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Abstract.

We consider the minimum number of gates necessary to compute an approximation of
the quantum Fourier transform (QFT) modulo 2" with precision 1/n°(

1), We give an upper bound of

O(n(loglogn)?logloglogn), which is an improvement over previous bounds that are O(nlogn). We also
show that if there exist circuits of size o(nlognloglogn) performing the QFT for arbitrary n-bit moduli
then there exist quantum circuits of size o(nlognloglogn) for integer multiplication—smaller than the

Schonhage-Strassen bound.
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1 Introduction and summary of results

Since quantum Fourier transforms (QFTs) play a piv-
otal role in many fast quantum algorithms, it is natu-
ral to investigate their properties—including the cost of
computing them with various resource measures, such
as size and depth in the basic quantum circuit model
[5, 2,4, 7,6, 10]. For the QFT mod 2", it is shown in [5]
that size O(nlog(n/e€)) is sufficient for an approximation
within accuracy e. For exact computations, there is an
upper bound of O(n(logn)?loglogn) [4]. For the QFT
with respect to an arbitrary n-bit modulus, the best size
bound that we are aware of is O(nlog(n/e) loglog(n/e))
for approximations within € [7, 6, 8]. Until recently, there
was no known polynomial-size construction for exactly
computing the QFT in the arbitrary modulus case; how-
ever, in [10], it is shown that this can be done.

For the purposes of quantum algorithms, approxima-
tions of QFTs are arguably appropriate, since exact im-
plementations of quantum circuits are unlikely to be fea-
sible in physical terms. Also, in some contexts where
noise is present and fault-tolerant implementations are
necessary, the product of the circuit depth and width
might be the most realistic measure of “cost” (as dis-
cussed in [4]). Our present focus is on circuit size (the
number of one- and two-qubit gates). There are noisy
contexts where this is reasonable, such as circumstances
where noise may be low and there exist fault-tolerant
mechanisms for preserving quantum states whose cost is
small relative to the cost of computational steps. We also
note that our particular constructions reveal information
about the structure of QF Ts—particularly their relation-
ship to approximate integer multiplication algorithms.

We consider the question: Can QFTs be computed
(exactly or approximately) by linear-size circuits? Al-
though we are unable to answer this question, we pro-
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vide a construction for the QFT modulo 2™ that is
size O(n(loglog(n/e))?logloglog(n/e)). This is signifi-
cantly closer to linear than previous constructions, since
its ratio with n is polynomial in loglog(n/e) instead of
log(n/e). We also consider the case of arbitrary mod-
uli and show the following. If there exist circuits of size
o(nlognloglogn) computing QFTs with respect to ar-
bitrary n-bit moduli then there exists a quantum circuit
of size o(nlogn loglogn) for multiplying n-bit integers—
smaller than the Schonhage-Strassen bound [11]. This
can be interpreted as evidence that the size improvements
possible for the mod 2" case do not carry over the the ar-
bitrary modulus case. Alternatively, this reduction might
contribute to a quantum algorithm for integer multipli-
cation that is superior to existing classical algorithms.

2 Improved approximate QFT mod 2"

Our approach is a combination of the ideas behind con-
structions in [4] and [5]. Specifically, we start with a con-
struction in [4], in which phase shifts of the form |z) |y) —
(e?7/27 )2y |z} |y) occur, for m/2-bit integers 2 and y
(and various values of m). These phase shifts are com-
puted by efficiently multiplying the two numbers z and
y. Our approach is to approximate each of these multi-
plications by only using the high-order bits of each. This
reduces the cost of the multiplications but also introduces
an error. We show that the trade-off can be adjusted to
yield a circuit of size O(n(loglog(n/e€))?logloglog(n/e)).

3 QFT mod ¢ and integer multiplication

We show that if there is a quantum circuit of
size o(nlogmnloglogn) that approximately computes the
QFT mod ¢ then there is also a quantum circuit of size
o(nlognloglogn) that multiples an n-bit integer by ¢
with success probability 1 — 1/n°(). Such a quantum
circuit would be smaller than the most efficient classical
multiplication circuit that is known [11].

This reduction uses the results about the modulo 2™
case from the previous section, combined with the phase



estimation algorithm [9, 3], which can be expressed as
follows. Let U be any n-qubit unitary operation and
|0} be an eigenvector of U with eigenvalue 2™ for some
A € [0,1). Then there is a quantum algorithm that, given
state |¢) as input, computes A to m bits of precision with
success probability 1 — §, and whose cost is the sum of
the following costs, where m' = m + O(log(1/9)):

e The circuit size of computing a QFT modulo om’.

e The circuit size of performing an m'-bit general-
ized controlled-U operation that maps |z)|y) to
|z) U |y), for all z € {0,1,...,2™ —1} and y €
{0,1}"™.

We show that phase estimation can be used to divide;
it can be shown that division can be used to multiply.
Suppose we have two n-bit integers a, b, and we wish to
compute a/b (assume that a < b). We begin by comput-

ing the QFT mod b2™ =" on ‘a . 2m’7n>-

|¢a> =
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We now input |¢,) into the phase estimation algorithm.
The unitary operator U |k) = ‘k ~1 mod meI,n> for

0 < k < b2™ ~™ has eigenvectors |1),) with corresponding
eigenvalues e2mia2™ ~"/b2™ 7" — g2mia/b  Thig operator
will be used as the controlled-U operator in the phase
estimation algorithm. If we use m' bits as the control
for phase estimation, the controlled-U can be performed

by subtracting the first register from the second modulo
b2™' =" since |z)U®|y) = |z) |y —2 mod b2m’_”>.
This subtraction can be performed in time linear in m/’.

As output, we will receive an m-bit approximation to a/b
with probability 1 — d.
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