Mining Succinct Predicated Bug Signhatures

Chengnian Sun
School of Computing
National University of Singapore

suncn@comp.nus.edu.sg

ABSTRACT

A bug signature is a set of program elements highlighting the cause
or effect of a bug, and provides contextual information for debug-
ging. In order to mine a signature for a buggy program, two sets
of execution profiles of the program, one capturing the correct exe-
cution and the other capturing the faulty, are examined to identify
the program elements contrasting faulty from correct. Signatures
solely consisting of control flow transitions have been investigated
via discriminative sequence and graph mining algorithms. These
signatures might be handicapped in cases where the effect of a bug
is not manifested by any deviation in control flow transitions. In
this paper, we introduce the notion of predicated bug signature that
aims to enhance the predictive power of bug signatures by utilizing
both data predicates and control-flow information. We introduce a
novel “discriminative itemset generator’” mining technique to gener-
ate succinct signatures which do not contain redundant or irrelevant
program elements. Our case studies demonstrate that predicated
signatures can hint at more scenarios of bugs where traditional
control-flow signatures fail.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—debug-
ging aids, diagnostics

General Terms

Experimentation, Reliability

Keywords

bug signature, statistical debugging, feature selection

1. INTRODUCTION

Debugging is a process to eliminate program defects. During a
debugging session, a developer needs first to identify the location of
the bug, then figure out its cause and finally fix it. As widely known,
debugging is a painstaking activity in software development and
maintenance phases, especially when the symptom (or the manifes-
tation) of a bug is not right next to where the bug is triggered. For

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESEC/FSE *13, August 18-6, 2013, Saint Petersburg, Russia

Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$10.00.

Siau-Cheng Khoo
School of Computing
National University of Singapore

khoosc@comp.nus.edu.sg

instance, a non-crashing defect produces a wrong output at the end
of the execution, but the cause may be at the very beginning of the
program. Such scenarios are likely to take developers much time to
discover the cause from the symptom.

Bug signature identification is an automatic technique to infer the
cause or effect of a bug. Different from fault localization, which
outputs single suspicious program element each time for debugging,
a bug signature can capture the bug context comprising multiple
elements.

Two pioneering studies in bug signature discovery construct the
profiles from running the buggy program against a test suite via
different structures. Specifically, Hsu et al. [12] profile multiple
traces of visited basic blocks from a buggy program, and perform
sequence mining [26] to get common longest sequences in faulty
executions as bug signatures. Hong et al. [5] curl the basic block
sequences to form software behavior graphs and apply graph min-
ing algorithm LEAP [27] to get discriminative subgraphs as bug
signatures. The case studies in both papers have shown that bug
signatures carry additional contextual information that further aids
developer in comprehending the bugs.

On the other hand, these techniques operate on profiles that con-
tain only control-flow information. In addition, the inferred bug
signatures typically include redundant and/or irrelevant information.
Reflecting on the outcome of these work, we hypothesize that:

1. The effectiveness of bug signatures in detecting bugs can
be significantly enhanced if they are inferred from profiles
containing predicated data information.

2. The quality of bug signatures can be significantly enhanced if
it can be succinctly represented.

Elex find_nth(Listx f_list, int n) {

return f_ele;

1

2 if (!'f_list)

3 return NULL;

4 Elex f_ele = f_list->first;

5 *(=)BUG: £_list->first in the conditional

6 should be f_elex

7 for (int 1 = 1; £ list->first && i < n; ++1)
8 f_ele = f_ele->next;

9

0

}

Figure 1: Code Snippet of schedule with a Bug at Line 7

To illustrate this, we consider a concrete example presented in
Figure 1. This piece of code is extracted from a buggy program
schedule in Siemens benchmarks.Given a linked list f_list and an
integer n, this function returns the n-th element in the list. The
bug is that at line 7, f_list->first in for-loop test should be f ele

instead. Thus if the list is not empty and f_list->length <n — 1,
f_ele becomes NULL after (n — 2) iterations; then in (n — 1)-th
iteration, a dereferencing operation is performed on a NULL pointer,
leading to a segmentation fault.

Figure 2 shows the control flow graph of this example, and the
number prefixing each item in the graph identifies a unique basic
block, a branch or a predicate. The bug can be tracked during pro-
gram execution when f~_ele becomes NULL after statement 10 (i.e.
predicate 11), and 1 is still less than n after the subsequent assign-
ment statement 15 (i.e. predicate 16). Thus {11, 16} is one good
signature providing adequate contextual information for developers
to fix this bug.

The conciseness of the predicated signature in this example be-
comes clear when we contrast it against the top ranked (control-flow)
signature returned from LEAP, which is {1, 6,8, 13}. While this
signature includes the bug location f list->first, it also contains ir-
relevant statements. First, statement 1 is the entry of this function,
unconditionally appearing in every execution with an invocation to
find_nth no matter whether the execution is correct or faulty. Second,
statement 13 is an exit of this function, and it should appear in only
correct executions as faulty executions should crash at statement 10
and cannot reach this statement.

4: false;
5:Ele* f ele =f list->first;

2: true ‘

3: return NULL;

7: true @
12: false
@ 14: false—» 13: return f_ele;

9: true
v
10: f_ele =f ele->next;
(11: f_ele ==NULL?)

inti=1;

15:i=i+1;
"1 @6:i<n?)

Figure 2: Control Flow Graph of Figure 1

In this paper, we propose a novel approach to automatically in-
ferring bug signatures with two distinguished qualities: (1) they
contain both data and control predicates; and (2) they are succinct
in capturing bugs’ cause and/or effect. Our case studies reveal that:

1. Data-predicated bug signatures possess high bug-predicative
power. By comparing with control-flow-based signatures
produced by LEAP, predicated bug signatures have much
higher discriminative power (to be elaborated in the ensuing
sections), and they can help in discovering a new class of
bugs, the manifestation of which do not cause any control-
flow deviation in the execution profiles.

2. Our novel bug signature mining algorithm, which is based on
itemset generator mining approach, can perform much more
efficient than the state-of-the-art signature mining algorithm
(aka., LEAP).

2. BACKGROUND
2.1 Overall Workflow

Figure 3 depicts the general workflow of bug signature mining.
The initial inputs are a buggy program and a test suite. The buggy
program is instrumented to collect runtime information. We run the
instrumented version against the test suite to get a set of profiles.

Based on the testing oracle, the collected profiles are classified into
a correct and a faulty sets. Next the two sets are fed to our signature
miner MPS to get a top-k ranked bug signatures based on their
defect-predictive power.

Buggy Program ‘ ‘ Instrumented Program Test Suite

Instrumentation:

Correct Profiles Faulty Profiles

Top-k Signatures < MPS

Figure 3: Overall Workflow to Bug Signature Identification

We adopt the instrumentation scheme by Liblit et al.. The follow-
ing is a brief introduction. More information can be found in [17]

e Branches. At each conditional statement, each true or false
branch is associated with a predicate to record whether this
branch is taken at runtime.

e Returns. At each invocation site to a scalar-returning func-
tion, six predicates are created to capture relation between the
returned value r and the constant 0: » > 0, r > 0, r = 0,
r# 0,7 <0andr <0.

e Scalar-pairs. For each assignment to a scalar variable z =
- -+, all same-typed in-scope variables and constant expres-
sions are collected into a set V. For each v € V/, right after
this assignment six predicates are created: * > v, * > v,
r=v,x#v,r<vandz < .

e Pointer-nullness. For each assignment to a pointer variable
p = ---,apredicate p = null is created after this assignment.

The first instrumentation described above (predicates on condi-
tionals) captures control-flow information, whereas the latter three
record data-related information.

Note that our technique is general and the signature mining al-
gorithm is orthogonal to the instrumentation scheme. More instru-
mentation types (aliasing among objects, def-use pairs, etc.) can be
easily added without affecting the mining algorithm.

After running the instrumented program against the test suite,
we get a list of profiles, each profile containing a set of predicates.
We only retain those predicates which are captured to be true at
runtime, and discard those that are unobserved or evaluated to false.
Table 1 shows 5 profiles collected by running the buggy program
in Figure 1'. The column Input lists the test cases. Each test case
is a pair, of which the first element is a list and the second is the
parameter n. The list could be null, empty (i.e. []), or non-empty
(e.g. [1] containing one element, and [1, 2, 3] containing three
elements). The column Label marks the status of profiles, the plus
(+ or positive) meaning that the profile corresponds to a correct
execution, while the minus (— or negative) representing a faulty
execution. The column Predicates shows all the predicates under
observation in runtime. A bullet e in a cell (7, j) means that the j-th
predicate is evaluated to true in the execution corresponding to the
i-th profile. Taking the profile ¢2 as an example, only two branches
(4:false) and (12:false) are taken in runtime.

!To simplify the illustration of our approach, we retain all branch
predicates and remove all scalar-pair predicates except 11 and 16
in Figure 2. In the real case studies, our tool can precisely pinpoint
{11, 16} among all predicates.

Table 1: Profiles Collected from Running the Buggy Program in Figure 1

Predicates
ID | Input Label 2:true | 4:false | 7:true | 9:true | 12:false | I4:false | 11: f ele==NULL? | 16:i<n?
t1 | (null, 1) + °
t2 | ({1, D + . .
ts | ([11,2) + ° ° . Py
ta | ([1,2,3],3) + ° . . °
ts | ([11,3) - ° . . .

Table 2: An Example Database Constructed from Table 1

ID | Transaction

| ({2})

t2 | ({4,12},+)

ts | ({4,7,9,14,11},+)
ta | ({4,7,9,14,16}, +)
t5 ({47 779711716}77)

2.2 Itemset Generator

We regard a profile as a set of items, each of which is a predicate
observed to be true at runtime. With this itemset representation, we
can therefore formulate signature identification as an itemset pattern
mining task. Furthermore, as we aim to mine succinct signatures, we
are particularly interested in itemset generator, a special pattern with
minimality property. In this subsection, we provide an overview of
the concepts and properties of itemset generators, using the profiles
depicted in Table 1 as the running example.

LetZ = {i1,42, - ,im} be a set of distinct items, C = {+, —}
be the set of the positive and negative class labels, and D be a
database consisting of n transactions {(741,c1), ---,(T3i, ¢), -+,
(Tn,cn)}, where T; C 7 and ¢; € C. In the context of debugging,
T corresponds to the set of predicates instrumented into the buggy
program. The class label (+) identifies executions with correct
output, whereas (—) identifies faulty executions. Each transaction
is a profile consisting of predicates — a subset of Z.

Table 2 shows an example dataset constructed from the profiles
of Table 1. Z of this database is {2,4,7,9,12,14,11,16}. Every
element identifies a predicate, for example, 2 stands for branch
predicate (2:true), and 11 is data predicate (11: f_ele == NULL).

We define two classification functions + and — for a set of trans-
actions .S,

ST = {(T,c) € Slc=+}and S~ ={(T,c) € Slc=—-}

For example, DT or D~ denotes all the positive or negative trans-
actions in D respectively. For an itemset (or pattern) P C 7, we
define tz : 27 — 27, returning all transactions in D containing
pattern P.

te(P)={(T,c) e D|IP C T}
The support of P is defined as the number of transactions contain-
ing P, i.e. sup(P) = |tz(P)|; moreover, sup™ (P) = |tz(P)"]
and sup™ (P) = [tz(P)~|. The support of itemsets satisfies the
following property stated in [2].

PROPERTY 1 (APRIORI). Given a pattern P C I, VP' C I,
if P' O P, then tz(P") C tx(P), and further
supt(P') < sup™ (P) and sup™ (P') < sup™ (P)
Taking the database in Table 2 as an example, given a pattern {4}

and its superset {4, 7}, tx({4}) returns transactions {t2, t3, t4,ts}
and tx{4, 7} returns transactions {¢s, t4, t5 }, hence sup({4,7}) <

sup({4}).

DEFINITION 1 (EQUIVALENCE RELATION). Given an item-
set database D defined over a set of items I, the function tx :
2T — 2P induces an equivalence relation ~p on 2% such that
for all itemset patterns Py, Py € 2T P ~p Py if and only if
te(P1) = tx(P). Furthermore, the equivalence class [P of a
pattern P is defined as {P' C Z|tz(P’') = tz(P)}.

4,79,16

4,79,11,16
47,16 49,16 79,16 4,7,11,16 49,11,16 7,9,11,16
4,16 7,16 9,16 411,16 7,11,16 9,11,16
16 11,16
« support = (+1,-1) * support = (+0,-1)
* transactions = {t,, t5} « transactions = {fs}
(a) (b)
4,79
4,7 7,9 4,9
7 9

* support = (+2,-1)
* transactions = {t3, t,, t5}

(c)

Figure 4: Three Equivalence Classes of Table 2

Thus, all patterns in an equivalence class are contained in the
same set of transactions. In an equivalence class, all the minimal
patterns are referred to as generators. Generators have the following
property which has been proved in [15].

PROPERTY 2 (GENERATOR). A pattern P is a generator if
and only if for every proper subset P’ C P, sup(P) < sup(P’").

Figure 4 displays three equivalence classes in the database of
Table 2. Each equivalence class is a lattice structure consisting of all
patterns in the class. A node in a lattice represents a unique pattern.
The links between nodes represent set relations superset and subset.
The bottom nodes of a lattice are generators. The footnote below
each lattice lists the support and transaction information. Figure 4a is
the equivalence class of transactions {¢4,¢5}, and {16} is the gener-
ator as its subset () has support sup(f)) = 5 greater than sup({16}).
The same reason applies to Figure 4b and Figure 4c.

2.3 LEAP Signature Miner

In this paper, we compare our technique with the state-of-the-art
signature miner LEAP proposed in [5], Hong et al. first profile each

program execution as a trace of basic blocks, then curl the basic
block sequences to form software behavior graphs and apply graph
mining algorithm LEAP [27] to get discriminative subgraphs as
bug signatures, subgraphs which are frequently observed in faulty
executions but rarely in correct ones. The discriminativeness of
signatures is measured by information gain, which will be detailed
in Equation 1.

3. PROBLEM FORMULATION
3.1 Bug Signature

An interesting observation is that in Figure 4b, the generator
{11, 16} appears only in (all) the faulty profiles. This generator is
the signature we are aiming to identify, as it is highly correlated
to faulty executions. Furthermore, this generator carries as much
predictive information as any supersets in the same equivalence
class, as they all account for the same set of execution profiles.
For example, the supersets {4, 11,16}, {7,11,16} and {9, 11,16}
are all observed in the only faulty profile ¢5. From the viewpoint
of program semantics, predicate (4:false), (7:true) or (9:true) is
redundant, as they are the necessary condition for execution to
trigger the bug — statement 10. In other words, given the signature
{11,116}, we can infer that predicates 4, 7, 9 are also observed true
in the same set of profiles as the signature. In the following, we
formulate the concept of bug signatures based on generators.

DEFINITION 2 (BUG SIGNATURE). Given a labeled itemset
database, constructed from correct and faulty profiles of predicates,
a bug signature is the set of generators of an equivalence class
induced by the corresponding function tx.

A bug signature is of the form {g1, - - -, gn }, Where g; = {pi,, . . .,
Dipn, } for each i is a generator. It can be perceived as a representa-
tive of an equivalence class. Its relationship with faulty executions
is captured by the underlying ¢z function. The assumption we make
of the bug signature is that: The higher an equivalence class is
positively correlated with faulty executions, the more probable its
bug signature is related to the cause and/or effects of the bug.

For example, the equivalence class in Figure 4c provides a bug
signature s; = {{7}, {9}} correlated with transaction ¢s, t4 and ¢s.
It means that if an execution has taken either the branch (7:true) or
(9:true), it’s probable that the execution is faulty. Another equiva-
lence class in Figure 4b provides a bug signature s; = {{11,16}}
correlated only with the (faulty) transaction ts. It means that if
an execution evaluates both predicates (11:f_ele == NULL) and
(16:1 < n) to true, it’s probable that the execution is faulty. Here,
we would expect that so captures the cause and effects of bug with
higher possibility than s, since sz occurs only in (all) the faulty
executions. In other words, due to its association with faulty and
not correct executions, sz is better than s; in discriminating faulty
executions from correct ones.

In the following section, we introduce a metric to measure the
discriminative power of a signature.

3.2 Discriminative Significance

The basic unit of our signatures is itemset generator, so we start
by discussing how discriminative significance of a pattern is com-
puted. A pattern is deemed discriminative if it can be used to dis-
tinguish one class of transactions from the other. The significance
of a discriminative pattern is typically measured by the notion of
information gain (IG) [22]. Let D be a database of class-labeled
transactions. Given a pattern P, its information gain is high if it
appears frequently in one class of transactions, whereas rarely in the

other. Let p = sup™ (P), n = sup™ (P), then the information gain
of pattern P can be defined in Equation 1,

— ptn
IG(p7n) :H(|D+|7|D |)_ |D| XH(pyn)_
Dl-—(+n -
PIELED s D) =i =))
where
a a b
H(a,b) = P X 10g2(a+b) P X 10g2(m)

In the context of bug detection, however, we are only interested in
patterns which are highly correlated with negative transactions (i.e.
faulty executions), whereas the definition of /G is symmetric to
some extent as a pattern highly correlated with positive transactions
also carries high information gain. Henceforth, we leverage the
notion of information gain to define the following discriminative
significance measure:

e »
DS(p.m) = { LEP™ i > o 2
0 otherwise

Based on Definition 2, all the itemset generators in an equivalence
class constitute a bug signature. As they have the same positive and
negative supports, their D.S values are also the same. Thus we use
this D.S value as the discriminative significance of a signature.

3.3 Top-k Bug Signatures

It is a good practice to examine bug signatures in the descending
order of discriminative significance. Therefore we define the bug
signature identification as a top-k discriminative pattern mining
problem.

DEFINITION 3 (MINING TOP-K BUG SIGNATURES). Given
a labeled database D constructed from faulty and correct profiles,
and an integer k, identify k signatures {si}i-“:l from D, such that
maximize Zle DS(|tz(si) ™|, |tx(s:)7]), where tz(s) = tx(g)
forany g € s.

The notations tx(s;)" and tz(s;)~ denote the positive and nega-
tive transactions containing all generators in the signature s; respec-
tively. The following table shows top-5 signatures for the profiles
in Table 1. The second column lists the detail supports. The last

Table 3: Signatures for Profiles in Table 1

Rank Support Signatures DS
1 (+0,-1) | {{11,16}} | 0.721928
2 (+1,-1) 11 0.321928
3 (+1,-1) 16 0.321928
4 (+2,-1) 73,{9}} | 0.170951
5 (+3,-1) 41} 0.072906

column shows the discriminative significance scores. As discussed
earlier, the signature {{(11:f_ele==NULL), (16:i<n)}} is the best,
for it has the highest discriminative significance score.

4. ALGORITHMS

We first review the data structure to mine frequent itemset genera-
tors, and then present our algorithm for discovering bug signatures
via a novel discriminative generator mining algorithm.

4.1 Gr-tree to Mine Itemset Generators

Li et al. proposed a tree-based representation of transactions to ef-
ficiently mine frequent itemset generators [15]. We briefly describe
this data structure in the section. Given a database db consisting
of positive and negative transactions, a Gr-tree is a compact rep-
resentation of db, denoted as a tuple GT'ree’y ™ where prefiz is
an itemset prefixing all the items in the Gr-tree. For the original

database D, prefiz is (). Figure 5 shows the Gr-tree of database

head table &(13,-1)

4] (+3,-1) .
o102] [12C1L0]

9l (+2,-1) 7

1[G, -1) 0
14] (+2,-0) 11:(+1,-1) ‘”
16| (+1,-1) - 3
12 (+1,-0) ﬂ 14010 | 160D | {1610 |
2L

Figure 5: Gr-tree of the Database of Table 2 with prefix = ()

db in Table 2, GT reegb. Each Gr-tree has a head table, storing all
items in descending order of their supports. If two items have the
same support, then they are sorted randomly, e.g., items 11, 14 and
16.

A Gr-tree has the following two properties:

1. It does not store items of very low negative support. This
holds because such items will not contribute to good and
discriminative bug signatures.

2. It does not store items which have full support (ie., which
occur in all transactions in the database db). This holds since
such items cannot be a part of any generator, as proven in [15].

Specifically, the second property enables compact representation of
database and efficient discovery of generators.

Each item in the table has a link to its corresponding nodes in
the tree. A path from root to a node m:(+p, —n) represents an
itemset pattern comprising of the items in the path, supported by p
positive and n negative transactions. For example, the path (root,
4:(+3,-1),7:(+2,-1),9:(4+2, -1), 11:(+1, —1), 16:(+0, —1))
represents a pattern {4,7,9,11, 16} appearing in no positive and 1
negative transaction.

Generators are developed by recursively adding a new item into
the developing generator, and creating a conditional database of
transactions wrt. this new item.

DEFINITION 4 (CONDITIONAL DATABASE). Given a Gr-tree
GTreely, letay, - ,an be items in its head table. Then the con-

ditional database of a;(1 < i < n) is denoted by CD\WU{%}L, as

the set of path segments exclusively between the root and a; for all
paths containing a;.

A conditional database C’D|’C’T:TTU {E‘},

database obtained by only selectmg transactions containing the
pattern pz U {a; }, and removing a; and items below a; in the head
table of the Gr-tree .

The table above shows the conditional database of GTreegb in
@u{la}

is a projection of the original

Figure 5 with respect to item 16, C’D| . In order to construct
b

this conditional database from GTreedb, we first extract all path
segments between root and nodes 16:

Table 4: The Conditional Database of Figure 5 w.r.t Item 16

ID | Transaction
ta | ({4,7,9,14},4)
ts | ({4,7,9,11},—)

1. (root, 4:(+3,-1), 7:(+2,-1), 9:(+2.-1), 11:(+1,-1), 16:(+0,-1))
2. (root, 4:(+3,-1), T:(+2,-1), 9:(+2,-1), 14:(+1,-0), 16:(+1,-0))

As mentioned before, each path segment is an itemset, of which
the support is that of the last item, so the support of all items in
the first path segment is (40, —1), and the support in the second
segment is (+1, —0). We then remove root and nodes 16 from the

segments and form the conditional database C’D|wU{16} Then

we can build its Gr-tree, GTTee\wU{ %) where cd = CD|®GUT{16}
ree db

shown in the figure below.

head table
11 (+0,-1) | |- 11:(+0,-1) —» 14:(+1,-0)
14 (+1,-0) | [

Figure 6: Gr-tree of the Conditional Database of Table 4 with
prefix = {16}

Note that items 4, 7, 9 are removed from Gr-tree, as they have
(0u{16}

full support in the conditional database CD|GT
TPPd

b

4.2 Algorithm Skeleton

Algorithm 1 outlines our signature mining technique. G'S con-
tains a list of tuples, from which top-k signatures are selected. Each
tuple is of the form ((p, n), gens), where gens = {g; };" is a set of
generators, each having support (+p, —n). The top-k signatures
are identified in two steps, as shown in statements 2 and 3 of the
algorithm:

Algorithm 1: MineSignatures(D, k, neg_sup, size_limit)

Input: D, an itemset database constructed from profiles
Input: k, the number of top discriminative signatures to mine
Input: neg_sup, signatures should be in at least neg_sup faulty
profiles

Input: size_limit, upper size limit of generators in signatures
Output: RS, a list containing top-k discriminative signatures
GS:=[];

2 MineRec(GTree%, k,neg_sup, size_limit, GS);

3 RS := ClusterGeneratorsIntoEquivalenceClass(GS);

Step 1. We mine k sets of generators. Each set is associated with
a distinct support (+p, —n), and the generators in each set are
of the same support (+p, —n). Also, the k sets have the top-k
discriminative significance based on their D.S(p, n). This step is
done by calling MineRec at line 2. MineRec takes a Gr-tree as the
first input; for the original database D we create its Gr-tree with
empty prefix, and pass GTreeQ’D to MineRec. The last argument,
G'S, stores the mined generators returned from MineRec.

Step 2. We construct the top-k signatures by clustering generators
into their equivalence classes. Upon reaching line 3, G'S stores a list
of tuples ((p, n), gens), each of which is a set of generators gens
sharing the same positive and negative supports p and n. However
having the same supports is only a necessary condition for genera-
tors to be in the same equivalence class. Based on the definition of

bug signatures in Definition 2, they are not bug signatures yet. So at
line 3, for each generator gen in G'S, we scan the profile database
D to compute tx(gen), and cluster all generators into their corre-
sponding equivalence classes based on tz(gen). We store these
equivalence classes to RS in descending order of discriminative
significance. As two generators occurring in a tuple in G'S may
correspond to multiple equivalence classes, RS may have more than
k signatures, and we proceed to only keep the top-k ones. Since
developers are usually interested in a small set of bug signatures,
the overhead of the clustering is usually low.

The efficiency and effectiveness of Algorithm 1 can be directly
controlled by two of its parameters: neg_sup and size_limit. The
parameter neg_sup sets the negative support threshold, thus re-
quiring mined signatures to be present in at least neg_sup faulty
profiles. Computationally, this allows Apriori property (cf. Prop-
erty 1) to be exploited to avoid unnecessary computation time spent
on constructing itemset patterns with too few negative supports.

The parameter size_limit enables us to cap the size of genera-
tors in bug signatures. As will be described in the next subsection,
this setting confines the maximum depth of search space explo-
ration, controlling the mining overhead. This is also useful when
we want the bug location to be “approximated”, in trading off for
efficiency. Take for instance the signatures shown in Table 3, if
we set size_limit to 1, we obtain (11:f_ele == NULL) as top-1,
pointing to the general cause of the crashing failure. However, if we
relax size_limit, we get (11:f_ele == NULL) and (16:i < n), which
is more specific.

4.3 Mining Discriminative Generators

Algorithm 2, MineRec, is inspired by the frequent generator min-
ing algorithm described in [15], with two major differences. First,
whereas the original algorithm aims to mine all frequent genera-
tors above a given support threshold, MineRec focuses only on the
top-k sets of generators. Second, MineRec takes into account the
discriminative power of the generator currently under investigation,
and aggressively prunes the search space in a branch and bound
fashion.

MineRec takes as input a Gr-tree tree. Recall that tree is rooted
with a prefix pattern. MineRec outputs generators, which are grown
by combining items in tree with prefix. It does so by perform-
ing depth-first-search over the pattern space. Specially, as shown
between lines 2 and 4, MineRec first combines the prefix with
each item in the head table of tree. Between lines 7 and 14,
MineRec constructs, from each of the extended patterns, a con-
ditional database db’ from tree, and then builds a smaller Gr-tree
tree’ for db'. Lastly, MineRec calls itself recursively to discover
qualified itemset patterns involving the respective extended pattern.

The branch and bound technique is employed (in line 12) to
avoid making futile recursive invocation. Here, MinDS(GS) de-
notes the minimum discriminative significance of the generators
in GS. If it is found that the new Gr-tree tree’ cannot output
any generators with higher DS value (tested by calling the func-
tion UpperBound(tree')) than the minimum discriminative signifi-
cance in GS, and the size of G'S is already k, then MineRec stops
searching along this branch, and starts working on the next available
pattern.

There are three early exits of this algorithm. Atline 1, the function
returns if tree is empty, as the current search path ends at tree. At
line 5, if the size of generators mined between lines 2 and 4 equals to
size_limit, then the function can safely stops, as MineRec outputs
generators from small to big, and any generators mined in the future
along the current path must be of a bigger size than size_limit.
The third exit is at line 6 if tree is only a single path, as all possible

Algorithm 2: MineRec(tree, k, neg_sup, size_limit, GS)

Input: tree: GTreel); with prefix pz, constructed from db
Input: k, neg_sup, size_limit: the same as those in Algorithm 1
Input: G'S: alist to store mined top-k discriminative generators
Output: mined generators are stored in G.S

1 if tree is empty then return;
2 foreach item i in the head table of tree do
3 px’ :=px U {i};
4 | UpdateResult(GS,k, sup™ (pz'), sup™ (pz’), px’);
5 if |pz| + 1 = size_limit then return;
6 if tree is a single path then return;
7 foreach item i in the head table of tree do
8 px’ :=px U {i};
’
9 let db’ denote the conditional database CD P, _;
10 remove any item a from db’ if sup™ (a) < neg_sup;
!’
11 let tree’ denote the Gr-tree GTreegf, of db’;
12 if |GS| = k A UpperBound(tree’) < MinDS(GS) then
13 L continue; // Branch and Bound Here!
14 | MineRec(tree’, k, neg_sup, size_limit, GS);

15 Procedure UpdateResult(GS, k,p, n, gen):

16 if de : e = ((p,n), gens) A e € GS then

17 | GS = GS\{e} U{((p, n), gens U {gen})}:
18 else

19 GS :=GSU{((p,n),{gen})};

20 if |GS| > k then

21 choose e € G'S such that
e=((p',n'),gens’) A MinDS(GS) = DS(p',n');
22 GS := GS\{e};

generators derivable from tree have been mined between lines 2
and 4.

4.3.1 Computing UpperBound(tree)

For a pattern P, it has been studied that the information gain of
super patterns of P is bounded by a formula over the support of P [6,
20]. Assume that we know a set of transactions uxz(P) C tz(P)
which contains all super patterns of interest P’ O P, referred to as
unavoidable transactions.

uz(P)= () tz(P)

P/'DOP

The information gain for any super pattern of P is upper bounded
by the following formula, as in [20].

maz{I1G(sup” (P), luz(P)"|), IG(|luz(P)"|, sup™ (P))}

In the context of bug detection, we focus on patterns which appear
more frequently in negative transactions than positive ones, and
therefore introduce a new upper bound for D.S, as shown in the
following theorem?:

THEOREM 1 (UPPER BOUND OF DS). Given a pattern P,
the discriminative significance of all its qualified super patterns is
upper bounded by the following formula:

. sUp uT +
IG(jua(P)*|,sup=(P)) if 248 LP) > luelD

UB(P) =
0 otherwise
Given a Gr-tree tree, the term “qualified super patterns” refers
to all patterns that are derivable from t¢ree. Furthermore, the DS

“The proof is presented in Section 9.

upper bound of all these patterns (i.e. UpperBound(tree) invoked
at lines 12 in Algorithm 2) can be computed as follows. We it-
erate every path of tree from root to leaf nodes, until we find a
path (root, a:(+m, —n), - - -, In:(+p, —q)) containing all items in
the head table. The transactions containing {a, - - - ,In} form the
unavoidable transactions of the prefix px. Since we only need to
know the numbers of positive and negative unavoidable transactions
to compute UB(pz), we can simply get them from the attached
support information (+p, —q) of the leaf node in, namely

luz(pz) ™| = pand [uz(pz)”| = q

At last, we compute UB(pz) as the DS upper bound of ¢ree.

S. CASE STUDIES

We have implemented the proposed technique in a prototype
named MPS(Mining Predicated Bug Signatures) in C++, and have
experimented it with 75 faults in 5 buggy programs (i.e., print_tokens,
Unix utilities and space interpreter) on a PC with Intel Core 2 Quad
CPU 3.0GHz and 8GB memory. The print_tokens is a subject in
Siemens benchmark which was developed to test the testing cover-
age strategies [13]. The programs grep, gzip, sed are Unix utility
programs of moderate size, and the last subject space is an inter-
preter for an array definition language. The sizes of the programs
range from 726 to 14,427.

Table 5: Benchmark Statistics

Subject LoC | #Test Cases | #Faults
print_tokens 726 4130 7
grep 10,068 199 12
gzip 5,680 214 16
sed 14,427 360 9
space 6,199 13585 31
total 75

Each subject program has multiple versions and each version
has a different bug. Table 5 shows the detail of these programs,
including names in column Subject, size in column LoC, number of
test cases in column #7est Cases, and number of faults per subject in
column #Faults. The CBI sampler” is used to instrument programs
to collect data predicates.

We compare MPS with LEAP [5] in two modes: inter-procedural
signature mining and intra-procedural signature mining. In the first
mode, a bug signature is identified over the whole program, and
the items in each generator in a signature can span across multiple
functions. In the latter mode, the signature mining is performed
repeatedly for each function, and the top-k signatures are retained
among all the signatures. Different from the first mode, items in a
generator in such a signature must reside within the same function.
Thus, in our case studies, we have four signature mining algorithms,
i.e., mps-inter, mps-intra, leap-inter and leap-intra, and use them to
identify the top-1 bug signature. For MPS, we set the parameters
neg_sup = 0.5* and size_limit = 2. Our experiments show that
MPS outperforms LEAP in both modes, in terms of its mining speed
and the quality of signatures discovered.

Our case studies are designed as follows: 1) We conduct an
objective comparison between discriminative significance values of
the top-1 signatures produced by MPS and LEAP, thus measuring
their ability in contrasting faulty executions from correct ones. 2) We
measure the quality of mined bug signatures (in assisting in locating

3http://research.cs.wisc.edu/cbi/
*To simplicity, we use relative support instead of absolute support.

bug in a program) by computing the proximity of the signature to
the actual bug. 3) We present the statistics of runtime.

The artifact (including source code, tools and supportive data)
used in our case studies has been successfully evaluated by the
ESEC/FSE artifact evaluation committee and found to meet expecta-
tions. It is available at www . comp .nus.edu.sg/~specmine/
suncn/mps—artifacts.

5.1 Objective Comparison with LEAP

A signature with higher discriminative significance indicates a
higher correlation with the faulty executions, namely, it appears
in more faulty executions yet fewer correct executions. As such,
the signature may carry more predictive power in highlighting the
bug. Thus, in this experiment, we use information gain (IG) as an
objective metric to evaluate the performance of MPS and LEAP.
Specifically, we measure the absolute improvement of MPS over
LEAP in terms of 1G scores of top-1 signatures, which is defined as
(IGumps — IGrEap).

IG is widely used in information theory and machine learning [22].
For example, it is used to measure the change in information entropy
from a prior state to a state that takes some information; in general
classification algorithm, it is used to measure the effectiveness of
features in classifying un-labeled examples. More importantly, in
fault localization research, Lucia et al. have shown that IG is one of
the best metrics in localizing bugs in [19]. Alternatively, we can also
use discriminative significance DS, instead of IG, in our comparison.
Regardless of which of these two is used, the experiment outcomes
are similar.

Table 6: Improvement in Information Gain of MPS

mean | median p
mps-inter v.s. leap-inter | 0.25 0.13 < 0.0001
mps-inter v.s. leap-intra | 0.26 0.19 < 0.0001
mps-intra v.s. leap-inter | 0.24 0.14 < 0.0001
mps-inter v.s. leap-intra | 0.25 0.19 < 0.0001

Table 6 shows the improvement of MPS over LEAP in different
mode combinations. The first column indicates the modes of MPS
and LEAP; the second and the third columns list the mean and the
median of the absolute improvement. We also performed Wilcoxon
signed-rank test for each combination, which yielded (p < 0.0001)
throughout. Thus the improvement is statistically significant.

The improvement is due to the following reasons. First, the
pruning technique used in MPS is based on the sound upper bound
of DS (cf. Theorem 1), whereas the pruning heuristics of LEAP
are unsafe. Second, the predicates used in MPS provide more
information on program states for characterizing bugs, especially
useful for those which do not lead to any control-flow deviation
from correct executions.

5.2 Proximity to Actual Bug

In this section, we measures the distance between the actual bug
in the program and the signature mined. It aims to determine how far
should the programmer go beyond the signature to localize the bug.
The measurement method is similar to the computation of score
described in [23, 9]. Specifically, the distance measure is performed
on the program dependence graph (PDG) of the faulty version of
the program. Given the actual bug and a signature, we identify all
the corresponding nodes in the PDG signifying the actual bug and
the signature. Let’s denote the bug node by b and the latter set of
signature nodes by S respectively.

Let k(n,) be the set of nodes that are reachable in PDG from
n within the distance e. Through this, we determine the minimum

Table 7: Proximity Results

median mean
subject LEAP MPS LEAP MPS
inter intra inter 1mpr. intra inter intra inter 1mpr. intra impr.
print_tokens | 0.718 | 0.859 | 0.950 | 11.7% | 0.959 | 11.7% | 0.645 | 0.800 | 0.897 | 10.9% | 0.910 | 12.4%
grep 0.505 | 0.358 | 0912 | 80.5% | 0.889 | 76.0% | 0.390 | 0.335 | 0.780 | 100.2% | 0.791 102.9%
gzip 0.003 | 0.688 | 0.898 | 30.5% | 0.891 | 29.5% | 0.224 | 0.503 | 0.831 65.1% 0.812 61.5%
sed 0.648 | 0.692 | 0919 | 32.9% | 0952 | 37.6% | 0.518 | 0.635 | 0.911 43.4% 0.936 47.4%
space 0.000 | 0.000 | 0.992 - 0.996 0.000 | 0.053 | 0.856 | 1518.0% | 0.878 | 1559.6%
distance d(n) between any node n in the signature (S) and the 1 static int inchar() {
node b for the actual bug. Different from the approach in [23, 9], 2 if (prog.cur) f{
in which the distance is defined as the number of edges in the i J.f(lprog;ur::l;ro;end)
shortest directed path connecting a node n in S and the bug b, 5 ch = wprog.curtt;
we relax the directional constraint of path to undirected, as the 6 } else if (prog.file) {
information carried in predicates enables programmers to reason ; if k(llfeoft(proq. fi?el) .
bugs in an undirected way. For example, the following code snippet 9) ch = getelprog.fite);
is extracted from print_tokens, and the bug is the misplacement of 10 if (ch == ’\n’)
case 32. MPS outputs a signature containing a predicate (cu_state 11 ++cur_input.line;
== 32) right after the statement (cu_state = next_st). There is no E) return ch;
directed dependency path from case 32 to the predicate location. 14 int main(int argc, chars argv([]) {
However, with this predicate, we know that next_st is also 32, and 15 R
this variable can directly lead the execution to reach the bug point. ig "h:i:té}(lc(’g;t): ?ewpt—long(See)) ts EOR) A
Thus the undirected path between cu_state and case 32 via next_st 18 case ‘e’ : compile_string(...); break;
provides a good clue for debugging. ;(9) case 'f’: compile_file(...); break;

cu_state = next_st;

a slgnature here:

1 next_st = ...;

2 switch(next_st) {

3 e

4 case 32: ... // bug is "case 32"
5

6 }

7

8

cu_state == 32

After getting the shortest distance, we compute

N = U k(n,d(n))

nes

to represent the maximum number of nodes/locations in the program
a programmer has to examine, starting from node n in the signature.
If d(n) = 0, the actual bug falls in the signature, and the number
of nodes a programmer needs to examine is simply the size of the
signature itself.

The fewer nodes a programmer must examine when locating
a bug, the better the quality of the signature. This proximity is
expressed as a fraction of the PDG:

[NV

X=1-
|PDG]

We used CODESURFER to compute the PDG of the buggy program,
and compute X for each of the signatures. Table 7 shows the
proximity results for each program subject. Columns 2—7 list the
median and columns 813 list the mean. These two column sets
have the same structure, so we elaborate how to interpret the median
columns. Columns 2 and 3 are the medians of the top-1 signatures
produced by leap-inter and leap-intra. Column 4 is the median for
mps-inter and Column 5 is the relative improvement of mps-inter
over the best proximity value of leap-inter and leap-intra, i.e.,

mps-inter — max(leap-inter, leap-intra)
max(leap-inter, leap-intra)

Columns 6 and 7 can be interpreted similarly only except they list
the median of mps-intra and its relative improvement over LEAP.

Figure 7: A Bug in sed

Overall, the improvement ranges from 11.7% to 1559.6%. In
particular, the medians of leap-inter and leap-intra for the space
subject are both zero: Since the number of profiles of space is
large (i.e., 13585), each profile is also a big graph and sub-graph
isomorphism checking used in LEAP is NP-complete, thus making
leap-inter not able to terminate. In the case of leap-intra, due
to the unsafe pruning heuristics in LEAP, it usually produces no
signatures for space. We performed Wilcoxon signed-rank one-tail
test between MPS and LEAP, and validated that the improvement of
MPS is statistically significant with (p < 0.001).

Moreover, it is interesting to see that signatures produced by
leap-intra and leap-inter are comparable in proximity, so are mps-
intra and mps-inter. As demonstrated in the following section,
intra-procedural mining is significantly faster than inter-procedural
mining, hence in practice, mps-intra can be used first to get quick
diagnostic information. If the information is not enough, mps-inter
can be invoked to provide alternative signatures.

5.3 Efficiency

Table 8 displays the runtimes of the four miners. The fourth
column impr. lists the relative performance improvement of mps-
inter over leap-inter, and the last column impr: lists the improvement
of mps-intra over leap-intra. It shows clearly that except for gzip
in inter-procedural mode, MPS is much superior to both the LEAP
variants in terms of speed; furthermore, mps-intra is significantly
faster than the other three by 140.46% — 12800%.

5.4 A Debugging Session for sed

This section describes how we use MPS to debug a fault in the
sed program. The bug is at line 4, where the operator <= should
be < instead. This bug causes the program to read the terminating
null-character \O’ of the input string, an unexpected behavior. The

Table 8: Runtime Statistics (in seconds)

[subject | mps-inter | leap-inter | impr. | mps-intra | leap-intra | impr.
print_tokens 50.32 76.38 51.79% 11.45 27.51 | 140.46%
grep 18.79 7728 | 311.18% 0.30 3875 | 12800%
aZip 131.44 3171 | -75.88% 155 2829 | 1722.4%
sed 82.30 104.94 27.51% 5.66 51.31 | 806.30%
space 781.40 - - 6.93 208.37 | 2900.1%

| bool Two_of_ Three_Reports_valid; //global observed from the second predicate of the signature). In order for

2 int Other_RAC; //global the execution to reach the statement at line 14, the test at the if state-

i’ i“‘.:_ .a_l.t_fsepfteSt O A ment at lines 11 and 12 must be true. Since fcas_equipped is known

5 bool tcas_equipped=(Other_Capacity==1); to be true, we therefore infer that intent_not_known must be true.

6 bool intent_not_known= At this point, we can ask if it is reasonable to set alt_sep to 1 when

7 Two_of_Three_Reports_valid || the "intent is not known". If it is reasonable, we can continue our

8 (Other_RAC==0);//bug: ’ ||’ should be ’&&’

9 ... investigation to check when intent_not_known is set to true. Based
10 if (enabled && on the assignment to intent_not_known at line 6, the fact that in-
11 ((tcas_equipped && intent_not_known) tent_not_known must be true, and the first predicate in the signature,
% _____ ‘_‘ tteas_equipped)) { we can infer that in faulty profiles Two_of _Three_Reports_Valid
14 alt_sep = 1; and (Other_RAC == 0) cannot be true at the same time, and then
15 e question if it is reasonable to set intent_not_known to true in this
}g’ ‘)mid main(int arge, chars argvil) situation. We thus arrive at the source of the bug.

18 e On the other hand, for this version, LEAP outputs a large sub-
19 Two_of_Three Reports Valid = atoi(argv(3]); graph containing 21 basic blocks in functions main, alt_sep_test and
3(1) Other_RAC = atoi (argv[10]); another two, many of which do not help, but act as deterrence to the
2} debugging process, in our opinion. Lastly, in terms of discriminative

Figure 8: A Bug in Version 3 of tcas

bug happens when users provide a sed command via the command
option ‘-e’ and (prog.cur == prog.end). The program is safe if the
command is stored in a file specified with the command option *-f’.
MPS outputs a signature including two predicates for this bug:

(ch< 1) atline 5, and (opt =="¢’) at line 16

These two precisely capture the context under which the bug mani-
fests itself. In contrast, LEAP outputs a signature containing four
branches in a function, of which three conditions involve the charac-
ter returned by inchar(). However, all these branches are far from
the bug location, and not related to the bug. Worse still, that inchar()
is intensively used in that function, and it is difficult to figure out
the difference between calls in the signature and the other calls. In
terms of discriminative significance, the MPS signature appears in
0 correct and 18 faulty executions with DS = 0.28, whereas the
LEAP signature appears in 149 correct and 13 faulty executions
with DS = 0.01.

5.5 A Debugging Session for tcas

The following describes a debugging session we conducted with
MPS on the Siemens benchmark. In version 3 of tcas program,
the function alt_sep_test has a bug at line 7, where the operator ||
should be &&, shown in Figure 8. The bug manifests in the follow-
ing two scenarios, when the boolean variable intent_not_known is
incorrectly assigned with value frue instead of false:

1) Two_of _Three_Reports_Valid == 0 and Other_RAC ==

2) Two_of _Three_Reports_Valid == 1 and Other_RAC # 0
MPS outputs a signature containing two predicates:

1) (Other_RAC > Two_of _Three_Reports_Valid) after line 20

2) (alt_sep == tcas_equipped) after line 14

The following is our process to diagnose the bug. As alt_sep
has been assigned with 1 at line 14, tcas_equipped must be 1 (as

significance, the signature obtained from LEAP is contained in 0
correct and 10 faulty profiles and its D.S is 0.0403, whereas ours
appears in 1 correct and 19 faulty profiles with D.S = 0.08.

5.6 Threats to Validity

As an empirical study, our experimental results are subject to two
threats to validity. First, threats to construct validity concern whether
the metrics used in the evaluation of MPS are proper. In this paper,
we use information gain and proximity to measure the performance
of MPS. The first one has been shown to be a good metric for
fault localization in [19], and the second one is also widely used in
debugging research projects. Both metrics are objective. The first
one characterizes the capability of signatures in contrasting faulty
executions from correct ones. The latter one mimics the developers’
behavior in debugging, measuring not only the effort required to
figure out the cause of the bug starting from the mined signatures.,

With regard to the concern that our results might not generalize to
broader population of programs, we note that our algorithm assumes
that the manifestation of a bug is highly correlated with a set of
predicates; the applicability of this assumption to buggy programs
in general is commonly accepted by the research community. As far
as scalability is concerned, the runtime performance of mps-inter
may degrade with large sets of profiles. However mps-intra is not
affected much and can output signatures of comparable quality.

6. RELATED WORK

This section surveys and classifies research studies related to our
work in three categories: bug signature mining, fault localization,
and discriminative pattern mining.

Bug Signature Mining. As pointed out by Hsu et al [12] and Parnin
et al. [21], in the absence of the context in which a bug occurs, it
is difficult for developers to conduct a debugging session. Hsu et
al. utilize BIDE [26] sequence miner to discover longest common
subsequences as bug signatures from a sequence database consist-
ing of suspicious program statements in [12]. Cheng et al. [5] curl
sequences into software behavior graphs and employ LEAP [27] to

discover discriminative subgraphs as bug signatures. The experimen-
tal results have shown that their approach outperforms RAPID [12].
Extending LEAP to discover predicated bug signatures can however
be non-trivial. It is unclear how predicates should be encoded into
the graph models: Encoding predicates as edges creates multi-edge
graph, the mining of which will require non-trivial extension to
LEAP; encoding predicates as nodes may create conflict with the
pruning heuristics deployed by LEAP.

Fault Localization. In spectrum-based fault localization, program
profiles or spectra obtained from faulty and correct executions are
analyzed to locate bugs. Renieris and Reiss compare a failed execu-
tion with the nearest correct execution to locate suspicious program
elements [23]. Liblit et al., Chao et al. and Zhang et al. find
predicates that are correlated with failures [16, 28, 10]. Jones and
Harrold use Tarantula [14], and Abreu utilize Ochiai [1] to rank
suspicious program statements. Nainar et al. identify compound
boolean predicates of size 2 for statistical debugging [3]. Chilimbi
et al. use statistic metric to rank program paths which are correlated
to bugs [8]. Differently, Our approach targets at minimum bug sig-
natures, which is capable of capturing multiple profile elements for
bug diagnosis. It is also flexible: in case the location of a bug is
highly discriminative, the location will be directly returned. In com-
parison with [3], we propose a systematic algorithm to mine succinct
signatures of arbitrary size; Baah et al. propose a probabilistic pro-
gram dependence graph to software fault localization, of which the
probabilities are inferred based on observational studies and causal
effect estimation [4]. Gore et al. recently study the reduction of
confounding bias in predicate-level statistical debugging [11]. Our
approach is orthogonal to these causal-inference-centric research [4,
11], and it will be interesting to integrate these techniques to tackle
confounding bias at signature level. Rossler et al. combines statisti-
cal debugging and test case generation to isolate failure causes [24].
As pointed out in their paper, they only use single suspicious pred-
icates in each function to guide the test generation as identifying
multiple predicates takes longer time. Our mining technique (e.g.,
mps-intra) can complement theirs by overcoming this constraint.
Discriminative Pattern Mining. Hong et al. mine discriminative
itemset patterns based on information gain in [7]. Nijssen et al.
transform discriminative itemset mining into a constraint satisfaction
problem [20]. Lo et al. mine discriminative sequential patterns for
software behavior classification [18]. Yan et al. mine discriminative
subgraph patterns via leap search [27]. Sun et al. mine contrasting
patterns for software process evaluation [25].

In comparison, our novel algorithm aims to mine discriminative
itemset generators by contrasting faulty execution profiles from
correct ones. Consequently, we improve on scalability in signa-
ture mining through avoiding construction of connected subgraph,
and filter redundant information in signatures through mining of
generators.

7. CONCLUSION AND FUTURE WORK

Understanding program bugs invariably involves reasoning through
sequences of program states, which are typically represented by both
data predicates and conditions (for directing control flow). Automat-
ically identifying appropriate data predicates that represent either
the cause or effect of a bug is a non-trivial task. Specifically, it can
be challenging to extend the current control-flow based signature
(generated by LEAP) to include such predicates.

In this paper, we propose a novel algorithm to automatically iden-
tify bug signatures consisting of data predicates and control-flow
information. Compared to LEAP, our algorithm is sound, as the
technique employed to prune the search space is safe, in information
theoretic sense. With the presence of data predicates, the functional-

ity of our signatures is extended to enable developers to diagnose a
class of bugs, the manifestation of which does not trigger any devi-
ation in control-flow transitions from correct executions, and thus
cannot be detected by control-flow-based signatures. Although the
information presented in the profiles has increased, we manage to
produce signatures of smaller sizes through the technique of itemset
generator mining.

Moving forward, we will explore various opportunities for opti-
mizing the mining algorithm. We are in the progress of developing
a debugging environment that assists programmers in inferring the
cause of bugs from the data predicates present in signatures. In
future, we plan to conduct human studies to investigate the effective-
ness of our approach in debugging large real-world programs. We
also plan to enhance the algorithm to assist in discovery of multiple
bugs present in the execution profiles.

8. ACKNOWLEDGMENT

We are grateful to Yan Han Pang, Theong Siang Oo, Kheng Meng
Yeo and Thao Nguyen at National University of Singapore for their
assistance in conducting the case studies. We thank the anonymous
reviewers for their valuable comments and evaluation of the paper
and the associated artifacts. Our appreciation also goes to Hong
Cheng at Chinese University of Hong Kong for providing the LEAP
tool, and Ben Liblit at University of Wisconsin-Madison for making
CBI instrumentor publicly available. This work is supported by a
research grant R-252-000-484-112.

9. SUPPLEMENTARY INFORMATION
The following is the proof of Theorem 1.

PROOF. Let D be an edge label transaction database, P be a
pattern, p = sup™ (P) and n = sup™ (P).
The partial derivative of /G w.r.t the positive support p:
0IG _ 1, p(Dl=p=n)
p |D| 7 (p+n)(IDH - p)
The partial derivative of /G w.r.t the negative support n:
oG 1 og n(|D| —p—n)
on D] % (p+n)(ID-| —n)
Let P’ be a qualified super pattern of P, p’ = sup T(P),n =
sup™ (P'), then [uz(P)*| < pf = BT < #t
definition of unavoidable transactions.

based on the

n'

luz(P)t|
o= < oA then ‘D P < IDH thus DS(p’,n’) =

’ +
2. If u?—| > %, we discuss the following two cases.
First, if ID P < \D+|’ then DS(p’,n’) = 0. Second, if
% > 5 then MG < 0and 2€ > 0 thus IG is mono-

tonically decreasing to p, and rnonotonlcally increasing to
n. Then DS(p’,n') = IG(p',n') < IG(juz(P)*|,n') <
IG(Jux(P)"], sup™ (P)) .

So the upper bound of DS is correct. [

10. REFERENCES
[1] R. Abreu. Spectrum-Based Fault Localization in Embedded
Software. PhD thesis, Delft University of Technology, 2009.
[2] R. Agrawal and R. Srikant. Fast Algorithms for Mining
Association Rules in Large Databases. In VLDB, 1994.

[3] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit. Statistical
Debugging Using Compound Boolean Predicates. In ISSTA,
2007.

[4] G. K. Baah, A. Podgurski, and M. J. Harrold. Causal
Inference for Statistical Fault Localization. In ISSTA, 2010.

[5]1 H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan. Identifying
Bug Signatures Using Discriminative Graph Mining. In ISSTA,
2009.

[6] H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative
Frequent Pattern Analysis for Effective Classification. In
ICDE, 2007.

[7] H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct Discriminative
Pattern Mining for Effective Classification. In /ICDE, 2008.

[8] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and
K. Vaswani. HOLMES: Effective Statistical Debugging via
Efficient Path Profiling. In /CSE, 2009.

[9] H. Cleve and A. Zeller. Locating Causes of Program Failures.
In ICSE, 2005.

[10] C.Liu, X. Yan, L. Fei, J. Han, and S. Midkiff. SOBER:
Statistical Model-based Bug Localization. In FSE, 2005.

[11] R. Gore and P. F. Reynolds, Jr. Reducing Confounding Bias in
Predicate-level Statistical Debugging Metrics. In ICSE, 2012.

[12] H. Hsu, J. A. Jones, and A. Orso. RAPID: Identifying Bug
Signatures to Support Debugging Activities. In ASE, 2008.

[13] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the Effectiveness of Dataflow- and
Controlflow-based Test Adequacy Criteria. In ICSE, 1994.

[14] J. Jones and M. Harrold. Empirical evaluation of the tarantula
automatic fault-localization technique. In ASE, 2005.

[15] J. Li, H. Li, L. Wong, J. Pei, and G. Dong. Minimum
Description Length Principle: Generators Are Preferable to
Closed Patterns. In AAAI 2006.

[16] B. Liblit, A. Aiken, A. X. Zheng, and M. 1. Jordan. Bug
Isolation via Remote Program Sampling. In PLDI, 2003.

[17] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. 1. Jordan.
Scalable Statistical Bug Isolation. In PLDI, 2005.

[18] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun.
Classification of Software Behaviors for Failure Detection: A
Discriminative Pattern Mining Approach. In KDD, 2009.

[19] Lucia, D. Lo, L. Jiang, and A. Budi. Comprehensive
Evaluation of Association Measures for Fault Localization. In
ICSM, pages 1-10, 2010.

[20] S. Nijssen, T. Guns, and L. Raedt. Correlated Itemset Mining
in ROC Space: A Constraint Programming Approach. In
KDD, 2009.

[21] C. Parnin and A. Orso. Are Automated Debugging Techniques
Actually Helping Programmers? In ISSTA, 2011.

[22] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[23] M. Renieris and S. Reiss. Fault Localization With Nearest
Neighbor Queries. In ASE, 2003.

[24] J. Rossler, G. Fraser, A. Zeller, and A. Orso. Isolating Failure
Causes through Test Case Generation. In ISSTA, pages
309-319, 2012.

[25] C. Sun, J. Du, N. Chen, S.-C. Khoo, and Y. Yang. Mining
Explicit Rules for Software Process Evaluation. In /CSSP,
pages 118-125, 2013.

[26] J. Wang and J. Han. BIDE: Efficient Mining of Frequent
Closed Sequences. In ICDE, 2004.

[27] X. Yan, H. Cheng, J. Han, and P. Yu. Mining Significant
Graph Patterns by Leap Search. In SIGMOD, 2008.

[28] X.Zhang, N. Gupta, and R. Gupta. Locating Faults through
Automated Predicate Switching. In /CSE, 2006.

