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ABSTRACT

Compilation Consistency Modulo Debug Information (CCMD) is

an essential compiler property that a production compiler should

support: the compiler should emit the same machine code regard-

less of enabling debug information. CCMD is vital to developers’

experiences with debugging a production binary containing no

debug information. To debug such a binary, developers need build

another binary with the same compiler flags and enable debug in-

formation. Without CCMD, the machine code in the latter binary

will be different, which can confuse the debugger, hide the bug,

or even cause a miscompilation (as GCC once did with the Linux

Kernel).

This paper is the first to introduce to the research community

the validation of CCMD, a new research problem that has been

overlooked for decades despite its importance. More importantly,

we propose the first testing technique Dfusor to automatically vali-

date CCMD for C compilers. At the high level, given a compilable

program P as a seed, Dfusor automatically generates compilable

program variants via multiple effective program transformations.

Such variants can cause a compiler to emit more debug information

than it would when compiling P, thus exercising more code paths

in the compiler and increasing the chance to find CCMD bugs.

Our extensive evaluations of Dfusor demonstrate thatDfusor can
produce variants that exhibit significant increases in the quantity

and complexity of the emitted debug information, and thus has

found new, real bugs in GCC and LLVM. With a sample of 100

variants derived from distinct seed programs, Dfusor introduces
214% more debug information entries and 36% more distinct debug

information entries in the variants than the seeds, and improves the

code coverage of GCC and Clang by up to 6.00% and 6.82%. More

importantly, Dfusor has found CCMD bugs; within 10 months of
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development and intermittent testing, Dfusor has found 23 bugs (9

in GCC and 14 in Clang), with 3 confirmed and 18 fixed.
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1 INTRODUCTION

Given a source program and its compiled binary, debug information

describes the relationship between the source code and the binary

code. For example, the relationship includes positions, types and

scopes of variables, functions and machine instructions. Debug

information can be used by a debugger (e.g., GDB [5], LLDB [33])

to debug a program by investigating the program states at certain

program points at runtime.

Debug information is optional, but should be enabled with cau-

tion. If enabled, debug information is emitted together withmachine

code by a compiler, and stored in the binary. However, develop-

ers often disable debug information when compiling production

binaries (e.g., executables or libraries released to the end users) for

two reasons. First, production binaries with debug information are

subject to reverse engineering, and are vulnerable to decompila-

tions. Second, enabling debug information can drastically increase

compilation times and binary sizes: For example, building LLVM

14 with debug information takes 56% more time and produces 30

times larger binaries in file size than building it without debug in-

formation. Industrial developers, e.g., Sony Playstation [11], tend to

disable debug information to reduce compilation time. The increase

in storage requirements also makes enabling debug information

infeasible for resource-constrained runtime environments such as

embedded or Internet-of-Things devices.
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Debugging Production Binaries. As aforementioned, produc-

tion binaries are usually compiled without debug information. But

the shortcoming of doing so is obvious: increased difficulty in de-

bugging production binaries. Assuming that a production binary

crashes in the production environment, the operating system then

automatically saves the states of the memory, CPU and call stacks,

and other environment information into a core dump file [46]. To

debug this buggy production binary, the developer needs to recom-

pile the program with the same set of compiler flags but with debug

information enabled, and then use a debugger with the new binary

and the core dump to reproduce and analyze the bug.

Perhaps less known to developers, debug information can affect

the generation of machine code. To emit correct debug information

in binaries, compilers record the information (e.g., types, locations,
scopes) about symbols and statements during lexing and parsing.

Then, compilers carry such information through various optimiza-

tion algorithms in the middle end, and emit debug information in

certain format such as DWARF [3] and PDB [28] during machine

code generation in the back end. If debug information is enabled,

the need to maintain correct debug information while compiler

optimizers are transforming a program may cause the compiler

optimizers to behave differently from the scenario where debug

information is disabled. Such behavioral differences can further

lead to a compiler emitting different machine code, hide application

bugs, or in the worse case even trigger miscompilation bugs in the

compiler [2, 29, 41, 42].

CCMD. This paper introduces CCMD, the property that compil-

ers should generate the same machine code whether debug infor-

mation is enabled. If a compiler violates the CCMD property on

a program, we say a CCMD bug is triggered in this compiler. To

give a concrete example of where debug information changes the

generated machine code, consider the compilable program shown

in Figure 1a. It is generated by our tool, Dfusor, and triggers a

CCMD bug in GCC. Figure 1b highlights the differences in machine

code between the binary compiled without debug information (left)

and that compiled with debug information (right). The compiler

attributes such as __attribute__((always_inline)) and the

#line compiler directives complicate the optimization and the

debug information of the program, and thus tricked GCC to intro-

duce a difference in a control-flow edge when debug information is

enabled by the flag -g.
Importance of CCMD. As explained by an LLVM developer,

CCMD is an important compiler property as it improves the debug-

ging support of compilers so as to provide smooth, decent debug-

ging experiences to compiler users.

The principle here is that if -g changes the generated code,
it can potentially hide a bug. That is, you are not actually
debugging the exact same program that exhibited the bug you
are looking for. One hopes that the two versions of the program
(i.e., with and without -g) do have the same behavior, but it is
far far better to know that you are debugging the exact same
program. — by an LLVM developer [35]

In the aforementioned scenario of debugging a buggy production

binary, CCMD ensures that the buggy binary and the debugging

binary built with debug information have the same machine code.

Any difference in the machine code may cause debugging tools to

behave strangely when used on the core dump. For instance, GDB

1 # line 6 ""

2 short a;

3 __attribute__((optimize(0))) int b();

4 __attribute__((always_inline)) signed char c();

5 int b() { char e = c(); return a; }

6 signed char c(f) {

7 d();

8 # line 7 "attributes_transformed_program0.c"

9 int g;

10 # line 6

11 return f;

12 }

13 void d() {}

14 int main() {}

(a) A Dfusor-generated program that triggers a CCMD bug (GCC-

104237).

<b>:

......

mov -0x8(%rbp),%eax

mov %al,-0x1(%rbp)

movzwl 0xeed(%rip),%eax

cwtl

......

<main>:

......

nopw

%cs:0x0(%rax,%rax,1)

nopl (%rax)

<b>:

......

mov -0x8(%rbp),%eax

nop

mov %al,-0x1(%rbp)

movzwl 0xeec(%rip),%eax

cwtl

......

<main>:

......

nopw

%cs:0x0(%rax,%rax,1)

xchg %ax,%ax

(b) Assembly with debug information (left) and that without (right).

Figure 1: (a) is a minimized program triggering a CCMD bug,

in which each token is necessary to trigger the bug. The left

and right of (b) are excerpts of the binaries compiled without

debug information (-O1 -flto) and with debug information

(-O1 -flto -g), respectively. The pink lines highlight the

differences between the two binaries.

may fail to correctly interpret the core dump with the debugging

binary, and show some instructions as “(bad)” when disassembling

the debugging binary.

Moreover, CCMD can prevent a class of miscompilation bugs

that are caused by debug information. In the worst scenario, en-

abling debug information can cause compilers to miscompile pro-

grams [2, 29, 41, 42]. For example, enabling debug information

caused GCC 4.9.0 to miscompile the Linux kernel [41] because the

presence of debug instructions led to erroneous data dependencies

in the instruction scheduling pass, and further led to the register

allocator incorrectly spilling a variable before the stack frame was

created. On the other hand, GCC 4.9.0 can correctly compile the
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Linux kernel without debug information. Better support for CCMD

in GCC could have prevented this miscompilation by keeping the

assembly instructions invariant regardless of whether debug infor-

mation is emitted.

Lastly, compiler developers value CCMD. GCC has implemented

CCMD decently and LLVM is in the process of supporting CCMD [4,

7]. LLVM has a script [31] to validate CCMD on their test suite

and GCC has a special -fcompare-debug flag [12] for the same

purpose. Both compiler communities have been actively fixing

CCMD bugs.

Dfusor. Despite the importance of the CCMD property to de-

velopers’ experiences with compilers, no prior research effort has

been put into validating the reliability of CCMD. Therefore, this

paper proposes the first such research effort, Dfusor, an effective

testing technique to automatically validate CCMD for C compilers.

Note that finding CCMD bugs is inherently a research problem aim-

ing at testing the correctness of compiler optimizers w.r.t. debug
information. Specifically, to find CCMD bugs effectively, there are

two orthogonal, technical challenges: 1 how to generate programs
with complex logic that can trigger diverse code paths in compiler
optimizations, and 2 how to generate programs with complex debug
information that can thoroughly exercise code paths related to debug
information in compiler optimizers. To this end, at the high level,

given a compilable program as a seed, Dfusor automatically gen-

erates another different, compilable program variant via multiple

program transformations (i.e., Randomized Code Lowering, Obfus-

cation of Code Positions, and Fine Control of Optimizations in §3)

to introduce syntactical and semantic complications into the source

code, to fully explore and exploit different behaviors of compiler

optimizers.

We conducted extensive evaluations of Dfusor. First, we com-

pared the debug information of the same number of seeds and

variants generated by Dfusor. The results demonstrated that Dfu-
sor significantly complicates the debug information, resulting in

214% more debug information entries and 36% more distinct ones.

Second, the Dfusor-generated variants effectively exercise more

code paths in compilers, 6.00% and 6.82%more branches of GCC and

Clang triggered by the variants than the seeds, respectively. More

importantly, Dfusor has found CCMD bugs. Within 10 months of

development and intermittent testing, Dfusor has found 9 bugs in

GCC and 14 ones in Clang, with in total 21 already confirmed or

fixed. These bugs are distributed among different components of

compilers, but are mainly in the middle end and back end.

Contributions. We make the following contributions.

• We introduce CCMD to the research community, a vital

property that mature compilers should strive to support to

provide excellent debugging experiences to developers.

• We propose Dfusor, the first research effort to automatically

validate CCMD for C compilers. Dfusor is a mutation-based

testing technique, empowered by three novel program trans-

formations that apply syntactical and semantic mutations on

seed programs to generate complex, diverse test programs.

• The evaluation results strongly demonstrate that Dfusor-
generated test programs have complex debug information

and can exercise different code paths in compilers. More

importantly, Dfusor has found new, real bugs in real-world

production compilers: 23 bugs in GCC and Clang, with 21 of

them confirmed or fixed. Our testing efforts have been well

supported and appreciated by the compiler developers.

2 BACKGROUND AND FORMULATION

2.1 Debug Information

To facilitate debugging binary programs, modern compilers emit

debug information during compilation. Debug information is usu-

ally stored in a format, such as DWARF [3], PDB [28] or STAB [27].

These formats record the metadata of the source code, such as the

names and line numbers of each function and variable. Debug infor-

mation provides a debugger with a mapping between source code

and the binary, so that developers can easily manipulate program

execution and investigate program states in a debugging session.

As mentioned in §1, developers usually build a debugging binary

to analyze a core dump file from a production binary crash. A

core dump file records the environment (e.g., memory, registers,

stacks) at the crash, and is highly specific to the machine code of the

crashing binary. Assume that the debug information is correct. If the

debugging binary and the crashing binary have the same machine

code, the debugger can render an accurate, intelligible view of the

program state upon crash to the developers. The debugger may

otherwise behave erroneously, for example, showing some machine

instructions as (bad) when disassembling the debugging binary.

GCC and Clang have a command-line flag -g to control the

emission of debug information [6, 32]. An optional integer level can
be appended to specify the verbosity of debug information; level is
0, 1, 2 (default) or 3, from no debug information (-g0) to the most

detailed debug information (-g3).

2.2 Compiler Optimizations

Modern production compilers, such as GCC and Clang, have an

optimization stage to optimize the code during compilation, so

that the compiled binary uses fewer resources and runs faster than

the unoptimized binary. The optimization stage usually consists

of a large number of modular optimizing procedures (referred to

as passes in GCC and LLVM). For example, the dead instruction
elimination pass in LLVM removes instructions that are in dead

code regions during execution.

It is well known that compiler optimizers have intricate algo-

rithms dedicated to optimizing programs for performance, but per-

haps less known is that compiler optimizers also need to handle

debug information during optimization. To strive to emit correct

debug information, in the front end, compilers store the information

(e.g., types, locations, scopes) about symbols and statements during

lexing and parsing. In the middle end, compilers run various opti-

mization passes, which are expected to not only optimize the code,

but also correctly update the debug information simultaneously so

that the debug information is always faithful to the source code.

In the back end, debug information is emitted in certain format

such as DWARF [3] along with machine code. If any optimization

pass fails to properly handle the case where debug information is

enabled and the case where it is disabled, compilers are likely to

generate different machine code, resulting in a CCMD bug.
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2.3 Problem Formulation

We use the following notations to facilitate formalizing the research

problem of validating CCMD for compilers.

L a programming language

O the set of all possible sets of optimization flags

G {-g0, -g1, -g2, -g3} as described in §2.1

I the set of all possible sequences of machine instructions

D the set of all possible sequences of debug information entries

C C : L × O × G→ I × D is a compiler

A compiler C for the language L is a function. It takes as input

(𝑝, 𝑜, 𝑔) where 𝑝 ∈ L is a program, 𝑜 ∈ O is a set of optimization

flags and 𝑔 ∈ G is a flag controlling emission of debug information;

it outputs a pair (𝑖, 𝑑) where 𝑖 ∈ I is a sequence of instructions and
𝑑 ∈ D is a sequence of debug information entries.

Definition 2.1 (CCMD). A compiler C is said to support CCMD
if and only if

∀𝑝 ∈ L,∀𝑜 ∈ O,∀𝑔1 ∈ G,∀𝑔2 ∈ G.
(𝑖1, 𝑑1) = C(𝑝, 𝑜, 𝑔1) ∧ (𝑖2, 𝑑2) = C(𝑝, 𝑜, 𝑔2) =⇒ 𝑖1 = 𝑖2

Namely, the machine instructions 𝑖1 in (𝑖1, 𝑑1) = C(𝑝, 𝑜, 𝑔1) is the
same as 𝑖2 in (𝑖2, 𝑑2) = C(𝑝, 𝑜, 𝑔2) for any 𝑝 , 𝑜 , 𝑔1 and 𝑔2.
Validation of CCMD. Given the definition above, the research

problem of validating CCMD for a compiler C is to find two inputs

(𝑝, 𝑜, 𝑔1) and (𝑝, 𝑜, 𝑔2) such that the sequence of instructions 𝑖1 in

(𝑖1, 𝑑1) = C(𝑝, 𝑜, 𝑔1) and 𝑖2 in (𝑖2, 𝑑2) = C(𝑝, 𝑜, 𝑔2) are different.
Note that the problem of validating CCMD is different from

prior work on testing compiler optimizations [22, 23, 26, 37, 48]

and testing debug information [8, 25].

• The problem of testing compiler optimizations is to find a well-
defined program 𝑝 ∈ L as well as a set of flags 𝑜 ∈ O and 𝑔 ∈ G,
such that the emitted binary program 𝑖 in (𝑖, 𝑑) = C(𝑝, 𝑜, 𝑔) has
different semantics from 𝑝 . If such a program is found, then a bug

in the compiler optimizers is found because a correct compiler

should emit a binary program with the same semantics as the

source program 𝑝 .

• Testing debug information is to find an input 𝑝 ∈ L, 𝑜 ∈ O
and 𝑔 ∈ G\{−𝑔0}, such that the debug information 𝑑 in (𝑖, 𝑑) =
C(𝑝, 𝑜, 𝑔) does not correctly describe 𝑝 .

Neither of the problems above tackles the problem of finding CCMD

bugs. This paper is the first such effort.

3 APPROACH

Figure 2 shows the general workflow to validate CCMD of a com-

piler. At the beginning, in 1 we use a program generator such as

Csmith [48], tkfuzz [38] and Hermes [37] to generate a random seed

program P. In 2 , we use the program transformations described

in this section to mutate P, so that the mutated program variant P′

can trigger compilers to generate more complex debug information

and exercise more code paths of compiler optimizers during compi-

lation than P. In 3 and 4 , two binaries are generated by compiling

P′ with the same optimization flags but with different debugging

flags. Lastly, we compare the machine code of the two binaries in

5 . If there is any difference, a CCMD bug is found.

1 generate a seed program P 2 P′ ← mutate P with Dfusor

3 compile P′ with debug info 4 compile P′ without debug info

5 compare machine

code in both binaries

✓ no bug ✗ a CCMD bug

same different

Figure 2: Overall workflow to validate CCMD.

This section details the program transformations used in Dfusor,
which are designed to complicate debug information and trigger dif-

ferent code paths of compiler optimizers so as to find CCMD bugs.

As described in §2.1, debug information is the metadata of source

code, describing various aspects (e.g., names, types, locations) of

program elements (e.g., variables, functions). To thoroughly test

how reliably a compiler handles debug information, we need to

generate test programs that require complex, diverse debug infor-

mation to describe the program elements in the test programs;

meanwhile these test programs should be complex enough to fully

exercise different behaviors of compiler optimizers, because CCMD

bugs are essentially bugs in compiler optimizers as described in

§2.2.

3.1 The While Language

To facilitate presentation, we use an imperativeWhile language to

illustrate the core concepts of the program transformations used in

Dfusor. Note that the implementation of these program transfor-

mations supports all features of C.

⟨stmt⟩ ::= ⟨var⟩ = ⟨expr⟩ | ⟨label⟩ : ⟨stmt⟩ | { ⟨stmt⟩* }
| if ⟨expr⟩ ⟨stmt⟩ else ⟨stmt⟩
| while ⟨expr⟩ do ⟨stmt⟩ | goto ⟨label⟩

⟨var⟩ ::= variables

⟨expr⟩ ::= ⟨var⟩ | ⟨literal⟩ | ⟨expr⟩ ⟨bop⟩ ⟨expr⟩ | ⟨uop⟩ ⟨expr⟩
⟨label⟩ ::= statement labels

⟨literal⟩ ::= literals, e.g., strings and numbers

⟨bop⟩ ::= binary operators, e.g., +, -, *, and, or, >, >>
⟨uop⟩ ::= unary operators, e.g., !, -

Figure 3: Syntax rules for aWhile language.

Figure 3 lists the syntax rules for theWhile language: statements

⟨stmt⟩, expressions ⟨expr⟩, binary operators ⟨bop⟩ and unary op-

erators ⟨uop⟩. The notation { ⟨stmt⟩* } represents a compound

statement that has zero or more statements, and {} represents an

empty statement that does nothing.

3.2 RCL: Randomized Code Lowering

Given a seed P, Randomized Code Lowering (RCL) aims to generate

more variables and diversify the syntactical structures of P. RCL
automatically transforms P into a new variant P′ by randomly

selecting statements and expressions in P and lowering each of

them into multiple small statements. For example, a while loop

can be converted to its equivalent form comprising if and goto
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Algorithm 1: Randomized Statement Lowering

1 fun LowerStmt(stmt):
2 result← [ ] // initially, an empty list

3 LowerStmtRec(stmt, result)
4 return result

5 fun LowerStmtRec(stmt, result):
6 if FlipCoin() then // randomly skip lowering stmt

7 result.Append(stmt)
8 return

9 switch stmt do
10 case var = expr do
11 𝑒′ ← LowerExpr(expr, result)
12 result.Append(var = 𝑒′)

13 case label : s do
14 result.Append(label : {})
15 LowerStmtRec(s, result)

16 case { stmt_list } do
17 new_stmts← [ ]
18 foreach 𝑠 ∈ stmt_list do
19 LowerStmtRec(𝑠 , new_stmts)

20 result.Append({ new_stmts })

21 case if expr 𝑠1 else 𝑠2 do
22 𝑒′ ← LowerExpr(expr, result)
23 lt, lf← create two unique labels

24 result.Append(if 𝑒′ goto lt else goto lf )
25 result.Append(lt : {})
26 LowerStmtRec(𝑠1, result)
27 result.Append(lf : {})
28 LowerStmtRec(𝑠2, result)

29 case while expr do body do

30 head, lt, lf← create three unique labels

31 result.Append(head : {})

32 𝑒′ ← LowerExpr(𝑒𝑥𝑝𝑟 , result)
33 result.Append(if 𝑒′ goto lt else goto lf )
34 result.Append(lt : {})
35 LowerStmtRec(body, result)
36 result.Append(goto head)
37 result.Append(lf : {})

38 otherwise do result.Append(stmt)

statements; a long expression a+b*c might be transformed to one

statement t=b*c and one expression a+t. Such transformations

create additional variables in the resulting variant, and introduce

different syntactical structures.

Algorithms 1 and 2 describe how to transform a statement stmt
and an expression expr, respectively. Both algorithms are similar to

the classical algorithms [1] in standard compilers to convert source

code to intermediate representations (e.g., three-address code), but
with noticeable differences. At the high level, the purposes are dif-

ferent: Algorithms 1 and 2 aim to diversify syntactical structures;

Algorithm 2: Randomized Expression Lowering

1 fun LowerExpr(expr, stmt_list):
2 if FlipCoin() then return expr
3 switch expr do
4 case uop 𝑒 do
5 𝑒′ ← LowerExpr(𝑒 , stmt_list)
6 var← create a variable with a unique name

7 stmt_list.Append(var = uop 𝑒′)
8 return var

9 case 𝑒1 bop 𝑒2 do
10 𝑒′

1
← LowerExpr(𝑒1, stmt_list)

11 𝑒′
2
← LowerExpr(𝑒2, stmt_list)

12 var← create a variable with a unique name

13 stmt_list.Append(var = 𝑒′
1
bop 𝑒′

2
)

14 return var

15 otherwise do return expr

in contrast, the classical algorithms aim to simplify the syntactical

structures for program analysis and optimizations by uniformly
transforming different language constructs into a small set of syn-

tactical structures (e.g., all loop statements transformed to if and

goto statements, all complex expressions transformed to either

binary or unary expressions). At the low level, Algorithms 1 and 2

are non-deterministic, to make each run of the algorithms able to

generate programs with different syntactical structures, whereas

the classical compiler algorithms are deterministic.

3.3 OCP: Obfuscation of Code Positions

A code position is a pair (file, line), specifying the exact posi-

tion of a syntactical element. Code positions account for a large

portion of a program’s debug information. The program transfor-

mation Obfuscation of Code Positions (OCP) aims to complicate

debug information by obfuscating the positions of program ele-

ments. Although the transformation RCL in §3.2 complicates the

code locations to some extent as RCL breaks down complex state-

ments and expressions and introduces new variables, RCL is not

aggressive enough.

3.3.1 Methods to Obfuscate Code Positions. Given the seed pro-

gram P in Figure 4, there are multiple ways to change code positions.

The right side of Figure 4 shows the code position information of P.
We use P to illustrate the followingmethods, as well as the strengths

and weaknesses of each method.

int main() {

return 0;

}

int main() { // seed.c:1

return 0; // seed.c:2

} // seed.c:3

Figure 4: seed.c (left) and its code positions (right).

Method 1: Mutating Whitespaces. The most naive way is to

randomly insert or delete whitespaces (i.e., newlines, tabs, spaces)
betweeen two tokens in P. Figure 5 shows such a variant generated
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by mutating the whitespaces in P. The comments show the code

positions of all lines. It is easy to implement this transformation,

but its weakness is obvious: it only changes line information and it

has no effect on file information.

int

main() {

return

0;}

int // seed.c:1

main() { // seed.c:2

return // seed.c:3

0;} // seed.c:4

Figure 5: Variant (left) by mutating whitespaces at random

locations in seed.c and the resulting code positions (right).

Method 2: Mutating by Splitting Files. Figure 6 shows another

way to obfuscate code positions: splitting a single-file program into

multiple files and using #include to combine the files together

to reassemble the program. The code on the left shows the result-

ing program with mutated code positions. The advantage of this

method over Method 1 is that the file information is mutated. Note

that the first line of the code locations in Figure 6 comes from file

a.c whereas the other two lines are from b.c. However there are
also several noticeable disadvantages. First, the file name in the

#include directives has to point to a real, existing file; otherwise

the resulting variant does not compile. Second, a large seed file

might result in a variant that quite a few files, which complicates

the compilation and testing processes and incurs I/O overhead.

These challenges can be exacerbated if we aggressively mutate

code locations, leading to generate many small files.

int main() {

a.c

return 0;

}

b.c

#include "a.c"

#include "b.c"
variant.c

int main() { // a.c:1

return 0; // b.c:1

} // b.c:2

Figure 6: Variants (left) by splitting seed.c to variant.c, a.c
and b.c, and the resulting code positions (right).

Method 3: Mutating with Compiler Directive #line. This

method takes advantage of the C/C++ compiler directive #line,
which can directly change the file and line information of a line [15].

For example, a directive #line 999 "foo.c" changes the code

position to ("foo.c", 999) even if the file foo.c does not exist.

To achieve the same effect as Figure 6, we only need to insert

two #line directives into P, as shown in Figure 7. Using #line
directives has several key advantages compared to Method 1 and 2.

First, it is much simpler to implement than Method 1 and 2. Second,

it only produces a single source file, which makes compilation,

testing and reduction easier than Method 2. For example, once a

CCMD bug is found, a single-file program that triggers the bug is

also easier to be reduced than a program with multiple files [22, 24].

Third, we can use any random string as a file name, and let compilers

emit debug information for the random file name.

Please note that the directives #line are more common than

one might expect, although it may look unnatural. Specifically, it

is prevalently used in compilation. When compilers pre-process

macros or includes, compilers automatically insert #line directives
to specify the positions of the expanded code [18]. The parser

generator Bison [9] also uses #line to associate parsing errors

with lines in the grammar file instead of the generated parser code.

#line 1 "a.c"

int main() {

#line 1 "b.c"

return 0;

}

int main() { // a.c:1

return 0; // b.c:1

} // b.c:2

Figure 7: Variant (left) by mutating seed.c using compiler

directive #line and the resulting code positions (right).

3.3.2 OCP. Dfusor combines Method 1 and 3. Given a seed,Dfusor
randomly selects a set of lines, and for each line inserts a randomly

generated #line directive with a random string as the file path and

a random integer as the line number. In addition, Dfusor randomly

breaks a long line into multiple shorter lines and randomly inserts

whitespaces between tokens.

3.4 FCO: Fine Control of Optimizations

As discussed in §2, the root cause of CCMD bugs is usually that

compiler optimizations behave differently between when debug

information is enabled and when it is disabled. RCL in §3.2 and

OCP in §3.3 both strive to complicate debug information of seed

programs in hope that the code paths that handle debug information
in compilers can be thoroughly exercised. Orthogonally, the trans-

formation Fine Control of Optimizations (FCO) in this section aims

to thoroughly exercise the optimization logic in the middle end and

back end.

Most compilers provide coarse-granularity control of optimiza-

tions with command-line flags. For example, both GCC and Clang

have -O0, -O1, -O2, -O3 and -Os, each of which enables a set of

compiler optimizations. They even provide flags to control specific,

individual optimization passes (e.g., -funswitch-loops to enable

loop unswitching [16]).

These coarse-granularity optimization flags are useful to detect

CCMD bugs, but are not sufficient to fully trigger different code

paths in compiler optimizations. To this end, we propose fine control

of optimizations. Concretely, we leverage the compiler attributes

to explicitly influence the decisions of compiler optimizers. For ex-

ample, we can use __attribute__((always_inline)) signed
char c(); to instruct the compiler to always inline calls to c(),
as shown on line 4 in Figure 1a.

Algorithm 3 lists the main procedure used in Dfusor to do fine-

granularity control of optimizations by randomly inserting the

following four categories of compiler attributes into the seed pro-

gram. Currently, Algorithm 3 supports inserting the following four

categories of compiler attributes:

• TypeAttributes (line 2–4) specify how types should be aligned

or whether they should be packed, which might change the

memory layout of the members defined in types.
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Algorithm 3: Fine Control of Optimizations

Input :P, a seed program

Output :P, the same seed program with various attributes

inserted in place

1 foreach user-defined type 𝑡 in P do

2 if FlipCoin() then continue

3 𝑆𝑡 ← randomly sample a set of type attributes

applicable to 𝑡

4 Insert each of 𝑆𝑡 before the definition of 𝑡 in P.

5 foreach function 𝑓 in P do

6 if FlipCoin() then continue

7 𝑆𝑓 ← randomly sample a set of function attributes

applicable to 𝑓

8 Insert each of 𝑆𝑓 before the declaration of 𝑓

9 foreach function 𝑓 in P do

10 foreach variable declaration 𝑣 in 𝑓 do

11 if FlipCoin() then continue

12 𝑎 ← randomly sample one variable attribute

applicable to 𝑣

13 Insert 𝑎 before 𝑣

14 foreach label statement 𝑙 : 𝑠 in 𝑓 do

15 if FlipCoin() then continue

16 𝑎 ← randomly sample one label attribute

17 Insert 𝑎 in between 𝑙 and 𝑠

• Function attributes (line 6–8) allow developers to specify

certain function properties which may help compilers opti-

mize the annotated functions. e.g., instructing the compilers

to inline or specially optimize the annotated functions.

• Variable attributes (line 11–13) specify extra requirements of

the variables that compilers need to accommodate in binaries,

e.g., alignment and sections.

• Label attributes (line 15–17) can specify whether the code

region following a label is frequently executed or not, thus

influencing the optimizing decisions of compiler optimizers.

Table 1 shows the compiler attributes currently used in Algorithm 3.

Note that Algorithm 3 is general, and can be easily extended to

support other compiler attributes.

Table 1: The compiler attributes used in Algorithm 3.

Category Attribute Names

Type [19] aligned, packed

Function [13]
aligned(x), always_inline, noinline
artificial, cold, hot, flatten, optimize(x)

Variable [20] aligned, packed, section(x)

Label [14] hot, cold

4 EVALUATION

This section describes our extensive evaluations of Dfusor to find

CCMD bugs in two real-world compilers: GCC and Clang. It also

presents a thorough analysis of the efficacy of different program

transformations in Dfusor.

4.1 Testing Setup

Hardware. We conducted the evaluations on a Linux desktop

running Ubuntu 20.04 LTS, with an Intel Core i5-11400 @2.60GHz

CPU and 64G RAM.

Compiler Versions. We used Dfusor to test the latest develop-
ment versions of GCC and Clang by building compiler binaries

daily from the repositories of GCC and Clang. As stated in [22, 48],

compared to testing stable releases, testing the latest development

versions immediately helps developers find bugs early, and facil-

itates the testing process by preventing reporting duplicate bugs

because developers tend to fix bugs quickly in repositories. We used

a variety of compiler options for finding CCMD bugs, such as -O0
to -O3, -Os, -g1 to -g3, -flto, and -flto=thin.
Seed Programs. We used three program generators to generate

random seed programs:

• Csmith [48] is a random C program generator.

• tkfuzz [38] is a mutation-based program generator which

takes as input a seed program and outputs a different pro-

gram by randomly mutating the seed. Following [38], we

used the regression tests of GCC and Clang as seeds for

tkfuzz to generate random programs.

• Hermes [37] is a mutation-based program generator similar

to tkfuzz but with different mutation algorithms. Follow-

ing [37], we used Hermes to generate random programs by

mutating Csmith-generated programs.

Note that Dfusor is orthogonal to and independent of the source of

seed programs.We can also use open-source code as seeds. However,

the major obstacle of doing so is that open-source programs are

usually large and consist of multiple source files, and thus cannot be

effectively reduced by the state-of-the-art reduction tools, a similar

problem encountered in [22].

Testing Process. Our testing process is fully automated and runs

continuously. In each iteration, we first use a program generator to

generate a seed, then apply Dfusor to derive a number 𝑛 of variants

from the seed (we set 𝑛 = 10 by following [22]), and use them to

test GCC and Clang. Once a variant triggers a CCMD bug, we use

C-Reduce [34] and Perses [39] to reduce the variant. If the variant

triggers a new CCMD bug, we report the bug to the developers. The

only manual step in the testing is analyzing and reporting bugs.

Testing Period. This project of finding CCMD bugs started from

May 2021. In the past 10 months, we tested GCC and Clang non-

continuously, because at least half of the time was devoted to de-

signing, developing, testing, and refining Dfusor.

4.2 Quantitative Results

Bugs Found by Dfusor. As Table 2 shows,Dfusor found 23 bugs
in total: 9 in GCC and 14 in Clang; 21 bugs have been confirmed

or fixed. Both GCC and Clang developers treat our reported bugs

seriously: the GCC developers confirmed all bugs and fixed 7 of 9

quickly; only 2 bugs in Clang are still awaiting confirmation, and

11 of 14 are already fixed.

Bug Breakdown by Detection Techniques. Figure 8 shows how

these bugs are found. The numbers in the intersections refer to the
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Table 2: The bugs found by Dfusor.

Bug ID Status Flags Techniques

Clang

49771 Fixed -O1 -g2 RCL

49924 Fixed -O1 -g2 RCL

50454 Fixed -O3 -flto -g2 RCL

50525 Confirmed -O0 -g2 RCL

50539 Fixed -O1 -flto=thin -g2 RCL

50540 Fixed -O2 -flto -g2 Csmith

50911 Fixed -O0 -g2 Hermes

50912 Fixed -O1 -g2 tkfuzz

51675 Fixed -O2 -g2 OCP

51880 Fixed -O -g2 RCL

51881 Unconfirmed -O2 -flto -g2 Csmith

51882 Fixed -O -g2 RCL

52711 Unconfirmed -O0 -g2 RCL+OCP+FCO

53937 Fixed -O -g2 Hermes

GCC

100464 Fixed -O3 -g2 Csmith

100781 Fixed -O2 -g2 RCL

102764 Fixed -O3 -g2 Hermes

104156 Fixed -O3 -g2 tkfuzz

104178 Confirmed -O3 -g2 tkfuzz

104237 Fixed -O1 -flto -g2 RCL+OCP+FCO

104337 Fixed -O0 -m32 -g3 RCL+OCP+FCO

104589 Fixed -O0 -flto -g2 RCL+OCP+FCO

107030 Confirmed -O2 -flto -g2 FCO

1

OCP FCO

8 RCL

1
4

3 tkfuzz

3 Csmith

3 Hermes

Figure 8: The number of bugs detected by program transfor-

mations (left) and seed program generators (right).

number of bugs that are found only when multiple transformations

are applied together. For example, four bugs are found by Dfusor
when all the three transformations–RCL, OCP and FCO–are ap-

plied. Although nine bugs are found directly by the seed program

generators (three bugs by each of tkfuzz, Csmith and Hermes), the

majority of the bugs (i.e., fourteen) are only found by Dfusor. RCL
is the most effective technique which finds the most bugs.

4.3 Analysis of Root Causes

To better understand the characteristics of CCMD bugs, we studied

the root causes of the reported bugs by reading the fixing commits

and the feedback from the compiler developers.

Identifying Fixing Commits. Among the 18 fixed bugs, all 7

GCC bugs have fixing commits, whereas only 4 Clang bugs have

fixing commits. For the other 7 fixed Clang bugs without fixing

Table 3: The fixing commits and the root causes of the bugs

found by Dfusor.

Bug ID Commit Root Cause/Fix

Clang: Middle End

49771 4316b0e Debug instrinics were not ignored in loop

strength reduce pass.

Clang: Back End

49924 e90c6f5 Debug intrinsics invalidated registers in ma-

chine copy propagation.

51675 c7c84b9 Underflow during DWARF emission caused by

a missing width check.

53937 0f56ce0 Debug info passes expected a different variable

location mode than the one produced by Selec-

tionDAG.

GCC: Middle End

100464 a076632 Debug statements caused GIMPLE fold-

ing to erroneously set expressions as

TREE_ADDRESSABLE.

100781 715914d Debug statements caused new values to be cal-

culated in value range propagation.

104156 f953c8b Debug statements were not ignored when look-

ing for out-of-loop uses in the loop unswitching

pass.

104337 1d5c758 Variables had their abstract location set incor-

rectly in return value optimization.

GCC: Back End

102764 972ee84 In the pass lowering GIMPLE to RTL, debug

instructions at the end of a basic block were er-

roneously considered when setting the current

location for outgoing edges.

104237 430dca6 Debug information added extra instruction lo-

cations in LTO, leading to a difference in the

locations at the ends of a CFG edge.

104589 2e1b003 Similar to the issue exposed by GCC-104237.

Fixed by expanding the solution in GCC-104237

to more cases.

commits, we are not confident that the fixing commits located via

git bisect is accurate. Thus, in this study we only studied the 11

fixed bugs with explicit fixing commits, including 7 of 9 GCC bugs

and 4 Clang bugs. Table 3 lists the commits as well as the analysis

of the root causes and fixes.

Locations of Bugs. As shown in Table 3, all these 11 bugs have

root causes in the middle and back end of the compiler. Among all

the 23 reported bugs, only one of the confirmed bugs (Clang-50525)

has received comments from compiler developers stating that the

root causes are in the front end. This distribution of the causes of

these bugs is consistent with the characteristics of CCMD bugs as

stated in §1: CCMD bugs are usually caused by incorrect handling

of debug information inside compiler optimizers.
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Commonalities of Fixes. All fixes in Table 3 correct certain

mishandling of debug information in compiler optimizations, and

some fixes share commonalities. For example, in Clang-49771\49924

and GCC-100464\100781\102764\104156, debug information should

be but is not ignored in certain compiler optimizations. For Clang-

53937 and GCC-104237\104589, the presence of debug information

breaks assumptions of compiler optimizers. As for Clang-51675 and

GCC-104337, the variables in compilers related to debug informa-

tion are incorrectly updated.

In-depth Analysis of Two Bugs. To provide a more concrete

understanding of CCMD bugs, we detail the root causes of the

following two CCMD bugs.

GCC-104237: Figure 1 shows the test program. GCC inserts a nop
due to differences between the locations of two instructions con-

nected by a CFG edge. The CFG edge of interest here is in the func-

tion int b(), where the function signed char c(f) is inlined

(the inlining is instructed by the compiler attribute on line 4). In-

struction locations are streamed into a cache from lto, and enabling
-g leads to two extra cache entries from the variable g (highlighted

in cyan). This leads to a change in the location for an instruction

corresponding to line 11 (highlighted in orange).

Clang-49771: For the test program below, without -g, the instruc-
tion for creating the terminating condition !g and the instruction

for the if statement are adjacent to each other. Enabling -g inserts

a debug intrinsic into the LLVM IR between these instructions. The

Loop Strength Reduction pass incorrectly counted these debug intrin-
sics when checking whether the terminating condition is adjacent

to the terminating branch.

1 int a; char b, c;

2 short d() {

3 { int e;

4 f:;

5 int g = b != 7; if (!g) goto h;

6 if (!a) goto i;

7 return a;

8 i:b = b + 1;

9 goto f;

10 h:; }

11 return c;

12 }

13 int main() {}

4.4 Improvement of Code Coverage

We conducted experiment to understand the effects of the program

transformations of Dfusor in improving code coverage of compil-

ers. We randomly sampled 100 seed programs and mutated them

using the three transformations. For each set of program variants,

we invoked Clang/GCC to compile them with flag -g3 -O3 and

measured the code covered in the compilations. If these variants

improve the code coverage over seeds, it confirms that our trans-

formations can explore more code of the compilers and increase

the chance to trigger bugs.

Results. Table 4 shows the results on latest Clang and GCC. The

two rows “seeds” list the line/branch/function coverage using the

Table 4: Code coverage of different combinations of program

transformations. The value in parentheses is the percentage

of increased line/branch/function coverage w.r.t. the one trig-
gered by the seeds.

Line Branch Function

Clang-13.0
seeds 544,970 149,171 31,703

RCL 557,070 (2.22%) 155,977 (4.56%) 32,377 (2.13%)

RCL+FCO 559,969 (2.75%) 158,066 (5.96%) 32,591 (2.80%)

RCL+FCO+OCP 560,047 (2.77%) 158,121 (6.00%) 32,601 (2.83%)

GCC-11.2
seeds 265,729 200,724 29,415

RCL 272,797 (2.66%) 207,720 (3.49%) 29,780 (1.24%)

RCL+FCO 281,430 (5.91%) 214,379 (6.80%) 30,774 (4.62%)

RCL+FCO+OCP 281,455 (5.92%) 214,422 (6.82%) 30,774 (4.62%)

seeds on Clang and GCC respectively. Other rows show the cover-

age of the program variants. For example, “RCL” refers to the cov-

erage of program variants using RCL, and “RCL+FCO+OCP” refers

to the programs using all three transformations. The percentage in

parentheses is the improvement ratio of each coveragew.r.t. the one
of the seeds. For example, 2.22%=(557, 070−544, 970)/544, 970×100%
is the improvement ratio of RCL w.r.t. seeds in line coverage, where

544,970 and 557,070 are their line coverage respectively.

Analysis. Clearly, all transformations improve code coverage in

all coverage criteria. In Clang, both line and function coverage are

increased by over 2%; the branch coverage is improved by up to

6%. The improvement is even higher in GCC. The line and branch

coverage are increased by up to 5.92% and 6.82%, respectively; more

functions are covered by the variants (up to 4.62%). The results show

that these transformations can indeed trigger more code paths in

compilers.

The effect of each individual transformation on code coverage varies.

First, it is clear that RCL improves code coverage effectively. In both

Clang and GCC, the code coverage is improved by over 2%, except

that the function coverage of GCC is improved by 1.24%. Second,

the effects of FCO are different in two compilers. The RCL+FCO

only slightly increased the coverage in Clang. In contrast, the im-

provement ratio of RCL+FCO (5.91%) in GCC is more than double of

RCL’s improvement ratio (2.66%) . Lastly, the improvement brought

by OCP is not as obvious as the previous two transformations.

Nevertheless, it still covers more code in compilers.

4.5 Improvement of Debug Information

To study the effects of the three program transformations in compli-

cating debug information, we conducted two experiments: quantity
of debug information and quality of debug information. Specifi-

cally, by comparing the debug information of the seeds and that of

the variants derived from the seeds by various program transfor-

mations, we measured whether our program transformations can

increase and complicate the debug information quantitatively and

qualitatively.

Debugging Information Entry (DIE). In this experiment, we

compiled programs using GCC-11.2 with flag -g3 -O3 and extracted
the debug information in DWARF format. The debug information

in DWARF is largely comprised of, debugging information entries
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(DIEs) [3]. Each DIE describes a small unit of the program, such as

subprograms and variables.

4.5.1 Quantity of Debug Information. The quantity of debug infor-

mation is a direct indicator of how much computation resource is

needed to run certain code paths in compiler optimizers to emit

debug information. A large amount of debug information usually

means that certain relevant code paths in compilers need to run

frequently, increasing the chance to find CCMD bugs. We measured

the number of DIEs in the debug information (i.e., DIE count) of the

compiled variants and compared with that of the compiled seeds.

For each variant, we calculated the ratio of its DIE count w.r.t. the
seed’s DIE count. The DIE counts of the seeds range from 559 to

15,165, with mean 2,746 and standard deviation 1,740.

RCL RCL+F
CO
RCL+F
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P
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Figure 9: (a): The ratio of the DIE count of program variants

over that of seeds. (b): The ratio of the number of distinct

DIE types for program variants over that for seeds.

Results. Figure 9a shows a boxplot of the results, i.e., the ratios of
DIE counts for program variants over the DIE count for seeds. On av-

erage, the number of entries using RCL is 2.92x (standard deviation

𝜎 = 0.73) as that of seeds. As for RCL+FCO and RCL+FCO+OCP,

the average ratios are identical, i.e., 3.46x (𝜎 = 3.12). This is because

OCP mostly modifies the line information in the .debug_line
section, which does not affect the number of DIEs. The highest

ratios over three boxes are 22.28x, 22.16x and 22.16x, respectively.

We also conducted the significance test [47] to examine whether

each set of variants has more DIEs than the seeds. The 𝑝 values of

all cases are less than 0.01, indicating that their numbers of DIEs

are statistically larger than those of the seeds.

4.5.2 Quality of Debug Information. We believe the quality of de-

bug information is correlated with the diversity of code paths exe-

cuted when debug information is being emitted. We use the number

of distinct DIE types as a proxy metric to measure the quality of

debug information. More distinct DIE types means more chances

to trigger new code paths in compilers.

To define a distinct DIE type, it is essential to understand the

structure of DIEs. EachDIE consists of a tag andmultiple attributes:
the tag records the class of the DIE, and attributes are key-

value pairs describing properties of the DIE (name, line number,

etc.). We define a DIE’s type by combining its tag and the keys in

attributes. In other words, the number of distinct DIE types is

the number of unique combinations of tags and attribute keys

in each program.

Results. Figure 9b shows the corresponding data regarding dis-

tinct DIE types. In the seeds, there are 44 to 65 distinct DIE types

(mean 55 and 𝜎=4.57). On average, RCL and RCL+FCO leads to 1.21x

and 1.36x distinct entries as the seeds, respectively. RCL+FCO+OCP

has the same value as RCL+FCO, since OCP does not modify DIE

attribute keys. The results demonstrate that the proposed trans-

formations not only increase the size of debug information, but also

enrich the diversity of debug information. A significance test also

confirms this argument (𝑝 < 0.01 for all three cases).

5 DISCUSSIONS

5.1 Mitigating CCMD Bugs with strip
The command strip is a utility program on Unix-like systems

that can remove debug information from binaries [10]. Software

developers may use strip to mitigate CCMD bugs: developers

always compile a program with debug information into a binary

and then use strip to remove the debug information from the

binary to obtain another binary that has no debug information. By

doing so, both binaries are guaranteed to have exactly the same

machine code.

However, this approach is not practical. Compiling a program

with debug information significantly increases both the binary size

and compilation time. To illustrate this, we conduct two experi-

ments. In our first experiment, we measure the time and disk space

taken by a full build of LLVM-14. In our second expeiment, we first

build LLVM at the commit acf648b, then we checkout the following

commit 3089b41 and measure the time taken for an incremental

build. The difference between acf648b and 3089b41 is rather small,

with the only changes being to one .cpp file in the LLVM middle

end. Both experiments build LLVM-14 release mode with GCC and

various debug flags from -g0 to -g3 using a single thread. With-

out loss of generality, we only build four common components in

LLVM: clang, clang-tools-extra, compiler-rt and polly.

Table 5: Build times (in hh:mm:ss) and binary size (GB) of

LLVM 14, with different degrees of debug information.

-g0 -g1 -g2 -g3

Full Build Time 3:27:02 3:31:19 5:15:39 5:18:50

Incremental Build Time 0:04:54 0:05:21 0:30:54 0:34:47

Binary Size 3.18 14.84 98.73 99.42

Table 5 shows the time taken for each build and the size of the

binaries in the bin directory of LLVM. Compared to the full build

without debug information (-g0), the full build with -g3 takes 56%

longer time (~2 hours longer) and the incremental build with -g3
takes 610% more time (~30 minutes longer) than the incremental

build with -g0. Builds with -g3 also produces 30 times larger bina-

ries (~96 GB larger) than -g0. From this table, it is easy to see that

enabling debug information incurs significant overhead in compila-

tion time and binary size. The overhead is the major reason that

industrial developers, e.g., Sony PlayStation [11], prefer disabling

debug information; it has also been motivating the developers of

GCC and LLVM to make painstaking efforts to implement CCMD

natively in GCC and LLVM [21, 30, 36]. Though the strip-based
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approach hides CCMD bugs from users of compilers, it does not

help the developers of GCC and LLVM to implement CCMD.

5.2 Finding the Miscompilation Bug [41] via

CCMD

We demonstrate that the compiler bug miscompiling the Linux

Kernel [41] described in §1 can be detected as a CCMD bug. Though

the bug was originally found as a miscompilation, it is also a CCMD

bug: enabling debug information causes changes in the machine

code. Moreover, we argue that detecting this bug as a CCMD bug

is easier than as a miscompilation bug.

This bug stems from GCC mis-handling debug information in

the presence of inline assembly. As the vanillaDfusor does not have
transformations that insert inline assembly statements, it would not

be able to find this bug. However, Dfusor is general and extensible.

To demonstrate that the bug can be detected via CCMD, as a proof

of concept, we have developed a simple program transformation

that randomly inserts empty inline assembly statements with input

and output operands randomly selected from in-scope variables.

Within only one day of testing, this transformation found a CCMD

bug that reproduces the miscompilation bug,
1
as shown in Figure 10.

The pink line highlights the inserted inline assembly statement.

1 int a, c = 1;

2 long b;

3 void main() {

4 short d;

5 //undefined behavior:

6 //signed integer overflow by 'c++'.

7 for (; c; c++) {

8 b = 0;

9 for (;;) {

10 asm volatile("" : "+c"(d), "+m"(a));

11 break;

12 }

13 }

14 }

Figure 10: A reproduction of the Linux Kernel bug found by

an extension of Dfusor. This program is minimized from a

program generated by Csmith+Dfusor.

Aside from being able to reproduce the Linux Kernel miscom-

pilation, the new transformation found another 3 new bugs in

Clang [43, 44] and GCC [45] within a testing period of 2 weeks (2

CCMD bugs and 1 compiler crash).

Detecting Miscompilations as CCMD Bugs. If a miscompi-

lation is due to mis-handling of debug information, then it can

be detected as a CCMD bug. Finding miscompilations is difficult

because it requires test programs to be well defined [22, 26, 48],

1
We manually verified that both the CCMD bug and the miscompilation bug have the

same root cause. Specifically, we built two versions of GCC: commit bf95b62 that fixes
the miscompilation and the previous commit 6782b1e that has the miscompilation;

bf95b62 also fixes the CCMD bug whereas 6782b1e still has the CCMD bug.

whereas it is relatively easy to generate programs for finding CCMD

bugs because the programs only need to be compilable. For exam-

ple, the program in Figure 10 has an undefined behavior on line 6,

which cannot be used to find miscompilations but is sufficient for

finding CCMD bugs.

5.3 Using Compiler Directives for Finding

CCMD Bugs

The bug-triggering programs of CCMD bugs found by Dfusor
may inlcude compiler directives. Specifically, among the 23 bugs,

6 include directives in their bug-triggering programs: 3 of them

contain common #include (Clang-51882) and #pragma (Clang-

51675\52711), which are inherited from seed programs, while the

other 2 bugs have #line induced by OCP (GCC-104337\104589).

Note that the fixing commits of CCMD bugs are mostly in the mid-

dle end and back end of the compilers, rather than the front-end

which handles directives (see Table 3).

We attempted to remove the compiler directives from the bug-

triggering programs to see whether the bugs could be replicated

without them.We found that neither of the two bugs using #pragma
can be reproduced without #pragma, since #pragma provides addi-

tional information to the compiler [17] and cannot be replaced. The

bug using #include can be reproduced by replacing the directive

with the content of header files.

6 RELATEDWORK

This work is the first effort to validate CCMD for production compil-

ers, andDfusor is the first technique to automatically find violations

of CCMD in C compilers. The following discusses two closely re-

lated lines of research.

Testing of Debug Information. Several studies focus on testing

the correctness of the debug information generated by compil-

ers [8, 25]. Li et al. proposed a methodology to validate the cor-

rectness of debug information generated for optimized code [25].

Their insight is that the binary code optimized by compilers should

stop at the same unoptimized breakpoint and print the same value

as the unoptimized one during debugging. Otherwise, compiler

optimizations induce errors to the debug information. Di Luna et al.
designed a framework to find the errors in debug information [8].

They proposed four invariants that should not be violated by any

pair of optimized and unoptimized programs. In the execution of

randomly generated programs, they dynamically captures such

violations to detect errors in debug information.

This paper tackles a different problem as detailed in §2.3: Dfusor
validates CCMD but not the correctness of the debug information

emitted by compilers. Besides, Dfusor can help tackle the research

problem in [8, 25] as well. The state of the art [8, 25] used the pro-

grams generated by Csmith in their evaluations. As demonstrated

in §4, our program transformations can effectively trigger more

code paths in compilers and emit a larger amount of distinct DIEs

than Csmith. By using the seed program generated by Dfusor other
than Csmith, we believe that the chances to find debug-information-

related bugs is generally increases, which we leave as future work.

Testing of Compiler Optimizers. Most prior studies on compiler

validation focus on the correctness of compiler optimizers [22, 23,
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26, 37, 48]. Csmith [48] and YARPGen [26] randomly generate pro-

grams for C/C++ compilers. After compiling these programs with

multiple compilers, a bug is found if the binaries behave differently

in execution. Le et al. proposed Equivalence Modulo Input (EMI)

to expose bugs in compiler optimizations [22, 23, 37]. It mutates

the seed program in diverse ways while ensuring that the mutants

are equivalent to the seed program w.r.t. a given input. tkfuzz [38]

randomly substitutes variable or function name with a different

one to find crash bugs in compilers. Recently, Theodoridis et al.
proposed a novel methodology to detect the missed optimizations

in compiler optimizers [40]. Their methodology inserts markers

to the dead code blocks of programs and then analyzes the binary

programs optimized by two compilers. If there is any marker that

only exists in one of the optimized binary programs, it is implied

that one of the compilers misses the optimization opportunity to

eliminate the corresponding dead code block.

As detailed in §2.3, our work is different from the prior work.

First, our work focuses on CCMD, a new research problem that

requires special care to generate test programs with both complex

debug information and logic, in order to fully exercise the inte-

gration of handling debug information and optimizing algorithms

inside compilers. Prior work mainly focuses on whether compilers

can reliably compile test programs into semantically-equivalent

binaries. Second, the program transformations inside Dfusor are
different from those used in prior work: the goal of our program

transformations is to complicate debug information of test pro-

grams and trigger different code paths in compiler optimizers at

the same time.

7 CONCLUSION

This paper introduces CCMD, a vital property that compilers should

support, i.e., compilers should generate the same machine code,

whether debug information is enabled. We also propose Dfusor,
the first automatic test generation technique to validate CCMD for

C compilers. Within 10 months of development and intermittent

testing, Dfusor has found 23 bugs in GCC and Clang, and 21 of

them have been confirmed or fixed by the compiler developers.

The proposed transformations used in Dfusor can significantly

complicate debug information by introducing 214% more DIEs and

36% distinct DIEs, and improve the code coverage of GCC and

LLVM by up to 6.82%. We believe that our efforts open up a new

research direction to improve the quality and usability of production

compilers. As future work, we will explore the possibility of using

Dfusor to validate the correctness of debug information [8, 25].

ACKNOWLEDGMENTS

We thank all the anonymous reviewers in ASPLOS’23 for their in-

sightful feedback and comments, which significantly improved this

paper. We thank Davide Italiano for introducing this problem to us.

We express our appreciation to the LLVM developer Paul Robinson

and GCC developers Andrew Pinski, Jakub Jelinek and Richard

Biener for their enlightening discussion with us. Our appreciation

also goes to all LLVM and GCC developers who confirmed and fixed

the bugs reported by us. This research is partially supported by

the Natural Sciences and Engineering Research Council of Canada

(NSERC) through the Discovery Grant, a project under Waterloo-

Huawei Joint Innovation Lab, and CFI-JELF Project #40736.

REFERENCES

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-
ers: Principles, Techniques, and Tools (2nd Edition). Addison Wesley, Chapter 6.

Intermediate-Code Generation.

[2] Richard Biener. 2014. GCC Bug 61801. Retrieved July 10, 2022 from https:

//gcc.gnu.org/bugzilla/show_bug.cgi?id=61801

[3] DWARF Debugging Information Format Committee. 2017. DWARF Debugging

Information Format Version 5. Retrieved February 28, 2022 from https://dwarfstd.

org/doc/DWARF5.pdf

[4] LLVMDevelopers. 2018. [meta]Make llvm passes debug info invariant. Retrieved

July 15, 2022 from https://github.com/llvm/llvm-project/issues/37076

[5] The GDB developers. 2022. GDB: The GNU Project Debugger. Retrieved February

28, 2022 from https://www.sourceware.org/gdb/

[6] The GDB developers. 2022. Options for Debugging Your Program. Retrieved

February 28, 2022 from https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.

html

[7] The LLVM developers. 2022. Debug information and optimizations. Re-

trieved February 28, 2022 from https://llvm.org/docs/SourceLevelDebugging.

html#debug-information-and-optimizations

[8] Giuseppe Antonio Di Luna, Davide Italiano, Luca Massarelli, Sebastian Öster-

lund, Cristiano Giuffrida, and Leonardo Querzoni. 2021. Who’s Debugging
the Debuggers? Exposing Debug Information Bugs in Optimized Binaries. As-

sociation for Computing Machinery, New York, NY, USA, 1034–1045. https:

//doi.org/10.1145/3445814.3446695

[9] Free Software Foundation. 2021. Bison 3.8.1. Retrieved July 20, 2022 from

https://www.gnu.org/software/bison/manual/bison.html

[10] Free Software Foundation. 2021. strip(1). Retrieved July 5, 2022 from https:

//man7.org/linux/man-pages/man1/strip.1.html

[11] Russell Gallop. 2015. Verifying Code Generation is unaffected by -g/-S. Retrieved

July 10, 2022 from https://llvm.org/devmtg/2015-04/slides/Verifying_code_gen_

dash_g_final.pdf

[12] GCC. 2022. Developer Options. Retrieved June 14, 2022 from https://gcc.gnu.

org/onlinedocs/gcc/Developer-Options.html

[13] GCC. 2022. Function Attributes. Retrieved February 28, 2022 from https:

//gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html

[14] GCC. 2022. Label Attributes. Retrieved February 28, 2022 from https://gcc.gnu.

org/onlinedocs/gcc/Label-Attributes.html

[15] GCC. 2022. Line Control. Retrieved February 28, 2022 from https://gcc.gnu.org/

onlinedocs/cpp/Line-Control.html

[16] GCC. 2022. Optimize Options. Retrieved February 28, 2022 from https://gcc.gnu.

org/onlinedocs/gcc/Optimize-Options.html

[17] GCC. 2022. Pragmas. Retrieved Jul 15, 2022 from https://gcc.gnu.org/onlinedocs/

cpp/Pragmas.html

[18] GCC. 2022. Preprocessor Output. Retrieved Jul 15, 2022 from https://gcc.gnu.

org/onlinedocs/cpp/Preprocessor-Output.html

[19] GCC. 2022. Type Attributes. Retrieved February 28, 2022 from https://gcc.gnu.

org/onlinedocs/gcc/Type-Attributes.html

[20] GCC. 2022. Variable Attributes. Retrieved February 28, 2022 from https:

//gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html

[21] Jakub Jelinek. 2022. Bug 104237 - [11 Regression] Emitted binary code

changes when -g is enabled at -O1 -flto and optimize attribute since r11-3126-

ga8f9b4c54cc35062. Retrieved July 15, 2022 from https://gcc.gnu.org/bugzilla/

show_bug.cgi?id=104237#c20

[22] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via

equivalence modulo inputs. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June
09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 216–226.

https://doi.org/10.1145/2594291.2594334

[23] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via

guided stochastic program mutation. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October
25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 386–399. https:

//doi.org/10.1145/2814270.2814319

[24] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Randomized Stress-Testing of

Link-Time Optimizers. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis (Baltimore, MD, USA) (ISSTA 2015). Association for

Computing Machinery, New York, NY, USA, 327–337. https://doi.org/10.1145/

2771783.2771785

[25] Yuanbo Li, Shuo Ding, Qirun Zhang, and Davide Italiano. 2020. Debug Informa-

tion Validation for Optimized Code. In Proceedings of the 41st ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (London, UK) (PLDI
2020). Association for Computing Machinery, New York, NY, USA, 1052–1065.

https://doi.org/10.1145/3385412.3386020

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61801
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61801
https://dwarfstd.org/doc/DWARF5.pdf
https://dwarfstd.org/doc/DWARF5.pdf
https://github.com/llvm/llvm-project/issues/37076
https://www.sourceware.org/gdb/
https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
https://llvm.org/docs/SourceLevelDebugging.html#debug-information-and-optimizations
https://llvm.org/docs/SourceLevelDebugging.html#debug-information-and-optimizations
https://doi.org/10.1145/3445814.3446695
https://doi.org/10.1145/3445814.3446695
https://www.gnu.org/software/bison/manual/bison.html
https://man7.org/linux/man-pages/man1/strip.1.html
https://man7.org/linux/man-pages/man1/strip.1.html
https://llvm.org/devmtg/2015-04/slides/Verifying_code_gen_dash_g_final.pdf
https://llvm.org/devmtg/2015-04/slides/Verifying_code_gen_dash_g_final.pdf
https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Developer-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Label-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Label-Attributes.html
https://gcc.gnu.org/onlinedocs/cpp/Line-Control.html
https://gcc.gnu.org/onlinedocs/cpp/Line-Control.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html
https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/cpp/Preprocessor-Output.html
https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104237#c20
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104237#c20
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/2771783.2771785
https://doi.org/10.1145/2771783.2771785
https://doi.org/10.1145/3385412.3386020


Compilation Consistency Modulo Debug Information ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[26] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random Testing for

C and C++ Compilers with YARPGen. Proc. ACM Program. Lang. 4, OOPSLA,
Article 196 (nov 2020), 25 pages. https://doi.org/10.1145/3428264

[27] Julia Menapace, Jim Kingdon, and David MacKenzie. 1992. The” stabs” debug
format. Technical Report. Technical report, Cygnus support.

[28] Microsoft. 2022. The PDB (Program Database) Symbol File format. Retrieved

February 28, 2022 from https://github.com/Microsoft/microsoft-pdb

[29] Hans-Peter Nilsson. 2010. GCC Bug 45656. Retrieved July 10, 2022 from

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=45656

[30] Andrew Pinski. 2022. Bug 104237 - [11 Regression] Emitted binary code

changes when -g is enabled at -O1 -flto and optimize attribute since r11-3126-

ga8f9b4c54cc35062. Retrieved July 15, 2022 from https://gcc.gnu.org/bugzilla/

show_bug.cgi?id=104237#c19

[31] The LLVM Compiler Infrastructure Project. 2022. check_cfc. Retrieved June 14,

2022 from https://github.com/llvm/llvm-project/tree/main/clang/utils/check_cfc

[32] The LLVM Compiler Infrastructure Project. 2022. Controlling Debug In-

formation. Retrieved February 28, 2022 from https://clang.llvm.org/docs/

ClangCommandLineReference.html#kind-and-level-of-debug-information

[33] The LLVMCompiler Infrastructure Project. 2022. The LLDB Debugger. Retrieved

February 28, 2022 from https://lldb.llvm.org/

[34] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun

Yang. 2012. Test-Case Reduction for C Compiler Bugs. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Beijing, China) (PLDI ’12). Association for Computing Machinery, New York,

NY, USA, 335–346. https://doi.org/10.1145/2254064.2254104

[35] Paul Robinson. 2018. Bug 37306 - [fuzzDI] -O1 + ‘-g’ cause the generated code to

change. Retrieved February 28, 2022 from https://bugs.llvm.org/show_bug.cgi?

id=37306#c7

[36] Paul Robinson. 2021. Bug 50913 - Emitted binary code changes at -O0 when

compiling through -S. Retrieved July 15, 2022 from https://github.com/llvm/llvm-

project/issues/50913

[37] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding Compiler Bugs via Live

Code Mutation. SIGPLAN Not. 51, 10 (oct 2016), 849–863. https://doi.org/10.

1145/3022671.2984038

[38] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. 2016. Toward Understand-

ing Compiler Bugs in GCC and LLVM. In Proceedings of the 25th International
Symposium on Software Testing and Analysis (Saarbrücken, Germany) (ISSTA
2016). Association for Computing Machinery, New York, NY, USA, 294–305.

https://doi.org/10.1145/2931037.2931074

[39] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.

Perses: Syntax-Guided Program Reduction. In Proceedings of the 40th Interna-
tional Conference on Software Engineering. Association for Computing Machinery,

361–371. https://doi.org/10.1145/3180155.3180236

[40] Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. 2022. Finding

Missed Optimizations through the Lens of Dead Code Elimination. In Pro-
ceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’22). Association for Computing Machinery, New York, NY, USA, 697–709.

https://doi.org/10.1145/3503222.3507764

[41] Linus Torvalds. 2014. Fix gcc-4.9.0 miscompilation of load_balance() in scheduler.

Retrieved June 12, 2022 from https://git.kernel.org/pub/scm/linux/kernel/git/

stable/linux.git/commit/?id=2062afb4f804afef61cbe62a30cac9a46e58e067

[42] Linus Torvalds. 2014. GCC Bug 61904. Retrieved July 10, 2022 from https:

//gcc.gnu.org/bugzilla/show_bug.cgi?id=61904

[43] Theodore Luo Wang. 2022. Emitted binary changes when -g is enabled with -O1.

Retrieved July 13, 2022 from https://github.com/llvm/lvm-project/issues/56523

[44] Theodore Luo Wang. 2022. Emitted binary changes when -g is enabled with -O3.

Retrieved July 16, 2022 from https://github.com/llvm/llvm-project/issues/56575

[45] Theodore LuoWang. 2022. ICE when compiling inline asm with -m32. Retrieved

July 20, 2022 from https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106364

[46] Wikipedia. 2022. Core dump. Retrieved February 28, 2022 from https://en.

wikipedia.org/wiki/Core_dump

[47] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83.

[48] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-

derstanding Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (San Jose, Cali-

fornia, USA) (PLDI ’11). Association for Computing Machinery, New York, NY,

USA, 283–294. https://doi.org/10.1145/1993498.1993532

A ARTIFACT APPENDIX

A.1 Abstract

This artifact provides the binary program of Dfusor, i.e., the three
program transformers proposed by us to find CCMD bugs. The

artifact is packaged as a Docker image for a standard X86 machine.

A.2 Artifact check-list (meta-information)

• Algorithm: OCP, FCO and RCL

• Binary: The binary of Dfusor is provided as a Docker image.

• Run-time environment: Docker

• Hardware: X86

• Output: Program variants transformed by transformers.

• Disk space required (approximately)?: 15 GB

• Time needed to prepare workflow (approximately)?: 10 mins

• Publicly available?: Yes

• Archived DOI: 10.5281/zenodo.7217505

A.3 Description

A.3.1 How to access. The artifact can be downloaded from https:

//doi.org/10.5281/zenodo.7217505

A.3.2 Hardware dependencies. A standard X86 machine.

A.3.3 Software dependencies. Docker.

A.4 Installation

Please use the following command to install the artifact.

docker load --input ASPLOS23-dfusor.tar

A.5 Experiment workflow

(1) Generate a program as seed program.

(2) Generate a program variant by applying the transformers to

the seed program.

A.6 Evaluation and expected results

The “README.MD” file provides the detailed steps to generate a

random program using Csmith and then transform it using Dfusor.
It is expected that the seed program is properly transformed by

each transformation. Since the three transformations have certain

randomness, the program variants are likely to be different from

the ones shown in the documentation.

All the bugs reported by this study are reproducible in certain

versions of GCC or Clang. The detailed steps, including the program

variants, can be found in their bug reports. Due to the randomness

in program transformation, it is not expected to find the exact same

program variants that trigger the bugs reported in this study.
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