
TzuYu: Learning Stateful Typestates

Hao Xiao∗, Jun Sun∗, Yang Liu†, Shang-Wei Lin‡ and Chengnian Sun‡

∗Singapore University of Technology and Design
†School of Computer Engineering, Nanyang Technological University

‡National University of Singapore

Abstract—Behavioral models are useful for various software
engineering tasks. They are, however, often missing in practice.
Thus, specification mining was proposed to tackle this problem.
Existing work either focuses on learning simple behavioral
models such as finite-state automata, or relies on techniques
(e.g., symbolic execution) to infer finite-state machines equipped
with data states, referred to as stateful typestates. The former
is often inadequate as finite-state automata lack expressiveness
in capturing behaviors of data-rich programs, whereas the
latter is often not scalable. In this work, we propose a fully
automated approach to learn stateful typestates by extending the
classic active learning process to generate transition guards (i.e.,
propositions on data states). The proposed approach has been
implemented in a tool called TzuYu and evaluated against a
number of Java classes. The evaluation results show that TzuYu
is capable of learning correct stateful typestates efficiently.

Index Terms—Typestate; Learning; Testing

I. INTRODUCTION

Behavioral models or specifications are useful for vari-

ous software engineering tasks. For instance, (object) types-

tates [26], [11], [19], [9] are important for program debugging

and verification. A precise (and preferably concise) typestate

is useful for understanding third-party programs. In practice,

however, such models are often inadequate and incomplete. To

overcome this problem, learning based specification mining [4]

was proposed to automatically generate behavioral models

from various software artifacts, e.g., source code [2], execution

traces [21] and natural language API documentations [29].

This approach is promising as it requires no extra user efforts.

Existing approaches on learning typestates (also known as

interface specification [3]) can be broadly categorized into

two groups. One focuses on learning behavioral models in

the forms of finite-state automata, without data states. These

methods are often inadequate in practice, as it is known that

finite-state automata lack expressiveness in modeling data-rich

programs. Consider a simple example of a Stack class with

two operations: push and pop. A typestate of the Stack should

specify the following language: the number of push operations

in any valid trace of the model must be no less than the

number of pop operations. It is known that this language is

irregular and therefore beyond the expressiveness of finite-

state automata. On the other hand, the model of the Stack

can be easily expressed using a finite-state machine with a

guard condition on the pop operation: size ≥ 1 where size

denotes the number of items in the stack. The central issue is

thus: how to identify the proposition size ≥ 1 systematically

and automatically.

The other group learns stateful typestates using relatively

heavy-weight techniques like SMT/SAT solving. For instance,

in paper [3], the authors proposed to synthesize interface

specification for Java classes based on predicate abstraction,

which relies on theorem proving. Similarly, in paper [13], the

authors propose to learn typestates through symbolic execution

(which relies on SMT solving) and refinement. Given that

existing theorem proving and SMT/SAT techniques are still

limited in handling complicated data structures and control

flows, these methods are often limited to small programs.

In this paper, we propose an alternative approach to learning

stateful typestates from Java programs. The key idea is to

extend an active learning algorithm with an approach to

automatically learning transition guards (i.e., propositions on

data states). Our approach takes the source code of a class

as the only input and generates a stateful typestate through

a series of testing, learning and refinement. Fig. 1 shows the

high level architecture of our approach. There are three main

components. An active learner constructs a typestate based

on the L* algorithm [5]. It drives the learning process by

generating two kinds of queries. One is membership query,

i.e., whether a sequence of events (i.e., a trace) of the current

typestate is valid. The other is candidate query, i.e., whether

a candidate typestate matches the ‘actual’ typestate. A tester

acts as a teacher in the classic active learning setting. It takes

queries from the learner and responds accordingly based on

testing results. In the original L* algorithm, the model to be

learned is a finite-state automaton and a trace can be either

valid or invalid but never both. However, in our setting, it

is possible that two executions have the same sequences of

method calls on the same object but lead to different outcome

(i.e., error or no-error), due to different inputs to the method

calls (which in turn results in different data states). In such

a case, alphabet refinement is performed, by splitting one

event into multiple events, each of which has a different guard

condition so that the traces are distinguished. The refiner in

Fig. 1 is used to automatically identify proper guard conditions.

In the following, we use a simple example to illustrate how

our method works.

We take the java.util.Stack class in Java (SE 1.4.2) as the

running example. Without loss of generality, let us focus on

the following two methods: push (which takes an object as

an input) and pop, and one data field eleCount (inherited

from the java.util.Vector class) which denotes the number of

elements in the stack. Initially, we have an alphabet containing

two events corresponding to the two methods. Given an

(+Counterexample, -Counterexample)

(Failed Tests, Success Tests)

Membership Query

Candidate Query

(O+, O-)

Divider for (O+,O-)

Fig. 1. The high-level architecture of TzuYu.

〈〉
〈〉 1

〈push〉 1

〈pop〉 0

〈pop, push〉 0

〈pop, pop〉 0

(a)

A B

push

pop

push,pop

(b)

Fig. 2. The first candidate observation table (a) and Typestate (b).

instance of the Stack class, the learner generates a number of

membership queries, i.e., a sequence of method calls. Given

one membership query, the tester generates multiple test cases

which have the same sequence of method calls (with different

arguments) and answers the query. The queries and testing

results are summarized in the observation table (refer to details

in Section II-B), as shown in Fig. 2 (a) where 〈〉 is an

empty sequence of method calls; and 〈pop, push〉 denotes the

sequence of calling push after pop. The 0s in column 〈〉 denote

that all tests generated for the sequence 〈pop〉 and then 〈〉 result

in an exception or assertion failure (hereafter failure). The 1s

denote that none of the tests result in failure. Based on the

observation table, the learner generates a candidate typestate

as presented in Fig. 2 (b). Note that the typestate is a finite-

state automaton with one accepting state, i.e., state A.

Next, the learner asks a candidate query, i.e., is the typestate

in Fig. 2 (b) the right typestate? The tester takes the candi-

date typestate and performs random walking, i.e., randomly

generates a set of tests which correspond to traces of the

typestate. Notice that a trace of the typestate is either accepting

(i.e., ending with an accepting state) or otherwise. Through

the random walking, the tester identifies one inconsistency

between the typestate and the class under analysis. That is, the

typestate predicates that calling pop from state A always results

in failure, whereas it is not always the case. For instance,

calling method push first (which leads to state A) and then

pop results in no failure.

The existence of inconsistency suggests that the typestate

must be refined. We collect data states of the stack at state

A before calling method pop and partition them into two sets,

i.e., ones which lead to failure after invoking pop and the rest.

Next, the refiner is consulted to generate a proposition φ such

that all data objects in the first set satisfy φ while all the

rest violate φ. The technique used by the refiner is based on

Support Vector Machines (SVMs) [23]. In the above example,

the generated proposition is eleCount ≥ 1. Next, we re-start

the learning process with an alphabet which contains three

events: push, [eleCount ≥ 1]pop, and [!(eleCount ≥ 1)]pop

where [eleCount ≥ 1]pop denotes the event of calling pop

when the condition eleCount ≥ 1 is satisfied. After a series

〈〉
〈〉 1

〈push〉 1

〈[!(eleCount ≥ 1)]pop〉 0

〈[eleCount ≥ 1]pop〉 1

〈[!(eleCount ≥ 1)]pop, push〉 0

〈[!(eleCount ≥ 1)]pop, [eleCount ≥ 1]pop〉 0

〈[!(eleCount ≥ 1)]pop, [!(eleCount ≥ 1)]pop〉 0

(a)

1 0
push,

[eleCount ≥ 1] pop

[eleCount == 0] pop
push,pop

(b)

Fig. 3. The second observation table (a) and candidate Typestate (b) generated
by TzuYu.

of membership queries, the learner constructs the observation

table as shown in Fig. 3 (a).

Notice that all tests corresponding to [eleCount ≥ 1]pop

result in no failure and therefore it is marked 1 in the table.

A new candidate typestate is then generated from the table,

as shown in Fig. 3 (b). The tester performs random walking

again and finds no inconsistency. We then present Fig. 3 (b)

as the resultant typestate after some simple bookkeeping on

Fig. 3 (b) (by transforming !(eleCount ≥ 1) to eleCount == 0
using the fact the type of eleCount is integer). 2

The novelty of our approach is on integrating a refiner

in the active learning process so as to learn typestates for

data-rich programs. In particular, by adopting techniques from

machine learning community, we are able to automatically

generate propositions for alphabet refinement. The refiner acts

as an abstract mapper between the learner and the class under

analysis. Compared with existing techniques on finding the

right proposition (e.g., [13]), our approach is more scalable

as it avoids SMT/SAT encoding and solving. Furthermore,

to learn concise stateful typestates efficiently, we investigate

the interplay between learning and refinement and develop

an algorithm which avoids re-starting learning when alphabet

refinement occurs. The method has been implemented in a tool

named TzuYu and our experiments show that TzuYu1 is able

to learn meaningful and concise typestates efficiently.

The remainder of the paper is organized as follows. Sec-

tion II presents preliminary introduction to the concepts and

techniques used in our approach. Section III presents the

details of our approach. Section IV presents details on the

implementation of TzuYu and Section V evaluates its perfor-

mance with experiments. Section VI discusses related work.

Section VII concludes the paper.

II. PRELIMINARIES

In this section we formalize the definitions related to stateful

typestate and introduce the techniques used in our approach.

A. Definitions

The input to our method is a Java class (e.g., the Stack class)

which is constituted by a set of instance variables (which could

1Who is commonly known as the best student of Confucius.

be objects of other classes) and methods. In this work, we fix

one object of the given class as the main receiver and inspect

behaviors of all instances of the class through this object. An

object state is the status of the object, i.e., the valuation of its

variables. For each object, there is an initial object state, i.e.,

the initial valuation of the variables2. A method is a function

which takes one object state and returns a new one. A concrete

execution ex of an object is a finite sequence

ex = 〈o0,m0(−→p0), o1,m1(−→p1), · · · , ok,mk(−→pk), ok+1〉

where oi is an object state and mi(−→pi) is a method call with

concrete arguments −→pi . A failed execution is an execution

which results in exception or assertion failure. A successful

execution is one which does not fail.

The output of our method is a stateful typestate, which is a

variant of the deterministic finite-state automaton.

Definition 1: A deterministic finite-state automaton (here-

after DFA) is a tuple D = (S,Σ, init,→,F) such that S is a

finite set of states; init ∈ S is an initial state; Σ is an alphabet;

→: S × Σ → S is a transition function and F ⊆ S is a set of

accepting states. 2

A trace of D is a sequence tr = 〈s0, e0, s1, · · · , sn, en, sn+1〉
such that s0 = init and (si, ei, si+1) ∈→ for all i. tr is accepting

if sn+1 ∈ F. Otherwise, it is non-accepting. The language of D
is the set of all accepting traces of D. In an abuse of notations,

we write s
tr
→ s′ to denote that trace tr from state s leads to

state s′ and write tr(s) to denote s′. For two traces tr0 and tr1,

we write tr0 · tr1 to denote their concatenation.

Definition 2: A (stateful) typestate of a Java class is a

tuple T = (Prop,Meth,D) such that Prop is a set of

propositions, which are Boolean expressions over variables

in the class; Meth is the set of method names in the class;

D = (S,Σ, init,→,F) is a DFA such that Σ ⊆ Prop ×Meth.

2

In the Stack example, a proposition in Prop can be con-

stituted by eleCount, capacity (inherited from Vector), any

data field of elementData (e.g., elementData.length), etc. Set

Meth contains push and pop. By definition, typestates are

deterministic in this work. Notice that an event in Σ is a pair,

i.e., a guard condition g in Prop and a method name e in Meth.

For brevity, a transition is written as (s, [g]e, s′). A typestate

abstracts all executions of an object of the class. In particular,

a trace tr = 〈s0, [g0]e0, s1, [g1]e1, s2, · · · , sn, [gn]en, sn+1〉 is an

abstraction of the execution ex above if they have the same

sequence of methods (i.e., ei = mi for all i) and all the

guard conditions are satisfied (i.e., gi is satisfied by oi and

method arguments −→pi for all i). We denote the set of concrete

executions of tr as con(tr). Given an execution ex and an

alphabet Σ, we can obtain the corresponding trace, denoted as

abs(ex), by testing which proposition in Prop is satisfied for

every method call in ex.

A typestate D is said to be safe (or sound), if for every ac-

cepting trace tr of D, every execution in con(tr) is successful.

2For brevity, a constructor is treated in the same way as a normal method
except that it must be called initially and calling it later leads to failure.

It is complete if for every concrete execution ex of the class,

there is an accepting trace tr such that ex ∈ con(tr).

B. The L* Algorithm

The learner extends the original L* algorithm [5] with lazy

alphabet refinement, which is introduced latter in section III-C.

In the following we introduce the original L* algorithm.

The L* algorithm assumes that the system to be learned

D is in the form of DFA with a fixed alphabet Σ and learns

a DFA with the minimal number of states that accepts the

same language of D. During the learning process, the L∗

algorithm interacts with a Minimal Adequate Teacher (teacher

for short) by asking two types of queries: membership queries

and candidate queries. A membership query asks whether a

trace tr is a trace ofD, whereas a candidate query asks whether

a DFA C is equivalent to D, i.e., C and D have the same

language.

During the learning process, the L∗ algorithm stores the

membership query results in an observation table (P,E, T)
where P ⊆ Σ∗ is a set of prefixes; E ⊆ Σ∗ is a set of

suffixes; and T is a mapping function such that T(tr, tr′) = 1
if tr is a trace in P or a trace in P attached with an event

in Σ; and tr′ is a trace is E and tr · tr′ is a trace of the

system; otherwise, T(tr, tr′) = 0. In the observation table,

the L∗ algorithm categorizes traces based on Myhill-Nerode

Congruence [15].

Definition 3: We say two traces tr and tr′ are equivalent,

denoted by tr ≡ tr′, if tr · ρ is a trace of S iff tr′ · ρ is a trace

of S, for all ρ ∈ Σ∗. Under the equivalence relation, we can

say tr and tr′ are the representing trace of each other with

respect to S, denoted by tr = [tr′]r and tr′ = [tr]r. 2

The L∗ algorithm always tries to make the observation

table closed and consistent with membership queries. An

observation table is closed if for all tr ∈ P and e ∈ Σ, there

always exists tr′ ∈ P such that tr · 〈e〉 ≡ tr′. An observation

table is consistent if for every two elements tr, tr′ ∈ P such

that tr ≡ tr′, then (tr · 〈e〉) ≡ (tr′ · 〈e〉) for all e ∈ Σ.

If the observation table (P,E, T) is closed and consistent,

the L∗ algorithm constructs a corresponding candidate DFA

C = (S, init,Σ,→,F) such that

• S contains one state for each trace in P; notice that

equivalent traces in P correspond to the same state.

• init is the state corresponding to the empty trace 〈〉;
• for any state s in S which corresponds to a trace tr and

e ∈ Σ, (s, e, s′) ∈→, where s′ is the state for the trace

[tr · 〈e〉]r in P;

• a state s is in F iff the corresponding trace tr satisfies

T(tr) = 1.

Subsequently, L∗ raises a candidate query on whether C is

equivalent to the system to be learned.

If C is equivalent to the system, C is returned as the learning

result. Otherwise, the teacher identifies a counterexample, say

tr, which is then analyzed to find a witness suffix. A witness

suffix is a trace that, when appended to the two traces, provides

enough evidence for the two traces to be classified into two

equivalence classes under the Myhill-Nerode Congruence. Let

〈〉 〈pop〉
〈〉 1 0

〈push〉 1 1

〈pop〉 0 0

〈pop, push〉 0 0

〈pop, pop〉 0 0

〈push, push〉 1 1

〈push, pop〉 1 0

(a)

10 11

00

push

pop
pop

push

push,pop

(b)

Fig. 4. The second observation table (a) candidate DFA (b) generated by the
classic L* algorithm.

tr be the concatenation of two traces tr0 and tr1, i.e., tr0 · tr1 =
tr. Let s be the state reached from state init via trace tr0, i.e.,

init
tr0→ s. tr1 is the witness suffix of tr, denoted by WS(tr),

if s and D(tr). Once the witness suffix WS(σce) is obtained,

L∗ uses WS(σce) to refine the candidate DFA C until C is

equivalent to the system.

Angluin [5] proved that as long as the unknown language U

is regular, the L∗ algorithm will learn an equivalent minimal

DFA with at most n − 1 candidate queries and O(| Σ | n2 +
n logm) membership queries, where m is the length of the

longest counterexample returned by the teacher and n is the

number of states of the minimal DFA.

Example 1: We again use the Stack example to illustrate

how L* works and also why it does not work when the

target class cannot be captured by a DFA. After a series of

membership queries, L∗ constructs the first candidate DFA,

as shown in Fig. 2 (b), and performs a candidate query for

the DFA. The teacher answers “no” with a positive coun-

terexample 〈push, pop〉, which should be included into the

behavior of the candidate. After analyzing the counterexample,

the witness suffix 〈pop〉 is added into the set of suffixes

E of the observation table, and the closed observation table

is shown in Fig. 4 (a). Based on the observation table, L∗

constructs the second candidate DFA, as shown in Fig. 4 (b),

and performs a candidate query for the candidate. The teacher

answers “no” again with another positive counterexample

〈push, push, pop, pop〉. This time, the witness suffix 〈pop, pop〉
is added into the set of suffixes E of the observation table, and

the closed observation table is shown in Fig. 5 (a). Based on

the observation table, L∗ constructs the third candidate DFA,

as shown in Fig. 5 (b), and performs a candidate query for the

third one. The reader may find that after the ith candidate query

for i ∈ N, there is always a witness suffix 〈(pop)i〉 showing

that the candidate DFA is incorrect, and one additional state

will be added to the candidate DFA, which makes the L∗

learning process non-terminating. 2

III. DETAILED APPROACH

In this section we first introduce the detailed design of the

tester and refiner and then introduce the learner which interacts

with the tester and learner to learn the typestate.

A. The Tester

The tester acts as the teacher for L* algorithm. Ideally, given

a membership query for a trace tr, the teacher should answer

either yes or no. Since tr can be mapped into a set of concrete

〈〉 〈pop〉 〈pop, pop〉
〈〉 1 0 0

〈push〉 1 1 0

〈pop〉 0 0 0

〈pop, push〉 0 0 0

〈pop, pop〉 0 0 0

〈push, push〉 1 1 1

〈push, pop〉 1 0 0

〈push, push, push〉 1 1 1

〈push, push, pop〉 1 1 0

(a)

100 110 111000
push

pop
pop

push
push

pop

push,pop

(b)

Fig. 5. The third observation table (a) and candidate DFA (b) generated by
the classic L* algorithm.

executions con(tr), that is to say that the teacher should answer

yes iff all executions in con(tr) are successful and answer

no iff all executions in con(tr) are failed. Similarly, given a

candidate query, the tester should answer yes iff the candidate

typestate is safe and complete.

Having a perfect teacher in our setting is infeasible for

two main reasons. Firstly, the set con(tr) is infinite (with

different arguments for method calls) in general and hence

checking whether all executions in con(tr) are successful or

not is highly non-trivial. Secondly, it could be that some

executions in con(tr) are successful, whereas some are failed.

For instance, assume the class given is java.util.vector and tr

is 〈addAll〉. A concrete execution with a method call addAll

and argument null results in exception, whereas a non-null

argument results in success. We tackle the former problem

by using guided random testing as the teacher, as we discuss

below. The latter problem is solved by alphabet refinement, as

we show in Section III-B.

In the following, we show how the tester is used as a

teacher for membership queries and candidate queries. Given

a membership query tr as follows:

tr = 〈s0, [g0]m0, s1, [g1]m1, s2, · · · , sn, [gn]mn, sn+1〉

the tester’s task is to identify multiple concrete executions

as follows: 〈o0,m1(−→p1), o2,m2(−→p2), · · · , ok,mk(−→pk), ok+1〉. In

other words, to automatically generate the arguments for all

method calls such that all guard conditions gi are satisfied. This

task is in general highly non-trivial and requires techniques

like SAT/SMT solving. In the name of scalability, we instead

apply testing techniques for argument generation. In particular,

the approach of Randoop [20] is adopted. In the following, we

briefly introduce the idea and refer readers to details in [20].

Given tr, we generate arguments for every method call one-

by-one in sequence. Given a typed parameter, the idea is to

randomly generate a value from a pool of type-compatible

values. This pool composes of a set of pre-defined value (e.g.,

a random integer for an integer type, null or an object with the

default object state for a user-defined class, etc.) but also type-

compatible objects that have been generated during the testing

process. We remark that in order to re-create the same object,

we associate each object with the execution which produces

the object state. Given one value for each parameter, we then

evaluate whether gi is true or not. If gi is true, we proceed

with next method call.

There are four possible outcomes of the random testing. If

all tests are successful, the answer to the query is yes, i.e., tr

should be an accepting trace. If all tests are failed, the answer

is no, i.e., tr should be a non-accepting trace. If there are

both successful tests and failed tests (for tr or a prefix of

tr), the tests are passed to the refiner for alphabet refinement

as we show later. Lastly, due to the limitation of random

testing (i.e., the price we pay to avoid theorem proving), it

is possible that some guard condition gi is never satisfied by

the generated arguments. In other words, we fail to find any

concrete execution in con(tr). In such a case, we optimistically

answer yes so that the resultant typestate is more permissive.

To answer a candidate query with a typestate C, we use

random walk [16], [8], [7] to generate a suite of test cases.

Note that the approach of Randoop [20] is again used. Test

cases which are inconsistent with the typestates are collected

into two sets: positive counterexamples and negative counterex-

amples. A positive counterexample is a successful test whose

corresponding trace tr is non-accepting. A negative example

is a failed test whose corresponding trace tr is accepting. If

both sets are empty, we answer the query with a yes, i.e.,

the typestate is the final output. If either of the two sets is

not empty, the typestate is ‘invalid’ and a counterexample

must be presented to the learner. In the original L* algorithm,

presenting any of the counterexample will do. It is however

more complicated in our setting as we show below.

For each state s in the typestate C, we identify a set of

executions in the test suite which end at the state, denoted as

Es. For each e ∈ Σ, we extend each execution in Es with a

method call corresponding to e and obtain a new set denoted as

Ee
s . If all of the executions result in failure whereas a transition

labeled with e from s leads to an accepting state in C, the tester

reports that C is invalid and picks one execution in Ee
s and

presents its corresponding abstract trace as a counterexample.

Similarly, if all of the executions are successful, whereas a

transition labeled with e from s leads to a non-accepting state,

the tester presents a counterexample. Lastly, if some of the

executions in Ee
s result in failure and others result in success,

the refiner is consulted to perform alphabet refinement.

B. The Refiner

There are two different scenarios when the refiner is con-

sulted. One is with a membership query tr and a set of tests

in con(tr) such that for some of the executions (denoted as

T−), performing the last method call (with the generated

arguments) results in failure, whereas for the rest of the

executions (denoted as T+), performing the last call results

in success. In this case, alphabet refinement is a must as all

the tests have the same trace tr and therefore they cannot be

distinguished without alphabet refinement.

Given an execution in T− or T+, we can obtain a data state

pair (o,−→p) where o is the object state of the main instance

prior to the last method call and −→p is the list of arguments of

the last method call. Let O− be the set of all pairs we collect

from executions in T− and O+ be the set of all pairs we collect

from executions in T+. Intuitively, there must be something

different between O− and O+ such that T− fails and T+

succeeds. The refiner’s job is to find a divider, in the form

of a proposition, such that O− and O+ can be distinguished.

Formally, a divider for O+ and O− is a proposition φ such

that for all o ∈ O+, o satisfies φ and for all o′ ∈ O−, and o′

does not satisfy φ. From another point of view, there must be

some invariant for all object states in O+ (denoted as inv+)

and some invariant for all object states in O− (denoted as inv−)

such that inv+ implies φ and inv− implies the negation of φ.

The refiner in our work is based on techniques developed

by machine learning community, in particular, Support Vector

Machines (SVMs) [23]. SVM is a supervised machine learning

algorithm for classification and regression analysis. We use its

binary classification functionality. Mathematically, the binary

classification functionality of SVMs works as follows. Given

two data states (say O+ and O−), each of which can be viewed

as a vector of numerical values (e.g., floating-point numbers),

it tries to find a separating hyperplane Σn
i=1ci ∗ xi = c such

that (1) for every positive data state (p1, p2, · · · , pn) ∈ O+

such that Σn
i=1ci ∗ pi > c and (2) for every negative data state

(m1,m2, · · · ,mn) ∈ O− such that Σn
i=1ci ∗ mi < c. As long as

O+ and O− are linear separable, SVM is guaranteed to find

a separating hyperplane, even if the invariants inv+ and inv−

may not be linear. Furthermore, there are usually more than

one hyperplane that can separate O+ from O−. In this work,

we choose the optimal margin classifier (see the definition

in [25]) if possible. This separating hyperplane could be seen

as the strongest witness why the two data states are different.

In order to use SVM to generate dividers, each element

in O+ or O− must be casted into a vector of numerical

types. In general, there are both numerical type (e.g., int)

and categorical type (e.g., String) variables in Java programs.

Thus, we need a systematic way of mapping arbitrary object

states to numerical values so as to apply SVM techniques.

Furthermore, the inverse mapping is also important to feedback

the SVM results to the original program. Our approach is to

systematically generate a numerical value graph from each

object type and apply SVM techniques to values associated

with nodes in the graph level-by-level. We illustrate our

approach using an example in the following.

Fig. 6 shows part of the numerical value graph for type Stack

(where many data fields have been omitted for readability). A

rectangle (with round corners) represents a categorical type,

whereas a circle associated with the type denotes a numerical

value which can be extracted from the type. Notice that a

categorical type is always associated with a Boolean type

value which is true iff the object is null. An edge reads as

“contains”. For instance, a Stack type contains an object of

type “Array” (i.e., elementData), which in turn contains objects

of type “Object”. For readability, each edge is labeled with an

abbreviated variable name and each node is labeled with the

type. To obtain a vector of numerical values from a type, we

Stack B

I ArrayI

Object

B

I B

isNull

eleCount
increment

data

element
length

isNull

isNull

Fig. 6. The numerical value graph for Stack.

traverse through the graph level-by-level to collect numerical

values associated with each type. In general, the graph could

be huge if a type contains many variables. For the purpose

of typestate learning, however, it is often sufficient to look at

only the top few levels.

In the following, we demonstrate how the graph is used.

Assume the last event of the membership query is [true]pop

and the two sets of object states are O+ and O− prior to

the method call. Given the receiver object of the method

call is a Stack, the refiner first abstracts O+ and O− using

level-0 numerical values in the graph, i.e., isNull, eleCount

and increment which is the amount by which the capacity

of the vector is automatically incremented when its size

becomes greater than its capacity, inherited from the Vector

class. Next, the refiner tries to generate a divider which

separates the abstracted O+ from that of O−. Assume that

O+ contains two object states and the abstracted O+ is a

set: {〈0, 1, 1〉, 〈0, 2, 1〉} where 〈0, 1, 1〉 denotes a Stack object

which is not null (i.e., 0 means that isNull is false), with

eleCount being 1 and with increment being 1. Assume that

the abstracted O− is: {〈0, 0, 1〉, 〈0, 0, 1〉}. SVM finds a divider

receiver.eleCount ≥ 1. Notice that if there does not exist a

linear divider, the refiner refines the abstraction of O+ and

O− by using numerical values from next level in the graph

(i.e., isNull for data and length of data) and tries again to

find a divider. Intuitively, the reason that we look for a divider

level-by-level is that we believe that the reason why calling the

same method leads to different results is more likely related

to the values of variables directly defined in the class and less

likely nested in its referenced data variables.

The other scenario where the refiner is consulted is with a

candidate query C and a set of executions which end in the

same state in C. Furthermore, extending the executions with a

method call corresponding to an event e would result in failure

or success. Similar to the case of a membership query, for each

execution we obtain a pair (o,−→p) where o is the object state

of the main instance prior to the last method call and −→p is

the arguments of the last method call. Similarly, we collect

two sets of those pairs O+ (from those successful executions)

and O− (from those failed executions). Afterwards, SVM is

invoked to generate a divider for alphabet refinement.

C. The Learner

The learner drives the learning process and interacts with

both the tester and refiner. It uses an algorithm which extends

the L* algorithm [5] with lazy alphabet refinement.

In general, a typestate for a program often requires more

expressiveness than DFA and therefore the L* algorithm itself

is not sufficient. We solve this problem by extending the L*

algorithm with (lazy) alphabet refinement, i.e., by introducing

propositions on object states into the alphabet. The details on

the extended L* algorithm are presented in the following.

1) L* with Lazy Alphabet Refinement: When the refiner

generates a divider φ, an event e (which is the event calling

some method under certain condition) is effectively divided

into two: [φ]e and [¬φ]e. With a modified alphabet, previous

learning results are invalidated and therefore learning needs

be re-started. However, re-starting from scratch is costly, as

we often need multiple rounds of alphabet refinement. In the

following, we show how to extend the L* algorithm with lazy

alphabet refinement so as to re-use previous learning results

as much as possible.

Algorithm 1 shows the pseudo-code of the L∗ algorithm

with lazy alphabet refinement, where Qm(tr) denotes the

membership query of a trace tr and Qm(D) denotes the

candidate query of a typestate D. There are two cases where

the alphabet refinement will take place: (1) If a membership

query triggers the generation of a divider φ (lines 5, 15,

31), some alphabet e ∈ Σ needs to be split into [φ]e and

[!φ]e, which calls Algorithm 2 to refine the alphabet and

update the corresponding results of the membership queries.

(2) A candidate query may also trigger the generation of

a divider φ (line 24). If so, Algorithm 2 is also called to

refine the alphabet and update the corresponding results of

the membership queries in the observation table.

We use the Stack example to illustrate the L* algorith-

m with lazy alphabet refinement. Initially, the alphabet is

Σ = {push, pop}. After a series of memberships, Algorithm 1

constructs the first candidate typestate, as shown in Fig. 2 (b),

based on the closed and consistent observation table shown

in Fig. 2 (a). A candidate query for the first typestate is

performed, and the refiner returns a proposition eleCount ≥ 1
for the positive counterexample 〈pop〉. The event pop is split

into two events: [eleCount ≥ 1]pop and [!(eleCount ≥ 1)]pop,

and the L∗ learning process is started from the scratch. Without

lazy alphabet refinement, all the membership queries over the

new alphabet Σ′ = {push, [eleCount ≥ 1]pop, [!(eleCount ≥
1)]pop} have to be queried, as shown in the observation

table in Fig. 7. However, with lazy alphabet refinement, only

the membership queries marked with a ∗ symbol in the

observation table have to be queried. In this small example,

only two membership queries are reduced. This is because the

alphabet only consists of two events. In real-world examples,

the number of alphabet is usually big, and the number of

membership queries that can be reduced is significant. The

final typestate learned by Algorithm 1 is shown in Fig. 3 (b).

Algorithm 1 L* Algorithm with Lazy Alphabet Refinement

1: Let P = E = {〈〉}
2: for e ∈ Σ ∪ {〈〉} do

3: Update T by Qm(e)
4: if e needs to be split then

5: Split(Σ, e, (P,E, T))
6: end if

7: end for

8: while true do

9: while there exists tr · 〈e〉 where tr ∈ P and e ∈ Σ such

that tr · 〈e〉 6≡ tr′ for all tr′ ∈ P do

10: P←− P ∪ {tr · 〈e〉}
11: for σ ∈ Σ do

12: tr′′ ←− tr · 〈e〉 · 〈σ〉
13: Update T by Qm(tr

′′)
14: if there is some e′ ∈ Σ needs to be split then

15: Split(Σ, e′, (P,E, T))
16: end if

17: end for

18: end while

19: Construct candidate typestate D from (P,E, T)
20: if Qc(D) = 1 then

21: return D
22: else

23: if there is some e′ ∈ Σ needs to be split then

24: Split(Σ, e′, (P,E, T))
25: end if

26: v←− WS(σce) ⊲ σce is a counterexample

27: E ←− E ∪ {v}
28: for tr ∈ P and e ∈ Σ do

29: Update T by Qm(tr · 〈v〉) and Qm(tr · 〈α〉 · 〈v〉)
30: if there is some e′ ∈ Σ needs to be split then

31: Split(Σ, e′, (P,E, T))
32: end if

33: end for

34: end if

35: end while

Algorithm 2 Split

1: Let φ be divider given by the Refiner to refine e

2: Σ←− Σ ∪ {[φ]e, [!φ]e} \ {e}
3: if p ∈ P or q ∈ E has a substring 〈e〉 then

4: split p into p1 and p2 such that p1 has the substring

[φ]e and p2 has the substring [!φ]e
5: split q into q1 and q2 such that q1 has the substring

[φ]e and q2 has the substring [!φ]e
6: Update T by Qm(pi · qi) for all i ∈ {1, 2}
7: end if

IV. TZUYU IMPLEMENTATION

We have implemented our approach in a tool named TzuYu,

which has more than 20K lines of Java code and can be

downloaded from the web site [28]. In this section, we discuss

〈〉
〈〉 1

〈push〉 1
∗〈[!(eleCount ≥ 1)]pop〉 0
∗〈[eleCount ≥ 1]pop〉 1

∗〈[!(eleCount ≥ 1)]pop, push〉 0
∗〈[(eleCount ≥ 1)]pop, push〉 0

∗〈[!(eleCount ≥ 1)]pop, [eleCount ≥ 1]pop〉 0
∗〈[!(eleCount ≥ 1)]pop, [!(eleCount ≥ 1)]pop〉 0

Fig. 7. The observation table generated by the lazy L* algorithm.

the challenges and remedies in implementing the proposed

method.

We first employ reflection to collect relevant information

like fields and methods of each class so as to construct a

numerical value graph for each class. The graph of a type

depends on those of the referenced types and hence potentially

many types may be referenced. Not all types are useful for the

purpose of generating dividers and therefore we filter types

like Thread and Exception and high level interfaces such as

Serializable. The methods defined in the target class identify

the initial alphabet for the learner. Afterwards, the learner

starts to generate membership queries and candidate queries

according to Algorithm 1.

Given a membership query, the tester checks whether this

abstract trace is feasible or not by generating a number

(which is configurable) of executions and uses reflection to run

them. During the execution, the tester saves the runtime states

of the arguments of the trace through instrumentation. For

argument generation, we developed a just-in-time approach,

i.e., generate the required arguments just before executing a

method. Some of the chosen arguments may fail the guard

condition, and then we choose another argument which can

pass the guard condition. If there is no argument satisfying the

condition, we generate another set of arguments until the guard

condition evaluates to true (or a bound is reached). We skip

the algorithm for the just-in-time generation of arguments. In-

formally, an argument can be obtained from three sources, i.e.,

randomly generated from a set of pre-defined type compatible

values; selected from existing executions that generate type

compatible variables; or selected from type compatible out-

referenced variables generated by the current execution. The

above recursive argument creation procedure for constructors

may not terminate if a constructor has a parameter of the

same type as itself. We set a maximum depth of the recursive

constructor call in such cases as did in [17].

Before executing of each method call, we store the object

states of the receiver and the arguments as a instrumented

state. We remark that saving the object state for later usage

is not easy in general because its class may not implement

Serializable or Cloneable interface. We thus implement a

mockup mechanism similar to the standard clone mechanism in

Java to save the runtime object into a mockup object whose

tree like class structure resembles the class structure of the

original object. The mechanism differs from the standard clone

mechanism in that only primitive type values of the object are

saved. For reference type field we construct another mockup

object as its saved value. These mockup objects can be used by

TABLE I
THE RUNTIME STATISTICS FOR TZUYU RUNNING THE TARGET CLASSES

Target Class LOC #Method Ttotal #MQ #CQ #Trace #TC+ #SVM TSVM #Alphabet #State

java.util.Stack 50 5 1177 39 4 120 83 4 59 7 2
example.BoundedStack 40 2 764 21 4 98 69 4 138 4 2
java.io.PipedOutputStream 150 5 8343 75 6 200 48 8 5069 9 2
example.PipedOutputStream 40 4 1548 48 5 160 71 5 59 7 2
example.Signature 50 5 3227 75 6 200 102 8 156 9 2

the refiner. If however the real object is needed, for instance, to

generate a new test, we record the exact sequence of statements

whose execution creates the object that can then be used to

“clone" the arguments later by re-executing them.

Given a candidate query, the tester generates a number

of tests from the typestate. The default number (which is

configurable) is twenty multiplied with the maximum length of

traces generated in membership queries before this candidate

query. Each testing trace is generated by depth first random

walking on the typestate up to a fixed length, the length of the

trace is set to two plus the maximum length of traces generated

during membership queries. Due to randomness in random

testing and random walking, a test case generated previously

may not appear again later. To ensure the learning process

is improving always (and hopefully converging), we store all

the generated test cases so as to provide consistent answers.

Notice that we do not store the instrumented states of the test

case to reduce memory consumption and we re-execute the

test case to create the states when they are needed (e.g., to

evaluate the guard conditions).

One key step in our approach is to automatically generate a

divider for alphabet refinement. We use the SVM techniques

implemented in LibSVM [6]. The first problem with using

SVM is how to choose a good hyperplane as there are in theory

an infinite set of hyperplanes which separate two sets of object

states. The second problem is that the hyperplane discovered

by LibSVM often has float number coefficients, which are

often not as readable as integer values when we use them

to build the typestate. Thus, we always (if possible) choose

integer coefficients which constitute a hyperplane which lies

between the strongest and weakest hyperplane. Further, we

implemented a few heuristics to preprocess the inputs to

LibSVM for generating a better divider. Firstly we balance

the positive and negative input data sets by duplicating data

randomly chosen from the smaller set of the two, as SVM

tends to build biased hyperplane when the input data-set is

imbalanced.

Secondly, because the arguments of method calls are gen-

erated randomly, LibSVM may generate an incorrect divider.

For instance, given a Stack with a size bound 5, if push is

invoked with arguments in {1, 2, 3} when there are already

5 items in the stack, whereas it is invoked with arguments

in {5, 6, 7} when there are less than 5 items in the stack.

LibSVM may generate a divider element ≥ 4 suggesting that

calling push with an input less than 4 will lead to failure.

This is obviously incorrect. The problem is avoided with cross

validation by checking whether the argument really affects

the execution results. This is done by executing the normal

(failed, respectively) traces whose non-receiver arguments are

substituted with arguments in the failed (normal, respectively)

traces. For instance, in the above example, additional test cases

are generated so that every invocation of push is tested with

the same set of input values, i.e., {1, 2, 3, 5, 6, 7}. As a result,

if the value is irreverent in determining whether the test fails

or succeeds, it will be ruled out by LibSVM.

V. EVALUATION

In this section, we first evaluate TzuYu on a set of Java

library classes selected from JDK and then compare TzuYu

with existing tools. All the experiments were carried out on a

Ubuntu 13.04 PC with 2.67 GHz Intel Core i7 Duo processors

and 4 GB memory. All the experimental data is available in

the web site [28].

The selected JDK classes (from previous related papers [13],

[27]) are shown in Table I. Column LOC shows the size of

the class in terms of lines of code. Column #Method is the

number of methods (excluding the constructors of the target

class) which are defined in the target class and used to generate

the initial alphabet. In this set of experiments, we generate two

values for each parameter in each method. To get a numerical

vector from an object state (for SVM consumption), we limit

the numerical value graphs to its top five levels, which we

found to be sufficient.

A. Results

Table I also shows the statistics of the experiments. Column

Ttotal is the total time used in milliseconds. The subsequent

three columns show details about the L* algorithms. Column

#MQ and #CQ are the number of membership queries and

candidate queries, respectively. Column #Trace is the total

number of abstract traces generated from random walking.

Column #TC+ is the number of positive concrete test cases

generated by TzuYu. Column #SVM and TSVM are the total

number of SVM calls and the time in milliseconds taken by

SVM to generate dividers, respectively. The last two columns

show the size of alphabets and states in the final DFA,

respectively.

The following observations are made based on the results.

Firstly, TzuYu successfully learned typestates in all cases

efficiently, i.e., often in seconds. Furthermore, in most cases,

the time taken by SVM is less than 20% of total time except

for java.io.PipedOutputStream where the cross validation (in

order to determine whether a method parameter is relevant) in

a SVM call consumes a few seconds. Secondly, all learned

TABLE II
PROGRAM INVARIANTS GENERATED BY DAIKON, PSYCO AND TZUYU

Method Daikon PSYCO TzuYu

java.util.Stack.pop() - - elementCount ≥ 1

java.util.Stack.peek() - - elementCount ≥ 1

example.BoundedStack.push(Integer) size one of {0, 1, 2} - size ≤ 2

example.BoundedStack.pop() size one of {1, 2, 3} - size ≥ 1

java.io.PipedOutputStream.connect(snk) - - sink == null && snk 6= null

&& snk.connected == false
java.io.PipedOutputStream.write(int) - - sink 6= null

example.PipedOutputStream.connect(snk) sink == null && snk 6= null

&& snk.connected == false

sink == null && snk 6= null

&& snk.connected == false

sink == null && snk 6= null

&& snk.connected == false
example.PipedOutputStream.write() sink 6= null snk 6= null sink 6= null

example.Signature.verify() Signature.VERIFY == state - state ≥ 2

example.Signature.sign() Signature.SIGN == state - state ≥ 1&&state ≤ 1

example.Signature.upate() Signature.SIGN ≤ state - state ≥ 1

typestates are sound and complete, which we confirm by

comparing the learned one with the manually constructed

actual one. Thirdly, the number of states in the learned

typestate is minimum, i.e., two as we are differentiating two

states only: failure or non-failure. This implies that for every

method, whether invoking the method leads to failure or not

can be determined by looking at the value of the data variables,

and further, SVM is able to identify a suitable proposition

every time. Lastly, we did not record the memory consumption

due to the garbage collection feature of JVM. However, the

memory consumption is relatively small since we did not store

the instrumented states with the test cases and the number of

test cases is relatively small which are linear in the number of

candidate queries.

B. Compare with related tools

We identified three closely related tools. PSYCO [13] is

a symbolic execution based typestate learning tool; AD-

ABU [10] is a dynamic behavior model mining framework

and Daikon [12] is a dynamic invariant generator. We compare

TzuYu with them in terms of time and the quality of the

generated models. Table II shows the results of the invariants

generated by the three tools and TzuYu. Notice that PSYCO is

not available at the time of writing; we thus only obtain the

learned typestate documented in their paper [13].

We first compare the models learned by different tools, as

shown in Table II. The invariant generated by ADABU are

state invariants and they are skipped from Table II. Methods

with the trivial TRUE invariant (e.g., size() in Stack) are also

omitted. Both ADABU and Daikon need test cases as input to

mine models and therefore we use the test cases generated by

TzuYu as the input to them for a fair comparison. The number

of test cases for each class is shown in the #TC+ column of

Table I. Neither ADABU nor Daikon is able to learn models

for all of the classes. For instance, neither mined models for

the java.io.PipedOutputStream class. ADABU often generates

multiple (e.g., dozens of) models for one class, which means

that ADABU cannot merge them to get one final model. That

is, ADABU’s state abstraction techniques failed to generate

a good invariant. The reason is that ADABU employs a set

of pre-defined templates to generate invariants. If a mined

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
 (

m
s
)

TzuYu

ADABU

Daikon

Fig. 8. Time consumed in milliseconds to mine models for target classes.

state invariant contains irrelevant variables, ADABU’s state

abstraction and model merging technique fail and therefore

no unified model is generated. In another example, Daikon

failed to mine models for java.util.Stack class. Both ADABU

and Daikon use pre-defined invariant templates. In comparison,

the typestates (which are invariants) generated by TzuYu are

better because TzuYu does not rely on templates but rather

uses SVM techniques to discover propositions dynamically

based on the object states. Furthermore, Daikon uses only

successful executions whereas TzuYu uses both successful and

failed executions, thus the model learned by TzuYu is more

accurate than the one generated by Daikon.

For the two examples (example.PipedOutputStream and

example.Signature) which have been reported in paper [13],

PSYCO learns accurate transition guards due to the fact that

PSYCO encodes all path conditions in the source code and

uses SMT solver to find out exactly whether failure happens.

PSYCO, however, is limited by the capability of SMT solvers.

Next, we compare the execution time of each tool on mining

the models briefly. The time taken by each tool to mine the

models is plotted in Fig. 8. PSYCO is not available for running

the target classes, we cannot get the time for it. Both ADABU

and Daikon need test cases while TzuYu generates the test

cases, we only include the time consumed by SVM for TzuYu.

The figure shows that TzuYu often uses less time in generating

the models. An exception is the java.io.PipedOutputStream

class for the reason mentioned above.

C. Limitations of TzuYu

Firstly, because our approach is based on testing, there

is no guarantee on whether the learned typestate is sound

or complete. However, this can be fixed to certain extent

by using an SMT solver to verify the learned typestate.

For instance, the typestate for Stack in Fig. 3 (b) can be

verified by showing that each transition is sound and com-

plete, e.g., the self-looping transition at state 1 labeled with

[eleCount 6= 0]pop can be verified by proving two Hoare

triples: {eleCount 6= 0}pop(){noerror} (executing pop with

a pre-condition eleCount 6= 0 will not lead to error) and

{eleCount = 0}pop(){error}. Further, if an SMT solver

identifies a counterexample, the counterexample can be used

to refine the typestate. We are currently implementing this

verification step in TzuYu.

Secondly, because our approach is based on random testing,

there is no guarantee that a good divider can be discovered

in general—though it should emerge in theory after sufficient

testing. This can be partially fixed if we can obtain “better”

test cases through different means, e.g., from real execution

history of the given class, or through more sophisticated

test case generation methods like concolic testing [24] and

combinational testing. It is our future work to evaluate the

effectiveness of different test case generation methods in our

setting.

Thirdly, our method will not terminate if the typestate

for the class under analysis is beyond the expressiveness

of finite-state machines with linear guard conditions. If the

refiner fails to find a divider for a membership query with

conflicting results (i.e., same sequence of events leading to

failure sometimes and success sometimes), a counterexample

(i.e., a path which is predicated to fail by the typestate but

succeeds according to the testing result, or the other way

round) is returned so that L* may introduce a new state. In the

worst case, TzuYu will keep generating typestates with ever

growing number of states (and eventually times out). This is

due to the limitation of SVM that could be overcome using

advanced learning techniques.

VI. RELATED WORK

Our approach is related to specification mining. We refer

interested readers to the book [18] for a comprehensive

literature review. Therefore, we only review previous work

that is closely related to the three components in TzuYu and

the overall approach.

The idea of using testing as a teacher is also found in

paper [14] which combines L* learning with model check-

ing to check a system against its properties. In case of a

counterexample returned by model checker, it uses testing

based L* to augment the current model of the system. It

gradually progresses to the final result of either proof or

disproof the system against its properties. The idea of learning

interface specifications from source code was proposed in the

seminal paper [3] which learns interface specifications from

source code automatically by using a model checker as the

teacher. The more recent PSYCO tool [13] achieves the same

goal by using a symbolic execution engine as the teacher. In

comparison, TzuYu employs testing and thus avoids expensive

model checking or symbolic execution. Similarly, Aarts et

el. [1] proposed a fully automated data abstraction technique

to learn a restricted form of Mealy machine in which only

testing equality of arguments is allowed. TzuYu’s SVM based

alphabet refinement can be applied to more programs.

Our testing strategy is related to the Randoop tool [20]. We

extend Randoop to the context of learning in which the receiv-

er object must be the same in order to learn a better model and

we also add a new source for reference arguments which can

be chosen from an out-reference variables to improve data

coverage. Tester in TzuYu is also related to TAUTOKO [9]

which generates more test cases by mutating existing traces in

the initially mined model (by using ADABU) to augment the

model learning process as well as finding bugs for the class

under test.

We extend the active learning L* algorithm with lazy

alphabet refinement. There are also other learning algorithms

such as [22]. The sk-strings algorithm [22] passively learns

DFA from a given set of traces by generalizing the method call

sequences in the trace to form the final typestate. ADABU [10]

can be classified as a passive learner which requires a set of

test cases as input, it abstracts the concrete states with simple

templates to abstract states thus to get the abstract traces and

then it merges models from abstract traces to generate a model.

The combination of active learning algorithm with automatic

argument generation techniques enables TzuYu learning state-

ful typestates automatically.

The refiner in TzuYu was inspired by the work [25] which

uses SVM and SMT solver to generate interpolants for coun-

terexamples produced by model checkers. The goal of the

refiner is in line with that of the dynamic invariant generator

Daikon [12] and the tool Axiom Meister [27]. Daikon use a

set of pre-defined invariant templates over data from the set of

given runtime traces. Daikon may find some irrelevant invari-

ants at a program point. The Axiom Meister uses symbolic

execution to collect all the path conditions which are then

abstracted to preconditions. The TzuYu refiner is based on

SVM which enables TzuYu finding relevant linear arithmetic

propositions over a large number of variables.

VII. CONCLUSION

Despite the recent progress on learning specifications from

various software artifacts, the community is still challenged

with difficulties in dealing with data abstraction for common

programs. In this paper, we propose a fully automated types-

tates learning approach from source code. To fully automate

the generation of test cases which are the required inputs for

many automata learning tools, we combine the active learning

algorithm L* with a random argument generation technique.

We then use a supervised machine learning algorithm (i.e.,

the SVM algorithm) to abstract data into proposition.

REFERENCES

[1] F. Aarts, F. Heidarian, H. Kuppens, P. Olsen, and F. Vaandrager. Automa-
ta Learning through Counterexample Guided Abstraction Refinement. In
FM, pages 10–27, 2012.

[2] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API Patterns as Partial
Orders from Source Code: from Usage Scenarios to Specifications. In
ESEC-FSE, pages 25–34, 2007.

[3] R. Alur, P. Černý, P. Madhusudan, and W. Nam. Synthesis of Interface
Specifications for Java Classes. In POPL, pages 98–109, 2005.

[4] G. Ammons, R. Bodík, and J. R. Larus. Mining Specifications. In POPL,
pages 4–16, 2002.

[5] D. Angluin. Learning Regular Sets from Queries and Counterexamples.
Inf. Comput., 75(2):87–106, Nov. 1987.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: A Library for Support Vector
Machines. ACM Trans. Intell. Syst. Technol., 2(3):27:1–27:27, 2011.

[7] T. Chow. Testing Software Design Modeled by Finite-State Machines.
Software Engineering, IEEE Transactions on, SE-4(3):178–187, 1978.

[8] K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In ACM SIGPLAN Notices, pages
268–279, 2000.

[9] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating
Test Cases for Specification Mining. In ISSTA, pages 85–96, 2010.

[10] V. Dallmeier, C. Lindig, A. Wasylkowski, and A. Zeller. Mining Object
Behavior with ADABU. In WODA, pages 17–24, 2006.

[11] C. Damas, B. Lambeau, P. Dupont, and A. van Lamsweerde. Generating
Annotated Behavior Models from End-User Scenarios. IEEE Trans.
Softw. Eng., 31(12):1056–1073, Dec. 2005.

[12] M. D. Ernst, J. H. Perkins, P. J. Guo, S. Mccamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The Daikon System for Dynamic Detection of
Likely Invariants. In Science of Computer Programming, 2006.

[13] D. Giannakopoulou, Z. Rakamaric, and V. Raman. Symbolic Learning
of Component Interfaces. In SAS, pages 248–264, 2012.

[14] A. Groce, D. Peled, and M. Yannakakis. Amc: An adaptive model
checker. In E. Brinksma and K. G. Larsen, editors, CAV, volume 2404
of Lecture Notes in Computer Science, pages 521–525. Springer, 2002.

[15] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[16] D. Lee and M. Yannakakis. Principles and Methods of Testing Finite
State Machines - a Survey. Proc. of the IEEE, 84(8):1090–1123, 1996.

[17] Y. Lin, X. Tang, Y. Chen, and J. Zhao. A Divergence-Oriented Approach
to Adaptive Random Testing of Java Programs. In ASE, pages 221–232,
2009.

[18] D. Lo, K. Cheng, and J. Han. Mining Software Specifications: Method-
ologies and Applications. Chapman and Hall/CRC Data Mining and
Knowledge Discovery Series. Taylor & Francis Group, 2011.

[19] M. G. Nanda, C. Grothoff, and S. Chandra. Deriving Object Typestates
in the Presence of Inter-Object References. In OOPSLA, pages 77–96,
2005.

[20] C. Pacheco and M. D. Ernst. Randoop: Feedback-directed Random
Testing for Java. In OOPSLA, pages 815–816, 2007.

[21] M. Pradel and T. R. Gross. Automatic Generation of Object Usage
Specifications from Large Method Traces. In ASE, pages 371–382, 2009.

[22] A. Raman and J. Patrick. The SK-Strings Method for Inferring PFSA.
In ICML, 1997.

[23] B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in

Kernel Methods: Support Vector Learning. MIT Press, 1999.
[24] K. Sen, D. Marinov, and G. Agha. CUTE: a Concolic Unit Testing

Engine for C. In ESEC/SIGSOFT FSE, pages 263–272, 2005.
[25] R. Sharma, A. V. Nori, and A. Aiken. Interpolants as Classifiers. In

CAV, pages 71–87, 2012.
[26] R. E. Strom and S. Yemini. Typestate: A Programming Language

Concept for Enhancing Software Reliability. IEEE Trans. Softw. Eng.,
12(1):157–171, 1986.

[27] N. Tillmann, F. Chen, and W. Schulte. Discovering Likely Method
Specifications. In ICFEM, pages 717–736, 2006.

[28] H. Xiao. Tzuyu hosting site. http://bitbucket.org/spencerxiao/tzuyu, May
2013.

[29] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring Resource Speci-
fications from Natural Language API Documentation. In ASE, pages
307–318, 2009.

