
A Discriminative Model Approach for Accurate Duplicate
Bug Report Retrieval

Chengnian Sun1, David Lo2, Xiaoyin Wang3, Jing Jiang2, Siau-Cheng Khoo1

1School of Computing, National University of Singapore
2School of Information Systems, Singapore Management University

3Key laboratory of High Confidence Software Technologies (Peking University), Ministry of Education
suncn@comp.nus.edu.sg, davidlo@smu.edu.sg, wangxy06@sei.pku.edu.cn,

jingjiang@smu.edu.sg, khoosc@comp.nus.edu.sg

ABSTRACT
Bug repositories are usually maintained in software projects.
Testers or users submit bug reports to identify various issues
with systems. Sometimes two or more bug reports corre-
spond to the same defect. To address the problem with du-
plicate bug reports, a person called a triager needs to man-
ually label these bug reports as duplicates, and link them
to their ”master” reports for subsequent maintenance work.
However, in practice there are considerable duplicate bug re-
ports sent daily; requesting triagers to manually label these
bugs could be highly time consuming.

To address this issue, recently, several techniques have
be proposed using various similarity based metrics to detect
candidate duplicate bug reports for manual verification. Au-
tomating triaging has been proved challenging as two reports
of the same bug could be written in various ways. There is
still much room for improvement in terms of accuracy of du-
plicate detection process. In this paper, we leverage recent
advances on using discriminative models for information re-
trieval to detect duplicate bug reports more accurately. We
have validated our approach on three large software bug
repositories from Firefox, Eclipse, and OpenOffice. We show
that our technique could result in 17–31%, 22–26%, and 35–
43% relative improvement over state-of-the-art techniques in
OpenOffice, Firefox, and Eclipse datasets respectively using
commonly available natural language information only.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Management, Reliability

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Due to complexities of systems built, software often comes
with defects. Software defects have caused billions of dollars
lost [20]. Fixing defects is one of the most frequent reasons
for software maintenance activities which also goes to 70
billion US dollars in the United States alone [19].

In order to help track software defects and build more reli-
able systems, bug tracking tools have been introduced. Bug
tracking systems like Bugzilla1 enable many users to serve
as “testers” and report their findings in a unified environ-
ment. These bug reports are then used to guide software
corrective maintenance activities and result in more reliable
software systems. Via the bug tracking systems, users are
able to report new bugs, track statuses of bug reports, and
comment on existing bug reports.

Despite the benefits of a bug reporting system, it does
cause some challenges. As bug reporting process is often
uncoordinated and ad-hoc, often the same bugs could be
reported more than once by different users. Hence, there is
often a need for manual inspection to detect whether the bug
has been reported before. If the incoming bug report is not
reported before then the bug should be assigned to a devel-
oper. However, if other users have reported the bug before
then the bug would be classified as being a duplicate and
attached to the original first-reported “master” bug report.
This process referred to as triaging often takes much time.
For example, for the Mozilla programmers, it has been re-
ported in 2005 that “everyday, almost 300 bugs appear that
need triaging. This is far too much for only the Mozilla
programmers to handle” [2].

In order to alleviate the heavy burden of triagers, there
have been recent techniques to automate the triaging pro-
cess in two ways. The first one is automatically filtering
duplicates to prevent multiple duplicate reports from reach-
ing triagers [11]. The second is providing a list of similar
bug reports to each incoming report under investigation [17,
22, 11]; with the help, rather than checking against the en-
tire collection of bug reports, a triager could first inspect the
top-k most similar bug reports returned by the systems. If
there is a report in the list that reports about the same de-
fect as the new one, then the one is a duplicate, The triager
then marks it as a duplicate and adds a link between the
two duplicates for subsequent maintenance work. In our
paper, instead of filtering duplicates, we choose the second
approach as duplicate bug reports are not necessarily bad.
As stated in [3], one report usually does not carry enough
information for developers to dig into the reported defect,

1http://www.bugzilla.org/
ICSE’10, May 2–8, 2010, Cape Town, South Africa. 
Copyright © 2010 ACM 978-1-60558-719-6/10/05 ... $10.00. 

45



while duplicate reports can complement one another.
To achieve better automation and thus save triagers’ time,

it is important to improve the quality of the ranked list of
similar bug reports given a new bug report. There have been
several studies on retrieving similar bug reports. However,
the performance of these systems is still relative low, making
it hard to apply them in practice. The low performance is
partly due to the following limitations of the current meth-
ods. First, all the three techniques in [17, 22, 11] employ
one or two features to describe the similarity between re-
ports, despite the fact that other features are also available
for effective measurement of similarity. Second, different fea-
tures contribute differently towards determining similarities.
For example, the feature capturing similarity between sum-
maries of two reports are more effective than that between
descriptions, as summaries typically carry more concise in-
formation. However, as project contexts evolve, the relative
importance of features might vary. This can cause the past
techniques, which are largely based on absolute rating of
importance, to deteriorate in their performance.

More accurate results would mean more automation and
less effort by triagers to find duplicate bug reports. To ad-
dress this need, we propose a discriminative model based
approach that further improves accuracy in retrieving dupli-
cate bug reports by up to 43% on real bug report datasets.

Different from the previous approaches that rank similar
bug reports based on similarity score of vector space rep-
resentation, we develop a discriminative model to retrieve
similar bug reports from a bug repository. We make use
of the recent advances in information retrieval community
that uses a classifier to retrieve similar documents from a
collection[15]. We build a model that contrasts duplicate
bug reports from non-duplicate bug reports and utilize this
model to extract similar bug reports, given a query bug re-
port under consideration.

We strengthen the effectiveness of bug report retrieval
system by introducing many more relevant features to cap-
ture the similarity between bug reports. Moreover, with the
adoption of the discriminative model approach, the relative
importance of each feature will be automatically determined
by the model through assignment of an optimum weight.
Consequently, as bug repository evolves, our discriminative
model also evolves to guarantee the all the weights remain
optimum at all time. In this sense, our process is more adap-
tive, robust, and automated.

We evaluate our discriminative model approach on three
large bug report datasets from large programs including
Firefox, an open source web browser, Eclipse, a popular open
source integrated development environment, and OpenOf-
fice, a well-known open source rich text editor. In terms
of the range of types of programs considered for evaluation,
to the best of our knowledge, we are the first to investi-
gate the applicability of the approach on different types
of systems. We show that our technique could result in
17–31%, 22–26%, and 35–43% improvement over state-of-
the-art techniques [17, 22, 11] in OpenOffice, Firefox, and
Eclipse datasets respectively using commonly available nat-
ural language information alone.

We summarize our contributions as follows:

1. We employ in total 54 features to comprehensively
evaluate the similarity between two reports.

2. We propose a discriminative model based solution to

retrieve similar bug reports from a bug tracking sys-
tem. Our model can automatically assign optimum
weight to each feature and evolve along with the changes
of bug repositories.

3. We are the first to analyze the applicability of dupli-
cate bug report detection techniques across different
sizable bug repositories of various large open source
programs including OpenOffice, Firefox, and Eclipse.

4. We improve the accuracy of state-of-the-art automated
duplicate bug detection systems by up to 43% on dif-
ferent open-source datasets.

The paper is organized as follows. Section 2 presents
some background information on bug reports, information
retrieval, and discriminative model construction. Section 3
presents our approach to retrieving similar bug reports for
duplicate bug report detection. Section 4 describes our case
study on sizable bug repositories of different open source
projects and shows the utility of the proposed approach in
improving the state-of-the-art detection performance. Sec-
tion 5 discusses some important consideration about our ap-
proach. Section 6 discusses related work, and finally, Sec-
tion 7 concludes and describes some potential future work.

2. BACKGROUND
In general, duplicate bug report retrieval involves infor-

mation extraction from and comparison between documents
in natural language. This section covers the necessary back-
ground and foundation techniques to perform the task in our
approach.

2.1 Duplicate Bug Reports
A bug report is a structured record consisting of sev-

eral fields. Commonly, they include summary, description,
project, submitter, priority and so forth. Each field carries
a different type of information. For example, summary is a
concise description of the defect problem while description
is the detailed outline of what went wrong and how it hap-
pened. Both of them are in natural language format. Other
fields such as project, priority try to characterize the defect
from other perspectives.

In a typical software development process, the bug track-
ing system is open for testers or even for all end users, so it
is unavoidable that two people may submit different reports
on the same bug. This causes the problem of duplicate bug
reports. As mentioned in [17], duplicate reports can be di-
vided into two categories. One describes the same failure,
and the other depicts two different failures both originated
from the same root cause. In this paper, we only handle the
first category. As an example, Table 1 shows three pairs of
duplicate reports extracted from Issue Tracker of OpenOf-
fice. Only the summaries are listed.

Usually, new bug reports are continually submitted. When
triagers identify that a new report is a duplicate of an old
one, the new one is marked as duplicate. As a result, given
a set of reports on the same defect, only the oldest one in
the set is not marked as duplicate. We refer to the oldest
one as master and the others as its duplicates.

A bug repository could be viewed as containing two groups
of reports: masters and duplicates. Since each duplicate
must have a corresponding master and both reports are on
the same defect, the defects represented by all the duplicates

46



Table 1: Examples of Duplicate Bug Reports
ID Summary
85064 [Notes2] No Scrolling of document content by

use of the mouse wheel
85377 [CWS notes2] unable to scroll in a note with the

mouse wheel
85502 Alt+<letter> does not work in dialogs
85819 Alt-<key> no longer works as expected
85487 connectivity: evoab2 needs to be changed to

build against changed api
85496 connectivity fails to build (evoab2) in m4

in the repository belong to the set of the defects represented
by all the masters. Furthermore, typically each master re-
port represents a distinct defect.

2.2 Information Retrieval
Information retrieval (IR) aims to extract useful infor-

mation from unstructured documents, most of which are
expressed in natural language. IR methods typically treat
documents as “bags of words” and subsequently represent
them in a high-dimensional vector space where each dimen-
sion corresponds to a unique word or term. In this paper, we
use term and word interchangeably. The following describes
some commonly used strategies to pre-process documents
and methods to weigh terms.
Pre-processing. In order to computerize retrieval task, a
sequence of actions should be taken first to preprocess doc-
uments using natural language processing techniques. Usu-
ally, this sequence comprises tokenization, stemming and
stop word removal. A word token is a maximum sequence
of consecutive characters without any delimiters. A delim-
iter in turn could be a space, punctuation mark, etc. Tok-
enization is the process of parsing a character stream into a
sequence of word tokens by splitting the stream by the de-
limiters. Stemming is the process to reduce words to their
ground forms. The motivation to do so is that different forms
of words derived from the same root usually have similar
meanings. By stemming, computers can capture this simi-
larity via direct string equivalence. For example, a stemmer
can reduce both “tested” and “testing” to “test”. The last
action is stop word removal. Stop words are those words
carrying little helpful information for information retrieval
task. These include pronouns such as “it”, “he” and “she”,
link verbs such as “is”, “am”and “are”, etc. In our stop word
list, in addition to removing 30 common stop words, we also
drop common abbreviations such as “I’m”, “that’s”, “we’ll”,
etc.
Term-weighting. TF-IDF (Term Frequency-Inverse Doc-
ument Frequency) is a common term-weighting scheme. It
is a statistical approach to evaluating the importance of a
term in a corpus. TF is a local importance measure. Given
a term and a document, in general, TF corresponds to the
number of times the term appears within the document. Dif-
ferent from TF, IDF is a global importance measure most
commonly calculated by the formula within the corpus,

idf(term) = log2(
Dall

Dterm
) (1)

In (1), Dall is the number of the documents in the cor-
pus while Dterm is the number of documents containing the

Figure 1: Maximum-Margin Hyperplane Calculated
by SVM in Two-Dimensional Space

term. Given a term, the fewer documents it is contained in,
the more important it becomes. In our approach, we employ
an idf -based formula to weigh terms.

2.3 Building Discriminative Models via SVM
Support Vector Machine (SVM) is an approach to build-

ing a discriminative model or classifier based on a set of
labeled vectors. Given a set of vectors, some belonging to a
positive class and others belonging to a negative class, SVM
tries to build a hyperplane that separates vectors belonging
to the positive class from those of the negative class with
the largest margin. Figure 1 shows such kind of a hyper-
plane built by SVM with the maximum margin in a two-
dimensional space. The resultant model could then be used
to classify other unknown data points in vector representa-
tion and label them as either positive or negative. In this
study, we use libsvm [6], a popular implementation of SVM.

3. OUR APPROACH
Duplicate bug report retrieval can be viewed as an ap-

plication of information retrieval (IR) technique to the do-
main of software engineering, with the objective of improv-
ing productivity of software maintenance. In classical re-
trieval problem, the user gives a query expressing the infor-
mation he/she is looking for. The IR system would then
return a list of documents relevant to the query. For du-
plicate report retrieval problem, the triager receives a new
report and inputs it to the duplicate report retrieval system
as a query. The system then returns a list of potential du-
plicate reports. The list should be sorted in a descending
order of relevance to the queried bug report.

Our approach adopts recent development on discrimina-
tive models for information retrieval to retrieve duplicate
bug reports. Adapted from [15], we consider duplicate bug
report retrieval as a binary classification problem, that is,
given a new report, the retrieval process is to classify all ex-
isting reports into two classes: duplicate and non-duplicate.
We compute 54 types of textual similarities between reports
and use them as features for training and classification pur-
pose.

The rest of this section is structured as follows: Sub-
section 3.1 gives a bird’s eye view of the overall framework.
Sub-section 3.2 explains how existing bug reports in the
repository are organized. Sub-section 3.3 elaborates on how
a discriminative model is built. Sub-section 3.4 describes
how the model is applied for retrieving duplicate bug re-
ports. Finally, Sub-section 3.5 describes how the model is
updated when new triaged bug reports arrive.

47



Figure 2: Overall Framework to Retrieve Duplicate
Bug Reports

Figure 3: Bucket Structure

3.1 Overall Framework
Figure 2 shows the overall framework of our approach. In

general, there are three main steps in the system, preprocess-
ing , training a discriminative model and retrieving duplicate
bug reports.

The first step, preprocessing, follows a standard natural
language processing style – tokenization, stemming and stop
words removal – described in Sub-section 2.2. The second
step, training a discriminative model , trains a classifier to
answer the question “How likely are two bug reports dupli-
cates of each other?”. The third step, retrieving duplicate
bug reports, makes use of this classifier to retrieve relevant
bug reports from the repository.

3.2 Data Structure
All the reports in the repository are organized into a bucket

structure. The bucket structure is a hash-map-like data
structure. Each bucket contains a master report as the key
and all the duplicates of the master as its value. As ex-
plained in Sub-section 2.1, different masters report different
defects while a master and its duplicates report the same
defect. Therefore, each bucket stands for a distinct defect,
while all the reports in a bucket correspond to the same de-
fect. The structure of the bucket is shown diagrammatically
in Figure 3. New reports will also be added to the struc-
ture after they are labeled as duplicate or non-duplicate by
triagers. If a new report is a duplicate, it will go to the
bucket indexed by its master; otherwise, a new bucket will
be created to include the new report and it becomes a mas-
ter.

3.3 Training a Discriminative Model
Given a set of bug reports classified into masters and du-

plicates, we would like to build a discriminative model or
a classifier that answers the question: “How likely are two
input bug reports duplicate of each other?”. This question
is essential in our retrieval system. As described in Subsec-
tion 3.4, the answer is a probability describing the likelihood
of these two reports being duplicate of each other. When a
new report comes, we ask the question for each pair between

Figure 4: Training a Discriminative Model

the new report and all the existing reports in the repository
and then retrieve the duplicate reports based on the proba-
bility answers. To get the answer we follow a multi-step ap-
proach involving example creation, feature extraction, and
discriminative model creation via Support Vector Machines
(SVMs).

The steps are shown in Figure 4. Based on the buck-
ets containing masters associated with corresponding dupli-
cates, we extract positive and negative examples. Positive
examples correspond to pairs of bug reports that are dupli-
cates of each other. Negative examples correspond to pairs
of bug reports that are not duplicates of each other. Next,
a feature extraction process is employed to extract features
from the pairs of bug reports. These features must be rich
enough to be able to discriminate between cases where bug
reports are duplicate of one another and cases where they
are distinct. These feature vectors corresponding to dupli-
cates and non-duplicates are then input to an SVM learning
algorithm to build a suitable discriminative model. The fol-
lowing sub-sections describe each of the steps in more detail.

3.3.1 Creating Examples
To create positive examples, for each bucket, we perform

the following:

1. Create the pair (master, duplicate), where duplicate is
one of the duplicates in the bucket and master is the
original report in the bucket.

2. Create the pairs (duplicate1,duplicate2) where the two
duplicates belong to the same bucket.

To create negative examples, one could pair one report
from one bucket with another report from the other bucket.
The number of negative examples could be much larger than
the number of positive examples. As there are issues related
to skewed or imbalanced dataset when building classification
models (c.f. [13]), we choose to under-sample the negative
examples, thus ensure that we have the same number of
positive and negative examples.

At the end of the process, we have two sets of examples:
one corresponds to examples of pairs of bug reports that are

48



duplicates, and the other corresponds to examples of pairs
of bug reports that are non-duplicates.

3.3.2 Feature Engineering & Extraction
At times, limited features make it hard to differentiate be-

tween two contrasting datasets: in our case, pairs that are
duplicates and pairs that are non-duplicates. Hence a rich
enough feature set is needed to make duplicate bug report
retrieval more accurate. Since we are extracting features
corresponding to a pair of textual reports, various textual
similarity measures between the two reports are good fea-
ture candidates. In our approach, we employ the following
formula as the textual similarity.

sim(B1, B2) =
∑

w∈B1∩B2

idf(w) (2)

In (2), sim(B1, B2) returns the similarity between two bags
of words B1 and B2. The similarity is the sum of idf values
of all the shared words between B1 and B2. The idf value
for each word is computed based on a corpus formed from all
the reports in the repository, which will be detailed further
below. The rational why the similarity measure does not
involve TF is that the measure with only IDF yields better
performance indicated by Fisher score which will be detailed
in Sub-section 5.2, and validated by the experiments.

Generally, each feature in our approach can then be ab-
stracted by the following formula,

f(R1, R2) = sim(words from R1, words from R2) (3)

From (3), a feature is actually the similarity between two
bags of words from two reports R1 and R2.
One observation is that a bug report consists of two impor-

tant fields: summary and description. So we can get three
bags of words from one report, one bag from summary, one
from description and one from both (summary+description).
To extract a feature from a pair of bug reports, for example,
one could compute the similarity between the bag of words
from the summary of one report and the words from the
description of the other. Alternatively, one could use the
similarity between the words from both the summary and
description of one report and those from the summary of
the other. Other combinations are also possible.

Furthermore, we can compute three types of idf , as the
bug repository can form three distinct corpora. One corpus
is the collection of all the summaries, one corpus is the col-
lection of all the descriptions, and the other is the collection
of all the both (summary+description). We denote the three
types of idf computed within the three corpora by idfsum,
idfdesc, and idfboth respectively.

The output of function f defined in (3) depends on the
choice of bag of words for R1, the choice of bag of words for
R2 and the choice of idf . Considering each of the combi-
nations as a separate feature, the total number of different
features would be 3 × 3 × 3, which is equal to 27. Figure 5
shows how the 27 features are extracted from a pair of bug
reports.

Aside from considering words, we also consider bigrams –
two consecutive words. With bigrams, considering different
combinations of bag of words coming from and idf computed
based on summaries,descriptions, or both, we would have
another 27 features which would then bring the number of
features extracted to 54.

Algorithm 1 Calculate Candidate Reports for Q

Procedure ProposeCandidates
Input:
Q: a new report
Rep: the bug repository
N : the expected size of candidate list
Output:
result: a list of N masters of which Q is a likely duplicate
Body:

1: Candidates = an empty min-heap of maximum size N
2: for each bucket B ∈ Buckets(Rep) do
3: similarity = PredictBucket(Q,B)
4: Master(B).similarity = similarity
5: add Master(B) to Candidates
6: end for
7: sort Candidates in descending order of field similarity
8: return sorted Candidates

Algorithm 2 Calculate Similarity between Q and a Bucket

Procedure PredictBucket
Input:
Q: a new report
B: a bucket
Output:
max: the maximum similarity between Q and each report
of B
Body:

1: max = 0
2: tests = {f54(Q,R)|R ∈ Reports(B)}
3: for each feature vector t ∈ tests do
4: probability = SVMPredict(t)
5: max = MAX(max, probability)
6: end for
7: return max

3.3.3 Training Models
Before training, an extra action is taken to normalize the

values of all features in the training set to within the range
[-1,1]. This is to avoid the case that some features in the
bigger range dominate those in the smaller range. We use a
standard algorithm to normalize the feature vectors (c.f. [6]).
The same normalization will also be applied when the resul-
tant model is used for classifying unknown pairs.

We use libsvm [6] to train a discriminative model from
the training set. As suggested by [15], we choose the linear
kernel for SVM as it is efficient and effective in performing
classification for information retrieval. A typical classifier
would only give binary answers; in our case, whether two
bug reports are duplicate or not. We are not interested in
binary answers; rather, we are interested in knowing how
likely two bug reports are duplicates. To do this we enable
the probability estimation functionality of libsvm to train a
discriminative model which is able to produce a probability
of two bug reports being duplicates of each other.

3.4 Applying Models for Duplicate Detection
When a new report Q arrives, we can apply the trained

model to retrieve a list of candidate reports of which Q is
likely a duplicate. The retrieval details are displayed in Al-
gorithm 1 and Algorithm 2.

Algorithm 1 returns a duplicate candidate list for a new

49



Figure 5: Feature Extraction: First 27 Features

report. In general, it iterates over all the buckets in the
repository and calculates the similarity between the new
report and each bucket. At last, a list of masters whose
buckets have the biggest similarity is returned. In Line 2,
Buckets(Rep) returns all the buckets in the bug repository,
and Master(B) in Line 4 is the master report of bucket B.
The algorithm makes a call to Algorithm 2 which computes
the similarity between a report and a bucket of reports. To
make the algorithm efficient, we only keep top N candidate
buckets in memory while the buckets in the repository are
being analyzed. This is achieved by a minimum heap of
maximum size N . If the size of Candidates is less than N ,
new bucket will be directly added. When the size equals
to N , if the new bucket whose similarity is greater than
the minimum similarity in Candidates, it will replace the
bucket with the minimum similarity; otherwise, the request
of adding the bucket will be ignored by Candidates.

Given a new report Q and a bucket B, Algorithm 2 re-
turns the similarity between Q and B. This algorithm first
creates candidate duplicate pairs between Q and all the re-
ports in the bucket B (Line 2). Each pair is represented
by a vector of features, which is calculated by the function
f54. The trained discriminative model is used to predict
the probability for each candidate pair. Finally, the max-
imum probability between Q and the bug reports in B is
returned as the similarity between Q and B. Reports(B)
denotes all the reports in B. The operation f54(Q,R) re-
turns a vector of the 54 similarity features from the pair of
bug reports Q and R, including 27 features based on sin-
gle words and 27 features based on bigrams described in
Sub-section 3.3.2. The procedure SVMPredict in Line 4 is
the invocation to the discriminative model and it returns a
probability in which the pair of reports the feature vector t
corresponds to are duplicates of each other.

3.5 Model Evolution
As time passes, new bug reports will come and be triaged.

This new information could be used as new training data to
update the model. Users could perform this process period-
ically or every time after a new bug report has been triaged.
In general, such newly created training data should be use-
ful. However, we find that such information is not always

beneficial to us for the following reason: our retrieval model
is based on lexical similarity rather than semantic similar-
ity of text. In another word, if two bug reports refer to
the same defect but use different lexical representations, i.e.
words, then our retrieval model does not give a high similar-
ity measure to this pair of bug reports. Therefore, including
a pair of duplicate bug reports that are not lexically sim-
ilar in the training data would actually bring noise to our
trained classifier. We therefore consider the following two
kinds of update:

1. Light update. If our retrieval engine fails to retrieve
the right master for a new report before the triager
marks the report as a duplicate, we perform this up-
date. When the failure happens, the new bug report
could syntactically be very far from the master. For
this case, we only perform a light update to the model
by updating the idf scores of the training examples
and re-training the model.

2. Regular update. We perform this update if our re-
trieval engine is able to retrieve the right master for
the new duplicate bug report. When this happens,
the new bug report is used to update the idf AND to
create new training examples. An updated discrimi-
native model is then trained based on the new idf and
training examples.

Via our experiments, we have empirically validated that
the above heuristics work effectively in improving the quality
of the model after updating.

4. CASE STUDIES
We apply our discriminative model approach to three large

bug repositories of open source projects, OpenOffice, Firefox
and Eclipse. For comparison purpose, we also implemented
the algorithms in [17, 22, 11] to the best of our knowledge.
To evaluate the performance of different approaches, we em-
ployed the notion of recall rate defined in [17].

recall rate =
Ndetected

Ntotal
(4)

(4) shows how recall rate is calculated. Ndetected is the
number of duplicate reports whose masters are successfully

50



detected, while Ntotal is the total number of duplicate re-
ports for testing the retrieval process. Given a candidate
list size, the recall rate can be interpreted as the percent-
age of duplicates whose masters are successfully retrieved in
the list. In terms of this measure, the result shows that our
approach can bring remarkable improvement over the other
three approaches.

4.1 Experimental Setup
In our experiment, we used the bug repositories of three

large open source projects: the Eclipse project, the Fire-
fox project and the OpenOffice project. Among the three
projects, Eclipse is a popular open source integrated devel-
opment environment written in Java; Firefox is a well-known
open source web browser written in C/C++, and OpenOf-
fice is an open source counterpart of Microsoft Office.

These three projects are from different domains, written
in different languages and used by different types of users.
Thus, carrying out the experiment on them helps to general-
ize our conclusions. On top of that, all of the three projects
have large bug repositories so as to provide ample data for an
evaluation. We selected a subset of each repository including
both defect reports and feature requests within a period of
time to set up an experimental bug set in our study. Specif-
ically, we use the bug report set submitted to OpenOffice
in year 2008 (including 12,732 bug reports), the bug report
set of Eclipse in year 2008 (including 44,652 bug reports)
to evaluate our approach. Furthermore, to study how our
training based approach works in the long run (in case the
property of bug reports change over time), we further eval-
uated our approach on the whole bug report set of Firefox
(including 47,704 bug reports submitted since Firefox was
started in 2002) before June 2007 as a long-run evaluation
set.

Table 2 gives the details of the three datasets. We refer to
the time period of the datasets as Time Frame, as the second
column Time Frame displays. To run our approach, we
select the first M reports of which 100 reports are duplicates
as training set to train a discriminative model. The third
column of Training Reports in the table shows the ratio of
duplicates and all reports in the training set. Besides of
serving as a training set in our approach, those M reports
are also used to simulate the initial bug repository for all
experiment runs.

Selecting reports within a time frame introduces a prob-
lem. If a duplicate report r1 is within the time frame while
its master is not, then r1 is not detectable as its master is
not in the dataset, which will only decrease the recall rate.
For this case, we simply re-mark r1 as non-duplicate. How-
ever, there is a more complex case. Suppose there are two or
more duplicate reports on the same defect within the frame
while their common master is excluded from the dataset. If
we still simply mark them as non-duplicate, we will lose two
or more duplicates. So in this case, we first make the oldest
report roldest become the master report, and then mark the
others as duplicates of roldest.

4.2 Experimental Details and Result
We evaluate the performance of our approach as compared

to previous techniques over the three datasets. The previous
approaches come with a parameter setting corresponding to
the weight being assigned to the words from the summary
and those from the description of the bug reports. They

consider two weights, one is: equal weight between the sum-
mary and description, second is: summary carries double
weight.

Also, in the three approaches, they consider a non bucket-
based retrieval, where relevant bug reports are retrieved
rather than relevant buckets. As one bucket contains bug re-
ports corresponding to the same defect, we believe it is best
to consider bucket-based retrieval. Report-based retrieval
could potentially return more than one report referring to
the same defect in the list of candidate duplicate bug reports
causing redundant effort for the triager. Also, in [22], the
authors use both IR and execution trace to detect duplicate
reports. As execution trace is hard to get for existing reports
and especially for our large datasets, we only compare based
on textual summary and description of the bug reports.

In the three datasets, training reports are used as ini-
tial bug repository. They are also used to construct the
training set and further to build a discriminative model. At
each experimental run, we iterate over the testing reports
in chronological order. Once reaching a duplicate report R,
we apply the corresponding technique to get a top N list of
R’s potential master reports. After each detection is done,
we record the result whether R’s master is detected success-
fully for future recall rate calculation, and then add R to the
repository. After the last iteration is over, the recall rates
for different top list size are calculated.

Figure 6 shows the experiment results of the seven runs
on the three datasets. In the figure, the horizontal axis is
the top N list’s size, and the vertical axis is the recall rate;
J stands for [11], R stands for [17] and W is [22]. Suffix -1
or -2 represents weighing summaries 1 or 2. O corresponds
to our approach. From the three sub figures, we can easily
come to the first conclusion that our technique brings evi-
dence of improvement. We have 17–31% relative improve-
ment in OpenOffice dataset, 22–26% in Firefox dataset and
35–43% in Eclipse dataset. The second conclusion is that
manually empirically weighing summaries for traditional IR
techniques can help improve limited performance as the six
curves near the bottom of each sub figure are very close to
one another.

Compared to other six runs, the improvement achieved in
our run is due to (1) the 54 similarity features to compre-
hensively measure how similar two reports are (2) and the
use of discriminative model to automatically assign weights
to each feature to discriminate duplicate reports from non-
duplicate ones, which is rigorous and has theoretical support
from machine learning area.

5. DISCUSSION
This section will first discuss issues related to runtime

overhead, followed by the rationale behind the choice of the
54 similarity scores as features rather than other types of
similarity scores.

5.1 Runtime Overhead
There is no free lunch. With the big increase of recall

rates, the runtime overhead of our detection algorithm is
also higher than past approaches. In the largest dataset
Firefox in the experiment run of our approach, the initial
cost to detect a duplicate report is one second. However, as
the training set continually grows and the repository gets in-
creasingly large, the detection cost also increases over time.
When the experiment considers detecting the last duplicate

51



Table 2: Summary of Datasets
Dataset Time Frame Training Reports (Duplicate/All) Testing Reports(Duplicate/All)

OpenOffice Jan/02/2008–Dec/30/2008 100/3160 529/9572
Firefox Apr/04/2002–Jul/07/2007 100/962 3207/46359
Eclipse Jan/02/2008–Dec/30/2008 100/4265 1913/40387

(a) OpenOffice

(b) FireFox

(c) Eclipse

Figure 6: Recall Rates Comparison between Various
Techniques with Certain Top List Size

bug report, the cost becomes one minute.
The major overhead is due to the fact that we consider

54 different similarity features between reports. In contrast,
previous works [17, 22] consider the similarity between sum-
mary+description and summary+description, and [11] con-
siders the similarity between summary and summary, and
the similarity between description and description. The run-
time overhead is higher at the later part of the experiment as
the number of bug report pairs in the training set is larger.
Consequently, SVM will need more time to build a discrim-
inative model.

However, a higher runtime overhead does not mean that

this approach is not practical. In fact, it is acceptable for real
world bug triaging process for two reasons. First, we have
experimented with real world datasets. The dataset from
Firefox spans from April 04, 2002 to July 07, 2007 and con-
tains more than 47,000 reports in total. For an active soft-
ware project, considering reports in one-year frame is enough
as bug reports are usually received for new software releases.
Although the Eclipse dataset with 44652 reports is within
one-year time frame, it contains multiple sub-projects, which
means that it can be split into smaller datasets. Second, new
bug reports do not come every minute. In our three datasets,
the average frequency of new report arrival for OpenOffice
is 1.5 reports/hour, the one for Firefox is 1 report/hour, and
the one for Eclipse is 5 reports/hour. Therefore, our system
still has enough time to retrain the model before processing
a new bug report.

5.2 Feature Selection
Feature selection is the process to identify a set of features

which can bring the best classification performance. A com-
monly used metric for feature selection is Fisher score [16],
defined in the following formula,

Fr =

∑c
i=1 ni(μi − μ)2∑c

i=1 niσ2
i

(5)

where ni is the number of data examples in class i, μi is the
average feature value in class i, σi is the standard deviation
of the feature value in class i, and μ is the average feature
value in the whole dataset. Assume xij is the attribute
value for the jth instance in class i, then μ, μi and σi are

defined as μ =
∑

i

∑
j xij∑

i ni
, μi =

∑
j xij

ni
, σi =

√∑
j(xij−μi)2

ni
,

respectively. The higher the fisher score the better is the
feature for classification.

In our approach, we use 54 idf -based formulas to calcu-
late similarity features between two bug reports. One might
ask why tf or tf ∗ idf measures are not used in the formu-
las. The reason to choose an idf -only solution is that this
setting yields the best performance during our empirical val-
idation. To further demonstrate that idf is a good measure,
we replace the idf measure in the 54 features with tf and
tf ∗ idf measure respectively. We then calculate the Fisher
score of each of the 54 features using idf , tf , and tf ∗ idf .
The results on Eclipse dataset shows that idf -based formulas
outperform tf -based and (tf ∗ idf)-based formulas in terms
of Fisher score. This supports our decision in choosing the
idf -based formulas as feature scores.

6. RELATED WORK
One of the pioneer studies on duplicate bug report detec-

tion is by Runeson et al. [17]. Their approach first cleaned
the textual bug reports via natural language processing tech-
niques – tokenization, stemming and stop word removal.

52



The remaining words were then modeled as a vector space,
where each axis corresponded to a unique word. Each re-
port was represented by a vector in the space. The value of
each element in the vector was computed by the following
formula on the tf value of the corresponding word.

weight(word) = 1 + log2(tf(word))

After these vectors were formed, they used three measures
– cosine, dice and jaccard – to calculate the distance between
two vectors as the similarity of the two corresponding re-
ports. Given a bug report under investigation, their system
would return top-k similar bug reports based on the similar-
ities between the new report and the existing reports in the
repository. A case study was performed on defect reports at
Sony Ericsson Mobile Communications, which showed that
the tool was able to identify 40% of duplicate bug reports.
It also showed that cosine outperformed the other two sim-
ilarity measures.

In [22], Wang et al. extended the work by Runeson et al.
in two dimensions. First they considered not only TF, but
IDF. Hence, in their work, the value of each element in a
vector corresponded to the following formula,

weight(word) = tf(word) ∗ idf(word)

Second, they considered execution information to detect du-
plicates. A case study based on cosine similarity measure on
a small subset of bug reports from Firefox showed that their
appraoch could detect 67%–93% of duplicate bug reports by
utilizing both natural language information and execution
traces.

In [11], Jalbert and Weimer extended the work by Rune-
son et al. in two dimensions. First, they proposed a new
term-weighting scheme for the vector representation,

weight(word) = 3 + 2 ∗ log2(tf(word))

The cosine similarity was adopted to extract top-k similar
reports. Aside from the above, they also adopted clustering
and classification techniques to filter duplicates.

Similarities and Differences. Similar to the above
three studies, we address the problem of retrieving simi-
lar bug reports from repositories for duplicate bug report
identification. Similar to the work in [17, 11], we only con-
sider natural language information which is widely avail-
able. The execution information considered in [22] is often
not available and hard to collect, especially for binary pro-
grams. For example, in the OpenOffice, Firefox and Eclipse
datasets used in our experiment, the percentages of reports
having execution information are indeed low (0.82%, 0.53%
and 12% respectively). Also, for large bug repositories, cre-
ation of execution information for legacy reports can be time
consuming.

Compared to the three approaches, there are generally
three differences. First, to retrieve top-k similar repots,
they used similarity measure to compute distances between
reports while we adopt an approach based on discrimina-
tive model. We train a discriminative model via SVMs to
classify whether two bug reports are duplicates of one other
with a probability. Based on this probability score, we re-
trieve and rank candidate duplicate bug reports. What is
more, The approach in [11] also employed a classifier trained
by SVMs, but for a different purpose. Their classifier was
used to return a boolean flag of DUPLICATE or NEW for
a new report, if the flag was DUPLICATE, the new report

would be filtered and would not reach triagers. They re-
ported that 8% of the duplicate reports could be filtered in
their experiment. The second difference is that we introduce
54 features, out of which 27 are based on bigrams, to better
discriminate duplicate bug reports. Then the trained dis-
criminative model can automatically infer optimum weights
for each feature. This mechanism enables our approach to
be robust to bad features, adaptive to report repository evo-
lution over time, and effective for different software projects.
Finally, instead of returning similar bug reports, we return
similar buckets. As each bucket represents a distinct defect,
our approach can easily avoid two or more reports in the
top-k similar report list referring to the same defect.

From the point of performance view, we show that our
discriminative model approach outperforms all previous ap-
proaches using natural language information alone by up to
43% on bug report repositories of three large open source
applications including Firefox, Eclipse, and OpenOffice.

Besides the effort on duplicate bug report detection, there
has also been effort on bug report mining. Anvik et al. [1]
and Cubranic and Murphy [8] and Lucca [9] all proposed
semi-automatic techniques to categorize bug reports. Based
on categories of bug reports, their approaches helped assign
bug reports to suitable developers. Menzies and Marcus also
suggested a classification based approach to predicting the
severity of bug reports [14]. Bettenburg et al. proposed a
work on extracting structural information including stack
traces, patches, and codes from the descriptions of the bug
reports [5]. Ko and Myers analyzed the linguistic character-
istics of bug-report summaries, and proposed a technique to
differentiate between failure reports and feature calls [12].
They also emphasized on the need of duplicate bug report
detection, but did not propose a solution. While the above
works mentioned the need of duplicate bug detection or some
of their techniques may benefit duplicate bug detection, none
of them worked directly on the duplicate bug detection prob-
lem.

There have been several statistical studies and surveys of
existing bug repositories. Anvik et al. reported a statis-
tical study on open bug repositories with some interesting
results such as the proportion of different resolutions and
the number of bug reports that a single reporter submit-
ted [2]. Sandusky et al. studied the relationships between
bug reports and reported some statistic results on duplicate
bugs in open bug repositories [18]. Additionally, Hooimeijer
and Weimer suggested a statistics based model to predict
the quality of bug reports [10]. After that, Bettenburg et al.
made a survey on the developers of several well-known open
source projects (Eclipse, Mozilla, and Apache) to study the
factors that developers cared most on dealing with bug re-
ports [3]. Bettenburg et al. also suggested that duplicate
bug reports were actually not harmful but useful for the
developers [4]. So the requirement for duplicate bug report
detection became even stronger because it could not only re-
duce the waste of developer’s time on duplicate bug reports
but also helped developers to gather more related informa-
tion to solve the bug more quickly. In general, none of these
work proposed any approaches to duplicate-bug-report de-
tection, but some of the work pointed out the motivation
and effect of detecting duplicate bug reports.

7. CONCLUSION & FUTURE WORK
In this work, we consider a new approach to detecting

53



duplicate bug reports by building a discriminative model
that answers the question “Are two bug reports duplicates
of each other?”. The model would report a score on the
probability of A and B being duplicates. This score is then
used to retrieve similar bug reports from a bug report repos-
itory for user inspection. We have investigated the utility
of our approach on 3 sizable bug repositories from 3 large
open-source applications including OpenOffice, Firefox, and
Eclipse. The experiment shows that our approach outper-
forms existing state-of-the-art techniques by a relative im-
provement of 17–31%, 22–26%, and 35–43% on OpenOffice,
Firefox, and Eclipse dataset respectively.

As a future work, we plan to investigate the utility of
paraphrases in discriminative models for potential improve-
ment in accuracy. We have developed a technique to ex-
tract technical paraphrases [21] and is currently investigat-
ing their utility in improving detection of duplicate bug re-
ports. What is more, an interesting direction is incorpo-
rating response threads to bug reports as further sources
of information. The other interesting direction is adopting
pattern-based classification [7, 13] to extract richer feature
set that enables better discrimination and detection of du-
plicate bug reports.

8. REFERENCES
[1] J. Anvik, L. Hiew, and G. Murphy. Who should fix

this bug? In proceedings of the International
Conference on Software Engineering, 2006.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an
open bug repository. In eclipse ’05: Proceedings of the
2005 OOPSLA workshop on Eclipse technology
eXchange, pages 35–39, 2005.

[3] N. Bettenburg, S. Just, A. Schröter, C. Weiss,
R. Premraj, and T. Zimmermann. What makes a good
bug report? In SIGSOFT ’08/FSE-16: Proceedings of
the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, pages 308–318,
2008.

[4] N. Bettenburg, R. Premraj, T. Zimmermann, and
S. Kim. Duplicate bug reports considered harmful ...
really? In ICSM08: Proceedings of IEEE International
Conference on Software Maintenance, pages 337–345,
2008.

[5] N. Bettenburg, R. Premraj, T. Zimmermann, and
S. Kim. Extracting structural information from bug
reports. In MSR ’08: Proceedings of the 2008
international working conference on Mining software
repositories, pages 27–30, 2008.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[7] H. Cheng, X. Yan, J. Han, and C.-W. Hsu.
Discriminative frequent pattern analysis for effective
classification. In ICDE, 2007.

[8] D. Cubranic and G. C. Murphy. Automatic bug triage
using text categorization. In Proceedings of the
Sixteenth International Conference on Software
Engineering & Knowledge Engineering, pages 92–97,
2004.

[9] L. G. An approach to classify software maintenance
requests. In ICSM ’02: Proceedings of the
International Conference on Software Maintenance,

page 93, 2002.

[10] P. Hooimeijer and W. Weimer. Modeling bug report
quality. In ASE ’07: Proceedings of the twenty-second
IEEE/ACM international conference on Automated
software engineering, pages 34–43, 2007.

[11] N. Jalbert and W. Weimer. Automated Duplicate
Detection for Bug Tracking Systems. In proceedings of
the International Conference on Dependable Systems
and Networks, 2008.

[12] A. Ko and B. Myers. A linguistic analysis of how
people describe software problems. In IEEE
Symposium on Visual Languages and Human-Centric
Computing, pages 127–134, 2006.

[13] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun.
Classification of Software Behaviors for Failure
Detection: A Discriminative Pattern Mining
Approach. In proceedings of the SIGKDD Conference
on Knowledge Discovery and Data Mining, 2009.

[14] T. Menzies and A. Marcus. Automated severity
assessment of software defect reports. In ICSM08:
Proceedings of IEEE International Conference on
Software Maintenance, pages 346–355, 2008.

[15] R. Nallapati. Discriminative models for information
retrieval. In SIGIR ’04: Proceedings of the 27th annual
international ACM SIGIR conference on Research and
development in information retrieval, 2004.

[16] P. R.Duda and D.Stork. Pattern Classification. Wiley
Interscience, 2nd edition, 2000.

[17] P. Runeson, M. Alexandersson, and O. Nyholm.
Detection of Duplicate Defect Reports Using Natural
Language Processing. In proceedings of the
International Conference on Software Engineering,
2007.

[18] R. J. Sandusky, L. Gasser, R. J. S, U. L. Gasser, and
G. Ripoche. Bug report networks: Varieties,
strategies, and impacts in a f/oss development
community. In International Workshop on Mining
Software Repositories, 2004.

[19] J. Sutherland. Business objects in corporate
information systems. In ACM Computing Surveys,
2006.

[20] G. Tassey. The economic impacts of inadequate
infrastructure for software testing. National Institute
of Standards and Technology. Planning Report
02-3.2002, 2002.

[21] X. Wang, D. Lo, J. Jing, L. Zhang, and H. Mei.
Extracting Paraphrases of Technical Terms from Noisy
Parallel Software Corpora. In proceedings of the Joint
conference of the 47th Annual Meeting of the
Association for Computational Linguistics and the 4th
International Joint Conference on Natural Language
Processing of the Asian Federation of Natural
Language Processing, 2009.

[22] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An
Approach to Detecting Duplicate Bug Reports using
Natural Language and Execution Information. In
proceedings of the International Conference on
Software Engineering, 2008.

54


