Introduction to
Quantum Information Processing
QIC 710, CS 667,
C&O 681, PHYS 767, AM 871
Fall 2011 (http://www.cs.uwaterloo.ca/~cleve/courses/F11CS667/index.html)
Schedule of project presentations
Classical lower bound for Simon's problem
Instructor
Richard Cleve (cleve@cs.uwaterloo.ca)
Office hours:
after class or by appointment
Objectives
Quantum Information Processing (also known as "quantum computing") seeks to
harness the strange power of quantum mechanics to provide a qualitatively
different and more powerful way of processing information than "classical"
physics seems to allow. The objective of this course is to introduce this
multidisciplinary subject at the graduate level.
Topics to be covered
●
Detailed syllabus: [PDF]
●
Overview
(timing information is approximate):
○
Introduction to the quantum
information framework (3 lectures).
○
Quantum algorithms and
complexity theory (8 lectures).
○
Density matrices and quantum
operations on them (3 lectures).
○
Distance measures between
quantum states (1 lecture).
○
Entropy and noiseless coding
(1 lecture).
○
Error-correcting codes and
fault-tolerance (3 lectures).
○
Nonlocality (2 lectures).
○
Cryptography (3 lectures).
Intended audience
Lecture notes from Fall 2011
Lecture notes from Fall 2008
Lecture notes from Fall 2009
Projects (worth 40% of the final grade)
This course is mainly intended for graduate students in CS, C&O or Physics.
Other students may take this course with the permission of the instructor.
Prerequisites are MATH 235 or equivalent (e.g. PHYS 364 & 365); STAT 230 or
equivalent. Note: this course cannot be taken for credit by students who have
taken CO 481 / CS 467 / PHYS 467.
Evaluation
5 assignments 12% each
1 project 40%
Lecture 11 [PPT,
PDF]
Lecture 14 [PPT,
PDF]
Bloch sphere, general quantum operations in Krauss form, POVMs
Lecture 15 [PPT,
PDF]
Stinespring vs. Krauss, separable states, trace distance
Lectures 16
[PPT,
PDF] Holevo-Helstrom Theorem, entropy, compression
Lectures 17-19
[PPT,
PDF]
NP (briefly), Grover's algorithm & lower bound for searching
Lectures 20-21
[PPT,
PDF]
Quantum error-correcting codes
Lectures 1-3 [PPT,
PDF]
Lectures 4-6 [PPT,
PDF]
Lectures 7-9 [PPT,
PDF]
Lectures 10-14 [PPT,
PDF]
Lectures 15-20 [PPT,
PDF]
Lecture 14 [PPT,
PDF]
Bloch sphere, general quantum operations in Krauss form, POVMs
Lecture 15 [PPT,
PDF]
Stinespring vs. Krauss, separable states, trace distance
Lectures 16-17
[PPT,
PDF] Holevo-Helstrom Theorem, entropy, compression
Lecture 18
[PPT,
PDF]
Grover's algorithm & lower bound for searching
Lecture 19
[PPT,
PDF] Nonlocality (GHZ and CHSH)
Lectures 20-21
[PPT,
PDF] Quantum error-correcting codes
Lectures 22-23 [PPT,
PDF] Fault-tolerance (brief); BB84 quantum key
distribution; Schmidt decomposition
Lecture 24
[PPT,
PDF] Lo-Chau quantum key distribution protocol and
its security
Each project consists of a written component and an oral presentation to the
class.
It should explain and analyze
some topic in quantum information processing, selected with the approval of the
instructor. Your presentation should be about 30 minutes in length and your
written component is not required to be of any particular length, but around 10
pages would be typical (PDF, PS, and Word are acceptable formats). You should
explain the topic in your own words, at a level accessible to your classmates.
Partial list of possible project topics
[ PDF format,
Word format ]
Note that you are welcome to pursue a project topic that is not on the list. In
any event, you should seek approval from the instructor for your project topic.
Additional possible project topics
[ PDF format,
Word format ]
References
●
An Introduction to Quantum
Computation, P. Kaye, R. Laflamme, M. Mosca (Oxford University Press, 2007).
Primary reference.
●
Quantum Computation and
Quantum Information, Michael A. Nielsen and Isaac L. Chuang (Cambridge
University Press, 2000). Secondary reference.
Notes
from Fall 2011 (most recent first):
●