compile the generated
programs. In this paper, we categorize program generators
into the following two classes.

LSG: Language-Specific Program Generator
LSGs generate programs by following a set of language-
specific rules that are meticulously crafted by human ex-
perts based on the domain knowledge of the language un-
der test. Csmith [Yang et al., 2011] is one representative
LSG. It generates well-defined C programs that conform to

https://doi.org/10.5281/zenodo.7946825
https://doi.org/10.5281/zenodo.7946825
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Figure 1: Workflow of using a DLG for testing a compiler.

the C language specification [IOS, 2005], in a top-down man-
ner from a translation unit, functions and statements down to
expressions. Each time a language construct is being gener-
ated, Csmith applies the generation rules to ensure that the
generated program is compilable and well-defined. Several
following studies extend this idea to other languages, such
as OpenCL [Lidbury et al., 2015] and CUDA [Jiang et al.,
2020].

Despite the success of LSGs in finding compiler bugs, one
major limitation of LSGs is that engineering a LSG requires
language-specific knowledge to design generation rules and
strategies. For example, to adapt the idea of Csmith to a
new language, developers need to comprehend each feature of
the new language and engineer the corresponding generation
rules to ensure that the generated programs are compilable.
Considering the complexity of programming languages, such
work is labor-intensive and time-consuming, and the gener-
ation rules cannot be easily generalized to other languages.
Further, it is challenging to take into consideration all lan-
guage features and their possible combinations when design-
ing generation rules. In fact, most LSGs only support a subset
of language features and thus the expressiveness of the gen-
erated programs is rather limited.

DLG: Deep Learning-Based Program Generator
To overcome the limitation of LSGs, researchers proposed to
use deep learning techniques to automatically learn a program
generator from existing programs. Figure 1 shows the overall
workflow of learning a DLG and applying the DLG to find
compiler bugs. From a given dataset consisting of human-
written programs, 1 a deep learning model is trained as a
DLG, which automatically learns the syntactical and seman-
tic features of the language. Specifically, the model encodes
the probability of the next token given a sequence of tokens
as a prefix. 2 The trained model generates a test program
by iteratively querying the model to compute the next token.
Specifically, starting from a prefix like int main, the DLG
samples the subsequent token from the probabilities encoded
in the trained model, until some termination tokens are gen-
erated. Then 3 the generated test program is fed to com-
pilers under test and the compilation result is checked to see
if any crash or hang bug is triggered. 4 This process is re-
peated until the time limit is reached or a sufficient number
of test programs are generated. DeepSmith [Cummins et al.,
2018] and DeepFuzz [Liu et al., 2019] are the representa-
tive DLGs, which utilize Long Short-Term Memory (LSTM)
model for training and generation. DSmith [Xu et al., 2020b]

Property DLGs LSGs Kitten

Need a set of programs for generation ✓ ✗ ✓
Language-agnostic ✓ ✗ ✓
Use arbitrary language features ✓ ✗ ✓
Warrant well-defineness/compilableness ✗ ✓ ✗
Can detect crash and hang bugs ✓ ✓ ✓
Can detect miscompilation bugs ✗ ✓ ✗

Table 1: Comparison of DLGs, LSGs, and Kitten.

and TSmith [Xu et al., 2020a] also have similar workflows.
Different from LSGs, DLGs can only be used to find com-

piler crashes and hang bugs, but not miscompilation bugs.
This is because the DLG-generated programs are not guaran-
teed to be compilable or free of undefined behaviors, and it
is difficult to automatically determine whether the generated
programs are free of undefined behaviors [Yang et al., 2011].
Table 1 summarizes the differences between DLGs and LSGs.

3 Revisiting the Evaluation of DLGs
As aforementioned, it is unfair to evaluate DLGs using LSGs
and the resulting conclusions are likely to be biased. Thus,
we aim to re-evaluate the performance of DLGs using a fair
baseline. This section describes the design of our reevalua-
tion experiment, and Kitten, a new fair baseline for evaluating
DLGs.

3.1 Evaluation Methodology
To evaluate the performance of a program generator for com-
piler testing, we invoke it to continuously generate random
programs for a certain period. After the generation, we feed
them into a compiler under test for compilation. Finally,
we measure the performance of this program generator from
three perspectives: compiler bug detection ability, diversity
of the language features in the generated programs, and code
coverage. Each perspective and its metrics are introduced
later in the corresponding sections. Since some measure-
ments may affect the compiler’s efficiency, all the measure-
ments are conducted after the program generation is finished.
For example, measuring code coverage requires instrument-
ing compilers, resulting in a longer compilation time of the
generated programs.

3.2 Selected Program Generators
We selected two representative DLGs from literature—
DeepFuzz and DeepSmith—and re-evaluated their perfor-
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Figure 2: Workflow of using Kitten for testing a compiler.

mance. They are selected for two reasons. First, they were
published in top-tier conferences of both software testing
and artificial intelligence, representing the state of the art of
DLGs. Second, their implementations are publicly available,
avoiding re-implementation and thus minimizing threats to
validity. Other work [Xu et al., 2020a; Xu et al., 2020b] is not
selected since their implementations are not publicly avail-
able. For each program generator, we followed their docu-
mentation and tried our best efforts to reproduce their results.
However, we found that the performance of DeepFuzz is not
comparable to the one mentioned in its publication. Simi-
lar issues are also raised by other developers in its reposi-
tory [Developers, 2022]. Nevertheless, since DeepFuzz and
DeepSmith have very similar workflow and architecture, we
believe DeepSmith is a reasonable representative DLG work.
We also include Csmith in our experiment, one of the most
commonly used LSGs for C compilers.

To fairly evaluate the performance of DLGs, a proper base-
line is necessary. Specifically, we are looking for a baseline
that is similar to DLGs but much simpler than DLGs. Since
such a baseline does not exist in the literature, we propose
a new, fair and simple baseline, Kitten. Kitten is similar to
DLGs except not using a DNN. Considering its simplicity, we
expect that DLGs should at least perform similarly to Kitten.

3.3 Kitten: A New, Fair and Simple Baseline

Overview. Figure 2 shows the program generation work-
flow of Kitten. Unlike LSGs, Kitten shares many similarities
with DLGs. Kitten takes as input a dataset of programs and
outputs a new set of programs iteratively. For each iteration,
it 1 randomly takes one seed program and 2 applies a ran-
dom mutation operation to the seed to create a new program.
After the program generation, 3 these programs are fed into
a compiler under test. If a crash or hang bug is triggered, a
potential bug for this compiler is detected. 4 The above pro-
cess is repeated until the time limit is reached or a sufficient
number of test programs are generated.

The entire program generation process of Kitten is
language-agnostic, especially the mutation operators. Kitten
supports diverse mutation operators and it is easy to integrate
others. We implemented two types of operators from litera-
ture [Aschermann et al., 2019; Wang et al., 2019], tree-level
and token-level mutations.
Comparison with DLGs. Given a dataset of programs,
DLGs leverage deep learning models to learn the syntactic
and semantic rules and generate new programs, while Kitten
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Figure 3: An example of a parse tree.

generates random programs by directly mutating the pro-
grams in the dataset. Other than this, DLGs and Kitten share
many commonalities as shown in Table 1: 1) generate new
programs from a set of programs; 2) language-agnostic; 3)
may use arbitrary language features ; 4) do not warrant well-
defineness or even compilableness of the generated programs;
5) focus on detecting crash and timeout bugs in compilers.

Tree-Level Mutation
Parse Tree. A parse tree is a tree representation of pro-
gram’s syntactical structure. Figure 3 shows a program and
its parse tree. There are two types of nodes in a parse tree,
i.e., non-leaf nodes (black rectangles in Figure 3) and leaf
node (red circles in Figure 3). The former one refers to a
non-terminal symbol in language grammar, e.g., expression
and statement. The latter one refers to a terminal symbol
that cannot have child nodes [Bison, 2022]. Parsing pro-
grams into parse trees can be easily done with a parser gen-
erator (like Antlr [Antlr, 2022a]) and corresponding gram-
mar [Antlr, 2022b], both of which are generally available for
common programming languages.

A tree-level mutation operator parses a seed program p to a
parse tree t and mutates a sub-tree of t to generate a new pro-
gram. The operator carefully checks the type of tree nodes
and ensures the syntactic validity of the generated programs.
In Kitten, we implemented three tree-level mutation opera-
tors [Aschermann et al., 2019; Wang et al., 2019] and they are
illustrated in Figure 4. Intuitively, these mutations randomly
replace one sub-tree st of the parse tree t with a new sub-tree
st′, under the constraint that the root nodes of st′ and st rep-
resent the same non-terminal symbol, such as an expression
and statement, The major difference among these mutations
is the source of the new subtree st′. In Sub-tree Replacement,



Program

Seed int main(){int a = 1 * 2;}
Insertion int main(){int a = 1 * 2; int}
Deletion int main(){a = 1 * 2;}
Replacement int main(){float a = 1 * 2;}

Table 2: Examples of token-level mutations.

st′ is randomly generated by Kitten using the language gram-
mar. Sub-tree Splicing randomly selects a sub-tree from other
programs in the dataset. Recursive Sub-tree Repeat attempts
to find a st′ in the ancestor of st, i.e., st is a sub-tree of st′,
and then uses st′ to replace st arbitrary times.

Token-Level Mutation

Token-level mutation operations tokenize a seed program into
a list of tokens and directly mutate this list. We implemented
three types of token-level mutation in Kitten, namely inser-
tion, deletion and replacement. As their name implies, these
mutations randomly insert, delete or replace a token in the
list. Table 2 shows the examples of the three mutations. Dif-
ferent from tree-level mutations, token-level mutations do not
guarantee that the produced mutant is syntactically correct.
This is intended since syntactically incorrect programs can
find bugs in the front end of compilers.

3.4 Miscellaneous

Compiler and Dataset. We use all program generators
to test GCC, one of the most commonly used and tested C
compilers. Following existing DLGs [Cummins et al., 2018;
Liu et al., 2019], we constructed a dataset using all the C files
of the testsuite of GCC 11.2. Kitten directly used this dataset
to generate new programs, while DeepSmith and DeepFuzz
are trained using this dataset until the loss is saturated.

Platform and Duration. To ensure each generator has the
same computation resources, each generator is deployed on
a unique GPU virtual machine on a cloud platform with the
same configuration. The longest duration used by prior work
is 48 hours in DeepSmith. We choose a longer duration, i.e.
72 hours, for a comprehensive evaluation.

Noted that the program generation efficiency is not the
primary concern in compiler testing, while effectiveness is
more important. Nevertheless, we show the number of pro-
grams generated per hour in Table 3 for reference. Deep-
Smith and DeepFuzz have significantly different generation
speeds. Such difference may be due to the aforementioned
implementation issues in DeepFuzz. Csmith takes more ef-
fort than DLG and Kitten to ensure the semantic correctness
of generated programs, resulting in a lower generation speed.
Kitten is a better baseline than Csmith for evaluating DLGs
since DLGs even do not guarantee compilableness of gener-
ated programs. Kitten has a much higher generation speed
(9.5x at least) than DLGs since it directly mutates the parse
tree or toke list, which requires less computation resource.

Generator Average Standard Deviation

DeepFuzz 138.54 9.78
DeepSmith 315,919.06 1,947.83
Csmith 2,021.32 187.72
Kitten 3,001,079.25 548,262.38

Table 3: The number of programs generated per hour.

4 Empirical Findings
This section presents the empirical findings and discusses
their implications.

4.1 Bug Detection Ability
Bug detection ability is one of the most important metrics
to measure the quality of generated programs. In this RQ,
we measured the number of bugs triggered by the program
generated by each generator. We fed all the programs into
the latest GCC development version (commit id gf7a3ab)
and measured the number of crash and hang bugs. Specifi-
cally, for crash bugs, we first leverage program reduction tool
Perses [Sun et al., 2018] to reduce the bug-triggering pro-
gram to the smallest amount of code that still replicates the
bug. Second, we analyze the stack traces and error messages
of bugs. For bugs that have similar stack traces and error mes-
sages, we cluster them into one group and then investigated
them manually. For hang bugs, as compilers do not throw
error messages when hanging, there is no automatic way to
deduplicate them and thus we only counted the total num-
bers. We did not measure the miscompilation bugs since it is
a research challenge to automatically detect such bugs [Le et
al., 2014; Livinskii et al., 2020] and neither DLGs nor Kitten
is designed to find miscompilations.
Distinct Crash. Figure 5 shows the cumulative number of
distinct compiler crashes triggered by Kitten and DeepSmith.
In total, the programs generated by DeepSmith triggered 181
crash bugs but they all have the same root cause. In other
words, DeepSmith only found one distinct crash bug. The
programs generated by Kitten trigger 2,354 crashes and 34 of
them are distinct bugs, which significantly outperforms Deep-
Smith. DeepFuzz and Csmith did not find any crash bugs.
Hang. Following the practice in compiler testing [Yang et
al., 2011; Le et al., 2014], we used 120 seconds as the timeout
threshold. DeepSmith triggered 3 hang bugs in GCC in 72
hours while Kitten triggered 1,750 hang bugs. DeepFuzz and
Csmith do not trigger any hang bug.

We reduced the bug-triggering programs using Perses [Sun
et al., 2018] and reported the discovered bugs to GCC af-
ter excluding the bugs that have already been reported re-
cently. Figure 6 shows four of the bugs found by Kitten. All
four bugs are new, and confirmed by GCC developers. Bug
105555 has been present since at least GCC 4.8.0, and was
not found by any testing technique for over nine years. Bug
105554 has been fixed by developers. Other bugs found by
Kitten are awaiting further analysis from developers. Given
that Kitten only takes three days to find four confirmed bugs,
Kitten is an effective baseline in terms of bug detection.



Sub-tree
Replacement

Sub-tree
Splicing

Generated 
new sub-tree

Another program

Sub-tree rooted by
an ancestor node

Recursive 
Sub-tree Repeat

int main() {
int a = 0;
if (a == 0) {
a = a + 1;

}
}

a = a + 1;

int main() {
int a = 0;
return 0;

}

int main() {
int a = 0;
if (a == 0) {
return 0;

}
}

int main() {
int a = 0;
if (a == 0) {
printf("Hi!");

}
}

int main() {
int a = 0;
if (a == 0) {
if (a == 0) {
if (a == 0) {
printf("Hi!");

}
}

}
}

int main() {
int a = 0;
if (a == 0) {
printf("Hi!");

}
}

Figure 4: Tree-level mutations. The parse trees are simplified for illustration, thus not exactly matching the code examples.

0 20 40 60
Hours

0

10

20

30

C
um

ul
at

iv
e 

D
is

tin
ct

 C
ra

sh
es

Kitten
DeepSmith

Figure 5: Distinct crashes. DeepFuzz and Csmith are not shown in
this figure since they do not trigger any crash bugs.

Compared to Csmith, it seems that DLGs have a good bug
detection ability since they find more bugs than Csmith. How-
ever, such an advantage is due to the unfair comparison since
Csmith has been integrated into the daily testing of GCC and
any triggered issues are expected to be fixed in development
already [Livinskii et al., 2020]. In contrast, the limitation of
DLGs in bug detection is demonstrated when Kitten is the
evaluation baseline: the number of bugs detected by DLGs
is far less than the one of Kitten, despite Kitten is a simple
baseline without using complicated DNN models.

Finding and Advice 1: The bug detection abilities of
DLGs are limited and did not outperform Kitten, a sim-
ple baseline without using DNN models. Future research
should improve the bug detection abilities of DLGs to out-
perform Kitten.

1 void foo ( ) { a s m ( ” ” : : ”m” ( ({ i f ( 8 ) ; } ) ) ) ; }

(a) GCC-100501, Crash

1 s t a t i c a ( ) ; b ( void ) { s i z e o f ( i n t [ a}
2 s t a t i c c ( ) ; d ( void ) { s i z e o f ( ( i n t [ c

(b) GCC-104764, Hang

1 a t t r i b u t e ( ( t a r g e t c l o n e s (
2 ” a r c h = core −avx2 ” , ” d e f a u l t ” ) ) )
3 a ( a t t r i b u t e ( ( v e c t o r s i z e (
4 4 * s i z e o f ( long ) ) ) ) long ) {}

(c) GCC-105554, Crash

1 a ( ) { & i ma g *( Complex *) a

(d) GCC-105555, Crash

Figure 6: Bugs found by Kitten, including their bug-triggering pro-
grams, bug ids, and symptoms.

4.2 Diversity of Language Features
To comprehensively test compilers, the generated program
should cover a diverse set of language features. Following an
existing study [Dong et al., 2022], we use the number of AST
node types as a proxy metric of language features. Abstract
Syntax Tree (AST) is a tree representation produced by com-
pilers in the compilation. Each AST node type is regarded by
compilers as a distinct type of component defined in language
grammar, such as the variable declaration, function call, etc.
For each generator, we sampled all the programs generated at
first, twenty-fifth and forty-ninth hours and counted the num-
ber of distinct AST node types.

Figure 7 presents the result in a Venn diagram. The pro-
grams generated by DeepFuzz and DeepSmith contain 91
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and 109 types of AST nodes, respectively. Both outperform
Csmith which only utilizes 29 node types. This is because the
generation rules embedded in Csmith only use a subset of lan-
guage features to ensure the semantic correctness of the gen-
erated programs. Including additional features requires the
developers manually design complex rules to guarantee cor-
rectness, which is a challenging task. As a result, it is unfair
to compare DLGs with Csmith since DLGs do not explicitly
care about such correctness of programs.

Kitten is a much fairer baseline for DLGs than Csmith,
since neither DLGs nor Kitten limits the features they can
use in program generation. The programs generated by Kitten
have the largest number of distinct AST node types, i.e. 169.
Moreover, all the AST node types in DeepFuzz and 108 out
of 109 types in DeepSmith are included by the programs gen-
erated by Kitten. Based on this result, we may conclude that
DLGs do not fully learn and leverage the language features
in the training set. A possible reason is that, when sampling
the next token, DLGs prefer the token that has a high likeli-
hood according to co-occurrence. However, DLGs have lim-
ited knowledge of the syntactic and semantic meaning of to-
kens and fail to generate the programs toward diversity.

Finding and Advice 2: Existing DLGs do not fully uti-
lize the language features in program generation, which
may affect their bug detection abilities. Future research
should encourage DLGs to use more diverse language
features.

4.3 Code Coverage
Code coverage is an important metric in compiler test-
ing [Livinskii et al., 2020; Sun et al., 2016a; Le et al., 2015].
It measures the code in compilers that is executed when com-
piling programs. High code coverage typically indicates that
diverse code logic paths in compilers are exercised. For each
set of generated programs, we fed them into GCC and used
LCOV to measure the code coverage using three commonly
used metrics: line, branch and function coverage.

Figures 8a to 8c shows the number of lines, branches and
functions covered by the programs generated by each genera-
tor but not by the seed programs. DeepSmith covers 2,175
lines, 2,562 branches, and 17 functions that are not cov-
ered by the seed programs, while Csmith covers 9,650 lines,
12,510 branches, and 206 functions. Even though DeepSmith
generated much more (156x) programs and leveraged more
(109 vs 29) features than Csmith, the code coverage achieved
by DeepSmith is much lower than Csmith.

To understand the reason, we carefully investigated the dif-
ference between their coverage. Specifically, we analyzed
how many new covered branches are in the front end of GCC
and how many of them are in the middle/back end. Figure 9
shows the results. It is clear that the programs generated by
DeepSmith mainly cover new branches in the front end of
compilers, such as lexer and parser. By contrast, most of
the branches covered by programs generated by Csmith are
located in the middle/back end of compilers. Although the
programs generated by Csmith only include limited language
features, they can trigger complex optimization in the mid-
dle/back end of compilers, resulting in high code coverage.
This result also demonstrated the effectiveness of language-
specific rules designed by experts in compiler testing.

The line, branch, and function coverage achieved by Kitten
is 9.68x, 10.48x, and 31.47x as DeepSmith, respectively. As
shown in Figure 9, such improvements locate in both the front
end and middle/back end of compilers. Note that the advan-
tage over DeepSmith is not only because of program gener-
ation speed. Furthermore, the programs generated by Deep-
Smith after seventy-two hours achieved lower coverage than
the programs generated by Kitten in the first hour, despite
DeepSmith generating more programs in those seventy-two
hours than Kitten in the first hour.

Finding and Advice 3: DLGs does not outperform LSGs
and Kitten in terms of code coverage. One of the reasons
is that the programs generated by DLGs do not trigger di-
verse optimizations in compilers, which can be a promis-
ing research direction.

4.4 Implications
Our experiment results show that DLGs like DeepSmith do
not achieve outstanding performance in compiler testing.
They have certain advantages over Csmith but such advan-
tages are due to the unfair comparison mentioned in §2.2. As
we mentioned earlier, Csmith is designed to leverage a limited
set of language features to generate semantically correct pro-
grams, it is natural that the diversity of generated programs is
not as good as DLGs. Our experiment also shows that once
the evaluation baseline is switched to Kitten, the performance
of DLGs is worse than Kitten in all three perspectives: bug
detection ability, diversity of language features, and code cov-
erage. Although DLGs attempt to leverage DNN models to
learn the information of programs from datasets and generate
new programs for compiler testing, it turns out that the re-
sults are not as good as the approach of Kitten, i.e., directly
mutating the programs in datasets.

We believe Kitten can benefit future DLG-related research
in various aspects. First, Kitten sets a new fair baseline for
DLGs. Future work of DLGs should at least have a signifi-
cant improvement over Kitten. Second, the fact that Kitten
outperforms existing DLGs may enlighten future research.
Their limited performance implies that a simple end-to-end
deep learning approach without incorporating any domain-
specific information has not achieved decent performance in
compiler testing. A promising research direction is to in-
corporate domain-specific knowledge extracted from the pro-
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Figure 8: Code coverage of the programs generated by Kitten, Csmith, DeepSmith and DeepFuzz.
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Figure 9: Distributions of new branch coverage. Uncertain refers to
the cases of which category cannot be determined.

grams, such as parse trees, control-flow graphs and data-flow
graphs, into DNN models. Moreover, as Kitten itself is shown
to be effective, future research may study how to improve the
workflow of Kitten using machine learning techniques.

4.5 Other Discussion
Please note that we choose to control the time and com-
putation resources since it is a common practice in soft-
ware testing to evaluate testing techniques by setting a limit
on time and computation resources [Zhang et al., 2022;
Klees et al., 2018]. For example, Google FuzzBench deploys
each fuzzer for 24 hours. We believe this practice is related
to how the software is tested in the industry, i.e., developers
need to adequately test the software before shipment date us-
ing the limited computation resources available to them.

We did not control the number of generated programs since
the number of programs is easy to be tampered with. For ex-
ample, one may easily merge multiple programs outputted
by Kitten into one program or vice versa. Moreover, even if
DLGs, LSGs, and Kitten are evaluated using the same num-
ber of generated programs, the conclusion of our empirical
study remains the same. For bug detection ability, Figure 5
demonstrates that the number of crash bugs found by Kitten
in the first hour is more than the number of crash bugs found
by DeepSmith in 72 hours, although the number of programs
generated by Kitten in the first hour is smaller than the num-
ber of programs generated by DeepSmith in 72 hours. As
for the diversity of language features, Kitten covers 168 AST
node types in the first hour, while DeepSmith covers 109 AST
node types in 72 hours. The results related to code coverage

have been discussed in §4.3.

5 Related Work
Compiler testing has been actively explored for many years.
A common approach is automatically generating test pro-
grams with a generator and checking whether compilers prop-
erly compile these programs. As mentioned in §2.2, LSGs
and DLGs are two main kinds of generators. Kitten is much
easier than LSG to implement as it does not require ex-
pert knowledge and massive engineering efforts to ensure
the validity of generated programs. Different from DLGs
that train DNN models using a given dataset, Kitten gen-
erates new programs by randomly mutating the ones in the
dataset. Another mainstream of compiler testing is detect-
ing miscompilation bugs. For example, EMI [Le et al., 2014;
Sun et al., 2016a] generates a set of mutated programs that
are equivalent to each other w.r.t. a set of inputs. After these
programs are compiled, if the binary programs behave differ-
ently given these inputs, it indicates that at least one of them
is miscompiled and a defect is detected. These approaches
requires the insightful language-specific knowledge of devel-
opers to propose mutations that preserve the equivalence re-
lationship w.r.t. a set of inputs, primarily targeting miscom-
pilation bugs. In comparison, Kitten is a language-agnostic
random program generator, targeting crash and hang bugs.

6 Conclusion
This study argues that the evaluations of the DLGs are biased
due to the improperly chosen baselines. LSGs are designed
to utilize limited language features to generate well-defined
programs, while DLGs generate arbitrary programs without
concerns about the syntactic and semantic correctness. We
revisited the evaluation of DLGs using Kitten, a fair, simple
and strong baseline for DLGs. Instead of using DNN models,
Kitten directly derives new programs from the dataset. Em-
pirical results show that the advantage of DLGs claimed in
their publications is likely due to the biased selection of base-
line. Despite the simplicity of Kitten, DLGs cannot compete
with Kitten in multiple metrics. With in-depth analysis of the
evaluation results, we discuss potential directions for advanc-
ing future research on DLGs, and strongly believe that Kitten
is the fair, right baseline for evaluating DLGs.
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