
Quantum Algorithms

for Evaluating Min-Max Trees

Richard Cleve1,2, Dmitry Gavinsky1, and D. L. Yonge-Mallo1

1 David R. Cheriton School of Computer Science and Institute for Quantum
Computing, University of Waterloo

2 Perimeter Institute for Theoretical Physics

Abstract. We present a bounded-error quantum algorithm for evaluat-

ing Min-Max trees with N
1
2 +o(1) queries, where N is the size of the tree

and where the allowable queries are comparisons of the form [xj < xk].
This is close to tight, since there is a known quantum lower bound of

Ω(N
1
2).

A Min-Max tree is a tree whose internal nodes are minimum and maximum
gates, at alternating levels, and whose leaves are values from some underlying
ordered set. The size N of such a tree is the number of its leaves, whose values are
referred to as x1, . . . , xN . The value of a Min-Max tree is the value of its root, a
function of x1, . . . , xN . In the input value query model, queries explicitly access
the values of the leaves. In the comparison query model, the values of x1, . . . , xN

are not directly accessible; rather, queries are comparisons of the form [xj < xk].
In this latter model, the appropriate output is any j ∈ {1, . . . , N} such that xj

is the value of the tree. The comparison query model is commonly used in the
analysis of classical parallel algorithms for searching and sorting.

Note that, when the ordered set is {0, 1}, a Min-Max tree reduces to an
And-Or tree. This implies that Barnum and Saks’s lower bound of Ω(N

1
2) [3]

for the quantum query complexity of And-Or trees applies to Min-Max trees.
Recent results initiated by Farhi et al. have shown that quantum algorithms

can evaluate all And-Or trees with order N
1
2+o(1) queries [2,6,7,9]. We show

that these results carry over to Min-Max trees in both the input value model
and the comparison model.

Let W (N) be the query complexity for And-Or trees of size N . We show
that Min-Max trees can be evaluated with O(W (N) log(N)) queries in both
the input value model and the comparison model. Our algorithm combines the
results on And-Or trees in Refs. [2,7] with the lemma below and Grover’s search
algorithm [10].

Lemma 1. Let T be a Min-Max tree with inputs x1, x2, . . . , xN . Let T v be an
And-Or tree with identical structure to T , but with And and Or gates in place
of Min and Max gates (respectively), and with the kth input assigned to 1 if and
only if xk ≥ v. Then value(T v) = 1 if and only if value(T) ≥ v.

Y. Kawano and M. Mosca (Eds.): TQC 2008, LNCS 5106, pp. 11–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

12 R. Cleve, D. Gavinsky, and D.L. Yonge-Mallo

Lemma 1 is easy to prove by induction. It implies that, if the underlying or-
dered set is a numerical range of size NO(1), then the tree can be evaluated in
log(N) stages by a simple binary search. Each stage can be implemented with
O(W (N) log log(N)) queries, which reflects the cost of evaluating an And-Or
tree amplified so that its error probability is O(1/ log(N)). The result is an
O(W (N) log(N) log log(N)) query algorithm.

A complication arises in performing such a binary search in the comparison
model, where it is not possible to directly compute the midpoint of an interval
like [xj , xk]. Problems can also arise in the input value model when the numerical
range is too large: the binary search may not converge in a logarithmic number
of steps. For this reason, we avoid the standard binary search approach where
a midpoint is chosen as a pivot. Instead, we take a random input value among
those that lie within a current interval as our pivot. What is noteworthy about
this simple approach is that it does not work efficiently in the classical case:
given an interval [xj , xk], finding an interior point is as hard as searching, which
can cost Ω(N) queries to do even once [4]. In the setting of quantum algorithms,
we can utilize Grover’s search algorithm [5,10] which costs O(

√
N).

As an aside, we note that there is a classical reduction from Min-Max trees to
And-Or trees that yields an O(N0.753) query algorithm for balanced Min-Max

trees [11]. We can use that reduction with an N
1
2 query quantum algorithm for

balanced And-Or trees; however, the resulting algorithm for Min-Max costs
Ω(N0.58), due to the recursive structure of the algorithm1. Our alternate ap-
proach yields exponent 1

2 + o(1) and is not restricted to balanced trees.
What follows is a description of our algorithm with the analysis of its error.

For convenience, let ⊥ and � be such that x⊥ < xj and x� > xj for any
j ∈ {1, . . . , N} and let c be a constant.

Quantum Min-Max tree evaluation

1. Let γ ← ⊥ and δ ← �, and initialize the stack.
2. Repeat the following steps for c log(N) iterations, then go to Step 3:

(a) Find a random pivot:
Call the quantum search subroutine to find a random pivot index j with
xγ < xj < xδ. If no value is found, go to Step 2(c).

(b) Refine the search:
Call the And-Or tree subroutine to check if value(T) < xj . If so, let
δ ← j; otherwise, let γ ← j.

(c) Backtrack if out of range:
Call the And-Or subroutine to check if xγ ≤ value(T) < xδ. If so, push
(γ, δ) onto the stack. Otherwise, pop (γ, δ) off the stack. (If the stack is
empty, let γ ← ⊥ and δ ← �.)

3. Return γ as an index corresponding to the value of the Min-Max tree.

1 The expected number of calls to the binary subtrees is 3/2, essentially yielding a

recurrence of the form C(N) = (3/2)C(N/2) + N
1
2 for the cost.

Quantum Algorithms for Evaluating Min-Max Trees 13

Clearly, the algorithm makes O(W (N) log(N)) queries. We claim the follow-
ing.

Theorem 1. The algorithm returns the value of the Min-Max tree with
probability at least 2

3 .

To prove Theorem 1, we must consider the progress made by the random choices
of pivots as well as the error probabilities of the subroutines for And-Or and
the searches (each errs with constant probability).

To begin with, assume that the subroutines for And-Or and search never err
(thus, xγ ≤ value(T) < xδ at all times). Under this assumption, the progress of
the algorithm is determined by how quickly the subinterval converges. Once no
value in Step 2(a) is found the algorithm has converged (with xγ = value(T))
and can go to Step 3 and terminate (however it is harmless to perform more
iterations before doing this).

Let C(m) denote the expected number of iterations of the algorithm until it
converges, assuming that m of its inputs are within its current range.

Then, for m > 1, C(m) satisfies the recurrence

C(m) ≤ 2
m

⎛
⎝

m−1∑
k=�m/2�

C(k)

⎞
⎠ + 1. (1)

This can be seen by assuming that the pivot is uniformly selected among all
m possible positions within the subinterval and that value(T) always lies in
the larger side of the pivot. It is straightforward to verify that the recurrence
implies C(m) ∈ O(log(m)). Therefore, the expected number of iterations of
Step 2 made by the algorithm before xγ = value(T), under the assumption
that the subroutines never err, is O(log(N)). By the Markov bound, O(log(N))
iterations suffice to obtain error probability less than any particular constant.

We now consider the fact that the subroutines for And-Or and searching can
fail. First, note that, by incurring a multiplicative factor of only O(log log(N)),
each call to the And-Or and search algorithm can be amplified so that its
error probability is O(1/ log(N)). This results in an O(W (N) log(N) log log(N))
algorithm for Min-Max.

These amplification costs are not necessary in our algorithm, since it can cope
with a constant fraction of errors in subroutine calls. To see why this is so, let ε be
the probability that one or more subroutines err during one iteration of Step 2 of
the algorithm. The algorithm begins some O(log(N)) steps away from reaching a
good state — of the form (α, δ) such that xα = value(T). Before reaching a good
state, an “incorrect” step for the algorithm places value(T) outside the search
interval, and a “correct” step either narrows the search interval or backtracks
from a previous error. After reaching a good state, a “correct” step pushes a
pair of the form (α, δ) onto the stack and an “incorrect” step pops it off. In each
iteration, the algorithm takes a correct step with probability at least 1−ε and an
incorrect step with probability at most ε. Therefore, with all but exponentially
small probability, the number of correct steps minus the number of incorrect

14 R. Cleve, D. Gavinsky, and D.L. Yonge-Mallo

ones after c log(N) iterations is at least c
2 log(N). For suitably large c this means

that, with constant probability, when the algorithm terminates, γ = α (typically
with many copies of pairs of the form (α, δ) on the top of its stack).

Finally, we note that, in game-playing contexts, it is useful to determine
optimal moves. This corresponds to finding the subtree of a Min-Max tree
that attains its value. If the leaf values x1, . . . , xN are distinct, this is easily
deduced from value(T). Otherwise, we can combine the Min-Max tree evalu-
ation algorithm with the quantum minimum (maximum) finding algorithm of
of Dürr and Høyer [8] to obtain the correct minimax decision. Suppose that we
have a balanced Min-Max tree and that its root is a Max gate with c children
(each of which is a Min-Max tree with a Min node at its root and N/c leaves).
Then the Dürr-Høyer algorithm will make O(

√
c) evaluations of the subtrees, and

each subtree will cost O((N/c)
1
2+ε) to evaluate. The case of unbalanced trees

is more elaborate, but can be solved with the same asymptotic cost by using a
generalization of Grover’s algorithm that accommodates variable query times [1].
Thus, the minimax decision can be obtained in the same asymptotic cost that
it takes to evaluate the tree.

Acknowledgements

We would like to thank Peter van Beek, Peter Høyer and Pascal Poupart for
helpful discussions, and the anonymous reviewers for their comments. This
research was supported in part by Canada’s NSERC, CIAR, MITACS,
QuantumWorks, and the U.S. ARO/DTO.

References

1. Ambainis, A.: Quantum search with variable times (arXiv:quant-ph/0609168)
2. Ambainis, A.: A nearly optimal discrete query quantum algorithm for evaluating

NAND formulas (arXiv:quant-ph/0704.3628)
3. Barnum, H., Saks, M.: A lower bound on the query complexity of read-once func-

tions. Journal of Computer and System Science 69(2), 244–258 (2004)
4. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses

of quantum computing. SIAM Journal on Computing 26(5), 1510–1523 (1997)
5. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.

Fortschritte Der Physik 46(4–5), 493–505 (1998)
6. Childs, A.M., Cleve, R., Jordan, S.P., Yeung, D.L.: Discrete-query quantum algo-

rithm for NAND trees (arXiv:quant-ph/070 (2160))
7. Childs, A.M., Reichardt, B.W., Špalek, R., Zhang, S.: Every NAND formula on N

variables can be evaluated in time O(N
1
2+ε) (arXiv:quant-ph/0703015)

8. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum (arXiv:quant-
ph/9607014)

9. Farhi, E., Goldstone, J., Gutmann, S.: A Quantum Algorithm for the Hamiltonian
NAND Tree (arXiv:quant-ph/0702144)

Quantum Algorithms for Evaluating Min-Max Trees 15

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC
1996), pp. 212–219 (1996)

11. Saks, M., Wigderson, A.: Probabilistic Boolean Decision Trees and the Complexity
of Evaluating Game Trees. In: Proceedings of the 27th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 1986), pp. 29–38 (1986)

	Quantum Algorithms for Evaluating MIN-MAX Trees
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

