
Efficient Discrete-Time Simulations of
Continuous-Time Quantum Query Algorithms

Richard Cleve
University of Waterloo
and Perimeter Institute
cleve@cs.uwaterloo.ca

Daniel Gottesman
Perimeter Institute

dgottesman@perimeterinstitute.ca

Michele Mosca
University of Waterloo
and Perimeter Institute

mmosca@iqc.ca

Rolando D. Somma
Perimeter Institute

rsomma@perimeterinstitute.ca

David Yonge-Mallo
University of Waterloo

davinci@iqc.ca

ABSTRACT
The continuous-time query model is a variant of the dis-
crete query model in which queries can be interleaved with
known operations (called “driving operations”) continuously
in time. We show that any quantum algorithm in this model
whose total query time is T can be simulated by a quan-
tum algorithm in the discrete-time query model that makes
O(T log T/ log log T) ⊂ Õ(T) queries. This is the first such
upper bound that is independent of the driving operations
(i.e., it holds even if the norm of the driving Hamiltonian is
very large). A corollary is that any lower bound of T queries
for a problem in the discrete-time query model immediately
carries over to a lower bound of Ω(T log log T/ log T) ⊂ Ω̃(T)
in the continuous-time query model.

Categories and Subject Descriptors
F.1.3 [Computation by Abstract Devices]: Complexity
Measures and Classes

General Terms
Algorithms, Theory

1. INTRODUCTION AND SUMMARY
In the query (a.k.a. black-box or oracle) model of compu-

tation, one is given a black-box that computes the individ-
ual entries of an N -tuple, x = (x0, x1, . . . , xN−1), and the
goal is to compute some function of these values, making
as few queries to the black-box as possible. Many quan-
tum algorithms can be naturally viewed as algorithms in
this model, including Shor’s factoring algorithm [18], whose
primary component computes the periodicity of a strictly
periodic sequence x0, x1, . . . , xN−1 (where strictly periodic
means that the sequence is distinct within each period).
Other examples are in Refs. [13, 1, 4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’09, May 31–June 2, 2009, Bethesda, Maryland, USA.
Copyright 2009 ACM 978-1-60558-506-2/09/05 ...$5.00.

In the quantum query model, a (full) quantum query is a
unitary operation Qx such that

Qx |j〉 |b〉 = |j〉 |b⊕ xj〉 , (1)

for all j ∈ {0, 1, . . . , N−1} and b from the set of values that
entries of the tuple ranges over, and ⊕ can be set to the bit-
wise exclusive-or. Queries are interleaved with other quan-
tum operations that “drive” the computation. The query
cost of an algorithm is the number of queries that it makes.
The efficiency of the other operations, besides queries, is also
of interest. An algorithm is deemed efficient if it is efficient
in both counts.

When the tuple x consists of binary values, the form of a
full query can be equivalently expressed as

Qx |j〉 |b〉 = (−1)b·xj |j〉 |b〉 , (2)

which is related to Qx from Eq. (1) via conjugation with a
Hadamard transformation on the second register. For con-
venience of notation, we can absorb the second qubit register
b into the definition of x, by defining x′ = (x′0, . . . , x

′
2N−1)

as x′j0 = 0 and x′j1 = xj . Henceforth, we simply omit the
parameter b, and define a discrete query Qx as

Qx |j〉 = (−1)xj |j〉 , (3)

for all j ∈ {0, 1, . . . , N−1}. (See [15] for more information
about relationships between different forms of queries.)

Farhi and Gutmann [11] introduced a continuous-time
variant of the query model, where queries are performed
continuously in time in the following sense. A query Hamil-
tonian Hx is defined as

Hx |j〉 = xj |j〉 , (4)

for j ∈ {0, 1, . . . , N−1}. Note that evolving under Hx for
time π results in the full discrete query Qx of Eq. (3). A
quantum algorithm in the continuous-time query model is
specified by: a driving Hamiltonian, D(t), which is an arbi-
trary time-dependent Hamiltonian; an initial state |ψ0〉; an
execution time T > 0, and a measurement M of the final
state. (D(t), |ψ0〉, T , and M , are all functions of the input
size N .) The input to the algorithm is embodied by a query
Hamiltonian Hx. In the execution of the algorithm, the ini-
tial state |ψ0〉 evolves under the Hamiltonian Hx+D(t) from
time t = 0 to time t = T . Measurement M of the resulting
final state determines the output of the algorithm.

The continuous-time query model has proven to be a use-
ful conceptual framework for discovering new quantum al-

1

gorithms [7, 10]. Many algorithms in this setting can be
converted to algorithms in the more conventional quantum
query model [8, 2]. However, it has not been previously
shown that this can be done in general without incurring a
significant loss in query complexity.

The Suzuki-Trotter formula [19] can be used to approx-
imate a continuous-time algorithm by a sequence of full
queries interleaved with unitary operations induced by D(t).
This results in simulations of cost O(exp(1/η) (‖D‖T)1+η)
for arbitrarily small η > 0 [3, 5] (for the case of time-
independent D(t)). Here, ‖.‖ denotes the sup-norm. Recent
work by Childs [6] gives a simulation for time-independent
D of cost O(‖abs(D)‖T), where abs(D) is defined as the op-
erator with each matrix entry set to the absolute value of the
corresponding matrix entry of D. There are cases of interest
where the entries ofD are positive to begin with; however, in
general, ‖abs(D)‖ can be much larger than ‖D‖. The above
prior work leaves open the possibility of a “highly energetic”
driving Hamiltonian—where ‖D‖ grows significantly as a
function of the input size N—that solves problems with sig-
nificantly less (continuous-time) query cost than possible in
the discrete-time query model. There are specific problems,
such as searching for a marked item or computing the par-
ity of the input bits, where it is already known that the
continuous-time model provides no asymptotic reduction in
query cost [11] (regardless of D(t)). Mochon [16] raised the
question of whether this equivalency remains valid in gen-
eral: most known lower bounds only apply to the number
of full queries needed to solve a problem, leaving open the
possibility that these lower bounds could be circumvented
using continuous-time queries. We show that this cannot
happen and essentially answer Mochon’s question by show-
ing that any algorithm in the continuous-time query model
whose total query time is T can be simulated by an algorithm
in the quantum query model that makes Õ(T) queries. More
specifically, we prove the following theorem:

Theorem 1. Suppose we are given a continuous-time query
algorithm with any driving Hamiltonian D(t) whose sup-
norm ‖D(t)‖ is any L1 function with respect to t (the size of
‖D(t)‖ as a function of the input size N does not matter).
Then there exists a discrete-time query algorithm that makes

O

(
T log(T/ε)

ε log log(T/ε)

)
(5)

full queries and whose answer has fidelity 1 − ε with the
output of the continuous-time algorithm.

Note that this implies that any lower bound of T proven
for the discrete query model automatically yields a lower
bound of Ω(T log log T/ log T) ⊂ Ω̃(T) for the continuous-
time case. In addition, any algorithm in the discrete query
model using T full queries can be easily simulated by a
continuous-time algorithm running for time O(T). This
can be done with a driving Hamiltonian that rapidly swaps
qubits to effectively turn on and off the query Hamiltonian.
Thus, the two models (discrete and continuous queries) are
equivalent up to a sub-logarithmic factor.

If the desired output state is a basis state, the cost depen-
dence on 1/ε can be made logarithmic by simple repetition
of the simulation.

1.1 Rough overview of the proof of Theorem 1
Here we provide a rough sketch of the proof of Theorem 1;

a more detailed exposition is in Section 2. Starting with
a continuous-time query algorithm, we apply the following
sequence of transformations to it.

1. Convert to a fractional query algorithm. Using a
suitable Trotter-Suzuki type of approximation, the algo-
rithm can be simulated by interleaved executions of D(t)
and Hx for small amounts of time. The approximation
uses about p = 2‖D‖T 2/

√
ε time slices, each of length

T/p for precision fidelity 1 − ε. This does not readily
convert into an efficient discrete-time query algorithm
because the straightforward way of simulating each Hx
evolution uses full discrete-time queries, even though the
time evolution is very small. The total discrete query
cost would be O(‖D‖T 2/

√
ε) (and even the reduced ex-

ponent of T resulting from a high-order Suzuki formula
would not affect the dependence on ‖D‖, which could
potentially be very large).

2. Simulate fractional queries with low amplitude
controlled discrete queries. We use a construction
that permits each Hx small-time evolution to be simu-
lated by a controlled-discrete query with control qubit
in state ≈

√
1− T/(2p) |0〉 + i

√
T/(2p) |1〉. This con-

struction succeeds conditional on a subsequent measure-
ment outcome. The success probability is approximately
1 − T/p. A fraction of the p fractional queries will fail,
and a procedure for correcting these post-selection fail-
ures is explained in step D below.

3. Approximate segments of control qubits by low-
Hamming-weight states. For each segment of the
computation involving m small-time evolutions of Hx,
the collective state of the m control qubits is |φ〉 ≈
(
√

1− T/(2p) |0〉+ i
√
T/(2p) |1〉)⊗m. We can construct

another m-qubit state |φ′〉 such that |〈φ|φ′〉|2 > 1− ε/T
and such that |φ′〉 is a superposition of basis states with
Hamming weight only

O((m/p)T log(T/ε)/ log log(T/ε)) .

We choose m so that (m/p)T ∈ O(1). The Hamming
weight of the control qubits is effectively the number of
discrete query calls performed. By rearranging the cir-
cuit, we make this association explicit, allowing us to
truncate the circuit to deal with only the typical case,
and thus reduce the total number of discrete queries
needed for the segment to onlyO(log(T/ε)/ log log(T/ε)).

4. Correct post-selection errors in each segment.
Returning to the post-selection errors in the simulation
of the fractional queries, they are corrected by dividing
the computation into segments of sufficiently small size
so that: (a) there are O(T) segments to simulate; (b)
the expected number of errors per segment is ≤ 1/8.
The post-selection results for each segment reveal ex-
actly where any errors occurred, making it possible to
“undo” the segments and then attempt to compute them
again. This process is applied recursively, since new er-
rors can arise during these steps. We show that this
process only increases the expected number of segments
simulated (including those that arise from corrections)
by a constant factor. The result is O(T) simulations
of segments, each with an expected number of discrete

2

queries O(log(T/ε)/ log log(T/ε)). Applying the Markov
bound and standard amplification techniques leads to
the query complexity in the statement of Theorem 1.

2. DISCRETE QUERY SIMULATION OF
CONTINUOUS QUERY ALGORITHMS

To obtain a discrete query simulation, a discretization of
the evolution performed by the algorithm in the continuous-
time is necessary. For this reason, we define a fractional
query as the operation

Qθx |j〉 = e−iθHx |j〉 = e−iθxj |j〉 , (6)

for j ∈ {0, 1, . . . , N − 1}, and its fractional cost is |θ|/π. We
assume −π < θ ≤ π. When θ = π, this is a full query, as
defined by Eq. (3). A fractional query algorithm alternates
driving unitaries and fractional queries, and its fractional
query cost is the sum of the fractional costs of its queries.

It is straightforward to approximate a continuous-time al-
gorithm, with continuous query cost of T , by a fractional
query algorithm whose total fractional query time is T —
but whose actual number of fractional queries p may be
much larger than T . Since fractional queries can be sim-
ply simulated using two full queries (Fig. 1), an algorithm
that makes p� T fractional queries would be simulated us-
ing 2p full queries. This yields an undesired overhead for
the discrete simulation of the original continuous-time al-
gorithm. (The problem of simulating fractional powers of
arbitrary unitary black-boxes is studied in [17].) We intro-
duce another method to approximate fractional queries by
full queries with little loss in efficiency. What we show is
that there is a way of organizing the structure of the driving
and query operations such that many of the full queries may
be omitted with only a small loss in accuracy. The overall
procedure can be made to succeed with constant probabil-
ity, and when it succeeds, the resulting state has very high
fidelity to the state output by the original continuous-time
algorithm.

|+〉 • Raθ′ • |+〉

Qx Qx

Figure 1: Simulation of the fractional query Qθ
′
x

of Eq. (6) using two full queries Qx controlled in
the state |1〉 of an ancilliary qubit. The operation
Raθ′ = exp(−iθ′(1l − σx)/2) puts the desired phase in
the state |−〉 of the ancilla, with |±〉 = [|0〉 ± |1〉]/

√
2.

The operator σx is the Pauli bit-flip operator.

2.1 Converting a continuous-time query algo-
rithm to a fractional query algorithm

This section shows how to simulate a continuous-time
query algorithm in terms of a fractional query algorithm
that is efficient in terms of its fractional query cost. We

construct this simulation through a straightforward applica-
tion of a time-dependent version of the Trotter formula. For
arbitrary precision ε > 0, the Trotter-Suzuki approximation
allows us to approximate a continuous-time T query algo-
rithm using fractional queries, such that the fractional query
cost is T . The construction depends on the average norm
(or average action) of the driving Hamiltonian, defined as

r =
1

T

∫ T

0

‖D(t)‖ dt . (7)

Here, ‖ · ‖ is the sup-norm : ‖H‖ = sup|ψ〉 ‖H |ψ〉 ‖/‖ |ψ〉 ‖.
We assume that ‖D(t)‖ is an L1 function, so that r is well-
defined. Although the number of fractional queries grows
proportionally to r, our simulation technique ultimately re-
sults in a number of discrete queries that is independent of
the value of r. For fidelity 1−ε1, it is sufficient to decompose
[0, T] into p ≥ 2T 2r/

√
ε1 subintervals of size T/p. The frac-

tional query algorithm alternates between evolution under
D(t) and evolution under Hx for time θ = T/p.

To handle the case of time-dependent Hamiltonians, we
apply an extension, due to [14], of the first-order Trotter
product formula to time-dependent Hamiltonians. For any
time-dependent Hamiltonian A(t), let UA(tb, ta) denote the
unitary operation corresponding to Schrödinger evolution
under A(t) from t = ta to t = tb. Then, by [14],

‖UA+B(x+ δ, x)− UA(x+ δ, x)UB(x+ δ, x)‖

≤
∫ x+δ

x

∫ y

x

‖[A(y), B(z)]‖ dz dy. (8)

When B(t) is constant, with ‖B‖ = 1, this simplifies to

‖UA+B(x+ δ, x)− UA(x+ δ, x)UB(x+ δ, x)‖

≤ 2δ

∫ x+δ

x

‖A(y)‖ dy. (9)

In our algorithmic context, we replace A(t) with D(t) and
B(t) with Hx, and we define the unitaries

Vk = UD((k + 1)θ, kθ) and Wk = UD+Hx((k + 1)θ, kθ).

Then, by Eq. (9), for all k ∈ {0, 1, . . . , p− 1},

‖Wk − Vke
−iθHx‖ ≤ 2θ

∫ (k+1)θ

kθ

‖D(t)‖ dt , (10)

from which it follows that∥∥∥Wp−1 · · ·W0 −
(
Vp−1e

−iθHx

)
· · ·
(
V0e

−iθHx

)∥∥∥
≤ 2θ

p−1∑
k=0

∫ (k+1)θ

kθ

‖D(t)‖ dt

= 2θTr

= 2T 2r/p

≤
√
ε1. (11)

It follows that, if |ψ1〉 is the final state of the continuous-time
algorithm, and |ψ2〉 is the final state of the approximating
fractional query algorithm, and p = d2T 2r/

√
ε1e then

|〈ψ1|ψ2〉| ≥
√

1− ε1. (12)

In Fig. 2 we show the ε1-approximation to the algorithm
in the continuous-time query model. We assume that Vk
and Wk act on a set of n qubits (where n ≥ log(N)), but
extensions to larger dimensional systems are possible. We

3

refer to these n qubits as the system to distinguish them from
additional qubits (ancillas) that will be introduced later. Al-
though the total fractional query cost is T , it should be noted
that the total number of fractional queries is 2T 2r/

√
ε1,

which may be much larger than T (no assumption is made
about the value of r). For this reason, the full-query simula-
tion obtained by replacing each fractional query by the cir-
cuit of Fig. 1 may yield an undesirable overhead. Although
the number of known unitaries in our full construction will
depend on r and ε1, the resultant discrete query cost will be
independent of those parameters.

Qθx V0 Qθx Vp−2 Qθx Vp−1

FE

FE

n · · · FE

...

...

FE


Figure 2: Circuit approximation of a continuous-
time T query algorithm. Each of the p fractional
queries Qθx realizes the evolution given by Eq. (6),
with θ = T/p ∈ O(ε/(rT)).

2.2 Simulating fractional queries with low am-
plitude controlled discrete queries

This section shows how to replace every fractional query
Qθx in Fig. 2 by the probabilistic simulation of Fig. 3. With-
out loss of generality, we may assume 0 ≤ θ ≤ π. The idea
is to add an ancilliary (control) qubit initially in |0〉 and act
on it by R1, where

R1 |0〉 =
1√
v

[√
cos(θ/2) |0〉+ i

√
sin(θ/2) |1〉

]
, (13)

with v = cos(θ/2) + sin(θ/2). The full query Qx is then
implemented controlled on the state |1〉 of the ancilla (i.e.,
a controlled-Qx operation), and the ancilla is acted on by

R2 =
1√
v

(√
cos(θ/2)

√
sin(θ/2)√

sin(θ/2) −
√

cos(θ/2)

)
. (14)

Finally, a projective measurement in the computational ba-
sis of the ancilla is performed.

To show that the above algorithm implements a proba-
bilistic simulation of Qθx, we write, for all θ ∈ (−π, π],

Qθx = e−iθ/2[cos(θ/2)1l + i sin(θ/2)Qx]. (15)

The ancilla-system state before the measurement is

1

v

[
eiθ/2 |0〉⊗Qθx |ψ〉+

√
sin θe−iπ/4 |1〉⊗Q−π/2

x |ψ〉
]
. (16)

This follows from the action of R1, the controlled-Qx op-
eration, and R2, and by using sin θ = 2 cos(θ/2) sin(θ/2).
The measurement in the ancilla projects the state of the
system into (up to irrelevant global phase factors) Qθx |ψ〉 or

Q
−π/2
x |ψ〉, with probabilities ps = 1/v2 and pf = 1 − ps,

respectively. Since θ = T/p, we obtain sin θ/2 ≤ θ/2 =
T/(2p), and thus ps ≥ 1− T/p.

|0〉 R1 • R2 FE

|0〉⊗e

iθ/2Qθx |ψ〉, ps,

|1〉⊗e−iπ/4Q−π/2
x |ψ〉, pf .

Qx
|ψ〉


Figure 3: Probabilistic simulation of the fractional
query Qθx using a single discrete query Qx controlled
on the state |1〉 of a control qubit. After the mea-
surement, Qθx is performed with success probability
ps ≥ 1−T/p. Successful simulation occurs if the state
of the control qubit is projected into |0〉.

For reasons described in Section 2.4, our final simulation
also requires the probabilistic implementation of the (con-
jugated) fractional query Q−θ

x , with similar success proba-
bility. We achieve this by replacing R1 with R′

1 = σzR1

in the circuit of Fig. 3. The operator σz is the diagonal
Pauli operator of the ancilla. In the event of failure (i.e.,
if the ancilla state is projected into |1〉 after measurement),

the system state is acted on by the operation Q
π/2
x up to

irrelevant global phase factors. We usually refer to the un-

desired operations Q
π/2
x and Q

−π/2
x implemented in a failed

simulation as errors.

2.3 Approximating segments of control qubits
by low Hamming weight states

This section shows how the low-amplitude controlled dis-
crete queries from the previous section can be efficiently ap-
proximated by full queries. Our construction makes sense
for any contiguous segment consisting of m of the controlled
discrete queries, as long as m ≤ p and m ∈ Ω(1/θ). For the
purposes of the error-correcting procedure in the next sec-
tion, we set m so that mθ = 1/4 (more precisely, to obtain
an integer, we set m = b1/4θc). This choice ensures that
the total probability of success after measurement of the m
ancillas in a segment is bounded from below by 3/4. In
Fig. 4 we show the first size-m segment (m is the number of
full queries) appearing in the original circuit of Fig. 2 after
each fractional query has been replaced by its probabilistic
simulation, as explained in Section 2.2

We begin by observing that, since the state of allm control-
qubits after the action of the operations R1 is

|χ〉 = (R1 |0〉)⊗m

=
1√
vm

(√
cos(θ/2) |0〉+ i

√
sin(θ/2) |1〉

)⊗m
, (17)

and m(1/v) sin θ/2 ≈ 1/8, the amplitudes of this state are
concentrated at the m-qubit basis states with small Ham-
ming weight. This means that we can approximate |χ〉 by
a superposition of sufficiently low Hamming weight basis
states.

To make this approximation precise, let ∆(·) denote Ham-
ming weight, and define

P =
∑

z∈{0,1}m,∆(z)≤k

|z〉 〈z| , (18)

the projector into basis states |z〉 of Hamming weight at

4

|0〉 R1 • R2 FE

|0〉 R1 • R2 FE

...

· · ·
|0〉 R1 • R2 FE

Qx V0 Qx V1 Qx Vm−1

U

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Figure 4: Simulation of the first size-m circuit ob-
tained by replacing every Qθx in Fig. 2 by the proba-
bilistic simulation of Fig. 3. If m = b1/(4θ)c, the total
probability of success after measurement is bounded
from below by 3/4. Successful simulation occurs if
every ancilla is projected into |0〉 after measurement.
The operator U denotes the action induced by the
operations inside the dashed box. The overall uni-
tary action before the measurement is R⊗m

2 UR⊗m
1 .

most k. Also define ∣∣χ′〉 =
P |χ〉√
〈χ|P |χ〉

. (19)

Then, since |〈χ′|χ〉|2 is the sum of the absolute values squared
of all amplitudes in |χ〉 for basis states of Hamming weight
up to k,

|〈χ′|χ〉|2 = 1−
∑
j>k

(
m
j

)
(1−B)m−jBj , (20)

where

B =
sin θ/2

cos θ/2 + sin θ/2
∈ 1

8m
+O

(
1

m2

)
. (21)

For asymptotically large m (or T), this is essentially the
probability that a Poisson distributed random variable with
mean 1/8 is larger than k, which is bounded from above by

(1/8)k

k!
e−1/8. (22)

Assuming that the number of segment computations per-
formed is O(T/ε2), setting 〈χ′|χ〉2 ≥ 1− ε2ε3/T is sufficient
for the accumulative reduction in fidelity over all the seg-
ment computations to be below ε3. To attain this, it is
sufficient to set

k ∈ O
(

log(T/ε2ε3)

log log(T/ε2ε3)

)
. (23)

Although changing |χ〉 to |χ′〉 suggests that the number
of controlled full queries can be reduced to k, the circuit in
Fig. 4 must be rearranged to make this possible (as it is,
it makes m queries regardless of k). The idea is to replace
the controlled-queries interleaved with driving unitary op-
erations in Fig. 4 with an equivalent circuit composed with
fixed discrete queries interleaved with controlled driving uni-
taries. The form of the revised circuit is illustrated in Fig. 5.
We explain its construction below.

The action of the gates V̄0, . . . , V̄m is defined as follows.
Let ih be the position of the h-th 1 in a basis state of the
m control qubits. (These states form a complete orthogonal

V̄0 V̄1 V̄m

Pm ...
· · ·

Qx Qx Qx

U

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



(a)

h
h

h

h
m

... · · ·

Vh−1 Vh Vm−1

V̄h


_ _ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _ _ _ _ _



(b)

Figure 5: (a) Equivalent quantum circuit for the im-
plementation of the circuit U within the dashed box
in Fig. 4. The last query is controlled on the par-
ity P of the state of the m control qubits, depend-
ing on whether m is odd or even. (b) Description
of the unitary V̄h. Each operation Vh−1, · · · , Vm−1 is
controlled on the Hamming weight of the ancilliary
state, enclosed by the corresponding boxes, being h.
We extend the notation so that V−1 = 1l.

basis allowing a case-by-case analysis for the equivalence).
The positions range from 0 (top) to m− 1 (bottom). Then
V̄0 is controlled by the state of the first m qubits and acts as
follows: if i1 = 0 it does nothing. Otherwise it applies the
sequence V0, . . . , Vi1−1, unless i1 is not well-defined (that is,
if the state of the m control qubits is |0〉⊗m), in which case it
applies all the unitaries V0, V1, . . . , Vm−1 in the segment. For
h > 0, V̄h applies Vih , . . . , Vih+1−1 if ih and ih+1 are well-
defined; does nothing if ih is not well-defined; and applies
Vih , . . . , Vm−1 if just ih+1 is not well-defined. It is easy to
see that this circuit simulates the one in Fig. 4. It still makes
m ∈ O(rT/

√
ε1) full queries.

Note that if the control qubits are in a state of Hamming
weight smaller than h then V̄h, . . . , V̄m do nothing and can
be removed from the circuit. This follows from the above de-
scription; it can also be deduced by noting that the action of
V̄h depends on the Hamming weight of the state of the con-
trol qubits in the manner shown in Fig. 5(b). For this reason,
it is possible to truncate the last m−k queries of the circuit
specified in Fig. 5(a) without changing its effect on super-
positions of basis states of Hamming weight bounded by k.
For k chosen as in Eq. (23), the truncated circuit involves
k ∈ O(log(T/ε2ε3)/ log log(T/ε2ε3)) full queries (which is
much less than m). It outputs a O(ε2ε3/T)−approximation
to the state output by U in Fig. 4. We apply this truncation

5

to all size-m segments in the circuit. The low query cost
as a function of T from the truncation motivates the error
correcting procedure that we now explain.

2.4 Correcting erroneous fractional queries
This section explains how to correct the erroneous Q

±π/2
x

queries that occur when the measurements in Section 2.2
fail.

As mentioned in Section 2.3, the computation is divided
into segments, each involving m control qubits and con-
trolled discrete queries, so that mθ = 1/4. Note that there
are p/m = 4T such segments, where p was determined by
the Suzuki-Trotter approximation. Before the approxima-
tion of the previous section is made (i.e., before applying the
Hamming weight cut-off), we have: (a) the probability that
a size-m segment is successfully completed is at least 3/4;
(b) the expected number of errors is upper bounded by 1/4.
Property (a) was obtained by noticing that the probability
of obtaining the output |0〉⊗m after measurement is pms , and
can be bounded from below by 1 −mT/p = 1 −mθ = 3/4.
Property (b) was obtained by considering that the error
probability per control qubit is bounded by θ = T/p (Sec-
tion 2.2), and there are m = 1/(4θ) control qubits per seg-
ment, so mθ = 1/4 is an upper bound to the expected num-
ber of errors.

We now describe an error-correction procedure for each
segment that succeeds with an expected number of extra
segments that is bounded by a constant. Each of these extra
segments will be ultimately simulated using the truncation
explained in Section 2.3. With this approximation, the ex-
pected number of queries is proportional to the cost of the
original segment computation, namely

O(log(T/ε2ε3)/ log log(T/ε2ε3)) . (24)

The following analysis is valid for the exact case, without
invoking the approximation of Section 2.3. Intuitively, the
errors between the two approximations accumulate linearly,
which is shown rigorously in the next section.

First, note that, whenever erroneous fractional queries oc-
cur, it is known from the ancilla measurements in exactly
what positions the resulting errors are. Since errors are
unitary operations, it is then possible to undo the entire
segment, and then redo it. At a high-level, the undoing op-
eration is implemented by simulating the fractional queries
and the interleaved driving unitaries in reverse while insert-

ing the Q
±π/2
x in place of Qθx wherever an error has occurred

(this aspect is described in more detail further below). The
undo and the redo each succeed with probability at least
3/4, but they may each fail. If the undo or redo step fails,
we iterate the recovery procedure. For instance, if the undo
step fails, we must undo the failed undo step, and then redo
the failed undo step. If these two actions succeed, we can
continue with the original redo step from the recovery proce-
dure. Success occurs when all the recovery steps are success-
fully implemented. Figure 6 illustrates the error correction
process for an original segment.

For the implementation of a segment, there are several
types of segment-like computations related to it: the original
segment, segments corresponding to undo operations for sets
of error positions, and the recursive versions of these (such
as the undo operations related to each unsuccessful undo).
We refer to each of these as segments.

Our first observation is that the expected number of seg-

undo redo

redoundo redoundo redoundoredoundo

undo redo undo redo

√

√√

√ √ √ √

Figure 6: Branching process for the iterative error
correcting step. We let Cm denote a size-m seg-
ment of Fig. 2 to be simulated probabilistically as
described in Section 2.2. When any simulation fails
(F) we attempt to correct it by undoing the failed
circuit and redoing it with the right operations. The
undoing and redoing circuits are size-m′ segments,
with m′ < m (they require m′ operations Q±θ

x). These
are also implemented probabilistically with m′ con-
trolled full queries (Section 2.2), yielding a success
probability also bounded from below by 3/4. The
dashed boxes and arrows are associated with the
nodes and branches of the tree, respectively. Suc-
cessful simulation (S) occurs when Cm is simulated
successfully; that is, when the undoing and redoing
circuits associated to all the visited nodes are simu-
lated successfully (check marks). Variable j denotes
the level of the branching process.

ments that are computed in order to correctly compute an
original segment is at most 2. To see why this is so, note
that the branching process for the error correction in Fig. 6
can be viewed as a classical random walk on a line, that
moves one step to the right whenever a segment computa-
tion succeeds (S) and one step to the left whenever a segment
computation fails (F). (Upon failure, two segment compu-
tations are required: the failed segment computation must
be undone and then redone). The random walk starts in the
state corresponding to the original segment and the goal is
to advance one step to the right of this state. Since each
of the segment computations succeeds with probability at
least 3/4, this is a biased random walk with average speed
(to the right) bounded from below by 3/4− 1/4 = 1/2. The
expected amount of steps, or segment computations, is then
A ≤ 2.

Although the expected number of segment computations
for each original segment Cm is bounded by a constant, we
must take into account that not all segment computations
have the same cost. The undo segments become more ex-
pensive as the number of errors being corrected increases.
That is, for each erroneous fractional query, the undo seg-

ment has to correct all the Q
±π/2
x operations obtained in the

failed simulation. If we now take into account that each seg-

6

ment will be approximated using the truncation explained

in Section 2.3, for each error Q
±π/2
x we ultimately need to

implement k operations Q
∓π/2
x , with k as in Eq. (23). Each

of these operations is implemented using two full queries as
shown in Fig. 1, replacing θ by ±π/2. Therefore, with the
approximation in mind, for each error obtained in a failed
simulation it requires O(log(T/ε2ε3)/ log log(T/ε2ε3)) addi-
tional full queries in the undo segment, as well as in each
of the recursive undo and redo operations that occur if this
segment fails.

We return to the exact case. Let C0 denote the expected

number of operations Q
±π/2
x needed to fix all the errors that

occur in all segment computations of a single branching pro-
cess, starting from the original segment Cm. For each integer
α ≥ 0, let qα denote the probability that the initial compu-
tation of the original segment results in α errors (q0 ≥ 3/4).
Asm gets large, qα approximates a Poisson distribution with
mean bounded by mθ = 1/4. Also, for each α ≥ 1, let Cα

denote the expected number of operations Q
±π/2
x required to

successfully undo the α errors after a failed computation of
the original segment. Since these α errors will be part of ev-
ery segment that is associated with this undo operation and
the expected number of such segments is A, Cα ≤ C0 + αA
(the C0 term denotes the expected number of new errors
introduced during the undo operation). Considering all the
possible outcomes of a segment simulation, we have

C0 = q0 · 0 +

m∑
α=1

qα(Cα + C0)

≤
m∑
α=1

qα((C0 + αA) + C0)

≤ 2C0

(
m∑
α=1

qα

)
+A

(
m∑
α=1

αqα

)

≤ (1/2)C0 + 2(1/4), (25)

(where we have used the fact that the expected number of
errors is upper bounded by 1/4), which implies that C0 ≤
1. Therefore, using the error correction procedure, the ex-
pected number of segment computations in the exact case as
well as the expected amount of errors in the full simulation is
O(T). The probability of successfully terminating the error-
correcting procedure can be lower bounded by 1 − ε2 by
running the procedure for O(T/ε2) segment computations
and by allowing O(T/ε2) errors to occur. This is immedi-
ate from Markov’s inequality. Otherwise we terminate the
simulation.

If we use the truncation of Section 2.3 to approximate each
segment computation, the expected number of full queries is
O((T/ε2) log(T/ε2ε3)/ log log(T/ε2ε3)). We give a rigorous
proof that the resulting final state of the computation has
fidelity at least

√
1− 3(ε1 + ε2 + ε3) with the final state of

the continuous-time algorithm, which completes the proof
of the Thm. 1. The cost dependence on 1/ε can be made
logarithmic if the desired output state is a basis state, where
repetition of the simulation rapidly improves the probability
of success.

2.5 Rigorous analysis of fidelity
From Section 2.1, we have |〈ψ1|ψ2〉| ≥

√
1− ε1, where |ψ1〉

is the output state of the continuous-time algorithm and |ψ2〉
is the output state of the fractional query algorithm.

Consider the algorithm with error-correction of Section 2.4,
assuming that the control qubits for each segment are in the
exact state |χ〉 (that is, we did not yet approximate each
|χ〉 by |χ′〉). This algorithm can be expressed as a unitary
operation whose input state includes the control qubit state

|χ〉⊗O(T/ε2) and whose output state is of the form

|ψ̃3〉 =
√

1− ε2 |ψ2〉 |0〉 |g0〉+
√
ε2
∣∣ψ′〉 |1〉 |g1〉 . (26)

The states |0〉 and |1〉 indicate if we failed or succeeded in

the simulation, respectively. Note that, if we define |ψ̃2〉 =
|ψ2〉 |0〉 |g0〉 then we have

〈ψ̃2|ψ̃3〉 ≥
√

1− ε2. (27)

Finally, if we change the control qubit input state to the uni-

tary operation from |χ〉⊗O(T/ε2) to |χ′〉⊗O(T/ε2) and define

the resulting output state as |ψ̃4〉 then

〈ψ̃3|ψ̃4〉 = (〈χ|χ′〉)⊗O(T/ε2) (28)

≥
√

1− ε3. (29)

Combining these results yields

〈ψ̃1|ψ̃4〉 ≥
√

1− 3(ε1 + ε2 + ε3), (30)

where |ψ̃1〉 = |ψ1〉 |0〉 |g0〉. This implies that the fidelity

between |ψ1〉 and the corresponding portion of |ψ̃4〉 is 1− ε
if ε1 = ε2 = ε3 = ε/9.

3. CONCLUDING REMARKS
We described an efficient discrete-query simulation of a

query algorithm in the continuous-time setting. For total
evolution time T and arbitrary (constant) precision, our al-
gorithm requires O(T log T/ log log T) full queries and uses
O(T 2 log T) known (driving) unitaries. It is expected that
the driving operation complexity can be reduced; however
we do not do so here.

As a consequence, lower bounds on the (discrete) quantum
query complexity for a function also are lower bounds on
the continuous query complexity, possibly lower by a sub-
logarithmic factor.

There remain a number of open questions about possible
improvements. The total number of queries could possibly
be reduced further. The minimum possible number of full
queries is Ω(T), since a quantum query algorithm with T
full queries can be simulated by continuous-time algorithm
running for time Θ(T). It might be possible to eliminate
the factor log T/ log log T from the query complexity of our
simulation to obtain a tight equivalence between discrete
and continuous query algorithms. In our simulation, this
factor arises from the need to break up the algorithm into
small segments, each of which can only have small error.
However, without breaking up the algorithm in this way, too
many errors accumulate due to failures of the probabilistic
simulations for us to correct. Therefore, it appears that a
new way of handling the error correction is needed if we wish
to remove the extra factor of log T/ log log T .

Also, for a computation on an arbitrary initial quantum
state (where fast amplification by trivially repeating the
computation cannot be carried out) a failure probability

7

bound of ε requires a factor of 1/ε in the query complex-
ity (by our approach, using the Markov bound). Since the
branching process in Section II D becomes extinct exponen-
tially fast in the generation, we conjecture that this scaling
in ε can be improved towards O(log(1/ε)). Such an improve-
ment may be useful in some settings.

Finally, it would be interesting to determine if the num-
ber of driving unitary operations can be reduced to corre-
spond to the cost of implementing the evolution of the driv-
ing Hamiltonian alone (in some reasonable sense). In the
most general case, with a rapidly varying and strong driving
Hamiltonian D(t), we do not expect a considerable reduc-
tion: a general D(t) corresponds to a complicated unitary
circuit. However, for better behaved D(t), a reduction is ex-
pected. The case where D(t) is time-independent is particu-
larly interesting, and could have relationships with improved
Trotter-Suzuki formulas. In this case, all operations Vj in
Fig. 2 are identical and the R1 gates from Fig. 4 and V̄h gates
from Fig. 5 can all be done using only O(Tpolylog T) uni-
taries. Unfortunately, we do not know how to also reduce the
number of R2 gates, so it remains an open problem whether
the number of unitaries can be reduced to O(Tpolylog T),
even in the case of a time-independent driving Hamiltonian.

4. ACKNOWLEDGMENTS
We thank P. Høyer and E. Knill for helpful discussions.

This research was supported by the Government of Canada
through Industry Canada, the Province of Ontario through
the Ministry of Research and Innovation, NSERC, DTO-
ARO, CFI, CIFAR, CRC, OCE, QuantumWorks, and MI-
TACS. The figures have been made using Q-circuit, available
online at http://info.phys.unm.edu/Qcircuit/.

5. REFERENCES
[1] A. Ambainis, Quantum walk algorithm for element

distinctness, SIAM J. on Computing, 37:210–239
(2007).

[2] A. Ambainis, A. M. Childs, B. W. Reichardt,
R. Špalek, and S. Zhang, Any AND-OR formula of size
N can be evaluated in time N1/2+o(1) on a quantum
computer, In Proc. 48th IEEE Symposium on
Foundations of Computer Science, pp. 363–372 (2007).

[3] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders,
Efficient quantum algorithms for simulating sparse
Hamiltonians, Communications in Mathematical
Physics, 270:359–371 (2007).

[4] G. Brassard, P. Høyer, and A. Tapp, Quantum
algorithm for the collision problem, ACM SIGACT
News (Cryptology Column), 28:14–19 (1997).

[5] A. M. Childs, Quantum Information Processing in
Continuous Time, Ph.D. thesis, Massachusetts
Institute of Technology, Cambridge, MA (2004).

[6] A. M. Childs, On the relationship between continuous-
and discrete-time quantum walk, arXiv:0810.0312
(2008).

[7] A. M. Childs, R. Cleve, E. Deotto, E. Farhi,
S. Gutmann, and D. A. Spielman, Exponential
algorithmic speedup by a quantum walk, In Proc. 35th
ACM Symposium on Theory of Computing, pp. 59–68
(2003).

[8] A. M. Childs, R. Cleve, S. P. Jordan, and D. Yeung,
Discrete query quantum algorithm for NAND trees,
arXiv:0702160 (2007).

[9] W. van Dam, Quantum oracle interrogation: getting
all information for almost half the price, In Proc. 39th
IEEE Symposium on Foundations of Computer
Science, pp. 362–369 (1998).

[10] E. Farhi, J. Goldstone, and S. Gutmann, A quantum
algorithm for the Hamiltonian NAND tree, Theory of
Computing, 4(8):169–190 (2008).

[11] E. Farhi and S. Gutmann, Analog analogue of a
digital quantum computation, Physical Review A,
57:2403–2406 (1998).

[12] E. Farhi and S. Gutmann, Quantum computation and
decision trees, Physical Review A, 58:915–928 (1998).

[13] L. K. Grover, Quantum mechanics helps in searching
for a needle in a haystack, Physical Review Letters,
79:325–328 (1997).

[14] J. Huyghebaert and H. De Raedt, Product formula
methods for time-dependent Schrödinger problems, J.
Physics A: Mathematical and General, 23:5777–5793
(1990).

[15] P. Kaye, R. Laflamme, M. Mosca, An Introduction to
Quantum Computation (Oxford University Press,
Oxford, 2007).

[16] C. Mochon, Hamiltonian oracles, Physical Review A,
75:042313 [15 pages] (2007).

[17] L. Sheridan, D. Maslov, and M. Mosca,
Approximating fractional time quantum evolution,
arXiv:0810.3843 (2008).

[18] P. W. Shor, Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer, SIAM J. Computing, 26:1484–1509 (1997).

[19] M. Suzuki, Quantum Monte Carlo Methods in
Condensed-Matter Physics (World Scientific,
Singapore, 1993).

8

