CS667/CO681/PH767 Quantum Information Processing (Fall 07)

Assignment 3 Extra Challenge Questions

Note: these questions are entirely optional, but credit will be added for any solutions given.

challenging

Difficulty estimates: ** very challenging

*** open research problem

- 1. ** Simulating arbitrary unitary operations on n qubits. Show that any unitary operation acting on n qubits can be computed by a quantum circuit consisting of $O(4^n)$ elementary gates (that are arbitrary one-qubit gates or two-qubit CNOT gates). (This is a refinement of the result described in class that requires $O(n^24^n)$ such gates. I anticipate that this is challenging, though it is a known result.)
- 2. *** Sharing a secret qubit state among three parties. This is related to Question 3 of Assignment 3, but with qubits instead of qutrits. Show that there is no qubit construction analogous to the one for sharing a qutrit among three parties. That is, there is no way to map an arbitrary qubit in an unknown state of the form $|\phi\rangle = \alpha|0\rangle + \beta|1\rangle$ into a three-qubit state such that $|\phi\rangle$ can be recovered from any two of the three qubits.