
Ad Hoc Syntax-Guided Program Reduction
Jia Le Tian

School of Computer Science
University of Waterloo

Canada
tom.tian@uwaterloo.ca

Mengxiao Zhang
School of Computer Science

University of Waterloo
Canada

m492zhan@uwaterloo.ca

Zhenyang Xu
School of Computer Science

University of Waterloo
Canada

zhenyang.xu@uwaterloo.ca

Yongqiang Tian
School of Computer Science

University of Waterloo
Canada

yongqiang.tian@uwaterloo.ca

Yiwen Dong
School of Computer Science

University of Waterloo
Canada

yiwen.dong@uwaterloo.ca

Chengnian Sun
School of Computer Science

University of Waterloo
Canada

cnsun@uwaterloo.ca

ABSTRACT
Program reduction is a widely adopted, indispensable technique
for debugging language implementations such as compilers and
interpreters. Given a program 𝑃 and a bug triggered by 𝑃 , a program
reducer can produce a minimized program 𝑃∗ that is derived from 𝑃

and still triggers the same bug. Perses is one of the state-of-the-art
program reducers. It leverages the syntax of 𝑃 to guide the reduction
process for efficiency and effectiveness. It is language-agnostic as its
reduction algorithm is independent of any language-specific syntax.
Conceptually to support a new language, Perses only needs the
context-free grammar 𝐺 of the language; in practice, it is not easy.
One needs to first manually transform 𝐺 into a special grammar
form PNF with a tool provided by Perses, second manually change
the code base of Perses to integrate the new language, and lastly
build a binary of Perses.

This paper presents our latest work to improve the usability of
Perses by extending Perses to perform ad hoc program reduction
for any new language as long as the language has a context-free
grammar𝐺 . With this extended version (referred to as Persesadhoc),
the difficulty of supporting new languages is significantly reduced:
a user only needs to write a configuration file and execute one com-
mand to support a new language in Perses, compared to manually
transforming the grammar format, modifying the code base, and
re-building Perses.

Our case study demonstrates that with Persesadhoc, the Perses-
related infrastructure code required for supporting GLSL can be
reduced from 190 lines of code to 20. Our extensive evaluations also
show that Persesadhoc is as effective and efficient as Perses in reducing
programs, and only takes 10 seconds to support a new language,
which is negligible compared to the manual effort required in Perses.
A video demonstration of the tool can be found at https://youtu.be/
trYwOT0mXhU.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3613101

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

ACM Reference Format:
Jia Le Tian, Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yiwen Dong,
and Chengnian Sun. 2023. Ad Hoc Syntax-Guided Program Reduction. In
Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),
December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3611643.3613101

1 INTRODUCTION
Given a program 𝑃 and a property𝜓 that 𝑃 has, program reduction
outputs a minimized program 𝑃∗ derived from 𝑃 by automatically
removing the program elements in 𝑃 that are irrelevant to𝜓 [7, 15,
17, 20, 21]. The property𝜓 is general and denotes any property of
𝑃 that can be mechanically checked so that program reduction can
be fully automated.

Program reduction is an effective technique for debugging lan-
guage tools such as compilers, interpreters, linkers, and debuggers.
In this case,𝜓 usually refers to that 𝑃 triggers a bug in a language
tool which takes 𝑃 as an input. Program reduction has been widely
used in practice. For example, both the communities of GCC and
LLVM request bug reporters to reduce the bug-triggering program
before reporting a compiler bug [3, 14]; the Mozilla community also
recommends to use Lithium [18] to reduce web documents consist-
ing of HTML, CSS and JavaScript that trigger bugs in Firefox [2].
Perses Perses [20] is one such program reducer. It is fast evolving,
actively maintained, and open-sourced [19]. It leverages the formal
syntax of a language to guide the reduction process for short reduc-
tion time and small results; meanwhile, Perses is language-agnostic
because its reduction algorithm does not rely on any language-
specific knowledge. Conceptually, to support a language, Perses
only requires the context-free grammar 𝐺 of the language. Cur-
rently, Perses has built-in support for a wide range of languages
such as C, Rust, Scala, Python3 and Solidity.

However, in practice, though it is easy for the Perses developers
to extend Perses to support a new language, it can be difficult for
the user of Perses. The practical challenges are three-fold. First, the
user needs to know how to run a tool that is embedded inside Perses
to normalize the grammar𝐺 into a special grammar form PNF [20].

https://orcid.org/0000-0002-3778-5812
https://orcid.org/0000-0002-3463-2802
https://orcid.org/0000-0002-9451-4031
https://orcid.org/0000-0003-1644-2965
https://orcid.org/0000-0002-3205-9010
https://orcid.org/0000-0002-0862-2491
https://youtu.be/trYwOT0mXhU
https://youtu.be/trYwOT0mXhU
https://doi.org/10.1145/3611643.3613101
https://doi.org/10.1145/3611643.3613101

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jia Le Tian, Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yiwen Dong, and Chengnian Sun

Second, the user needs to manually change certain parts of the code
base of Perses to integrate the normalized grammar. Lastly, the user
needs to know the build system of Perses (i.e., Bazel [4]) and build a
binary of Perses. The whole process can take the user considerable
time if the user is not familiar with the code base of Perses.
Persesadhoc In this demonstration, we present an improved in-
frastructure of Perses referred to as Persesadhoc that significantly
improves the usability of Perses by allowing a user to dynamically
supply the grammar 𝐺 of a desired language. Persesadhoc automat-
ically normalizes 𝐺 into the PNF form, generates necessary code
and loads them when the user wishes to perform program reduc-
tion with the newly supported grammar. This work significantly
improves the usability and accessibility of a critical tool in program
reduction. The usefulness of Persesadhoc can be demonstrated with
a real-world example [13] that leverages Perses to perform pro-
gram reduction for GLSL [5] programs. With the help of Persesadhoc,
the amount of the Perses-related infrastructure code written by
compiler researchers could have been reduced from 190 lines to
only 20 while also removing the requirement of having a deep
understanding of the codebase of Perses.
Contributions We make the following main contributions.
• We propose Persesadhoc, an improved language-agnostic program
reducer that bridges the gap between research prototyping and
tool usability in practice.

• Our case study on GLSL demonstrates that Persesadhoc can indeed
improve the usability of Perses by reducing the barrier of sup-
porting a new language in Perses. Our extensive evaluations
also show that Persesadhoc is as effective and efficient as Perses
in reducing programs, and only takes 10 seconds to support a
new language, which is negligible compared to the manual effort
required in Perses.

• Persesadhoc is open-sourced at https://github.com/uw-pluverse/
perses and the documentation is available at https://github.com/
uw-pluverse/perses/blob/master/doc/install_new_languages.md.

2 BACKGROUND: PERSES
This section discusses the workflow of Perses and highlights the
challenges for Perses users of supporting a new language in Perses.

Figure 1 shows the general workflow of Perses. To reduce 𝑃

w.r.t. 𝜓 , Perses needs the grammar of the language of 𝑃 and the
grammar needs to be statically integrated into Perses. Assume that
𝑃 is written in GLSL [5] and Perses has not supported GLSL yet. To
enable Perses to reduce GLSL programs, the user of Perses needs to
(1) have the grammar file GLSL.g4
(2) transform GLSL.g4 to PNF [20] with a Perses-provided tool
(3) write necessary integration and configuration code in Kotlin,

Java and Bazel BUILD files1
(4) and statically link the grammar and all the code into Perses, as

shown in Figure 1.
The current challenge with Perses resides in the convenience

of adding new grammars to the tool. Yet, there is currently no
automated infrastructure to integrate it with Perses. To support a
new language, users generally need to have a deep understanding
of the code base of Perses.

1Perses is written in Kotlin and Java and built with Bazel.

P
P*

	𝜓

Perses
•GLSL.g4 •BUILD •*.kt •*.java

Statically Linked

Figure 1: The workflow of Perses.

P

P*	𝜓 Perses

GLSL.g4

config.yaml

AdhocCompiler GLSL.jar

Dynamically Loaded

Figure 2: The workflow of Persesadhoc.

3 TOOL IMPLEMENTATION
This section introduces the implementation of Persesadhoc and ex-
plains some specific use cases for this tool.

3.1 Tool Implementation
Figure 2 shows the overview of Persesadhoc. To allow users to dy-
namically supply the grammar of the desired language, Persesadhoc
is implemented with a grammar compiler, named AdhocCompiler,
which takes as input a grammar and a language configuration
and outputs a Java library in the JAR file format. The language
configuration contains meta information of the language, such as
the language file extensions and the reduction formats [20] this
language supports. The JAR file produced by AdhocCompiler con-
tains the necessary compiled Java code for supporting the new
language. Finally, code modifications were made in existing Perses
to allow either program reduction with a pre-supported language
or a dynamically loaded Persesadhoc JAR file.
Grammar Library Generation AdhocCompiler first invokes
the internal PNF normalizer to transform the input grammar to PNF.
Then, with the configuration file and predefined stub templates,
AdhocCompiler generates Java source code that can be integrated
into Perses to support the new language. After generating the PNF
grammar and all the necessary code, AdhocCompiler invokes the
Java Compiler APIs to compile the code and packages all files into a
JAR file to be loaded for the following program reduction process.
Reductionwith theGrammar Library Persesadhoc extends Perses
to take the grammar library generated by AdhocCompiler, as an
extra input. Then Perses dynamically loads this library into the Java
Virtual Machine process, and uses the library code to parse 𝑃 and
guide program reduction. In this way, what users need to do is first
generating the grammar library with the grammar compiler, and
then passing the program and test script along with the grammar
library to Perses.

3.2 Application Scenario
We use a real-world example to illustrate the application scenario
of Persesadhoc, i.e., to help the developers perform program reduction
for languages currently not yet natively supported by Perses.

https://github.com/uw-pluverse/perses
https://github.com/uw-pluverse/perses
https://github.com/uw-pluverse/perses/blob/master/doc/install_new_languages.md
https://github.com/uw-pluverse/perses/blob/master/doc/install_new_languages.md

Ad Hoc Syntax-Guided Program Reduction ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: The files changed to manually support GLSL without
Persesadhoc.

File #Line Purpose

PnfGlslParserFacade.java 89 Incorporate GLSL into PersesSingleParserFacadeFactory.kt 3
Bazel Build Files 67 Configure compilation
LanguageGLSL.kt 33 Configure GLSL

ProgramConditioning [13] is a recent technique to detect bugs in
OpenGL Shading Language (GLSL) compilers. In this work, Perses
is used as the default option to reduce test cases, since “Perses
performs best with respect to both time taken for reduction and
size of fully-reduced test cases”, according to the authors.
Without Persesadhoc Since Perses did not natively support GLSL
then, the authors of Program Conditioning [13] manually imple-
mented such a support in Perses. In addition to the GLSL grammar
file provided by ANTLR [1], they added or modified four files in-
volving 200 lines of code, as shown in Table 1. To make proper
changes to Perses without inducing bugs, the authors have to un-
derstand the codebase of Perses, including the logic flow, design
patterns, and build configurations, etc.. Furthermore, the imple-
mentation requires an in-depth understanding of the custom build
macros specific to Perses. These macros are not standard in Bazel
and do not have any documentation; thus, the developers needed
to read through the macro definitions within the project. The Git
history shows that the duration from the first commit involving
incorporating GLSL into Perses to the last one is around 6 hours.
With Persesadhoc Persesadhoc can significantly reduce the labor work
of developers to use Perses on GLSL programs, as well as other
languages. With Persesadhoc, users only need to download the GLSL
grammar, write a language configure shown in Figure 3, and gen-
erate GLSL.jar file using AdhocCompiler with the grammar and
the language configure as inputs. Next, Perses can be used to reduce
GLSL programs by taking the generated grammar library as an ex-
tra input. Figure 4 shows the commands to generate the grammar
library and run Perses to reduce GLSL programs. The entire process
excluding reduction may only take 10 minutes.

1 ---

2 name: "glsl" # Name of Grammar
3 extensions: # Acceptable File Extensions
4 - "glsl"

5 - "comp"

6 - "frag"

7 - "vert"

8 origCodeFormatControl: "ORIG_FORMAT" # Reduced Program Format
9 defaultCodeFormatControl: "COMPACT_ORIG_FORMAT"

10 allowedCodeFormatControl:

11 - "COMPACT_ORIG_FORMAT"

12 - "ORIG_FORMAT"

Figure 3: The YAML configuration of GLSL in Persesadhoc

In summary, Persesadhoc allows the developers to treat the inter-
nal implementation of Perses as a blackbox while still having the
flexibility to use Perses on a broad range of languages. Without

1 java -jar adhocCompiler.jar \ # Generate Jar File for GLSL
2 --parser-grammar "GLSL.g4" \ # Parser File
3 --start-rule "translation_unit" \ # Start Rule
4 --token-names-of-identifiers "IDENTIFIER" \ # Identifier
5 --package-name "org.perses.grammar.GLSL" \ # Package Name
6 --language-kind-yaml-file "config.yaml" \ # YAML File
7 --output "GLSL.jar" # Output File
8
9 java -jar perses.jar \ # Run Perses with the GLSL.jar
10 --input-file <the input file to be reduced> \

11 --test-script <the script specifying property> \

12 --language-ext-jars "GLSL.jar" # Jar File

Figure 4: Commands to use Persesadhoc on GLSL.

Persesadhoc, users have to manually revise Perses after understanding
the codebase of Perses, which is labor-intensive and bug-prone. We
believe Persesadhoc can effectively reduce the workload of users of
Perses and boost their productivity.

4 EXPERIMENT
We conducted several experiments to demonstrate the effectiveness
and efficiency of Persesadhoc.

4.1 Effectiveness
We first compare the effectiveness of Persesadhoc and Perses. For
Persesadhoc, the C language support is supplied by a grammar library
generated by AdhocCompiler, while Perses has native C language
support. We collected five C programs used for evaluating Perses,
which is collected from the bug repository of the GCC and Clang
compilers, as the benchmarks. We measure the number of tokens
in the reduced program outputted by Persesadhoc and Perses.

Table 2: Effectiveness of Persesadhoc and Perses

Subject Property (𝜓) Original Tokens Perses Persesadhoc
clang-23353 Crash 30,196 98 98
clang-22382 Crash 21,068 144 144
gcc-65383 Miscompile 43,942 153 153
gcc-66186 Miscompile 47,481 328 328
gcc-71626 Crash 6,133 51 51
Mean 29,764 155 155

Table 2 shows the results. The “Original Tokens” column shows
the number of tokens in the original program and the other two
columns show the number of tokens in the final minimized pro-
grams outputted by Perses and Persesadhoc respectively. The results
show that Persesadhoc and Perses have the identical number of tokens
in each reduced program, demonstrating that Persesadhoc with the
ad hoc language support performs at the same level as Perses with
native language support in terms of effectiveness.

4.2 Efficiency
We also measure the efficiency of Persesadhoc and Perses using two
metrics shown as follows:
Time The time that the reduction process takes

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Jia Le Tian, Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yiwen Dong, and Chengnian Sun

Speed The reduction speed, i.e.,
Number of deleted tokens

Time
Table 3 shows the efficiency of Persesadhoc and Perses. Across these

metrics, there is no significant difference between Persesadhoc and
Perses with native support. In terms of reduction time 𝑇 , Persesadhoc
takes 1,222 seconds on average, which is marginally longer (2.6%)
than that of Perses, i.e. 1,191 seconds. These results demonstrate
that compared to the native support by Perses, the ad hoc support
used by Persesadhoc almost has no side effect on efficiency.

Table 3: Reduction Efficiency of Persesadhoc and Perses

Subject Perses Persesadhoc
Time(𝑠𝑒𝑐) Speed(#/𝑠𝑒𝑐) Time(𝑠) Speed(#/𝑠𝑒𝑐)

clang-23353 917 32.82 926 32.50
clang-22382 756 27.67 789 26.51
gcc-65383 1,527 28.68 1,725 25.38
gcc-66186 2,701 17.46 2,611 18.05
gcc-71626 56 108.61 57 106.7

Mean 1,191 43.05 1,222 41.828

Time to Generate Grammar Libraries We measured the time
spent by AdhocCompiler in generating grammar libraries. Note
that for each language, such generation only needs to be performed
once. Table 4 shows the time spent in the compilation of six lan-
guages. On average, it takes around 10 seconds to compile a lan-
guage, while the longest one, Java (8), takes around 16 seconds.
This result demonstrates that the compilation time has little impact
on the overall efficiency of Persesadhoc.

Table 4: Generation Efficiency of Grammar Libraries.

JSON C (11) Scala Rust C++ (14) Java (8)

Non-Blank Lines 55 810 1,160 1,830 872 1,475
Time (s) 2.483 8.679 8.684 14.356 14.648 15.672

5 RELATEDWORK
Various program reduction techniques have been proposed by re-
searchers. However, most of them often fall short in terms of either
flexibility, i.e., their applicability to different languages , or perfor-
mance, i.e., the reduction time and the size of reduced programs.

Delta Debugging (DD) [21] is a general minimization algorithm
that first divides the program into chunks of equal size and then
keeps attempting to remove a chunk or the complement of the
chunk from the program. The chunk size is initialized with half the
size of the program and is halved whenever nothing can be removed
with the current chunk size. This strategy forms the basis of many
reduction tools, including Lithium [18], a tool used to reduce test
cases for Mozilla Firefox. It employs a similar approach but goes a
step further. When the chunk size is reduced to 1, Lithium contin-
ually traverses each chunk, persistently trying to remove it until
no further reduction can be achieved. This continual refinement
at chunk size 1 is a key aspect distinguishing Lithium from classic

Delta Debugging. However, both Delta Debugging and Lithium
treat lines, characters, or tokens as atomic units for deletion, with-
out considering the hierarchical structure of the program, which
can lead to the generation of syntactically invalid programs.

Hierarchical Delta Debugging (HDD) is an advanced reducer
that takes into account the hierarchical structure of a program. In
this way, the number of syntactically invalid programs generated
during the reduction process is reduced, and thus the reduction per-
formance can be significantly improved. Picireny [8], an implemen-
tation of HDD, accepts any input program and its corresponding
grammar. It uses ANTLR4 to generate a lexer and a parser, which
transform the source program into a parse tree for HDD. However,
a significant limitation is that Picireny applies DD directly on each
level of the parse tree which can still generate invalid programs
during the reduction process. In contrast, Persesadhoc addresses this
limitation by deleting nodes from the parse tree with the guidance
of the syntax. This approach completely prevents the generation of
syntactically invalid programs during reduction, making Persesadhoc
a more effective and efficient solution for program reduction tasks.

There are also many language-specific program reducers [6, 9–
12, 16, 17]. Notably, C-reduce [17] is designed to reduce C and C++
programs. Since C-reduce leverages C/C++-specific transforma-
tion in the reduction, it has limited support for languages other
than C/C++. By contrast, Persesadhoc is a language-agnostic tool
for program reduction. Its design enables it to easily support new
languages, enhancing its flexibility in application.

6 CONCLUSION
Program reduction serves as a powerful tool for developers to pin-
point sources of specific program behaviors. To that end, Perses is
a state-of-the-art program reduction tool that is language-agnostic,
fast, and provides small reduced programs. However, the laborious
process of integrating a new language for Perses limited its utility.
To address the limitations, we introduce Persesadhoc, an improved
language-agnostic program reducer that is easy to extend to pre-
viously unsupported grammar without the need to modify and
extend Perses itself. With Persesadhoc, users only need to provide the
grammar and a simple configuration file to make Perses support a
new language. Our evaluation showed that Persesadhoc matches the
performance of Perses on languages with native support in Perses.
Persesadhoc took 1,222 seconds on average to reduce five real-world
programs, only marginally longer (2.6%) than Perses, i.e. 1,191 sec-
onds with almost no side effect on the final size of the reduced
programs. With Persesadhoc, it takes only an average of 10 seconds
to install a new language. Through Persesadhoc, we have greatly im-
proved the versatility of Perses and broadened its potential across
different languages and applications.

ACKNOWLEDGMENTS
This research is partially supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) through the
Discovery Grant, a project underWaterloo-Huawei Joint Innovation
Lab, and CFI-JELF Project #40736.

Ad Hoc Syntax-Guided Program Reduction ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES
[1] ANTLR. 2017. The ANTLR Parser Generator. Retrieved 2022-09-20 from https:

//www.antlr.org/
[2] Firefox. 2017. Using Lithium to Reduce Bugs in Firefox. https://github.com/

MozillaSecurity/lithium/blob/master/src/lithium/docs/using-for-firefox.md, ac-
cessed: 2022-11-05.

[3] GCC. 2017. A Guide to Testcase Reduction. https://gcc.gnu.org//A_guide_to_
testcase_reduction, accessed: 2021-01-05.

[4] Google. 2015. About Bazel. Retrieved May 10, 2023 from https://bazel.build/about
[5] Khronos Group. 2019. The OpenGL Shading Language Version 4.60.7. Retrieved

May 10, 2023 from https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.
4.60.pdf

[6] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
Program Debloating via Reinforcement Learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security (Toronto, Canada)
(CCS ’18). Association for Computing Machinery, New York, NY, USA, 380–394.
https://doi.org/10.1145/3243734.3243838

[7] Satia Herfert, Jibesh Patra, and Michael Pradel. 2017. Automatically Reducing
Tree-Structured Test Inputs. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (Urbana-Champaign, IL, USA)
(ASE 2017). IEEE Press, 861–871.

[8] Renáta Hodován, Akos Kiss, Daniel Vince, and Zhiqiang Zang. [n. d.]. Picireny.
https://github.com/renatahodovan/picireny

[9] JS Delta. 2017. JS Delta. https://github.com/wala/jsdelta, accessed: 2017-08-05.
[10] Christian Gram Kalhauge and Jens Palsberg. 2019. Binary reduction of depen-

dency graphs. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 556–566.

[11] Christian Gram Kalhauge and Jens Palsberg. 2021. Logical bytecode reduction. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. 1003–1016.

[12] Gereon Kremer, Aina Niemetz, and Mathias Preiner. 2021. ddSMT 2.0: Better
Delta Debugging for the SMT-LIBv2 Language and Friends. In Computer Aided
Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23,
2021, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12760), Alexandra
Silva and K. Rustan M. Leino (Eds.). Springer, 231–242. https://doi.org/10.1007/
978-3-030-81688-9_11

[13] Bastien Lecoeur, Hasan Mohsin, and Alastair F. Donaldson. 2023. Program
Reconditioning: Avoiding Undefined Behaviour When Finding and Reducing
Compiler Bugs. Proceedings of the ACM Programming Languages 7 (2023).

[14] LLVM. 2017. How to submit an LLVM bug report. https://llvm.org/docs/
HowToSubmitABug.html, accessed: 2021-01-01.

[15] Ghassan Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta Debug-
ging. In Proceedings of the 28th International Conference on Software Engineering
(Shanghai, China) (ICSE ’06). Association for Computing Machinery, New York,
NY, USA, 142–151. https://doi.org/10.1145/1134285.1134307

[16] Aina Niemetz and Armin Biere. 2013. ddSMT: a delta debugger for the SMT-
LIB v2 format. In Proceedings of the 11th International Workshop on Satisfiability
Modulo Theories, SMT. 8–9.

[17] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-Case Reduction for C Compiler Bugs (PLDI ’12). Association for
Computing Machinery, New York, NY, USA, 12 pages. https://doi.org/10.1145/
2254064.2254104

[18] Mozilla Security. 2008. Lithium: Line-Based Testcase Reducer. https://github.
com/MozillaSecurity/lithium, accessed: 2021-01-01.

[19] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.
Perses: Syntax-Directed Program Reduction. Retrieved May 10, 2023 from https:
//github.com/uw-pluverse/perses

[20] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.
Perses: Syntax-Guided Program Reduction. In Proceedings of the 40th International
Conference on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association
for Computing Machinery, New York, NY, USA, 361–371. https://doi.org/10.
1145/3180155.3180236

[21] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002), 183–200. https://doi.
org/10.1109/32.988498

7 APPENDIX
7.1 Walkthrough
In order to use the Persesadhoc flow, the language configuration and
grammar file are needed. The configuration must be in YAML and

follows the same format found in Figure 3. The grammar needs to
be specified in Antlr. The grammar file can be a single, combined
grammar or seperate lexer and parser grammars.

We then build and call the Persesadhoc installer using the command
in Figure 5. This produces a Jar file that is needed in phase two of
the Persesadhoc flow. Note that the variable OUTPUT_JAR defines the
name and location of the Jar upon completion.

1 # Parameters
2 readonly PARSER_GRAMMAR_FILE="Parser.g4"

3 readonly OPTIONAL_LEXER_GRAMMAR_FILE="Lexer.g4" # This is
optional

4 readonly START_RULE_NAME="compilationUnit" # The start rule of
the grammar

5 readonly LANGUAGE_KIND_YAML_FILE="language_kind.yaml"

6 readonly IDENTIFIER_TOKEN_NAMES="IDENTIFIER" # The name of the
token type Identifier

7 readonly PACKAGE_NAME="org.perses.grammar.adhoc.mygrammar" #
Name your own package

8 readonly OUTPUT_JAR="my_grammar.jar"

9
10 # Building Perses Adhoc Installer
11 bazel build //src/org/perses/grammar/adhoc:

perses_adhoc_installer_deploy.jar

12
13 # Installing Language and Generating Jar
14 java -jar bazel-bin/src/org/perses/grammar/adhoc/

perses_adhoc_installer_deploy.jar \

15 --parser-grammar "${PARSER_GRAMMAR_FILE}" \

16 --lexer-grammar "${OPTIONAL_LEXER_GRAMMAR_FILE}" \

17 --start-rule "${START_RULE_NAME}" \

18 --token-names-of-identifiers "${IDENTIFIER_TOKENS}" \

19 --package-name "${PACKAGE_NAME}" \

20 --language-kind-yaml-file "${LANGUAGE_KIND_FILE}" \

21 --output "${OUTPUT_JAR}"

Figure 5: Generate Jar File for Language

After installing the grammar, build the main Perses Jar. Then
invoke the command in Figure 6 to run Perses to reduce programs
written in the new language.

1 # Building Perses
2 bazel build //src/org/perses:perses_deploy.jar

3 # Running Perses with New Language Support
4 java -jar bazel-bin/src/org/perses/perses_deploy.jar \

5 --input-file <the input file to be reduced> \

6 --test-script <the script specifying the property> \

7 --language-ext-jars "${OUTPUT_JAR}"

Figure 6: Run Perses with Installed Language

A specific example of generating the Jar File for a language and
running Perses with the Jar File can be found in Figure 4. A ReadMe
documentation for using Persesadhoc can be found at https://github.
com/uw-pluverse/perses/blob/master/doc/install_new_languages.md.

Received 2023-05-11; accepted 2023-07-20

https://www.antlr.org/
https://www.antlr.org/
https://github.com/MozillaSecurity/lithium/blob/master/src/lithium/docs/using-for-firefox.md
https://github.com/MozillaSecurity/lithium/blob/master/src/lithium/docs/using-for-firefox.md
https://gcc.gnu.org//A_guide_to_testcase_reduction
https://gcc.gnu.org//A_guide_to_testcase_reduction
https://bazel.build/about
https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://doi.org/10.1145/3243734.3243838
https://github.com/renatahodovan/picireny
https://github.com/wala/jsdelta
https://doi.org/10.1007/978-3-030-81688-9_11
https://doi.org/10.1007/978-3-030-81688-9_11
https://llvm.org/docs/HowToSubmitABug.html
https://llvm.org/docs/HowToSubmitABug.html
https://doi.org/10.1145/1134285.1134307
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/2254064.2254104
https://github.com/MozillaSecurity/lithium
https://github.com/MozillaSecurity/lithium
https://github.com/uw-pluverse/perses
https://github.com/uw-pluverse/perses
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498
https://github.com/uw-pluverse/perses/blob/master/doc/install_new_languages.md
https://github.com/uw-pluverse/perses/blob/master/doc/install_new_languages.md

	Abstract
	1 Introduction
	2 Background: Perses
	3 Tool Implementation
	3.1 Tool Implementation
	3.2 Application Scenario

	4 Experiment
	4.1 Effectiveness
	4.2 Efficiency

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	7 Appendix
	7.1 Walkthrough

