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Abstract—Delta Debugging is a widely used family of algorithms
(e.g., ddmin and ProbDD) to automatically minimize bug-
triggering test inputs, thus to facilitate debugging. It takes a list
of elements with each element representing a fragment of the test
input, systematically partitions the list at different granularities,
identifies and deletes bug-irrelevant partitions.

Prior delta debugging algorithms assume there are no differ-
ences among the elements in the list, and thus treat them uniformly
during partitioning. However, in practice, this assumption usually
does not hold, because the size (referred to as weight) of the
fragment represented by each element can vary significantly. For
example, a single element representing 50% of the test input is
much more likely to be bug-relevant than elements representing
only 1%. This assumption inevitably impairs the efficiency or
even effectiveness of these delta debugging algorithms.

This paper proposes Weighted Delta Debugging (WDD), a
novel concept to help prior delta debugging algorithms overcome
the limitation mentioned above. The key insight of WDD is to
assign each element in the list a weight according to its size, and
distinguish different elements based on their weights during
partitioning. We designed two new minimization algorithms,
Wddmin and WProbDD, by applying WDD to ddmin and ProbDD
respectively. We extensively evaluated Wddmin and WProbDD in two
representative applications, HDD and Perses, on 62 benchmarks
across two languages. On average, with Wddmin, HDD and Perses
took 51.31% and 7.47% less time to generate 9.12% and 0.96%
smaller results than with ddmin, respectively. With WProbDD, HDD
and Perses used 11.98% and 9.72% less time to generate 13.40%
and 2.20% smaller results than with ProbDD, respectively. The
results strongly demonstrate the value of WDD. We firmly believe
that WDD opens up a new dimension to improve test input
minimization techniques.

Index Terms—Test Input Minimization, Delta Debugging,
Program Reduction

I. INTRODUCTION

A bug-triggering test input, which causes a program to fail,
often contains many bug-irrelevant elements. These elements
usually complicate the use of the test input to debug the pro-
gram. Test input minimization is a technique that automatically
minimizes the size of the input by removing the irrelevant
elements while keeping the failure-inducing parts. It helps
developers to focus on the essential parts of the input that
cause the failure. Many minimization techniques [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10] have been proposed and widely
used in various scenarios [11], [12], [13], [14], [15], especially
in facilitating software testing and debugging [16], [17], [18].

Delta Debugging [1] is a widely used family of algorithms
to automatically minimize bug-triggering test inputs. Typically,

delta debugging algorithms take a test input as a list of elements,
with each element representing a fragment of the test input (e.g.,
a token, a line, or a tree node). Then it partitions the list into sets
of elements (referred to as partitions) at different granularities,
systematically identifies and deletes partitions that are bug-
irrelevant. State-of-the-art algorithms in this family include
Minimizing Delta Debugging (ddmin) [1] and Probabilistic
Delta Debugging (ProbDD) [19]. The first delta debugging
algorithm ddmin systematically minimizes the list of elements
in a binary-search style. The generality, effectiveness, and effi-
ciency of ddmin make it a fundamental minimization algorithm
in many subsequently proposed minimization tools [5], [7]. The
other algorithm, ProbDD [19] is a recently proposed variant
of ddmin. It improves the efficiency of ddmin by leveraging a
probabilistic model to guide the minimization process.

In practice, delta debugging algorithms are often applied to
the tree representations of the inputs rather than plain lists of
tokens or lines to achieve better minimization performance,
a.k.a., tree-based minimization. For example, Hierarchical Delta
Debugging (HDD) proposed by Misherghi and Su [5] represents
the input as a tree structure (e.g., a parse tree), and then uses
ddmin to minimize each level of the tree from coarse to fine.
Another example is Perses [7], a minimization technique that
further improves HDD by leveraging context-free grammar
to ensure the syntactic validity during minimization. Perses
applies ddmin on the child node list of quantified nodes (i.e.,
a type of nodes whose children are independent to each other
in terms of syntax validity) in the parse tree. Both HDD and
Perses show significant superiority in handling structured inputs
compared to directly applying delta debugging to the flat list
representations of the inputs.
Limitations. One significant limitation of prior delta debugging
algorithms [1], [19] is that they overlooked the effect of
element size in minimization, and thus the efficiency or
even effectiveness of minimization is impaired. Specifically,
ddmin performs a binary-search style deletion and iteratively
divides the list into smaller partitions evenly by length (i.e.,
the number of elements). However, due to the varying sizes
of elements, ddmin fails to achieve the true evenness1 and
generates partitions with significantly different sizes. For

1The true evenness indicates that the size of each partition approximately
equals to each other. The size of a partition is normally measured by the
number of tokens it contains, that is to say, the number of tokens in each
partition is approximately equal.
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example, when HDD invokes ddmin to minimize the bug-
triggering input of LLVM-19595 [20], the largest and smallest
partitions produced by a partitioning operation can contain
8,752 and 5 tokens, respectively. However, ddmin treats these
uneven partitions equally, neglecting an important statistical
observation, i.e., larger partitions are more likely to contain the
failure-inducing elements and thus less likely to be removed.
As a result, ddmin spends significant efforts in removing large
but unlikely to be removed elements during the minimization
process, which restricts its performance in large and complex
bug-triggering inputs. As for ProbDD, while it successfully
refines the partitioning strategy of ddmin with its probabilistic
model, it still lacks awareness of the varying sizes of elements
during partitioning, thus leading to suboptimal performance.
More details of this limitation and its affect is illustrated in
§III.
Weighted Delta Debugging. In this paper, we propose Weighted
Delta Debugging (WDD), a novel concept to improve prior
delta debugging algorithms by overcoming the aforementioned
limitation. The key insight of WDD is to take the sizes
of elements into consideration and assign each element a
weight based on its size. By doing so, WDD can perform
a more rational weight-based partitioning strategy, thereby
enhancing minimization performance. We apply WDD to
two representative delta debugging algorithms, ddmin and
ProbDD, and propose two new algorithms, Wddmin and WProbDD,
respectively. At a high level, Wddmin improves ddmin by
performing a weighted binary-search style minimization, while
WProbDD enhances ProbDD by incorporating the weights of
elements as a new factor into the probabilistic model which
guides the partitioning.

We extensively evaluate Wddmin and WProbDD on 62 bench-
marks across two languages, i.e., C and XML, by substituting
them for ddmin and ProbDD, respectively, in two application
scenarios, HDD [5] and Perses [7]. The results demonstrate
that Wddmin and WProbDD significantly outperform ddmin and
ProbDD in efficiency and effectiveness, respectively. On
average, after substituting Wddmin for ddmin, HDD and Perses
use 51.31% and 7.47% less time to produce 9.12% and 0.96%
smaller results, respectively. Moreover, with WProbDD, HDD and
Perses obtain 13.40% and 2.20% smaller results with 11.98%
and 9.72% less time than using ProbDD, respectively.
Contribution. This paper makes the following contributions.

• We present Weighted Delta Debugging (WDD), a novel
concept that helps prior delta debugging algorithms overcome
the limitation of being unaware of the different sizes among
the elements in the input list.

• We realize WDD in two representative delta debugging
algorithms, ddmin and ProbDD, and propose two new
algorithms, Wddmin and WProbDD, respectively.

• We comprehensively evaluate Wddmin and WProbDD on 62
benchmarks in different application scenarios. The results
demonstrate the superiority of Wddmin and WProbDD over
ddmin and ProbDD, respectively, thus highlighting the
significance of WDD in improving test input minimization.

• For replication, we make the artifacts of this paper publicly
available [21]. We also release the source code of Wddmin and
WProbDD in the Perses [22] repository for further research
and applications.

II. BACKGROUND

Test input minimization facilitates the software debugging
process by automatically minimizing the size of the bug-
triggering test input. This technique is highly demanded as it
helps developers to focus on the essential parts of the test input
and saves the time and effort required to identify the root cause
of the bug. For example, both GCC [23] and LLVM [24] have
explicitly announced that the bug-triggering program should
be minimized before being reported. Test input minimization
also assists many other software engineering tasks, such as
program analysis [13] and slicing [15].

To facilitate presentation, we introduce the notations below,
• E denotes the set of all possible elements in test inputs
• l denotes a test input, which is a list of elements with

elements drawn from E
• L denotes the universe of possible test inputs, namely, l ∈ L.
• B = {T,F} where T for true and F for false.
• ψ : L → B is a property test function returning T if the

given input preserves a certain property, F otherwise.
• w : E → N is a weight function computing the weight (a

natural number, such as 0, 1, and 2) of an element.
With these symbols, the problem of test input minimization
can be formalized as follows.

Definition II.1 (Test Input Minimization). Given a test input
l ∈ L for a program and a property ψ exhibited by l, e.g.,
triggering a bug or generating an unexpected output when the
program executes with l, the objective of test input minimization
is to produce a test input lmin ∈ L that has a minimal number
of elements and still exhibits ψ, i.e., ψ(lmin) = T.

Many techniques [1], [5], [6], [7], [19], [25], [26], [27]
have been proposed to automate test input minimization. Delta
debugging algorithms, e.g., ddmin and ProbDD, are among
the most general and widely used techniques, upon which
many advanced tools such as HDD and Perses are built. Since
our approaches, i.e., Wddmin and WProbDD, are the improved
versions of ddmin and ProbDD, respectively, we first explain
the workflows of ddmin and ProbDD with an example.

Fig. 1(a) displays a program that triggers a real-world
compiler bug GCC-71626 [28]. It triggers GCC to crash when
compiling the program. We aim to minimize this program
to the smallest size while still triggering the compiler bug,
thus facilitating debugging. Taking the program as plain text
and performing delta debugging algorithms on it directly is
inefficient, as the program is highly structured. In practice,
delta debugging is usually wrapped in tree-based techniques,
e.g., HDD and Perses, being applied on the tree level. In the
tree representation of the program, e.g., the parse tree, there
are eight nodes at the same level right under the root node
(highlighted in orange in Fig. 1(a)), each corresponding to a
distinct part of the program such as a typedef statement, or a



1 typedef long long llong; ........... 1 w = 5

2 test2char64(char *p) {} ............ 2 w = 8

3 test1char8(char c) {} .............. 3 w = 7

4 test1short32(short c) {} ........... 4 w = 7

5 test2short32(short *p) {} .......... 5 w = 8
6 typedef llong vllong1 \

__attribute__(( \
__vector_size__(sizeof(llong)))); .. 6 w = 16

7 vllong1 test2llong1(llong *p) {
llong c = *test1char8;
vllong1 v = {c};
return v;

} .................................. 7 w = 25

8 int main() {} ...................... 8 w = 6

(a) A program that triggers GCC to crash.
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(b) The search space of ddmin.
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(c) The search space of Wddmin.

Fig. 1: A motivating example. In each subfigure, the weights of the nodes or the partitions are highlighted in orange.

function definition. To minimize the program, both HDD and
Perses invoke ddmin or ProbDD to minimize the tree nodes
starting from this level, i.e., [1, 2, 3, 4, 5, 6, 7, 8].

A. Workflow of ddmin
Given l and ψ, ddmin works in the following steps.

Step 1: Split l into n partitions evenly by length. For each
partition p, test if p alone preserves ψ, i.e., ψ(p) = T. If yes,
remove all other partitions from l and resume Step 1 with
n = 2; otherwise, go to Step 2.
Step 2: Test if the complement of each partition p preserves
ψ, i.e., ψ(l \ p) = T. If yes, remove p from l and resume Step
1 with n = n− 1; otherwise, go to Step 3.
Step 3: Terminate if each partition p contains only one element;
otherwise, double n and resume Step 1.

Starting from n = 2 and following the above steps, ddmin
performs 30 property tests in total to minimize the program in
Fig. 1(a). The specific property tests ddmin performs during
the minimization process are shown in Fig. 2(a). Note that
ddmin may produce duplicate test inputs, which are not listed
in the figure, since in practice they can be recognized and
skipped by caching the tests that have been performed [1], [4].

B. Workflow of ProbDD
Different from ddmin, which follows a predefined pattern

to perform the deletion operations, ProbDD [19] employs a
probabilistic model to guide the entire minimization process.
The key insight of ProbDD is to estimate the probability of each
element appearing in the minimized result with a probabilistic
model. Given l and ψ, and a map probs that stores the estimated
probabilities of each element in l appearing in the minimized
result (the initial probability of each element is set to a same
value, e.g., 0.2), ProbDD works in the following steps.
Step 1: Sort the elements in l in ascending order of their
probabilities. Select a prefix pre from the sorted list that
maximizes the expectation of the number of elements that
can be removed, i.e., |pre| ×

∏
e∈pre(1− probs[e]).

Step 2: Test if the complement of pre preserves ψ, i.e., ψ(l \
pre) = T. If yes, remove pre from l, set the probabilities of
the elements in pre to 0, and go to Step 4; if not, go to Step 3.
Step 3: Increase the probabilities of elements in pre according
to the probabilistic model [19], then go to Step 4.

Step 4: Terminate if the probabilities of all the elements in l
reach 1; otherwise, go to Step 1.

Following the above steps, the minimization process of the
example program in Fig. 1(a) is shown in Fig. 2(c). Each
property test is represented with two rows, where the first row
displays the elements selected (complement of pre) for testing,
and the second row shows the probability of each element after
the test. The selected elements and the updated probabilities are
highlighted with blue and yellow, respectively. Starting from
the same initial probability (set to 0.2 in this case), ProbDD
performs 15 property tests to finish the minimization process.

C. 1-Minimality

The ultimate goal of test input minimization is to obtain the
globally minimal result, where no smaller input can exhibit
ψ. However, previous work has proven that obtaining the
global minimality is NP-complete [1], [5]. In practice, the
goal is usually relaxed to local minima. First presented by
DD [1], 1-minimality has been widely adopted by a series
of works [3], [5], [7], [29] as the criterion of minimality
evaluation. A minimized input is considered 1-minimal if no
single element can be further removed without losing the
property ψ. HDD [5] extends the principle of 1-minimality to
tree structures, introducing 1-tree-minimality, which promising
that, in the tree representation of the input, no single tree
node can be further removed without violating the property. To
achieve 1-tree-minimality, tree-based techniques, e.g., HDD [5]
and Perses [7], typically operate in a fixpoint mode. In this
mode, the minimization process is repeatedly applied to the
minimized result until no more tree nodes can be removed
from the result.

III. MOTIVATION

As Fig. 1(a) shows, the code snippets represented by different
nodes vary in size. For example, while node 1 represents
a typedef statement containing 5 tokens, node 7 defines
the function test2llong1 with 25 tokens. This discrepancy
in size of nodes can affect the efficiency and effectiveness of
minimization. However, both ddmin and ProbDD fail to capture
this information and treat all nodes uniformly, thus leaving
room for improvement. This is where out concept of WDD



Inputs for Property Tests 𝝍
1 1 2 3 4 5 6 7 8 F
2 1 2 3 4 5 6 7 8 F
3 1 2 3 4 5 6 7 8 F
4 1 2 3 4 5 6 7 8 F
5 1 2 3 4 5 6 7 8 F
6 1 2 3 4 5 6 7 8 F
7 1 2 3 4 5 6 7 8 F
8 1 2 3 4 5 6 7 8 F
9 1 2 3 4 5 6 7 8 F
10 1 2 3 4 5 6 7 8 F
11 1 2 3 4 5 6 7 8 F
12 1 2 3 4 5 6 7 8 F
13 1 2 3 4 5 6 7 8 F
14 1 2 3 4 5 6 7 8 F
15 1 2 3 4 5 6 7 8 F
16 1 2 3 4 5 6 7 8 F
17 1 2 3 4 5 6 7 8 F
18 1 2 3 4 5 6 7 8 F
19 1 2 3 4 5 6 7 8 F
20 1 2 3 4 5 6 7 8 T
21 1 3 4 5 6 7 8 F
22 1 3 4 5 6 7 8 T
23 1 3 5 6 7 8 F
24 1 3 5 6 7 8 F
25 1 3 5 6 7 8 T
26 1 3 6 7 8 F
27 1 3 6 7 8 F
28 1 3 6 7 8 F
29 1 3 6 7 8 F
30 1 3 6 7 8 F

(a) ddmin

Inputs for Property Tests 𝝍
1 1 2 3 4 5 6 7 8 F
2 1 2 3 4 5 6 7 8 F
3 1 2 3 4 5 6 7 8 F
4 1 2 3 4 5 6 7 8 F
5 1 2 3 4 5 6 7 8 F
6 1 2 3 4 5 6 7 8 F
7 1 2 3 4 5 6 7 8 F
8 1 2 3 4 5 6 7 8 T
9 1 2 3 6 7 8 F
10 1 2 3 6 7 8 F
11 1 2 3 6 7 8 F
12 1 2 3 6 7 8 F
13 1 2 3 6 7 8 F
14 1 2 3 6 7 8 F
15 1 2 3 6 7 8 F
16 1 2 3 6 7 8 F
17 1 2 3 6 7 8 F
18 1 2 3 6 7 8 F
19 1 2 3 6 7 8 F
20 1 2 3 6 7 8 F
21 1 2 3 6 7 8 F
22 1 2 3 6 7 8 T
23 1 3 6 7 8 F
24 1 3 6 7 8 F
25 1 3 6 7 8 F
26 1 3 6 7 8 F

(b) Wddmin

Inputs for Property Tests 𝝍

1 1 2 3 4 5 6 7 8 F0.2 0.3 0.3 0.2 0.2 0.3 0.3 0.3

2 1 2 3 4 5 6 7 8 F0.41 0.3 0.3 0.41 0.41 0.3 0.3 0.3

3 1 2 3 4 5 6 7 8 F0.41 0.3 0.46 0.41 0.41 0.46 0.3 0.46

4 1 2 3 4 5 6 7 8 F0.41 0.59 0.46 0.41 0.41 0.46 0.59 0.46

5 1 2 3 4 5 6 7 8 F0.63 0.59 0.46 0.41 0.63 0.46 0.59 0.46

6 1 2 3 4 5 6 7 8 F0.63 0.59 0.67 0.6 0.63 0.46 0.59 0.46

7 1 2 3 4 5 6 7 8 F0.63 0.59 0.67 0.6 0.63 0.65 0.59 0.65

8 1 2 3 4 5 6 7 8 F0.63 0.59 0.67 0.6 0.63 0.65 1.00 0.65

9 1 2 3 4 5 6 7 8 T0.63 0 0.67 0.6 0.63 0.65 1.00 0.65

10 1 3 4 5 6 7 8 T0.63 0.67 0 0.63 0.65 1.00 0.65

11 1 3 5 6 7 8 F1.00 0.67 0.63 0.65 1.00 0.65

12 1 3 5 6 7 8 T1.00 0.67 0 0.65 1.00 0.65

13 1 3 6 7 8 F1.00 0.67 1.00 1.00 0.65

14 1 3 6 7 8 F1.00 0.67 1.00 1.00 1.00

15
1 3 6 7 8

F1.00 1.00 1.00 1.00 1.00

(c) ProbDD

Inputs for Property Tests 𝝍

1 1 2 3 4 5 6 7 8 F0.2 0.2 0.2 0.2 0.2 0.56 0.56 0.2

2 1 2 3 4 5 6 7 8 F0.2 0.2 0.2 0.2 0.2 0.56 1.00 0.2

3 1 2 3 4 5 6 7 8 F0.2 0.28 0.2 0.2 0.28 0.78 1.00 0.2

4 1 2 3 4 5 6 7 8 F0.2 0.42 0.3 0.3 0.42 0.78 1.00 0.2

5 1 2 3 4 5 6 7 8 F0.2 0.42 0.49 0.49 0.42 0.78 1.00 0.33

6 1 2 3 4 5 6 7 8 T0.2 0 0.49 0.49 0 0.78 1.00 0.33

7 1 3 4 6 7 8 F0.43 0.49 0.49 0.78 1.00 0.71

8 1 3 4 6 7 8 F1.00 0.66 0.66 1.00 1.00 0.71

9 1 3 4 6 7 8 F1.00 1.00 0.66 1.00 1.00 0.71

10 1 3 4 6 7 8 T1.00 1.00 0 1.00 1.00 0.71

11 1 3 6 7 8 F1.00 1.00 1.00 1.00 1.00

(d) WProbDD

Fig. 2: The detailed minimization process of ddmin, Wddmin, ProbDD, and WProbDD. The elements selected for the property test
in each iteration are highlighted in blue, with the leftmost column indicating the index of each property test. In Fig. 2(c) and
Fig. 2(d), the probabilities updated after each test are highlighted in yellow. The last column of each figure shows the result of
the property test ψ. In this case, all the four algorithms minimize the input list to the same result, which is [1, 3, 6, 7, 8].

comes into play. The key insight of WDD is to assign each
element a weight that matches its size, and perform weight-
based partitioning. We first define the weight of elements in
delta debugging, based on which, we present two new delta
debugging algorithms, Wddmin and WProbDD, by applying WDD
to ddmin and ProbDD, respectively.

Definition III.1 (Weight). The weight of an element in the input
list of delta debugging is defined as the size of the fragment
represented by the element. The weight of a partition is the
sum of the weights of all elements in the partition. The size is
typically measured by the number of tokens.

A. Improving ddmin

Fig. 1(b) visualizes the search space of ddmin in a tree,
illustrating that ddmin splits the list evenly by length to conduct
a binary search-style deletion. However, it fails to achieve
the true evenness due to the effect of different weights of
nodes. As highlighted in orange in Fig. 1(b), the weights of
partitions on each level vary significantly, which can impair
the efficiency of ddmin. That is because, statistically speaking,
a larger partition is more likely to contain the failure-inducing
elements, and thus less likely to be removed. However, ddmin
fails to capture this information and handles all nodes equally,
leading to its efficiency being hampered by spending a large
amount of attempts on deleting nodes that are unlikely to be
successfully removed. For instance, the largest node (node 7 )
in the previous example, which is the core element to trigger

the compiler bug, is attempted to be removed from the list
with partitions for 13 times during the minimization.

Different from ddmin, Wddmin considers the weights of
elements and performs a weight-based partitioning to make the
actual size of each partition as close as possible. The search
space of Wddmin based on this strategy is shown in Fig. 1(c).
Following this search space, Wddmin finish the minimization of
the example program with only 26 property tests, and attempts
to remove node 7 only 12 times. The detailed minimization
process is shown in Fig. 2(b). This improvement is much more
significant for larger and more complex inputs, as demonstrated
in §VI-B2.

B. Improving ProbDD

As described in §II-B, ProbDD strives to maximize the
expectation of the number of elements that can be removed
during partitioning. However, the number of elements does
not necessarily correspond to the number of tokens that can
be deleted. For example, given two elements with the same
probability of being removed, the one with more tokens
(i.e., larger weight) should be chosen to remove first, since
deleting it contributes more to global minimization process.
The performance of ProbDD is suboptimal since it fails
to consider the weight of elements when constructing the
probabilistic model. To fill this gap, WProbDD leverages the
weight information of elements to refine the probabilistic model
of ProbDD, and uses this model to guide partitioning. As
shown in Fig. 2(d), boosted by the weighted model, WProbDD



minimizes the example program with only 11 property tests. It
is worth clarifying that, although in this example, ProbDD and
WProbDD produce the same minimized result, our evaluation in
§VI demonstrates the superior effectiveness of WProbDD over
ProbDD in practice by producing smaller minimized results.

IV. WEIGHTED MINIMIZING DELTA DEBUGGING

This section describes the application of WDD to improve
the efficiency of ddmin. Algorithm 1 details Wddmin, with
our extensions beyond ddmin highlighted with grey blocks.
Compared to ddmin, Wddmin has a different partitioning strategy
weightedPartition on line 20, and an additional deletion pass
ensureOneMinimal on line 28 to ensure 1-minimality.

Started with the whole input l as the only partition (line 2),
Wddmin performs systematic deletion operations on the partitions
and their complements, and iteratively splits the partitions into
smaller ones. If a partition ptn alone preserves the property (i.e.,
ψ(ptn) on line 8), all the other partitions are removed, and the
algorithm restarts with this single remaining partition (line 7-
11). If the complement of a partition exhibits the property (i.e.,
ψ(complement) on line 14), Wddmin removes the partition and
restarts with the remaining partitions (line 12-17). If no partition
or complement exhibits ψ, Wddmin calls weightedPartition
(line 18) to split the partitions into smaller ones based on the
weights of the elements in these partitions, and then start a
new iteration. This process terminates when the partition list
partitions is empty (line 6). Then Wddmin performs an additional
deletion pass by calling ensureOneMinimal (line 4) to make
sure the produced result is 1-minimal.

A. Weighted Partitioning Strategy

The main extension of Wddmin is the partitioning strategy,
as shown in function weightedPartition (line 20-27). Unlike
ddmin, which partitions the input list l evenly by the number
of elements, Wddmin aims to split l evenly by the weight of
elements, striving to make the weight of each partition as
close as possible. (line 24-26). Notably, if a partition from
the current iteration contains only one element, the partition
will be excluded from the partition list in the next iteration
(line 23), because the partition cannot be further divided.

Revisiting the example in Fig. 1(a), by applying the weight-
based partitioning strategy, the search space is reorganized
as shown in Fig. 1(c). While the tree is not balanced in
terms of the number of elements, it achieves balance for
the weight of each partition. Quantitatively, Wddmin strives
to minimize the standard deviation of the weights of partitions
during partitioning. For example, in the second iteration
(corresponding to the third level of the tree in Fig. 1(b) and
Fig. 1(c)), the standard deviation of the partition weights of
ddmin (i.e., [13, 14, 24, 31]) is 7.43, whereas that of Wddmin
(i.e., [20, 15, 16, 31]) is only 6.34.

B. 1-Minimality of Wddmin

Wddmin guarantees 1-minimality with an additional deletion
pass, as shown in function ensureOneMinimal (line 28-
34). Because of the weight-based partitioning strategy, larger

Algorithm 1: Weighted Minimizing Delta Debugging
Input: l ∈ L: the input list of elements.
Input: w : E→ N : the weights of each element.
Input: ψ : L→ B: the property to be preserved.
Output: the minimized list that preserves the property.

1 lmin ← l
2 partitions← [l]
3 lmin ← wddRec(partitions, lmin, ψ, w)
4 return ensureOneMinimal(lmin, ψ)

5 Function wddRec(partitions, lmin, ψ, w):
6 while |partitions| ̸= 0 do
7 foreach ptn ∈ partitions do
8 if ψ(ptn) then
9 lmin ← ptn

10 partitions ← weightedPartition([ptn], w)
11 return wddRec(partitions, lmin, ψ, w)

12 foreach ptn ∈ partitions do
13 complement← lmin \ ptn
14 if ψ(complement) then
15 lmin ← complement
16 partitions← partitions \ [ptn]
17 return wddRec(partitions, lmin, ψ, w)

18 partitions ← weightedPartition(partitions, w)

19 return lmin

20 Function weightedPartition(partitions, w):
21 result← [ ]
22 foreach ptn ∈ partitions do
23 if |ptn| = 1 then continue // skip this partition
24 halfSum ← 0.5×

∑
e∈ptn w(e)

25 p1, p2 ← split ptn into two partitions with weight sum of
each close to halfSum

26 result← result + [p1, p2] // add p1, p2 to result

27 return result

28 Function ensureOneMinimal(lmin, ψ):
29 loopStart: foreach element ∈ lmin do
30 complement← lmin \ [element]
31 if ψ(complement) then
32 lmin ← complement
33 goto loopStart

34 return lmin

elements are isolated earlier in the deletion process. For
example, in Fig. 1(c), node 6 is isolated as a separate partition
in the third iteration, and it cannot be removed in the current
iteration. However, in practice, the deletion of some nodes may
benefit the deletion of other nodes [1], [5], [6]. To ensure 1-
minimality, Wddmin attempts to remove each remaining element
individually in the end by calling function ensureOneMinimal
(line 4). The loop (line 29-33) iteratively checks whether each
remaining element can be removed without losing the property.
If so, the element is removed and the loop restarts. This process
continues until no element can be further removed, so that
1-minimality is guaranteed.

C. Time Complexity of Wddmin

Wddmin does not shrink or enlarge the search space of ddmin.
Instead, Wddmin follows the similar deletion process as ddmin
with a more rational partitioning strategy. Therefore, by design,



Wddmin has the same worst-case time complexity as ddmin, i.e.,
O(n2) [1], where n is the number of elements in the input list.
Average Time Complexity. We argue that Wddmin can achieve
higher overall efficiency than ddmin in practice. The key insight
of Wddmin is that the probability of an element being removed
varies with its weight, and there is a negative correlation
between them. Intuitively, an element with a larger weight, i.e.,
representing a larger fragment of a test input, is less likely
to be removed than a smaller one, as it is more likely to
contain the failure-inducing elements. The statistical validation
of this observation is provided in §VI-A. With this insight, we
expect that Wddmin can achieve better efficiency than ddmin.
We perform a simulation below to demonstrate this.

D. Synthetic Analysis for Average Time Complexity

The inherent complexity of delta debugging problem prevents
us from proving Wddmin is better than ddmin in all cases, which
is also not necessarily true in practice. Therefore, we design
this simulation to compare the efficiency of Wddmin and ddmin.

1) Analysis Setup: First, we randomly synthesize a set of
lists and predetermine their minimization results. Next, we
perform Wddmin and ddmin on the lists and record the numbers
of property tests required by each algorithm on each list
respectively. The minimization results are predetermined based
on the probability of each element being removed, and the
probabilities are calculated based on the assumption below.

Assumption IV.1 (Randomness). For a random input, each
token has the same probability of being removed.

Given this assumption and the probability of a token being
removed p0, the probability of an element with w tokens being
removed pe equals to pw0 . That is because an element can be
removed only if all its tokens can be removed. With the input
lists of elements synthesized randomly, this assumption helps
quantitatively distinguish the probabilities of elements with
different weights being removed, so that we can predetermine
the minimization result. This assumption is not necessary for
the correctness of Wddmin in practice.

With the above assumption, we perform the simulation as
follows. To synthesize a random input list, we first generate a
length n of the list, where n is a random integer between 2
and 1,000 (i.e., n ∈ [2, 1000]), and the total number of tokens
represented by the elements in the list, which is a random
integer between n and 10n. The number of tokens for each
element is distributed randomly, for instance, a list of length
4 with 10 tokens could be [1, 3, 2, 4]. To predetermine the
minimization result, we first generate a random value p0 ∈
(0, 1), which represents the probability of each token being
removed. Then, we calculate the probability of each element
being removed pe based on assumption IV.1. After that, we
generate a random value p ∈ [0, 1] for each element, and
compare it with pe to determine whether the element can be
removed. The element can be removed if p < pe, otherwise,
it cannot be removed. Based on the established result, the
property ψ is preserved if all the non-removable elements are
included in the list. We execute Wddmin and ddmin to minimize

the synthesized list, and record their numbers of property tests
during the minimization process, respectively. The effect of
randomness is eliminated by repeating the single process for
a large number of times. Specifically, we perform ddmin and
Wddmin on 5,000 randomly synthesized lists.
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Fig. 3: The simulation results of Wddmin and ddmin on the
synthetic data.

2) Analysis Result: The detailed results are shown in Fig. 3.
On average, Wddmin uses 23% fewer property tests than ddmin
to finish the minimization. The results emulatively demonstrate
the superior efficiency of Wddmin compared to ddmin in the
ideal case where the probabilities of elements being removed
are negatively correlated with their weights. We verify this
correlation and evaluate the practical efficiency of Wddmin on
real-world benchmarks in §VI-B.

V. WEIGHTED PROBABILISTIC DELTA DEBUGGING

To demonstrate the generality of WDD, we applied the
concept of WDD to improve ProbDD (a representative variant
of ddmin) and thus proposed a new minimization algorithm
WProbDD. As described in §II-B, with the model that tracks
the expected probability of each element remaining in the
result, the partitioning principle of ProbDD is to prioritize the
deletion of elements with lowest probability and maximize the
expected number of elements that can be successfully removed.
However, the ultimate goal of the minimization is to delete
the most tokens possible, instead of the most elements. Due
to the different sizes of elements, there is a gap between the
principle of ProbDD and the ultimate goal of the minimization,
which makes ProbDD suboptimal. To bridge this gap, WProbDD
improves ProbDD by incorporating the weight of elements as
a new factor into the probabilistic model.

Algorithm 2 shows the workflow of WProbDD, and the key
extensions beyond ProbDD are highlighted with grey blocks.
When deciding the partition to remove in each test (imple-
mented in function getPartitionToRemove), the fundamental
principle of WProbDD is to (1) prioritize the deletion of elements
that are likely to remove larger weight, and (2) maximize the
expected value of weight that can be removed. To realize
the principle, WProbDD first sorts the elements in the list in
descending order, by the expectation of the value of weight
that can be removed by attempting to delete the element. This
value equals to the product of the probability of the element
can be removed and the value of its weight (line 10).



Algorithm 2: Weighted Probabilistic Delta Debugging
Input: l ∈ L: the input list of elements.
Input: w : E→ N : the weights of each element.
Input: ψ : L→ B: the property to be preserved.
Input: p0: the initial probability for each element.
Output: the minimized list that preserves ψ.

1 lmin ← l
2 probs← {n→ p0|n ∈ l} // the probability function that

records and returns the probability of each element in l
3 while not shouldTerminate(probs) do
4 ptn ← getPartitionToRemove(lmin, probs, w)
5 complement ← lmin \ ptn
6 if ψ(complement) then lmin ← complement
7 else probs ← updateProbs(ptn, probs)

8 return lmin

9 Function getPartitionToRemove(lmin, probs, w):
10 lsorted ← sort the elements in lmin by the value of

w(element) ∗ (1− probs(element)) in descending order
11 result← [ ], ptn← [ ], gainmax ← 0
12 foreach element ∈ lsorted do
13 ptn← ptn + [element]
14 weight ←

∑
ni∈ptn w(ni)

15 probOfDeletion ←
∏

nj∈ptn(1− probs(nj))

16 gain ← weight × probOfDeletion
17 if gain > gainmax then
18 gainmax ← gain
19 result ← ptn

20 return result

21 Function shouldTerminate(probs):
// Implementation skipped. Same as ProbDD in [19].

22 Function updateProbs(ptn, probs):
// Implementation skipped. Same as ProbDD in [19].

After that, WProbDD determines the partition to remove in
each test with the sorted list. Technically, starting from the first
element in the sorted list, WProbDD can include any number
of elements in the partition to remove in the next test. While
including more elements increases value of weight that can be
removed, it also decreases the probability of the test passing. To
balance the trade-off, WProbDD chooses the number of elements
for removal that maximizes the expectation of the value of
weight that can be removed successfully. To this end, WProbDD
redefines the gain function in ProbDD with the weights of
elements as Gain(m) =

∑m
i=1 wi ·

∏m
j=1(1 − pj) where m

is the number of elements to be removed, wi is the weight
of the i-th selected element, and pj is the probability of
being remained of the j-th element. As shown in function
getPartitionToRemove (line 11-20), WProbDD selects a certain
prefix of the sorted list lsorted that maximizes the gain function
as the partition, and attempts to remove this partition in the
next test. The complexity of this process is O(n), where n is
the length of the list.

The rest steps of WProbDD are similar to ProbDD, including
performing property tests, and updating the probabilities of
elements according to prior test results. We exclude the
explanation of these steps here, instead, and refer the readers
to the original paper of ProbDD [19] for details.

A. Minimality of WProbDD

WProbDD promises the same minimality as ProbDD, which is
conditional 1-minimality. The result of ProbDD is 1-minimal
under the assumption that the deletability of each element is
independent. However, this assumption typically does not hold
in practice, since the deletion of some elements may affect the
deletability of other elements. For example, even if a statement
that defines a variable is bug-irrelevant, it can only be removed
after all the statements that use the variable are removed.
Despite sharing the same minimality, WProbDD is expected to
generate smaller results than ProbDD, since WProbDD always
strives to maximize the weight (i.e., the number of tokens)
that can be removed in the next test. We evaluate the practical
effectiveness of WProbDD in §VI-B.

B. Time Complexity of WProbDD

WProbDD shares the same worst-case time complexity as
ProbDD, which is O(n) [19], where n is the length of the
input list. In practice, the deletion strategy of WProbDD i.e.,
maximizing the expected weight can be removed, not only
enhances effectiveness, but also speeds up the minimization
process. That is because, successfully removing a partition
containing a large number of tokens can usually make the
execution of subsequent tests faster. Therefore, we expect that
WProbDD can outperform ProbDD in terms of time efficiency.
This expectation can hardly be verified by a simulation, so we
directly evaluate the efficiency of WProbDD on real benchmarks
in §VI-B.

VI. EVALUATION

In this section, we verify the significance of WDD by
evaluating the effectiveness and efficiency of Wddmin and
WProbDD. we explore to what extent Wddmin and WProbDD out-
perform ddmin and ProbDD in different application scenarios,
respectively. We select HDD and Perses for evaluation as
they are two state-of-the-art test input minimization tools
that rely on delta debugging. For each of the two techniques,
we implement Wddmin and WProbDD versions to replace their
original versions with ddmin and ProbDD, respectively, and
compare their performance with the original versions. For
ease of presentation, we refer to HDD with ddmin, Wddmin,
ProbDD and WProbDD as HDDd, HDDw, HDDp, and HDDwp,
respectively. Similarly, the four versions of Perses are referred
to as Persesd, Persesw, Persesp, and Perseswp, respectively. All
the minimization techniques for evaluation are executed in the
fixpoint mode as described in §II-C. For fair comparison, all
experiments were conducted on an Ubuntu 22.04 server with
an Intel Xeon CPU @ 2.60GHz and 512 GB RAM, using a
single-process, single-threaded.

We aim to answer the following research questions.
1) What is the correlation between element weight and the

probability of being removed in practice?
2) How does the performance of Wddmin compare to ddmin?
3) How does the performance of WProbDD compare to ProbDD?
Benchmarks. We conducted experiments with 62 benchmarks.
Each benchmark triggers a real-world bug in a certain language



processor, and is considerably large and complex, aligning with
real-world application scenarios of test input minimization.
Specifically, we utilized the following benchmarks.
• C: We collected 32 C programs from previous studies [7],

[9], [4]. These programs trigger real bugs in LLVM and
GCC, and are large, complex with 77,723 tokens on average.

• XML: To increase the diversity of the benchmark suite,
we included 30 XML files, with each triggering a bug
in Basex [30], a widely used XML database and Xquery
processor. These benchmarks are also large and complex,
containing 20,197 tokens on average.

Metrics. We used the following metrics to evaluate different
algorithms, following [7], [3], [4], [9], [19].
• S(#): the number of tokens in the minimized result. A lower

value means a more effective minimization by removing
more property-irrelevant elements.

• T(s): the processing time in seconds. Shorter time means
higher efficiency.

• Speed: the number of tokens deleted per second. Using
processing time to gauge efficiency is not comprehensive, for
cases where one approach generates a smaller result but also
takes longer time. We measure the number of tokens deleted
per second to balance the trade-off between effectiveness
and time consumption.

• Wilcoxon signed-rank test [31]: to measure the statistical
significance of the improvements our our approaches. A
small p-value (typically < 0.05) from this test suggests a
statistically significant difference between the paired data.

A. RQ1: Element Weight v.s. Deletion Probability Correlation

The first question we are curious about is the correlation
between the weights of elements and their probabilities of
being removed. Since the fundamental observation behind
Wddmin is that larger elements are less likely to be deleted
than smaller ones, we would like to verify if our assumption,
i.e., the probability of elements being deleted is negatively
correlated with their weights, holds during the execution of
ddmin in practice. Specifically, for an input list l and its
minimized result lmin, the probability of elements with weight
w being deleted Pdel(w) is defined as the ratio of the number of
elements with weight w that are deleted to the total number of
elements with weight w, i.e., Pdel(w) =

#(w,l)−#(w,lmin)
#(w,l) , where

#(w, l) denotes the number of elements with weight w in list
l. To evaluate the correlation, we calculate the Spearman’s
rank correlation coefficient [32] between the probabilities of
elements being deleted and their weights for each execution of
ddmin. Being widely used in practice [33], [34], Spearman’s
rank correlation coefficient ρ [32] is a non-parametric measure
of the strength and direction of association between two ranked
variables. The value of ρ ranges from -1 to 1: ρ = 1 indicates a
perfect positive correlation, ρ = −1 indicates a perfect negative
correlation, and ρ = 0 implies no correlation.

To answer this research question, we use HDDd and Persesd
to minimize the test inputs in our benchmarks, and record
the weights of elements before and after each execution of
ddmin. Cases where no elements are removed are excluded,

since ρ is undefined in these scenarios. We then calculate ρ for
each execution of ddmin. Since ddmin is normally performed
multiple times when minimizing a test input, the ρ of each
benchmark is calculated as the average of the ρ values from
all executions of ddmin for that benchmark.
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Fig. 4: The Spearman correlation coefficient ρ between the
weights of elements and their probabilities being deleted in
ddmin. Each data point represents the mean of the ρ values of
all ddmin executions on a benchmark.

As shown in Fig. 4, overall, in each scenario of HDDd
and Persesd, and for both C programs and XML inputs, our
assumption is preserved. As shown in Fig. 4, in the four
scenarios, only 5 cases of C programs and 3 cases of XML
inputs in Persesd have ρ values greater than 0, while all other
cases have ρ values less or equal to 0. Specifically, when
minimizing the C programs with HDDd and Persesd, the mean
ρ values are -0.41 and -0.14, respectively. For the XML inputs,
the mean ρ values are -0.83 and -0.36, respectively. Although
the ρ values vary across different applications and benchmarks,
all are less than 0, indicating a negative correlation between
the probability of elements being deleted and their weights in
ddmin executions, thus validating our assumption.

RQ1: The probability of elements being deleted is negatively
correlated with their weights in ddmin executions in both
HDD and Perses, to varying degrees. This validation provides
a solid foundation for the design of Wddmin.

B. Wddmin v.s. ddmin

For this question, we compare the performance of HDDw
and Persesw with HDDd and Persesd, respectively. The detailed
results are shown in Table I.

1) Effectiveness: Overall, Wddmin is more effective than
ddmin in both HDD and Perses. On average, HDDw generates
7.81% and 16.51% smaller results than HDDd on C and XML
benchmarks, respectively, with a p-value of 5.06×10−5 overall.
In Perses, the results of Persesw are 1.04% and 0.27% smaller
than those of Persesd on C and XML benchmarks, respectively,
with a p-value of 0.53 overall.

Notably, while the above results demonstrate the superior
effectiveness of Wddmin over ddmin, the improvement of Wddmin
over ddmin in Perses is not as significant as that in HDD. Given
the different design of HDD and Perses, this result is expected.
Unlike HDD that fully relies on ddmin to perform tree node
deletion, Perses customizes different deletion strategies for



TABLE I: Results of all algorithms in HDD and Perses on all benchmarks. Better results in each pair are highlighted in bold.

HDDd HDDw Persesd Persesw HDDp HDDwp Persesp Perseswp
Benchmark T(s) S(#) T(s) S(#) T(s) S(#) T(s) S(#) T(s) S(#) T(s) S(#) T(s) S(#) T(s) S(#)

clang-18596 15,664 452 9,882 414 4,985 260 4,885 260 7,337 516 6,371 482 4,966 261 4,664 260
clang-19595 11,332 285 7,973 260 4,073 156 3,977 156 6,554 310 5,787 244 4,311 156 4,162 156
clang-20680 24,517 377 13,289 366 19,090 533 12,727 525 11,748 522 9,153 338 20,864 532 7,317 537
clang-21467 28,907 455 12,845 415 6,240 177 6,197 177 7,898 423 6,872 310 6,162 169 5,951 177
clang-21582 25,012 1,197 13,257 999 7,291 559 7,156 559 6,499 1,112 4,892 1,089 5,770 626 5,475 559
clang-22337 42,489 299 16,023 323 2,986 236 2,757 236 2,176 338 2,090 301 1,679 263 1,648 250
clang-22382 11,601 182 5,332 194 887 144 879 144 893 197 791 200 473 142 460 144
clang-22704 49,870 95 31,873 97 5,627 78 5,155 78 6,987 122 5,268 90 2,915 78 5,427 72
clang-23309 54,142 1,085 23,356 1,075 2,995 475 3,266 475 4,962 1,136 4,249 1,089 1,701 457 1,506 483
clang-23353 61,023 144 38,212 153 3,868 98 3,005 98 3,252 185 2,814 218 1,261 149 1,240 98
clang-25900 39,481 478 10,486 346 2,690 252 2,248 252 2,312 518 2,206 471 1,014 238 970 252
clang-26350 72,997 391 35,172 369 9,494 189 9,418 189 12,165 599 11,673 455 5,395 232 5,046 241
clang-26760 37,413 321 11,487 229 4,543 91 3,989 91 3,678 306 2,901 276 2,129 112 1,922 90
clang-27137 207,071 582 74,903 545 14,322 268 13,094 268 20,225 638 18,724 661 7,616 196 7,992 268
clang-27747 4,468 299 2,684 244 2,160 117 1,464 117 1,493 324 1,035 302 1,187 137 1,027 150
clang-31259 16,977 556 9,863 594 3,134 384 2,964 384 3,967 576 5,307 571 2,229 393 2,200 384
gcc-58731 8,369 431 5,614 375 3,389 213 3,325 213 4,807 416 3,428 368 3,112 237 2,779 213
gcc-59903 25,965 545 12,006 734 4,815 497 4,231 382 3,729 771 5,217 410 3,634 381 3,020 300
gcc-60116 24,708 1,281 13,077 1,137 3,177 443 3,252 443 5,323 1,245 4,083 889 2,196 428 2,092 404
gcc-60452 40,082 491 13,883 442 2,544 350 2,412 350 3,559 824 2,164 495 1,676 346 1,656 350
gcc-61047 13,086 495 5,803 505 1,082 266 1,024 266 1,686 564 2,180 512 796 267 799 266
gcc-61383 22,599 579 10,207 421 3,070 271 3,187 274 3,524 509 3,505 514 2,768 282 2,759 274
gcc-61917 27,399 293 12,531 311 2,414 142 2,032 142 2,862 327 2,494 300 1,845 145 1,386 142
gcc-64990 65,997 325 36,885 378 5,216 239 4,403 239 9,047 601 8,388 467 3,376 239 3,342 239
gcc-65383 27,974 246 12,296 217 1,593 153 1,420 153 2,273 281 1,800 275 1,139 153 1,113 153
gcc-66186 22,124 605 10,091 508 2,939 327 2,864 327 6,688 591 6,681 503 2,691 327 2,603 327
gcc-66375 78,050 1,053 28,445 740 4,114 440 3,987 440 10,635 842 11,403 813 3,345 440 3,105 440
gcc-66412 32,524 491 13,276 442 2,642 350 2,421 350 3,301 769 2,278 495 1,794 350 1,686 350
gcc-66691 18,230 1,076 11,607 1,022 3,671 746 3,553 602 3,787 959 5,625 1,039 3,256 689 3,184 603
gcc-70127 73,476 617 30,417 576 4,511 301 4,279 301 16,367 660 11,445 635 3,406 301 3,234 301
gcc-70586 66,155 792 43,507 793 6,998 197 7,779 367 13,478 921 11,363 763 5,812 168 5,394 197
gcc-71626 1,742 53 409 53 50 51 53 51 146 53 104 53 45 51 46 51

Mean 39,108 518 18,022 477 4,582 281 4,169 278 6,042 567 5,384 488 3,455 280 2,975 273

xml-1 732 33 488 24 259 16 262 16 1,248 43 528 24 425 16 419 16
xml-2 1,798 60 283 15 89 15 75 15 1,935 51 283 15 139 15 134 15
xml-3 765 36 277 15 81 15 82 15 487 23 236 15 115 15 128 15
xml-4 2,545 78 2,509 78 1,159 13 1,143 13 2,197 78 2,151 78 1,234 13 1,229 13
xml-5 865 33 242 15 86 15 89 15 273 20 150 15 69 15 69 15
xml-6 4,100 120 4,024 120 667 30 659 30 2,688 67 1,289 30 1,145 30 1,119 30
xml-7 1,837 69 1,787 69 640 33 629 33 2,295 69 2,295 69 1,062 33 1,080 33
xml-8 4,302 138 429 24 388 16 378 16 2,615 78 531 24 539 16 546 16
xml-9 2,182 63 2,216 63 1,616 37 1,591 37 1,756 68 2,272 90 1,446 37 1,469 37

xml-10 2,681 102 2,651 102 1,411 37 1,105 37 1,993 102 1,937 102 1,155 37 999 37
xml-11 1,909 90 435 24 378 16 386 16 759 37 450 24 471 16 465 16
xml-12 1,637 96 1,384 87 462 16 439 16 2,029 91 1,872 87 752 16 712 16
xml-13 1,359 78 1,332 78 485 25 483 25 1,589 78 1,519 78 718 25 739 25
xml-14 4,034 153 3,955 153 1,551 43 1,553 43 4,882 160 4,716 153 2,267 43 2,292 43
xml-15 2,333 108 1,012 51 545 16 534 16 1,581 85 993 51 621 16 620 16
xml-16 1,738 60 513 24 437 16 430 16 1,157 38 532 24 579 16 602 16
xml-17 2,519 87 292 15 101 15 97 15 1,458 58 212 15 108 15 124 15
xml-18 785 39 761 39 433 16 423 16 1,496 50 916 39 569 16 549 16
xml-19 1,512 54 1,539 54 628 36 632 36 1,858 60 1,807 54 937 36 968 36
xml-20 2,492 99 2,380 99 2,117 64 2,108 64 3,120 99 3,209 99 3,502 64 3,393 64
xml-21 3,362 93 3,256 90 1,550 46 1,463 46 4,244 91 4,192 90 2,480 46 2,549 46
xml-22 1,454 61 1,402 61 346 24 335 24 1,633 61 1,467 61 480 24 420 24
xml-23 7,317 189 5,905 165 2,332 54 2,183 51 6,725 152 6,727 165 3,184 47 3,432 51
xml-24 2,269 96 2,365 96 2,092 70 2,055 70 2,896 96 2,803 96 3,421 70 3,196 70
xml-25 3,114 135 3,696 132 1,956 55 1,924 55 2,672 139 2,042 135 1,745 55 1,710 55
xml-26 6,238 126 6,166 126 2,688 64 2,762 64 6,373 128 6,268 138 4,278 64 4,179 64
xml-27 8,955 195 8,769 195 4,382 102 4,442 102 9,340 188 8,529 186 7,135 102 7,030 102
xml-28 7,690 159 7,333 159 3,811 97 3,820 97 7,818 159 7,203 159 5,928 97 5,825 97
xml-29 5,860 147 5,173 138 1,906 48 1,861 48 3,810 142 3,515 138 1,819 48 1,797 48
xml-30 6,190 147 6,054 147 4,258 78 4,261 78 7,197 147 6,583 147 6,807 78 6,591 78

Mean 3,152 98 2,621 82 1,295 38 1,273 38 3,004 89 2,574 80 1,838 37 1,813 37

different types of nodes. In Perses, ddmin is only used to
minimize the list of nodes under a quantified node [7]. That is
to say, compared to HDD, the deletion operations performed
by ddmin (or Wddmin) constitute a smaller proportion of the
total operations in Perses. Therefore, improvements to the
effectiveness of ddmin have a relatively moderate impact on

the overall effectiveness of Perses. Moreover, the nodes under
a quantified node in Perses are syntactically independent from
each other [7], making the minimization less challenging. Thus,
ddmin can generate results comparable to Wddmin.

2) Efficiency: We first evaluate efficiency with processing
time, for which Wddmin outperforms ddmin in both HDD and



Perses. On average, HDDw takes 53.92% and 16.86% less time
than HDDd to finish minimizing the C programs and XML
inputs, respectively, with a p-value of 5.3 × 10−11 overall.
Similarly, Persesw reduces the processing time of Persesd by
9.01% and 1.67% on C and XML benchmarks, respectively,
with a p-value of 2.33×10−6 overall. Furthermore, considering
the number of tokens deleted per second (referred as tokens/s)
as an additional metric, while HDDd and Persesd deletes 6.59
and 38.14 tokens/s, respectively, HDDw and Persesw deletes
14.2 and 40.2 tokens/s, which are 115.57% and 5.40% more
than those of HDDd and Persesd, respectively. These results
strongly indicate that Wddmin is more efficient than ddmin.

Similar with the improvement of effectiveness, while Wddmin
consistently achieves higher efficiency than ddmin in both HDD
and Perses, the improvement is more significant in HDD than
in Perses. The reason is the same as that explained in §VI-B1
for effectiveness. Moreover, the high efficiency of Wddmin is
based on the assumption that the probability of elements being
deleted is negatively correlated with their weights, which is
validated in §VI-A. In fact, the degree of this correlation can
affect the efficiency of Wddmin. As shown in Fig. 4, the ρ values
of Persesd are generally larger than those of HDDd, indicating a
weaker negative correlation. Thus, the improvement of Wddmin
over ddmin in Perses is not as significant as that in HDD.

RQ2: Wddmin outperforms ddmin in both effectiveness and
efficiency in HDD, by generating 9.12% smaller results in
51.31% less time on average. In Perses, Wddmin exceeds
ddmin in efficiecny by taking 7.47% less time on average to
generate the comparable results.

C. RQ3: WProbDD v.s. ProbDD

For this research question, we compare the performance of
HDDwp and Perseswp using HDDp and Persesp as baselines,
respectively. The minimization process of ProbDD contains
nondeterminism since it may randomly select elements when
their probabilities are the same. To mitigate the impact of
such nondeterminism, we repeat each experiment for 5 times
and report the average results. WProbDD largely eliminates the
randomness of ProbDD by considering the weights of elements.
The detailed results are shown in Table I.
Effectiveness. Overall, WProbDD is more effective than ProbDD
by generating smaller results. On average, HDDwp generates
13.91% and 9.74% smaller results than HDDp for the C
programs and XML inputs, respectively, with a p-value of
1.10× 10−6. Besides, Perseswp generates 2.43% smaller and
0.32% larger results than Persesp for the C programs and
XML inputs, respectively, with a p-value of 0.42. There is
no significant difference between the results of Perseswp and
Persesp. In fact, Perseswp generates 36 same results as Persesp
out of 62 benchmarks, of which, 29 are from the XML inputs,
because of the same reason explained in §VI-B2. Especially,
for the XML inputs, only 11.9% property tests performed by
Perseswp are from WProbDD, indicating that the effectiveness of

Perseswp is largely determined by the inner deletion strategies
of Perses, instead of WProbDD.
Efficiency. WProbDD achieves higher efficiency than ProbDD
in both HDD and Perses. We first evaluate the efficiency of
WProbDD with processing time. On average, HDDwp shortens
the processing time of HDDp by 10.89% and 14.31% for the
C programs and XML inputs, respectively, with a p-value of
1.06×10−6 overall. Similarly, Perseswp reduces the processing
time of Persesp by 13.89% and 1.35% on each benchmark suite,
respectively, with a p-value of 1.73× 10−5 overall. Moreover,
in terms of the number of tokens deleted per second as an
additional metric, while HDDp and Persesp deletes 15.82 and
39.95 tokens/s, HDDwp and Perseswp deletes 24.03 and 40.36
tokens/s, which are 51.90% and 1.03% more than those of
HDDp and Persesp, respectively.

RQ3: WProbDD outperforms ProbDD in both effectiveness
and efficiency, by making HDD and Perses produce 13.40%
and 2.20% smaller results in 11.98% and 9.72% less time
on average, respectively.

VII. DISCUSSION

A. Alternative Weight Assignment

In our implementation of WDD in ddmin and ProbDD in
this paper, we utilize the number of tokens of each element
as the weight. Although this assignment strategy is not 100%
accurate, it achieves high efficiency and feasibility as it is
static, lightweight and generalizable. Other weight assignment
could also be considered, such as a dynamic weight assignment
strategy based on runtime information, including factors like
memory usage, IO operations, or execution time. However,
such a dynamic weight assignment strategy may introduce
additional overhead, potentially hindering the performance of
minimization. Furthermore, runtime profiling techniques are
typically language-specific, which may limit the generalizability
of WDD. Overcoming these challenges and exploring the
potential of dynamic WDD for language-specific minimization
techniques presents an interesting direction for future work.

B. Limitations

The primary limitation of WDD is its applicability mainly
to tree-structured inputs, where it is most effective when the
weights (i.e., token counts) of elements vary significantly. When
the test inputs cannot be represented in a tree structure (e.g.,
random strings), while the concept of weight still exists, token
count may not serve as an appropriate weight representation.
Additionally, if the tree representation of the test input is highly
balanced, WDD may offer only marginal improvement over
traditional delta debugging methods. Nevertheless, given the
widespread use of tree-based minimization techniques and the
typically unbalanced nature of trees in real-world inputs, WDD
remains essential for enhancing the performance of test input
minimization in practical scenarios.



C. Threats to Validity

1) Threats to Internal Validity: The primary internal threat
arises from the implementation of the evaluated techniques,
including Wddmin, WProbDD, and their respective baselines,
as well as HDD and Perses. To mitigate this threat, we
rigorously reproduced the the baseline techniques based on
their descriptions in the original papers, and wrote multiple
test cases to ensure the algorithms functioned as expected.
Additionally, all authors of this paper participated in a thorough
code review of the implementation. Prior to evaluating the full
set of benchmarks, we randomly selected several cases, ran our
algorithms on them, and manually verified the detailed results
to confirm the accuracy of our implementations. We have also
made our implementations publicly available for replication
and facilitating further research.

2) Threats to External Validity: A key threat to external
validity is the generalizability of WDD across different input
formats or languages. Although WDD is designed to apply to
all tree-structured inputs, variations in the tree characteristics
of different inputs may impact its performance. To mitigate this
threat, we evaluated WDD on two types of benchmarks: C and
XML. The C benchmarks represent traditional programming
languages, while the XML files represent structured inputs that
are highly hierarchical but not programs. Our evaluation results
demonstrate the superior performance of WDD across these
diverse formats. To further address this threat, our future work
includes expanding the evaluation of WDD to a broader range
of benchmarks.

VIII. RELATED WORK

We introduce two lines of related work.
Test Input Minimization. Delta Debugging [1] is the first
systematic study that enlightens the research of test input
minimization. It introduced an minimizing algorithm named
ddmin to minimize failure-inducing test inputs, which has been
described in §II-A. While ddmin is effective, its efficiency is
not satisfactory as it follows a predefined pattern to partition
and delete elements, overlooking the information of existing
tests. To fix this issue, Wang et al. [19] proposed ProbDD.
As explained in §II-B, ProbDD leverages a probabilistic
model to guide the minimization process. However, both
ddmin and ProbDD overlook the different sizes of elements
in the list, leading to suboptimal performance. Contrastively,
our approaches, Wddmin and WProbDD, successfully distinguish
different elements with their weights, and make more rationale
partitioning decisions with considering weights, which signif-
icantly improves the performance of prior delta debugging
algorithms. In practice, rather than being used directly to
minimize test inputs, delta debugging algorithms are often
integrated into tree-based minimization techniques for better
performance. Two representative techniques are HDD [5] and
Perses [7], which are chosen for our evaluation. HDD and
Perses apply delta debugging algorithms to minimize the list

of nodes in the tree. Thus their performance can be further
improved by equipping our new delta debugging algorithms.
Program Reduction. Program reduction is a special case of
test input minimization, where the input is a program. Since
normally a program can be parsed into a syntax tree, tree-based
test input minimization techniques, e.g., HDD and Perses, can
be directly applied to program reduction. Moreover, Xu et al.
proposed Vulcan [3], which pushes the limit of 1-minimality
by performing predefined program transformations. They
further developed T-Rec [2], a fine-grained language-agnostic
program reduction technique guided by lexical syntax. T-rec is
demonstrated to not only achieve smaller minimization results
than Vulcan, but also aids in deduplicating bug-triggering test
inputs. Additionally, Zhang et al. proposed LPR [10], the first
language-agnostic program reducer boosted by large language
models. Furthermore, some program reduction techniques are
specifically designed for certain languages. For example, C-
Reduce [6] is specifically designed for reducing C/C++ pro-
grams. It incorporates various semantic-specific transformations
to effectively minimize C/C++ programs. J-Reduce [26], [35],
ddSMT [27] and JS Delta [36] are specifically designed for
reducing Java bytecode, SMT-LIBv2 inputs, and JavaScript
programs, respectively. Herfert et al. propose the Generalized
Tree Reduction (GTR) technique which minimizes programs
with a series of language-specific transformations generated
by learning from a corpus of example data [37]. While these
approaches are designed for specific languages, some of them,
such as ddSMT, apply delta debugging under the hood. To this
end, introducing our novel concept of WDD to these tools to
further improve their performance is a promising direction for
future work.

IX. CONCLUSION

This paper introduces Weighted Delta Debugging (WDD), a
novel concept that incorporates the weight of elements into delta
debugging. The key insight of WDD is to assign each element in
the input list a weight, and distinguish different elements based
on their weights during partitioning. We realize the concept of
WDD in two representative delta debugging algorithms, ddmin
and ProbDD, and propose Wddmin and WProbDD, respectively.
The extensive evaluation on 62 benchmarks demonstrates
the superior performance of Wddmin and WProbDD, in both
effectiveness and efficiency, highlighting the significance of
WDD in optimizing delta debugging algorithms. We firmly
believe that WDD opens up a new dimension to improve test
input minimization techniques.
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